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Abstract In this study, the aeroelastic responses and
stability boundaries of a simply supported supersonic
plate with structural damage are investigated to assess
the effects of damage parametric changes on the sta-
bility regions as well as to explore some potential
tools for damage detection. In the modeling, structural
damage is a local bending stiffness loss with various
levels, extents and positions. The effects of damage
level, extent and position are presented via exploiting
nonlinear tools such as bifurcation diagrams, stabil-
ity regions, Poincaré maps and Lyapunov exponents.
Specially, the proper orthogonal decomposition (POD)
method is applied to extract the POD modes to detect
the damage parametric variations. It is determined that
(1) structural damage has a notable influence on the
aeroelastic stability of the panel; (2) the damage level
and extent affect in a similar way that a larger damage
level/extent tends to reduce the flutter boundary for a
flat plate, but conversely increase the flutter boundary
for a buckled plate; (3) the damage occurring around
the leading of the panel corresponds to the least stable
panel compared to the other positions along the chord-
wise; (4) the stability region as a novel way for damage
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detection is proved to be sensitive and effective, and the
largest Lyapunov exponent as a quantitative measure is
powerful to reveal the subtle differences in the chaos
induced by damage changes; (5) the higher-order POD
modes are more sensitive to the subtle damage than the
primary POD modes.
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List of symbols

a Plate length (m)
D Plate stiffness (Nm)
E Young’s modulus (N/m2)
h Plate thickness (m)
M Number of modes retained
Ma Mach number
m, n Mode number
NT
x In-plane thermal force in x direction (N/m)

p − p∞ Aerodynamic pressure (N/m2)
q ρU 2/2, dynamic pressure (N/m2)
T Temperature differential (K)
t Time (s)
U Velocity (m/s)
w Panel transverse deflection (m)
x Streamwise coordinate (m)
α Thermal expansion coefficient (/◦C)
β (M2

a − 1)1/2
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ν Poisson ratio
ψ POD mode
ρ, ρm Air density, plate density (kg/m3)

1 Introduction

Considering the nonlinear in-plane stresses due to the
large deflection, a long-term panel flutter exhibiting
complex dynamic behaviors is very likely to result in a
fatigue failure, prior to which structural damage such
as cracking or hidden corrosion may occur. Damage
can be defined as changes drawn into the system and
will adversely affect the current or future performance
of the system, which is thus very dangerous and of sig-
nificant importance to predict the new stability bound-
aries induced by the structural damage, especially for
aircraft and aerospace systems involved with human
safety. Therefore, knowledge of the influence rules of
damage changes to the aeroelastic behaviors and sta-
bility boundaries of a fluttering panel is of interest and
will equip the safe flight with crucial information.

The investigations of aeroelastic behaviors and sta-
bilities of a fluttering panel have been primarily focused
on the perfect/healthy panel without damage. Dow-
ell and his coworkers investigated the nonlinear limit
cycle oscillations (LCOs) and chaos of a simply sup-
ported/cantilevered panel fluttering in supersonic flow
using semi-analytical methodologies [10,43,47]. Con-
sidering more precise aerodynamic models, some rel-
evant work were naturally followed [2,4,19,39]. In
addition to the simple rectangular panel, a trapezoidal
wing-like panel was investigated [37]. To consider the
complex geometries and constraint boundaries, some
researches of supersonic and hypersonic panel flutter
considering thermal effects or/andwith laminated com-
posite materials were done exploiting the finite ele-
ment method [7,20,25,33,34]. For the sake of compu-
tational saving and physical insight of panel flutter, the
reduced-order models (ROMs) using aeroelastic mode,
proper orthogonal decomposition (POD) method were
thus established for analysis of nonlinear aeroelastic
behaviors [21,28,42,45].

Whereas the study of aeroelastic characteristics of a
damaged panel has seldombeen presented. InRef. [36],
aeroelastic responses of damaged composite plates
were analyzed. The linear flutter boundary evolving
with damage was determined to be highly dependent
with the damage growth. However, the nonlinear struc-

tural coupling between bending and stretching of the
plate was not considered, and thus, the stability bound-
arywas simply linear. It iswell known that the nonlinear
membrane force induced will limit the plate amplitude
and the nonlinear flutter behavior has been observed in
experiments [11,23]. Therefore, a statistic study of the
damage parametric changes to the nonlinear dynamics
and nonlinear flutter boundaries is highly expected.

