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Abstract This paper presents a computational strat-
egy that combines a novel rate-independent phe-
nomenological model with an explicit time integration
method to efficiently perform nonlinear dynamic anal-
yses of non-stiffening hysteretic mechanical systems.
The novel rate-independent model, developed by spe-
cializing a general class of uniaxial phenomenolog-
ical models, has an algebraic nature, is based on a
set of only three parameters having a clear mechan-
ical significance, and can be easily implemented in
a computer program. The adopted explicit structure-
dependent time integration method, belonging to the
Chang’s family of explicit methods, is uncondition-
ally stable for all non-stiffening hysteretic mechanical
systems, has a second-order accuracy, does not suffer
from numerical damping, and displays a small rela-
tive period error for small time step. Furthermore, it
does not require iterative procedures and, consequently,
does not suffer from convergence issues. Numerical
accuracy and computational efficiency of the proposed
procedure are assessed by performing several nonlin-
ear time history analyses on hysteretic mechanical sys-
tems and comparing the results with those obtained by
employing a conventional strategy based on the cele-
brated Bouc–Wen model, or its modified version, and
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the widely used Newmark’s constant average acceler-
ation method.

Keywords Mechanical system · Rate-independent
model · Explicit method · Accuracy · Computational
efficiency

1 Introduction

Hystereticmechanical systems typically exhibit a com-
plex dynamic behavior characterized by a nonlinear
relation between the generalized forces, namely forces,
moments, and stress, and the generalized displace-
ments, namely displacements, rotations, and strain. The
dynamic behavior of such systems is referred to as rate-
dependent (rate-independent) if the response does (not)
depend upon the rate of variation, that is, the first time
derivative, of the input quantity [22].

In particular, in rate-dependent hysteretic mechani-
cal systems, such a complex dynamic behavior is gen-
erally due to viscoelastic and/or thermoelastic effects,
whereas in rate-independent hystereticmechanical sys-
tems, it is typically due to plastic deformation mecha-
nisms and/or friction [37]. Experimental tests available
in the literature reveal that several mechanical systems
may also present both types of hysteretic behaviors
[45,46].

Nonlinear time history analysis is generally per-
formed to accurately evaluate the dynamic response
of hysteretic mechanical systems. The accuracy and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-019-05022-5&domain=pdf
http://orcid.org/0000-0001-9890-3731


2880 N. Vaiana et al.

the computational efficiency of such a structural anal-
ysis procedure strongly depend upon a suitable com-
bination of the phenomenological models, adopted to
describe the hysteretic behavior, and the time integra-
tion method, required to solve the nonlinear equilib-
rium equations.

For what concerns the modeling of the hysteretic
behavior, it is possible to adopt rate-dependent and/or
rate-independent phenomenological models. The for-
mer (latter) do (not) take into account the rate of varia-
tion of the input variable in time. In the literature, such
models are classified into four main categories accord-
ing to the type of equation that needs to be solved
to evaluate the output variable: (i) algebraic models
[25,32,39,41,48], (ii) transcendental models [47], (iii)
differentialmodels [5,36,49,50], and (iv) integralmod-
els [31].

Algebraic rate-dependent models, such as the
Seleemah and Constantinou model [41], and differen-
tial rate-independent models, such as the Bouc–Wen
model [5,49,50] or its modified versions, are generally
employed since they are accurate and adopt a relatively
small number of parameters. Unfortunately, the latter
are not computationally efficient since they require the
numerical solution of a first-order nonlinear ordinary
differential equation, typically solved by using multi-
steps [38] or Runge–Kutta methods [40], for each time
step of a nonlinear time history analysis; in addition,
they usually adopt parameters having a not always
clear mechanical significance, what prompts the use of
sophisticated identification procedures for the parame-
ter estimation [6,10,18,44].

