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Abstract We present an investigation of the dynamic
behavior of an electrostatically actuated resonant struc-
ture, resonator, under the simultaneous excitation of
primary and subharmonic resonances. A comprehen-
sive analytical solution is obtained via the method
of Multiple Time Scales (MTS), which is applicable
for generic electrostatic loading cases. Results using
different MTS scaling methods in the equations of
motion and loading conditions are compared. These
results are further verified against results obtainedusing
direct time integration of the equation of motion. It is
observed that for a generic parallel-plate electrostatic
loading case, the direct forcing component at the exci-
tation frequency, and the direct and parametric exci-
tation components at double the excitation frequency
must be considered for accurate prediction of the struc-
ture’s response. Further, the case of simultaneous exci-
tations of primary and subharmonic resonance, where
both excitations are of comparable strength, is exam-
ined under various electrostatic loading conditions. We
show mixed behaviors of the resonator transiting from
a subharmonic-dominated response, characterized by

S. Ilyas · F. K. Alfosail · M. I. Younis (B)
Physical Sciences and Engineering (PSE), King Abdullah
University of Science and Technology, Thuwal
23955-6900, Kingdom of Saudi Arabia
e-mail: mohammad.younis@kaust.edu.sa

S. Ilyas
e-mail: saad.ilyas@kaust.edu.sa

F. K. Alfosail
e-mail: feras.alfosail@kaust.edu.sa

the sudden jumps in amplitude and smaller monos-
table regime, to primary-dominated response exhibit-
ing gradual amplitude increase and larger monostable
regimes. This transition behavior can be potentially
used for applications, such as electrometers.
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1 Introduction

Investigating the static and dynamic behaviors of
micro/nanoelectromechanical systems MEMS/NEMS
resonators has been an intriguing area of research since
the advent of these technologies. These resonators,
mainly based onmicrobeams, are simple structures that
exhibit interesting static and dynamic characteristics.
They are easily fabricated using conventional micro-
fabrication techniques. Thus, microbeam resonators
have been implemented in several applications includ-
ing mass sensing [1,2], mechanical computing [3–7],
and RF communication [8,9].

Resonators are commonly excited near primary res-
onance. However, other excitation methods have been
explored recently for various applications [10–21].
Parametric excitation near twice the structure’s natu-
ral frequencies is among the most common. Paramet-
ric excitation has been used in various applications
including signal amplification [10,11,19], thermo-
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mechanical noise squeezing [12], and RF filtering [13].
Multi- or mixed-frequency excitation has been used as
well, in which two ormore frequency signals aremixed
and applied to the resonator [14]. Mixed-frequency
excitation gives birth to interesting behaviors, such
as the activation of combination resonances, which
has been reported for applications in micro-computing
[15]. Multi-frequency parametric excitation has also
been investigated, where the influence of one or more
external excitation is studied along with simultaneous
parametric excitation [16–18] ormultiple simultaneous
parametric excitations [19].

In addition, secondary resonances have drawn sig-
nificant attention [20–25]. The method of multiple
scales [20,21,26] has been employed to investigate the
response of a microbeam resonator for superharmonic
[22] and subharmonic resonances [22,23]. The non-
linear dynamics of these secondary resonances have
been extensively studied via reduced order models and
shooting techniques to reveal limit cycles, investigate
stability, and study the dynamic pull-in phenomenon
[24]. The study in [24] also proposes the utilization
of these resonances to achieve a sharp roll-off radio
frequency (RF) filter. It has been shown that superhar-
monic excitation of an electrostatically actuated res-
onator can suppress electrical crosstalk and increase
the signal-to-noise ratio compared to primary excita-
tion [25]. Furthermore, secondary resonances have also
been proposed for switches triggered by mass sens-
ing utilizing the sudden jumps in amplitude and the
dynamic pull-in instability [27]. The nonlinear dynam-
ics of carbon nanotube (CNT)-based resonators have
been also investigated under secondary resonances
[28]. The study in [28] reveals that subharmonic reso-
nance for such a resonator is uniquely activated over a
wide range of frequencies.