In order to discriminate thenewaeroelastic responses
and stability boundaries involved with the structural
damage, powerful tools with high sensitivity for dam-
age detection are of great necessity. Currently, exten-
sive researches have been conducted in damage identi-
fication for a reliable and effective nondestructive tech-
nique to maintain safety and integrity of structures for
a simple beam/plate or complex aircraft and aerospace
system. In the literature, the most popular and effective
damage identification methods belong to the field of
signal processing, which can be mainly categorized as
vibration-based methods, attractor-based methods and
POD-based methods.

The physical idea of vibration-based damage iden-
tification method is that the damage-induced changes
in the physical properties such as mass, damping and
stiffnesswill cause detectable changes inmodal param-
eters like natural frequencies, modal shapes and modal
damping. Various kinds of vibration-based damage
detection methods have been investigated for health
monitoring. Wavelet transform and neural network
identification based on vibration responses were used
for simple plates and composite structures [31,46].
Two vibration-based methods using time-series anal-
ysis of dynamic responses were explored for dam-
age detection of a thin plate [38]. The categoriza-
tion, merits/drawbacks and the choice of different
vibration-based methods can be found in Refs. [9,16].
The vibration-based methods discussed above are well
developed for linear systems, however, are not sensitive
in a nonlinear system for damage location and charac-
terization.

The aeroelastic systems, however, are essentially
nonlinear and their damage detections are very impor-
tant since the structural failure once occurring will
cause a great loss to both life and wealth. Due to
the existence of nonlinearity, the additivity and homo-
geneity pertaining to the linear system become invalid
[8,40]. Thus, we have to resort to some nonlin-
ear approaches. Therefore, attractor-based methods,
extracting more information from the vibration data
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with signal processing, have been developed for nonlin-
ear systemswith higher sensitivity. As is known to all, a
typical LCO occurs for an aeroelastic system when the
flutter boundary is exceeded [1]. Therefore, the LCO
shapes have been used as a feature to detect the damage
position of the aeroelastic panel [13]. With more sensi-
tivity for a nonlinear system, chaoticmotions have been
proved to be effective for identification of parametric
variations in aeroelastic systems [14], and thus, the fea-
tures of chaos such as Poincaré map [24], bifurcation
[12], attractor dimension [26,29,30] and fractal dimen-
sion [22] have been exploited for damage identification
by many researchers.

Generally speaking, attractor-based methods and
vibration-based methods are both exploiting structural
responses directly with signal processing technique,
which however, pose two challenges: (1) the dynamic
response of a system is not only based on geometric
and material properties but also forces and environ-
mental conditions, and thus, the variations of the latter
may mask the changes of dynamic responses caused
by the former, which is structural damage. Therefore,
a methodology that can distinguish the changes of
dynamic responses induced by both structural prop-
erties and environmental conditions is needed. (2) The
damage is typically a local phenomenon and may not
significantly influence the global response of a struc-
ture, which is usually measured and recorded as basis
in vibration and attractor-based methods. To conquer
the limitations of vibration/attractor-based methods,
PODmethod as a reduced-order technique [5,6,45] has
been applied for damage detection by using the sys-
tem’s dynamical invariants to discriminate the changes
of dynamic responses caused by structural damage
[3,17,18,32].

The present study aims to evaluate the effects of
damageparametric changes to the aeroelastic responses
and stability boundaries of a simple fluttering panel
in supersonic flow. Structural damage alters the stiff-
ness, mass or damping of a structure and in turn causes
a change in its dynamic response and hence the sta-
bility boundary. Some nonlinear tools based on vibra-
tion/attractor of the system such as bifurcation diagram,
Poincarémap,Lyapunov exponent [35,41] and stability
regions are exploited and proved to be sensitive to the
structural damage, which will pave a way to the struc-
tural health monitoring of an aeroelastic system. Espe-
cially, the stability regions differentiating various types
of dynamics are obtained for the first time for a dam-

Fig. 1 Geometry of a fluttering panel undergoing supersonic
flow

aged plate. Furthermore, the POD modes are exploited
for detection of subtle structural damage.

This paper is organized as follows: in Sect. 2, aeroe-
lastic equations of a damaged panel are constructed,
and the damage is characterized as a local stiffness
loss with three parameters. In Sect. 3, effects of dam-
age parameters of damage level, extent and position
are studiedwith bifurcation diagrams, stability regions,
Poincaré maps and Lyapunov exponents. In addition,
the PODmethod is exploited to extract PODmodes for
detection of damage parametric variations. The main
conclusions are drawn in Sect. 4.