Regarding the numerical solution of the nonlinear
equilibrium equations, several time integration meth-
ods are available in the literature. Such methods are
usually classified into two categories according to the
kind of coefficients that characterize the expressions
employed for the evaluation of the unknown general-
ized displacement and velocity vectors at the generic
time t + Δt of the analysis. Specifically, it is possible
to distinguish between conventional time integration
methods, such as the Newmark’s family of methods
[33], and structure-dependent time integration meth-
ods, such as the Chang’s families of methods [14,15].
In the former, the coefficients that appear in the expres-
sions of the generalized displacement and velocity vec-
tors are scalar parameters, whereas, in the latter, the
above-mentioned coefficients can be scalar parameters
or matrices that may depend on the time stepΔt and on

the initial properties of the hysteretic mechanical sys-
tem, namely the generalized mass matrix and the ini-
tial generalized tangent damping and stiffness matrices
[12,19,26,27].

Implicit unconditionally stable conventional time
integration methods, such as the Newmark’s constant
average acceleration method [13], are currently the
most widely used methods to perform nonlinear time
history analyses of hystereticmechanical systems since
they allow for the use of a relatively large time step,
the accuracy being the only requirement to fulfill [4];
unfortunately, such methods are not computationally
efficient and may suffer from convergence issues since
they need to be employed in conjunction with an iter-
ative procedure, such as the Newton–Raphson method
or the pseudo-force method [20].

Aimof this paper is to illustrate an accurate and com-
putationally efficient procedure for carrying out nonlin-
ear time history analyses of hysteretic mechanical sys-
tems that exhibit rate-dependent and kinematic harden-
ing non-stiffening rate-independent hysteretic behav-
ior. In particular, the proposed computational strategy
combines a novel rate-independent phenomenological
model and an explicit structure-dependent time inte-
gration method.

The developed rate-independent model, belonging
to the class of uniaxial models recently formulated
by Vaiana et al. [47], is able to simulate generalized
rate-independent force–displacement hysteresis loops,
bounded between two parallel straight lines, affected
neither by cyclic loading phenomena, nor by stiffening
behaviors [7,24,28,35,42,43,52].

The proposed model is of algebraic nature since
the generalized rate-independent hysteretic force, rep-
resenting the output variable of the model, is com-
puted by solving an algebraic equation. Compared to
differential models, typically employed for simulating
the rate-independent behavior of hysteretic mechanical
systems, the developed one does not need the numerical
solution of a first-order nonlinear ordinary differential
equation at each time step of the analysis for the eval-
uation of the generalized rate-independent hysteretic
force; furthermore, it is based on a set of only three
parameters having a clear mechanical significance, and
it can be easily implemented in a computer program.

The selected time integration method suitably
extends to hysteretic systems the Chang’s family of
explicit structure-dependent methods, originally for-
mulated for elastic systems [15]. The proposed method
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is shown to exhibit excellent accuracy and stability
properties. Indeed, it is unconditionally stable for all
non-stiffening hysteretic mechanical systems, has a
second-order accuracy, does not suffer from numerical
damping, and displays a small relative period error for
small time step. Compared to implicit unconditionally
stable conventional time integrationmethods, currently
adopted for the analysis of hysteretic mechanical sys-
tems, the proposed one does not require iterative pro-
cedures and, consequently, does not suffer from con-
vergence issues.

The present paper is organized into four parts. For
the reader’s convenience, in the first part (Sect. 2),
the nonlinear equilibrium equations of a hysteretic
mechanical system are formulated; subsequently, a
conventional computational strategy, combining some
of the most employed phenomenological models with
a widely used conventional time integration method, is
briefly illustrated and the key issues affecting its effi-
ciency are emphasized.

In the second part (Sect. 3), the class of uniaxial
phenomenological models formulated by Vaiana et al.
[47] is first summarized in order to develop the novel
rate-independent model; then, the formulation as well
as the implementation details of the proposed model
are illustrated.

Similarly, in the third part (Sect. 4), the Chang’s
family of explicit methods [15] is first summarized in
order to select the most suitable explicit time integra-
tionmethod; then, the formulation as well as the imple-
mentationdetails of the proposedmethod are presented.