In the classic mechanics literature, quenching of pri-
mary resonance by the addition of a superharmonic res-
onance excitation source has been suggested as useful
for fatigue problems, where the levels of stress and the
number of stress reversals are reduced, thereby increas-
ing the lifetime of the structural elements [29].

When actuating aMEMS resonator using a parallel-
plate electrostatic force with a DC component super-
imposed to an AC harmonic load around its primary
resonance, the quadratic form of the electrostatic volt-
age transforms the actuation into two-source excitation
with one frequency around the primary resonance and
the other of twice that. However, the contribution from

the double-frequency component is usually considered
negligible compared to the dominant effect of the pri-
mary resonance excitation. This assumption is true in
cases where the AC load is very small. However, many
applications may require high AC loads, and hence,
the contribution from the secondary resonance compo-
nent cannot be ignored [17,30–34]. Currently, there is
lack of a comprehensive analytical analysis that deals
with generic electrostatic loading conditions (small and
large AC voltage amplitudes) and gives an accurate
response of the resonator irrespective of the amount of
DC and AC voltage used.

In this work, we present a comprehensive analyti-
cal solution based on MTS for a general loading case,
which accounts for most practical excitation condi-
tions. Also, we consider the case of large AC volt-
ages, in which the resonator gets excited from both
primary and secondary sources when they are of com-
parable strength, leading to competing effects from
subharmonic and primary resonance excitations. We
also present a charge sensor and a resonator-based logic
device based on the dynamic characteristics of the pro-
posed system. The rest of the paper is organized as
follows. Section 2 presents the problem formulation
and background. Section 3 presents the analytical solu-
tion using the method ofMultiple Time Scales. Finally,
Sect. 4 summarizes the findings of the study.

2 Problem formulation

The nondimensional equation of motion for an elec-
trostatically actuated MEMS resonator using a lumped
parameter model, Fig. 1, is given by [35].

Fig. 1 Schematic of a single degree-of-freedom (SDOF) spring
mass damper system under parallel-plate electrostatic actuation
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ẍ(t) + 2μẋ(t) + x(t) = β

(1 − x(t))2⎡
⎢⎢⎢⎢⎢⎣

Veff (static)︷ ︸︸ ︷(
V 2
DC + V 2

AC

2

)
+

Primary︷ ︸︸ ︷
2VDCVAC cos(�t)

+

secondary︷ ︸︸ ︷
V 2
AC

2
(cos(2�t))

⎤
⎥⎥⎥⎦ (1)

where

μ = c

2
√
mk

;β = εA

2kd3
(2)

and m is the mass, c is the damping coefficient, k is
the spring stiffness coefficient, A is the overlap area,
ε is the permittivity of air, VDC is the DC bias, VAC is
the AC harmonic load, and � is the AC frequency. We
notice from Eq. (1) that due to the quadratic nature of
the electrostatic forcing, the actuation is transformed
into a simultaneous multi-frequency excitation around
the primary resonance and twice of that. Furthermore,
we notice the contribution of the AC voltage toward the
static loading.

The solution of x comprises of a static δ and dynamic
part u given by

x(t) = u(t) + δ (3)

where

δ =
β

(
VDC2 + VAC2

2

)

(1 − δ)2
(4)

Equation (4) is cubic in nature and yields three solu-
tions: one is non-physical, one is unstable, and one is
stable [35]. We consider here only the stable solution.

Substituting Eq. (3) into (1) yields

ü(t) + 2μu̇(t) + u(t) + δ

= β[VDC + VAC cos(�t)]2
(1 − u(t) − δ)2

(5)

Expanding the right-hand side ofEq. (5) inTaylor series
and dropping the static terms of Eq. (4), we get

ü(t) + 2μu̇(t) + u(t) + δ

= β

[
2VDCVAC cos(�t)

+VAC2

2
cos(2�t)

]

×
(

1

(1 − δ)2
+ 2u

(1 − δ)3

+ 3u2

(1 − δ)4
+ 4u3

(1 − δ)5
+ O(u4)

)
(6)

Using Eq. (6), we perform the multiple scales analysis
on three cases derived by considering different higher-
order terms and compare them against the long-time
integration (LTI) solution of Eq. (1).