2 Modeling

For a simply supported plate presented inFig. 1, consid-
ering the coupling of out-of-plane bending and in-plane
stretching, long-time of nonlinear dynamic behaviors
like LCO and chaos may lead to fatigue failure, prior
to which structural damage as a local stiffness loss is
possible. Hence, as shown in Fig. 2, the bending stiff-
ness and Young’s modulus due to a local damage are
defined as D̄ and Ē , respectively, compared to D and
E for a healthy panel. And thus a stiffness reduction
factor is defined as Sr = D̄/D (orĒ/E) quantifying
the damage level. It should be noted that the smaller
the Sr is, the larger the damage is. Additionally, the
possible damage is located at xd with a length of ld , via
which twomore nondimensional damage parameters of
Ld = ld/a and ξd = xd/a are defined to characterize
the damage extent and position, respectively.
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Fig. 2 Geometry of a two-dimensional panel with structural
damage

For a simply supported panel [10], ignoring the span-
wise bending and using the Kirchhoff–Love plate the-
ory ignoring shearing stress and von Karman plate the-
ory demonstrating nonlinear strain-displacement rela-
tion, the equation of motion for the damaged panel can
be written as follows [15]:

D̄

(
∂4w

∂x4

)
−

[
Ēh

2a

∫ a

0

(
∂w

∂x

)2

dx + NT
x

] (
∂2w

∂x2

)

+ ρmh

(
∂2w

∂t2

)
+ (p − p∞) = 0, (1)

where the induced force from the coupling between the
out-of-plane bending and in-plane stretching [10] is

Nx = Ēh/2a
∫ a

0
(∂w/∂x)2dx, (2)

and the externally applied in-plane thermal force,
which is assumed uniform through the whole panel,
is taking the form

NT
x = − ĒhαT

(1 − ν)
. (3)

Since the piston theory has been widely used in the
range of

√
2 < Ma < 5 with good precise, the first-

order piston theory is used for calculating the quasi-
steady aerodynamic force [10]

p − p∞ = 2q

β

[
∂w

∂x
+

(
M2

a − 2

M2
a − 1

)
1

U

∂w

∂t

]
. (4)

Substituting Eqs. (2)–(4) into Eq. (1) and using the fol-
lowing nondimensionalization,

ξ ≡ x/a, W ≡ w/h

λ ≡ 2qa3/βD

μ ≡ ρa/ρmh

τ ≡ t (D/ρmha
4)1/2

RT
x ≡ −12(1 + ν)(a/h)2αT

(5)

the nondimensional aeroelastic equation of a damaged
panel is obtained:

Sr
∂4W

∂ξ4
− 6Sr (1 − ν2)

[∫ 1

0

(
∂W

∂ξ

)2

dξ

]
∂2W

∂ξ2

+ λ

{
∂W

∂ξ
+

(
M2

a − 2

M2
a − 1

) (
μ

λMa

) 1
2 ∂W

∂τ

}

−Sr R
T
x

∂2W

∂ξ2
+ ∂2W

∂τ 2
= 0. (6)

Using the Galerkin method with assumption of

W (ξ, τ ) =
M∑

m=1

am(τ ) sin (mπξ),

and then, the resulting ordinary differential equations
(ODEs) are expressed as
d2an
dτ 2

= −2
M∑

m=1

am(mπ)4
∫ 1

0
Sr (ξ) sin(mπξ) sin(nπξ)dξ

− 6(1 − ν2)

M∑
m=1

a2m(mπ)2
M∑

m=1

am(mπ)2

×
∫ 1

0
Sr (ξ) sin(mπξ) sin(nπξ)dξ

− λ

⎧⎨
⎩

M∑
m=1,m �=n

am
2mn[1 − (−1)m+n]

n2 − m2 +
(

μ

λMa

) 1
2 dan

dτ

}

− RT
x

M∑
m=1

am(mπ)2
∫ 1

0
Sr (ξ) sin(mπξ) sin(nπξ)dξ ;

(n = 1, 2, . . . , M). (7)

This is a set of M second-order, ordinary, coupled non-
linear differential equations for the unknown ampli-
tudes am(τ ), which can be solved by 4th Runge–Kutta
(RK4) numerical integrationmethod for the aeroelastic
responses of the damaged panel.

3 Results and discussions

The panel material properties, geometrical dimensions
and flow parameters are: E = 71GPa, ν = 0.3, α =
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2.34 × 10−6/◦C, ρm = 2750 kg/m3; h/a = 1/300;
and ρ = 0.413 kg/m3, Ma = 4.5, respectively.
Effects of damage level, extent and position to the non-
linear dynamic behaviors and stability boundaries of
the fluttering panel are discussed in detail. All figures
are plots of a typical point at ξ = 0.75. A critical tem-
perature Tcr = π2h2/[12(1 + ν)αa2] is defined for
nondimensionalization of temperature differential T ,
and then RT

x = −π2(T/Tcr).
All the results of bifurcation diagrams, Poincaré

maps and the largest Lyapunov exponent (LLE) are
calculated and mapped out as follows:
(1) Bifurcation diagrams: sweep a damage parameter
like Sr , Ld or ξd , and then record the local deflection
extrema of time response. It should be noted that the
deflection extrema should be recorded after the tran-
sient response is damping out.
(2) Poincaré maps: first define an event point at ξ =
0.25, and then record the deflection and velocity of
the typical point when the event point reaches its zero
deflection with a positive velocity.
(3) LLE: according to the procedure in Ref. [35], we
calculate the LLE as follows:

1. Start with an orbit a0, and then iterate for a period of
t0 tomake sure the orbit is on the attractor.Choosing
t0 = 100 in the present study is to drop the influence
of transient responses.

2. Select another nearbyorbitb0 satisfying |b0 − a0|=
d0 given d0 = 10−8. An easy way to choose b0 is
as b0(1) = a0(1)+d0;b0(2 : end) = a0(2 : end).

3. Iterate both orbits a few steps, e.g., N1 = 10 to
obtain a1 and b1, and then calculate the new sepa-
ration d1 = |b1 − a1|.

4. Calculate the largest Lyapunov exponent Λ1 =
log|d1d0 |

1
N1dt

.
5. Readjust the second orbit to make its separation

to the first orbit is d0 in the same direction as d1.
Specifically, a0 = a1 and b0 = a1 + d0

d1
(b1 − a1).

6. Repeat steps 3–5 and then calculate the average of
step 4.

Then, the criterion for chaos is obtained [27]:

{
Λ > 0 chaotic
Λ � 0 regular motion

Fig. 3 Bifurcation diagram in terms of damage level Sr

3.1 Effect of damage level

Effect of varying damage levels on the aeroelastic
responses is first considered. Shown in Fig. 3 is a
bifurcation diagram of deflection extrema versus dam-
age level parameter Sr by fixing the damage extent
and position as Ld = 10%, ξd = 0.75 with fixed
dynamic pressure and in-plane temperature stress as
λ = 150, T/Tcr = 4. It should be noted that Sr = 1
represents a healthy panel, and a smaller Sr value indi-
cates a larger damage level. The damage level is vary-
ing in a range 0 → 1 with a step increment of 
Sr =
0.01. The results show that the panel exhibits complex
dynamics as chaos, periodic and buckled motions for
different damage levels. The robustness of the obtained
bifurcation diagram has been conducted, and the ini-
tial conditions of a1 = 0.1 and a1 = 0.01 have been
proved to obtain the identical bifurcation diagrams. So
the initial condition of a1 = 0.01 is used in all of the
calculations in this study.

Here, a possible suspicion may be proposed that one
would be able to get a very similar result (perhaps even
with similar chaotic and n-periodic windows) by main-
taining the pristine structure, and instead gradually
lowering the temperature (as the bifurcation parame-
ter). For comparison, the resulting bifurcation diagrams
with respect to temperature for Sr = 1 and Sr = 0.8
are presented in Fig. 4. First, the bifurcation diagram is
changed noticeably with 20% stiffness reduced, which
concludes that damage level affects the bifurcation dia-
gram. Secondly, comparing with the bifurcation dia-
gram of Fig. 3, we still can find the noticeable differ-
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Fig. 4 Bifurcation diagrams in terms of temperature T/Tcr: a
Sr = 1; b Sr = 0.8

ence. Although they all show that the panel oscillates as
chaos, periodic, buckled or stable, but still the bound-
aries between the complex behaviors are changed by
the damage level.