2.1 Case 1 (VDC >> VAC)

This is a common case inMEMS application leading to
primary resonance excitation, in which VDC is assumed
to be much larger than VAC. Here, the effect from the
cos(2�t) term in Eq. (6) is considered negligible and
is dropped out. The governing equation in this case can
be simplified to

ü + 2μu̇ + αqu
2 + αcu

3 + ω2u = Fp cos(�t) (7)

where αq = −3βVeff
(1−δ)4

;αc = −4βVeff
(1−δ)5

;ω2 = 1 −
2βVeff
(1−δ)3

; Fp = 2βVDCVAC
(1−δ)2

; Veff = V 2
DC.

Note here that for this case only, the static term com-
prises of just the VDC part, i.e.,Veff = V 2

DC.

2.2 Case 2 (generic loading)

For the second case, we consider both the cos(�t) and
cos(2�t) direct excitation terms and drop the other
parametric terms. The governing equation for this case
is given by

ü + 2μu̇ + αqu
2 + αcu

3 + ω2u

= Fp cos(�t) + Fs cos(2�t) (8)

where Fs = βV 2
AC

2(1−δ)2
; Veff = V 2

DC + V 2
AC
2 .

2.3 Case 3 (generic loading)

For the third case, we retain the primary and subhar-
monic excitation terms as below
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ü + 2μu̇ + αqu
2 + αcu

3 + ω2u

= Fp cos(�t) + Fs cos(2�t) + Fspar1 cos(2�t)u

+ Fspar2 cos(2�t)u2 (9)

where Fspar1 = βV 2
AC

(1−δ)3
; Fspar2 = 3βV 2

AC
2(1−δ)4

; Veff =
V 2
DC + V 2

AC
2 . Recall here that ω2 = 1 − 2βVeff

(1−δ)3
, which

shows that both the VDC and VAC have an influence on
the natural frequency of the resonator.

Next, we apply theMTS on these cases to determine
the frequency response equations.

3 Method of multiple time scales

In order to obtain solutions of the three case studies,
MTS analysis is performed on the most generic case,
case 3 of Eq. (9). The frequency response equations for
the other two cases are then derived from the results of
this case.

3.1 Case 3 (generic loading)

We scale Eq. (9) as follows:

ü + 2ε2μu̇ + αqu
2 + αcu

3 + ω2u

= ε3Fp cos(�t) + εFs cos(2�t)

+εFspar1 cos(2�t)u + εFspar2 cos(2�t)u2 (10)

where ε is a book-keeping parameter. A system-
atic scaling procedure is followed here according to
[20,21], where the parameter ε is introduced with
its various orders as a “book-keeping” parameter to
label and give importance in the symbolic form for the
strength of the various terms in the equation. Using this
procedure, we segregate and order the different types of
nonlinearities (cubic (ε3) weaker than quadratic (ε2)),
which is weaker than linear stiffness (ε)) as well as
the various forces. (The secondary excitation forcing
term is scaled with a linear scale ε to allow it to influ-
ence the response and compete in importance with the
strong primary excitation, which is scaled at order ε3;
again to lower its strength to make it compete with the
secondary excitation term.) Once the MTS analysis is
completed ε is set to one [20,21].

We seek a three-term expansion of the form

u(t; ε) = εu0(T0, T1, T2) + ε2u1(T0, T1, T2)

+ε3u2(T0, T1, T2) (11)

where Tn = εnt .
The temporal derivatives are defined as d

dt = Do +
εD1 + ε2D2, where δ

δTn
= Dn . We substitute Eq. (11)

into (10) to obtain

O(ε1) : D2
ou0 + ω2u0 = Fs cos(2�t)

⇒ u0 = AeiωTo + λse
2i�To + cc (12)

where λs = Fs
ω2−4�2 , A ⇒ A(T1, T2), and cc stands for

complex conjugates.