Shown in Fig. 5 are the dynamic responses at typical
damage levels of Sr = 1, 0.8 and Sr = 0.6. Poincaré
plots and the largest Lyapunov exponent (LLE) indicate
chaos for the healthy panel (Sr = 1) and the damaged
panel with 40% stiffness loss (Sr = 0.6); in addition,
a periodic-3 motion is obtained for the panel with 20%
stiffness loss (Sr = 0.8). For the chaotic motions, the
Poincaré map as an attractor differs in the shapes for
different damage levels, which however, is a qualitative
feature without telling how the shapes deform with the
damage level change. In contrast, theLLEas a quantita-

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Panel responses for different Sr at T/Tcr = 4, λ = 150:
a Poincaré map for Sr = 1; b LLE for Sr = 1; c Poincaré map
for Sr = 0.8; d FFT for Sr = 0.8; e Poincaré map for Sr = 0.6;
f LLE for Sr = 0.6

tivemeasure to evaluate the complex dynamic behavior
obtains the values of 2.52 and 3.98 for the chaos gen-
erated from Sr = 1 and Sr = 0.6, respectively. To
understand better the dynamic response in the chaotic
regions, the LLE is plotted in terms of the changing
Sr in Fig. 6. For buckled and periodic motions, LLE is
negative or zero, in comparison, LLE is positive for the
chaotic motion and sensitive to the changed damage
levels.

To sum up, with the increase in damage level, as
has been seen a healthy panel oscillating originally as
chaosmay oscillate as a periodic or buckledmotion due
to a local stiffness loss at a certain level. Therefore, as a
preliminary supposition, the stability regions defining
the boundaries of various complex dynamic behaviors
will be affected by the changes of damage level.

A stability analysis is thus carried out for deter-
mining the boundaries separating different types of
dynamics. Specifically, sweeps in T/Tcr = 0 : 5 and
λ = 0 : 400 are performed with fixing each T/Tcr
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Fig. 6 LLE in terms of damage level Sr

Fig. 7 Stability regions with different damage levels: Sr =
1, Sr = 0.8, 0.6 and Sr = 0.4

and sweep of λ, and the local deflection extrema are
recorded against λ in a bifurcation diagram. Based on
the points of distribution in bifurcation diagram, the
boundaries of Stable flat, Stable buckled, LCO and
Periodic/chaos are then recognized. Figure 7 spanned
in the parameter space of T/Tcr and λ is mapped out
showing the stability regions at different damage levels:
Sr = 1, 0.8, 0.6 and Sr = 0.4, and it is interesting to
note that the difference observed is notable.As has been
seen that with the increase in damage level, the flutter
boundary for a flat panel is reached at lower dynamic
pressure, which however, is increased for a buckled
plate conversely. More complicated is that the bound-
ary separating the regions of LCO and periodic/chaos
increases notably and nonlinearly.

Table 1 Definition of points A, B and C

Points Parameters of forces

A T/Tcr = 4, λ = 100

B T/Tcr = 2, λ = 300

C T/Tcr = 4, λ = 200

Fig. 8 Panel buckled shapes for point A with different Sr

Fig. 9 Panel LCO shapes for point B with different Sr

Three representative points marked as A, B, C in
Fig. 7 are chosen for further discussions, the specific
locations of which in the stability regions are defined
in Table 1. At different damage levels, buckled shapes
at point A and LCO shapes at point B are displayed
in Figs. 8 and 9, respectively. The curves show that a
higher damage level results in a larger buckled/LCO
deflection, and the change is more obvious for buckled
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(a) (b)

(c) (d)

Fig. 10 Panel responses for point C with lower damage levels:
a Poincaré map for Sr = 1; b LLE for Sr = 1; c Poincaré map
for Sr = 0.8; d LLE for Sr = 0.8

(a) (b)

(c) (d)

Fig. 11 Panel responses for point C with higher damage levels:
a Poincaré map for Sr = 0.6; b FFT for Sr = 0.6; c Poincaré
map for Sr = 0.4; d LLE for Sr = 0.4

shapes. In contrast, as shown in Figs. 10 and 11, at
point C the panel exhibits complex types of motion
at different damage levels. The Poincaré maps indicate
the panel oscillates as chaos except a periodic-3motion
for Sr = 0.6 demonstrated in Figs. 11a, b. For the
chaotic motions, LLEs are calculated and the values
of 2.797, 0.294 and 4.035 are obtained as shown in
Figs. 10b, d, and 11d corresponding to Sr = 1, 0.8

Fig. 12 Bifurcation diagram in terms of damage extent Ld

(a) (b)

(c) (d)

Fig. 13 Panel responses for different Ld at T/Tcr = 4, λ =
150: a Poincaré map for Ld = 1%; b LLE for Ld = 1%; c
Poincaré map for Ld = 6%; d LLE for Ld = 6%

and Sr = 0.4, respectively. It will be noted that the
LLE value is sensitive to the changes of damage level.

Based on the effect study of the damage level above,
some concise conclusions can be drawn: (1) changes of
damage level may differ the dynamic behaviors of the
panel; (2) a higher damage level will tend to reduce the
flutter boundary for a flat plate, but increase the one for
a buckled plate and also the buckled/LCO deflections;
(3) stability regions and Lyapunov exponent are both
sensitive to reveal the changes of damage level.
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Fig. 14 Stability regions with different damage extents: Ld =
0%, Ld = 10% and Ld = 20%

3.2 Effect of damage extent

Another parameter of interest is damage extent, which
is characterized by Ld representing a percentage of the
damage length against panel length. For the sake of
clarification, a possible damage extent is varying from
0 to 50% (larger than 50%of panel lengthwith stiffness
loss is hardly possible, which hence, is not discussed
here). Figure 12 plots the bifurcation diagram of panel
deflection extrema by varying the damage extent, and
T/Tcr = 4, λ = 150, Sr = 0.4, ξd = 0.75 are
fixed. It is demonstrated that with the increase in dam-
age extent, the panel oscillates as chaos first and then
changes to a dynamically stable buckledmotion around
Ld = 8%. In addition, it is worth noting that the dam-
age extent larger than about Ld = 35% obtains very
close buckled deflections. In detail, the chaos induced
by Ld = 1%and Ld = 6%arepresented inFig. 13.The
Poincaré shapes are qualitatively different, and then,
the LLE is calculated and the values of 3.148 and 3.943
for Ld = 1% and Ld = 6%, respectively, indicate that
a larger damage extent produces a larger LLEvalue rep-
resenting a more nonlinear chaos, which is consistent
with the effect of damage level.

Figure 14 displays the stability regions involving
the boundaries between different types of motion in
the parameter space of T/Tcr and λ. Typical damage
extents of Ld = 0, 10%, 20% and Ld = 40% are con-
sidered, with Sr = 0.8, ξd = 0.75 fixed. Compared
to the curves in Fig. 7, it will be noted that the dam-
age extent affects the stability regions in a similar way,
except that the scale of boundary variations is smaller.

Again points of A, B and C defined in Table 1
are taken as representatives for further comparisons.

Fig. 15 Panel buckled shapes for point A with different Ld

Fig. 16 Panel LCO shapes for point B with different Ld

Figures 15 and 16 present the buckled and LCO
deflection shapes at points A and B, respectively. The
results conclude that a larger damage extent produces a
larger deflection amplitude for both buckled and LCO
motions, and the effect on the buckled motion is more
notable. In Fig. 17 are displayed the dynamic responses
at point C with different damage extents. It should
be noted that the cases of Ld = 0 and Ld = 10%
here are actually the same as the ones of Sr = 1 and
Sr = 0.8, as shown in Fig. 10a–d, respectively. Only
Ld = 20% and Ld = 40% are thus presented herein.
The comparison indicates thatwith the increase in dam-
age extent, the panel oscillates as chaos, a slight chaos,
and two periodic-3 motions accordingly. It seems like a
decrease in nonlinearity of the systemwith the increase
in damage extent. Until the damage extent increases to
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(a) (b)

(c) (d)

Fig. 17 Panel responses for point C with different Ld : a
Poincaré map for Ld = 20%; b FFT for Ld = 20%; c Poincaré
map for Ld = 40%; d FFT for Ld = 40%. Note For Ld = 0 and
Ld = 10%, readers are referred to Figs. 10a–d, respectively

Fig. 18 Bifurcation diagram in terms of damage position ξd

a certain damage extent, the panel oscillation will not
change anymore. This is peculiar but interesting, which
may be discussed further in future work but is not under
investigation here for the sake of brevity.

3.3 Effect of damage position

The damage position has been fixed at 75% of the
panel length for the discussions above, onemight hope,
however, to explore the stability regions and nonlinear
dynamics with a possible damage occurring at other

(a) (b)

(c) (d)

Fig. 19 Poincaré maps for different ξd at T/Tcr = 4, λ = 150:
a ξd = 0.25; b ξd = 0.4; c ξd = 0.6; d ξd = 0.9

positions. Figure 18 presents the bifurcation diagram
in terms of deflection extrema against damage posi-
tion varying along the panel length by fixing T/Tcr =
4, λ = 150, Sr = 0.4, Ld = 10%. Compared
to the bifurcation diagrams of damage level (Fig. 3)
and damage extent (Fig. 12), this one is more compli-
cated. It will be noted that the panel oscillatesmainly as
chaos with damage occurring from the leading to the
trailing along the streamwise direction, and between
ξd = 0.7 ∼ 0.9, buckled motions are observed; addi-
tionally, periodic and LCO motions occur in the chaos
region at some certain damage positions.