O(ε2) : D2
ou1 + ω2u1 = −2DoD1uo

−αqu
2
o + Fspar1 cos(2�To)uo (13)

O(ε3) : D2
ou2 + ω2u2 = −2DoD1u1

− 2DoD2uo − 2μDouo − D2
1uo

− 2αquou1 − αcu
3
o + Fp cos (�T0)

+ Fspar1 cos (2�T0) u1 + Fspar2 cos (2�T0) u
2
o (14)

In order to express the nearness of � to ω, we set

� = ω + ε2σ (15)

Next, we plug Eqs. (12) and (15) into Eq. (13) and
eliminate the secular terms, which yield the following
solvability condition:

− 2λsαq Āe
2iσT2 − 2iωD1A

+ 1

2
Fspar1 Āe

2iσT2 + cc = 0 (16)

where A is a complex-valued quantity and Ā is its com-
plex conjugate. From Eq. (16), we get

D1A = iλsαq Āe2iσT2
ω

− iFspar1 Āe2iσT2
4ω

D1 Ā = − iλsαq Ae−2iσT2

ω
+ iFspar1Ae−2iσT2

4ω

D2
1 A = −λs Fspar1αq A

2ω2 + F2
spar1A

16ω2 + λ2sα
2
q A

ω2

(17)

Next, we solve Eq. (13), exclude the secular terms of
Eq. (16) and get the particular solution u1
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u1 = − (Fspar1 − 4λsαq) Āe−i(ω+2�)T0

8�(ω + �)

−2αq AĀ

ω2 + αq Ā2e−2iωT0

3ω2

− (Fspar1 − 4λsαq)Aei(ω+2�)T0

8�(ω + �)

+αq A2e2iωT0

3ω2 + λs(Fspar1 − 2λsαq)

ω2

+λs(Fspar1 − 2λsαq)e−4i�T0

2(ω2 − 16�2)

+λs(Fspar1 − 2λsαq)e4i�T0

2(ω2 − 16�2)
(18)

Next, we substitute Eqs. (12) and (18) into Eq. (14),
obtain the secular terms and set them equal to zero

⎛
⎝ −6λ2sαc − 2λs Fspar1αq

ω2 + λs Fspar1αq
2�(ω+�)

− F2
spar1

16�(ω+�)
+ 2λs Fspar2

−2iμω + 4λ2s α
2
q

ω2 − 2λ2s α
2
q

2ω�+2�2

⎞
⎠ A

+
(
10α2

q

3ω2 − 3αc

)
A2 Ā − 2iωD2A

− D2
1 A + 1

2
Fpe

iσT2 + cc = 0 (19)

From Eq. (19), we get

D2A =
⎛
⎝

3iλ2s αc
ω

+ iλs Fspar1αq
ω3 − iλs Fspar1αq

4ω�(ω+�)
+ iF2

spar1
32ω�(ω+�)

− iλs Fspar2
ω

−μ − 2iλ2s α
2
q

ω3 + iλ2s α
2
q

2ω�(ω+�)

⎞
⎠ A

+
(
3iαc

2ω
− 5iα2

q

3ω3

)
A2 Ā + iD2

1 A

2ω
− iFpeiσT2

4ω
(20)

Next, we use the method of reconstitution

dA

dt
= D1A + D2A (21)

and set ε to unity
where

A (T1, T2) = 1

2
a (t) eiβ(t) (22)

Using the definitions fromEqs. (17) and (20) in (21),
and then using the resulting equation and Eq. (22) into
(19), we obtain

a′

2
+ 1

2
iaβ ′ = 3ia3αc

16ω
− 5ia3α2

q

24ω3 + 3iaλ2sαc

2ω

+ 3iaλs Fspar1αq

8ω3 − iaλs Fspar1αq

8ω�(ω + �)

+ iaF2
spar1

64ω3 + iaF2
spar1

64ω�(ω + �)

− iaFspar1e2iσT2−2iβ

8ω
− iaλs Fspar2

2ω

− aμ

2
− 3iaλ2sα

2
q

4ω3 + iaλ2sα
2
q

4ω�(ω + �)

+ iaλsαqe2iσT2−2iβ

2ω
− iFpeiσT2−iβ

4ω
(23)

where ()′ is the derivative with respect to t . Next, we
set β − σT2 = γ and separate the real and imaginary
parts to get the modulation equations

Re : a
′
2

= −aμ

2
− Fp

4ω
sin(γ )

+
(
aλsαq )

2ω
− aFspar1

8ω

)
sin(2γ ) (24)

Im : aγ ′
2

= Fp cos(γ )

4ω
+ a3

(
5α2q
24ω3 − 3αc

16ω

)

+a cos(2γ )

(
Fspar1
8ω

− λsαq

2ω

)

+ a

⎛
⎜⎝

σ
2 − F2

spar1
64ω3 − F2

spar1
64ω�(ω+�)

+ aλs Fspar2
2ω − 3λsαq Fspar1

8ω3

+ λsαq Fspar1
8ω�(ω+�)

− 3λ2s αc
2ω + 3λ2s α

2
q

4ω3 − λ2s α
2
q

4ω�(ω+�)

⎞
⎟⎠

(25)

where a and γ are the nondimensional amplitude and
phase, σ is the frequency detuning parameter, and � is
defined in Eq. (15) for ε = 1. The steady-state (equi-
librium) solution is then obtained by setting a′ = 0,
γ ′ = 0 in Eqs. (24) and (25), and algebraically solving
the resulting equations. The stability of the solution is
determined by solving for the eigenvalues of the Jaco-
bian of the modulation equations, Eqs. (24) and (25)
[20,21,35].

Finally, the solution is given by

u(t) =
(

λs Fspar1
ω2 − 2λ2sαq

ω2

)

+ a cos (�t + γ ) − αq

2ω2 a
2

+ αq

6ω2 a
2 cos (2�t + 2γ )

+ 2Fs
(ω2 − 4�2)

cos (2�t)

+
(
4λsαq − Fspar1
8�(ω + �)

)
a cos (3�t + γ )

+
(

λs Fspar1 − 2λ2sαq

ω2 − 16�2

)
cos (4�t) (26)

3.2 Case 2 (generic loading)

For a scaling scheme similar to that of Eq. (10), the
solution to Eq. (8) can be obtained by setting Fspar1
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and Fspar2 equal to zero in Eqs. (24) and (25). The
steady-state equations for this case are given by

Re : 0 = −aμ

2
+ aλsαq sin(2γ )

2ω
− Fp sin(γ )

4ω
(27)

Im : 0 = a3
(

5α2
q

24ω3 − 3αc

16ω

)

+a

(
σ

2
− 3λ2sαc

2ω
+ 3λ2sα

2
q

4ω3 − λ2sα
2
q

4ω�(ω+�)

)

−aαqλs cos(2γ )

2ω
+ Fp cos(γ )

4ω
(28)

Equations (27) and (28) can be solved algebraically to
get the frequency response plots.

3.3 Case 1 (VDC >> VAC)

Finally, the solution to Eq. (7) is obtained by setting
Fs, Fspar1, and Fspar2 equal to zero in Eqs. (24) and
(25). The solution canbe transformed into the following
classical algebraic equation [20,21]:

(aμ)2 +
(
aσ − 3a3αc

8ω
+ 5a3α2

q

12ω3

)2

=
(
Fp

2ω

)2

(29)

Equation (29) represents the typical frequency response
equation of a SDOF oscillator with cubic and quadratic
nonlinearity under primary excitation [21].