Take typical damagepositions at ξd = 0.25, 0.4, 0.6
and ξd = 0.9 into account with Sr = 0.8, Ld = 10%
fixed. The shapes of Poincaré plots shown in Fig. 19
differ for the damage positions aforementioned, from
which a qualitative conclusion is drawn that though
the panel oscillates as chaos with damage at varying
positions, still they are different chaos. Therefore, how
on earth they differ from each other is further demon-
strated quantitatively with LLE values in Fig. 20. It
shows that from the leading to the trailing with the
increase of ξd , the LLE values of 1.4, 2.73, 4.41
and 3.887 increase accordingly with a maximum at
ξd = 0.6 and then decreases slightly at ξd = 0.9.

Figure 21 plots the stability regions with dam-
ages occurring at ξd = 0.25, 0.5 and ξd = 0.75,
which represent the leading, middle and trailing of the
panel length, respectively. Interestingly, the damage at
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(a) (b)

(c) (d)

Fig. 20 The largest Lyapunov exponents for different ξd at
T/Tcr = 4, λ = 150: a ξd = 0.25; b ξd = 0.4; c ξd = 0.6; d
ξd = 0.9

Fig. 21 Stability regions at different damage positions: ξd =
0.75, ξd = 0.5 and ξd = 0.25

Table 2 Definition of points D, E and F

Points Parameters of forces

D T/Tcr = 4, λ = 50

E T/Tcr = 2, λ = 250

F T/Tcr = 4, λ = 190

ξd = 0.25 obtains the lowest flutter boundaries, and the
largest boundaries are observed at ξd = 0.75. Appar-
ently, the panel with damage occurring at the leading is
the least stable, the possible reason for which is that a
disturbance to the supersonic flow only spreads back-

Fig. 22 Panel buckled shapes for point D with different ξd

Fig. 23 Panel LCO shapes for point E with different ξd at
T/Tcr = 2, λ = 250

ward rather than forward. The damage to the struc-
ture can be taken as a disturbance to the airflow, and
the damage (disturbance) at the leading will affect the
afterward airflow. With the move of the damage back-
ward, the effect of the disturbance will decrease. So the
damage at leading gets the panel the least stable.

Specifically, three representative points of D, E and
F defined in Table 2 are selected for further discus-
sions. Shown in Figs. 22 and 23 are the buckled and
LCO defection shapes at points D and E , respectively.
By contrast, the damages at different positions produce
close buckled deflections, while for the LCO motions,
the damage at ξd = 0.25 results in the largest LCO
deflection and the damage at ξd = 0.75 obtains the

123



1046 D. Xie et al.

Fig. 24 Panel responses for
point F with different ξd : a
Poincaré map for ξd = 0.75;
b FFT for ξd = 0.75; c
Poincaré map for ξd = 0.5;
d FFT for ξd = 0.5; e
Poincaré map for ξd = 0.25;
f LLE for ξd = 0.25

(a) (b)

(c) (d)

(e) (f)

smallest one. In an obvious way, the effect of dam-
age position for buckled deflection shape is very tiny,
which however, is more notable for LCO. This influ-
ence rule is different from the one of the damage
level/extent, but still the damage around the leading
edge corresponds to the least stable panel. In addi-
tion, the dynamic responses at point F are presented
in Fig. 24, and the results show that a quasi-periodic,
periodic-3 and a chaos are observed for the damage at
ξd = 0.75, 0.5 and ξd = 0.25, respectively. As may be
seen, the damage position changes the dynamic behav-
iors and the damage at the leading makes the panel
more instable, which is consistent with Figs. 21 and
23.

3.4 Sensitivity of POD modes

Based on the discussions above, stability regions and
Lyapunov exponent are sensitive to the damage para-
metric variations. In order to explore more effective
tools for structural damage detection, proper orthogo-

nal decomposition modes (POMs) are calculated and
the primary modes and higher-order POMs are both
selected for comparison between the healthy and dam-
aged panels. PODmethod extracts the necessary spatial
information to characterize the spatiotemporal com-
plexity and reconstruct the dynamic systems with less
dimensions, from a set of temporal snapshots gath-
ered from either numerical simulations or experimental
data. In this section, the snapshots are obtained from the
Galerkin time responses. To avoid repetition, the def-
inite procedure for POMs generation is omitted here,
and for the readers interested, the previous work of
authors [44,45] is suggested for the POD method.