4 Results

4.1 Results from the three cases

In this section, the frequency responses of the res-
onator for the three cases of Sect. 3 are compared
along with the long- time integration (LTI) of Eq. (1).
As a case study, we assume a structure with β =
7.14 × 10−5 V−2. Note that the rest of parameters in
the equations of Eq. (9) will be calculated based on the
assumed voltage loads. Figure 2 shows the results.

It can be noticed that for the loads ofVDC ≈ VAC and
VDC >> VAC, case 1 accurately predicts the response
of the microresonator, Fig. 2a, b. This shows that for
these cases, the contribution from Fs cos(2�t) is very
small compared to Fp cos(�t) and hence can be safely
ignored. However, as VAC becomes large, the contri-
bution from Fs cos(2�t) becomes not negligible and

the frequency response given by case 1 becomes erro-
neous, Fig. 2c, d. It is interesting to note that even case
2 fails to predict the accurate response. This shows that
including only the direct excitation term of twice the
excitation frequency is not enough. However, case 3
is able to closely predict the behavior of the resonator
with respect to the LTI solution of Eq. (1), Fig. 2c,
d. This is attributed to the missing higher-order para-
metric terms that have significant contribution to the
resonator’s response. Hence, in order to predict the
response of the resonator at any values of VDC and
VAC, a more comprehensive form given by case 3 is
required, which includes the higher-order parametric
terms. A slight deviation from the response of LTI of
Eq. (1) is noticed due to the truncation of the higher-
order forcing terms in the Taylor series expansion. This
effect is more evident in Fig. 2b, d, where the resonator
vibrates with larger amplitudes. As the forcing ampli-
tude is increased, the effect of the truncated higher-
order terms of the electrostatic force term in Eq. (6)
starts to become significant and hence causes the devi-
ation. As mentioned in [35,36], at least 20 terms need
to be used in the Taylor series expansion to represent
accurately the electrostatic force term. It is important
to note here that even though the excitation voltages of
Fig. 2c, d are almost the same, the damping conditions
are different.Amuch lower damping is used for the case
of Fig. 2d. Hence, there is larger deviation in Fig. 2d
compared to Fig. 2c. In order to confirm the influence
of the truncated terms, LTI is performed on Eq. (9) for
Fig. 2d only. It can be observed that LTI of the truncated
response matches that of the MTS response of case 3.

Note that all the parametric terms that survive the
scaling are included in Eq. (9) to maintain consistency.
However, one of these terms may have a stronger influ-
ence on the overall response of the resonator compared
to the other. In order to investigate this, the response
of the resonator using Eqs. (24) and (25) with different
contributions from parametric terms is simulated and
shown in Fig. 3. The figure shows that the contribution
of the parametric term associated with u2 is negligi-
ble compared to the parametric term associated with u
toward the response predicted by case 3, Fig. 3. Hence,
the parametric term associated with u2 may be dropped
and the resulting equations of motion for case 3 given
by Eqs. (24) and (25) can be also used with Fspar2 = 0.
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�Fig. 2 Analytical and numerical frequency response curves of
the resonator against the frequency detuning parameter σ for
a VDC = 5V, VAC = 5V, and μ = 0.01, b VDC = 27V,
VAC = 2V, and μ = 0.01, c VDC = 1V, VAC = 15V, and
μ = 0.01, and d VDC = 0.1V, VAC = 16.5V, and μ = 0.005.
Here, the frequency response equations obtained after solving
through MTS give only the dynamic solution “a,” and hence the
static solution calculated from (4) is superimposed afterward to
compare to the LTI solution. The y-axis label “Amplitude” refers
to the amplitude of the resonator including both the static and
dynamics solutions, “δ +a”

Fig. 3 Analytical frequency response of the resonator against the
frequency detuning parameterσ for VDC = 0.1V, VAC = 16.5V
and μ = 0.005. Different parametric terms of Eq. (9) are set
to zero to determine the contribution of each one on the total
response. The y-axis label “Amplitude” refers to the amplitude
of the resonator including both the static and dynamics solutions,
“δ +a”

4.2 Other scaling methods

Other scaling approaches for the MTS have been
explored. The findings of some of those cases are given
below.

4.2.1 Case 4 (generic loading)

For this case, the scaling of Eq. (9) is chosen such that
damping is scaled as εμu̇. The equation of motion in
this case with the appropriate scaling is given by

ü + 2εμu̇ + αqu
2 + αcu

3 + ω2u

= ε3Fp cos(�t)+εFs cos(2�t)+εFspar1 cos(2�t)u

+ εFspar2 cos(2�t)u2 (30)
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The resulting frequency response equations after car-
rying out the analysis are given by

Re : 0 = −aμ

2
+ sin(2γ )

(
aλsαq

2ω
− aFspar1

8ω

)

− sin(γ )Fp

4ω

+ a cos(2γ )

(
−μFspar1

8ω2 + 2λsμ�αq

ω(ω2−4�2)
+ λsμαq

2ω2

)

(31)

Im : 0 = a3
(

5α2
q

24ω3 − 3αc

16ω

)

+ a

⎛
⎜⎜⎜⎝

σ
2 − 3λ2sαc

2ω − 3λs Fspar1αq
8ω3 + λs Fspar1αq

8ω�(ω+�)

− F2
spar1

64ω3 − μ2

4ω − F2
spar1

64ω�(ω+�)
+ λs Fspar2

2ω

+ 3λ2sα
2
q

4ω3 − λ2sα
2
q

4ω�(ω+�)
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(32)

The new terms added due to the damping can be
observed in Eqs. (31) and (32).

4.3 Case 5 (generic loading)

For this case, damping is scaled as εμu̇ and the primary
force appears at the quadratic order. This allows for the
parametric term associated with the primary excitation
to be included as well. The equation of motion in this
case with the appropriate scaling is written as

ü + 2εμu̇ + αqu
2 + αcu

3 + ω2u

= ε2Fp cos(�t)+εFs cos(2�t)+ε2Fppar cos(�t)u

+ εFspar1 cos(2�t)u + εFspar2 cos(2�t)u2 (33)

where, Fppar = 4βVDCVAC
(1−δ)3

. Subsequently, the resulting
frequency response equations are given by

Re : 0 = −aμ

2
− μFpCos (γ )

8ω2

+ aSin(2γ )

(
− Fspar1

8ω
+ αqλs

2ω

)

+ Sin(γ )

(
− Fp

4ω
+ FpFspar1

32ω3 − Fpparλs

4ω
− Fpαqλs

8ω3

)

+ aCos (2γ )

(
−μFspar1

8ω2 + μαqλs

2ω2 + 2μ�αqλs

ω(ω2 − 4�2)

)
(34)

Im : 0 = −μFpSin (γ )

8ω2 + a3
(

− 3αc

16ω
+ 5α2

q

24ω3

)

Fig. 4 Analytical frequency response curves of the resonator
against the frequency detuning parameter σ for VDC = 0.1V,
VAC = 16.5V, and μ = 0.005. The plot compares the response
obtained using the frequency response equations of cases 3, 4,
and 5. The y-axis label “Amplitude” refers to the amplitude of
the resonator including both the static and dynamics solutions,
“δ +a”

+ aCos (2γ )

(
Fspar1
8ω
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2ω

)

+ aSin (2γ )
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−μFspar1
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+Cos (γ )
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(35)

Figure 4 shows a comparison among these cases and
case 3 when VAC >> VDC. We notice that these new
cases show good agreement with case 3. However, it is
easier to use case 3 considering the complexity of the
frequency response equations obtained from the other
cases.