To evaluate the sensitivity of the POMs to the dam-
age parametric variations, the damage level, damage
extent and damage position are changed respectively,
and the resulting POMs are compared in Figs. 25, 26
and 27 accordingly. Figure 25a demonstrates that the
primary POD modes of the 1st–4th ones change dom-
inantly for higher damage level, which however are
close to each other for Sr = 1 and Sr = 0.9. What is
more interesting, the deviation between the POMs for
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(a)

(b)

Fig. 25 POMs for different damage levels with Ld =
10%, ξd = 0.75 fixed at T/Tcr = 4, λ = 210: a 1st–4th POMs
for Sr = 1, 0.9, 0.8 and Sr = 0.4; b 5th–8th POMs for Sr = 1
and Sr = 0.9

Sr = 1 and Sr = 0.9 is growingwith the increase in the
order of the PODmodes. Thus, the higher-order POMs
of 5th–8th are compared in Fig. 25b. Obviously, the
higher the POM’s order is, the larger deviation between
Sr = 1 and Sr = 0.9 is,which paves away for detection
of subtle structural damage. In order to further demon-
strate the conclusions above, damage extent and dam-
age position are changed and the POMs are compared
in Figs. 26 and 27, respectively. A similar phenomenon
can be observed that the higher-order POMs are much
more sensitive to the structural damage, which will be
effective to detect the subtle damage.

(a)

(b)

Fig. 26 POMs for different damage extentswith Sr = 0.8, ξd =
0.75 fixed at T/Tcr = 4, λ = 210: a 1st–4th POMs for Ld =
0, 10%, 20% and Ld = 40%; b 5th–8th POMs for Ld = 8%
and Ld = 10%

To sum up, the POD method is originally a math-
ematical statistical method for reconstruction of the
high-order complex system with less dimensions, for
which the primary PODmodes are worth attention and
thehigher-orderPOMsare usually omitted. In thiswork
however, the higher-order POMs are demonstrated to
be much more sensitive to the subtle structural dam-
age than the primary ones. The possible reason lies in
that the subtle damage is a small scale of variation to
the system, which hence cannot alter the global natu-
ral modes (primary POMs) but can change the modes
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(a)

(b)

Fig. 27 POMs for different damage positions with Sr =
0.8, Ld = 10% fixed at T/Tcr = 4, λ = 190: a 1st–4th POMs
for ξd = 0.75, 0.5 and ξd = 0.25; b 5th–8th POMs for ξd = 0.7
and ξd = 0.75

with small scale (higher-order POMs). The higher-
order POD modes will be effective for subtle damage
detection in future work.

4 Concluding remarks

The objective of the present study is to obtain the influ-
ence rules of the damage parametric changes to the
aeroelastic stabilities of a fluttering panel in supersonic
flow, aswell as to explore someeffective nonlinear tools
for structural health monitoring with high sensitivity.
The structural damage is modeled as a local bending

stiffness loss, which is quantified with nondimensional
parameters of Sr , Ld and ξd representing the damage
level, extent and position, respectively. Bifurcation dia-
gram, stability regions, Poincaré map and Lyapunov
exponent are all exploited as nonlinear tools to pro-
vide an important insight into the effects of the damage
parametric changes on the complex dynamic behaviors
and flutter boundaries. Specially, POD modes are cal-
culated and compared for damage parametric changes.
Some main conclusions can be drawn from the numer-
ical results:

1. Stability regions as a notable tool aremapped out in
this study, which are demonstrated to be effective
and sensitive to reveal the incipient damage param-
eter changes, whether for damage level, damage
extent or damage position.

2. Damage level and extent affect in a qualitatively
similar way that with the increase in damage
level/extent, the flutter boundary for a flat panel
is reduced subtly, but conversely the flutter bound-
ary for a buckled plate and the deflection amplitude
are both increased. Quantitatively, the damage level
has a greater influence.

3. Comparison of damage positions at 1/4, 1/2 and
3/4 of the panel length demonstrates that the
damage occurred around the leading edge makes
the panel the most instable with minimum flutter
boundaries and maximum deflection amplitudes.

4. For chaoticmotions, the largest Lyapunov exponent
is proved to be sensitive for identification of sub-
tle damage changes. A larger damage level/extent
tends to obtain a chaotic responsewith a larger LLE
value, which can thus be used as an effective tool
to detect structural damage.

5. Compared to the primary POD modes, the higher-
order POD modes are demonstrated much more
sensitive to subtle structural damage, which may
provide another effective way for damage detec-
tion in future work.
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