5 Subharmonic excitation (case 3)

In order to investigate the dynamic behavior of the res-
onator, first, the response of the resonator of case 3
is simulated under AC only (subharmonic, VDC = 0)
excitation. Subharmonic resonance is activated, and its
response is given by Fig. 5. A shift in the natural fre-
quency is observed, which is believed to be from the
static term associated with VAC. The frequency shift
due to only AC excitation can be potentially used for
applications in MEMS resonator-based logic devices

123



On the response of MEMS resonators under generic electrostatic loadings 975

Fig. 5 Analytical frequency response curves of the resonator
given by case 3 against the frequency detuning parameter σ for
a VDC = 0, VAC = variable and μ = 0.005. The y-axis label
“Amplitude” refers to the amplitude of the resonator including
both the static and dynamics solutions, “δ +a”. The trivial solu-
tion is not shown here

Fig. 6 Analytical frequency response curves of the resonator
given by case 3 against the frequency detuning parameter σ for
VDC = variable, VAC = 17V, and μ = 0.005. The y-axis label
“Amplitude” refers to the amplitude of the resonator including
both the static and dynamics solutions, “δ +a”

[3–5,15], where it is desired to unify the input and out-
put signal waveforms, i.e., AC signal, which is helpful
for cascading.

5.1 Combined primary and subharmonic excitation
(case 3)

Next, the response of the resonator under a simulta-
neous primary and subharmonic excitation is investi-

gated. The VDC value is set at zero at first to get a
pure subharmonic response, Fig. 6(black). The fixed
VAC value defines a fixed strength of the subharmonic
excitation (∼ V 2

AC cos(2�t)). Afterward, the VDC volt-
age is applied that adds the primary excitation onto
the resonator (∼ 2VDCVAC cos(�t)). This VDC is then
increased in small increments to examine the effect of
increasing the strength of the primary excitation over
the subharmonic excitation on the overall response of
the resonator. Figure 6 shows this comparison. It can be
noticed that there is a competition between the primary
and subharmonic excitations, and the response of the
resonator is a result of the dominant component among
the two. Figure 6 shows that as VDC is increased, the
abrupt onset of the resonance (subharmonic feature)
diminishes and one can see then more gradual increase
in amplitude (primary feature and also due to the per-
turbed pitchfork bifurcation). It is also observed that the
monostable regime starts to widen. It can be observed
from Fig. 6 that adding a small amount of VDC causes
a shift in the frequency jump-up point. This is due to
the breaking of symmetry of the two perfect pitchfork
bifurcations (the super and subcritical) [20,21,35]. As
a result, perturbed pitchfork bifurcations are observed,
which result in the smoothening of the curve. This is
in fact a very distinctive sign of the presence of the
DC bias. This can be potentially used for applications
where the detection of a very small increase in the DC
bias is desired. One such application can be in charge
sensing or MEMS electrometers [37–40].

6 Conclusions

An electrostatically actuated MEMS resonator mod-
eled as a SDOF spring mass system under generic elec-
torate loading and then including the simultaneous pri-
mary and subharmonic excitation is investigated the-
oretically. A comprehensive solution using the pertur-
bation technique MTS is obtained and is validated for
a general electrostatic loading case. It was established
that in order to predict the response of a resonator under
larger AC voltages, the secondary excitation compo-
nent must be considered. Case 3 in the manuscript,
which takes into account the direct primary and sec-
ondary excitation as well as the principal parametric
excitation associated with the secondary forcing term,
must be used to predict the response of the resonator
accurately under a generic electrostatic loading. Dif-
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ferent scaling schemes were also examined, which pro-
duced accurate results; however, case 3 was found to
yield the simplest solutions. The competing effect of
the simultaneous primary and subharmonic excitations
is explored by varying the associated AC and DC volt-
ages. It is observed that even a small addition of primary
excitation significantly affects the subharmonic reso-
nance, and the beam shows qualitativelymore primary-
like response behavior, due to the perturbed pitchfork
bifurcations, Fig. 6. The second part of this work veri-
fies the theoretical finding against experimental results
[41]. Furthermore, the potential applications inMEMS
resonator-based logic devices andMEMS electrometer
are explored experimentally.
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