Finally, in the fourth part (Sect. 5), the results of
several nonlinear time history analyses, carried out on
different hysteretic mechanical systems, are illustrated
in order to show the accuracy of the proposed procedure
as well as its capability to significantly decrease the
computational burden of the analyses.

For notational convenience, we shall make use of
several acronyms that are summarized in “Appendix”.

2 A typical solution strategy for hysteretic systems

Hysteretic mechanical systems generally exhibit a
dynamic behavior characterized by a nonlinear rela-
tion between the generalized forces and the generalized
displacements. Specifically, hysteretic mechanical sys-
tems display a rate-dependent (rate-independent) hys-
teretic behavior if the response does (not) depend on

the rate of variation, namely the first time derivative, of
the input quantity [22].

Rate-dependent hysteretic behavior is typically due
to viscoelastic and/or thermoelastic effects; on the con-
trary, rate-independent hysteretic behavior is generally
associatedwith plastic deformationmechanisms and/or
friction [37]. It is important to observe that several
mechanical systems may present both types of hys-
teretic behaviors at the same time [45,46].

For the reader’s convenience, the nonlinear equilib-
rium equations of a hysteretic mechanical system are
first formulated. Subsequently, a typical solution strat-
egy, frequently exploited to address the dynamic behav-
ior of hysteretic mechanical systems, is presented; it
combines some of the most diffused phenomenologi-
cal models with a widely used time integration method
that we shall refer to as conventional to distinguish it
from the proposed one. In particular, for both of them
we shall emphasize the key issues that strongly affect
the efficiency of the overall computational strategy.

The proposed alternative to the existing approaches
for the modeling of hysteretic behaviors, on one side,
and for solving the nonlinear equilibrium equations,
on the other one, will be discussed in Sects. 3 and 4,
respectively.

2.1 Nonlinear equilibrium equations

Let us briefly introduce the equations of motion
of a Multi-Degree-Of-Freedom (MDOF) hysteretic
mechanical system, exhibiting both types of hysteretic
behaviors. Denoting by u, u̇, and ü the generalized dis-
placement, velocity, and acceleration vectors, respec-
tively, and by p(t) the generalized external force vec-
tor depending on time t , the equations of motion can
be defined by means of d’Alembert’s principle as the
equilibrium between generalized forces vectors:

fi(t) + frd(t) + fri(t) + fe(t) = p(t), (1)

in which fi(t) represents the generalized inertia force,
frd(t) the generalized rate-dependent hysteretic force,
fri(t) the generalized rate-independent hysteretic force,
and fe(t) the generalized elastic force.

The generalized inertia force vector fi(t) is related to
the generalized acceleration vector ü by the following
equation:
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fi(t) = Mü(t), (2)

where M is the mass matrix of the mechanical system,
usually assumed to be constant.

The generalized rate-dependent hysteretic force
frd(t) and elastic force fe(t) vectors can be expressed
as the sum of linear and nonlinear components:

frd(t) = Cu̇(t) + frdn(t), (3)

fe(t) = Ku(t) + fen(t), (4)

where the matrices C and K are the generalized con-
stant damping and elastic stiffness matrices, whereas
frdn(t) and fen(t) are the nonlinear components of the
generalized rate-dependent hysteretic force frd(t) and
elastic force fe(t) vectors, respectively.

Thus, using Eqs. (2), (3), and (4), Eq. (1) becomes:

Mü(t)+Cu̇(t)+Ku(t)+frdn(t)+fri(t)+fen(t) = p(t).

(5)

Mathematically, Eq. (5) represents a system of cou-
pled nonlinearOrdinaryDifferential Equations (ODEs)
of the second order in time that must be numerically
solved by adopting a suitable time integration method.
Actually, closed-form solutions are only possible for
linearODEswith analytically described external forces
[51]. The initial conditions required to numerically
integrate Eq. (5) are assumed to be u(0) = d0 and
u̇(0) = v0, where d0 and v0 are, respectively, the gen-
eralized displacement and velocity vectors of the hys-
teretic mechanical system defined at the beginning of
the analysis.

2.2 Phenomenological models

A large number of rate-dependent and rate-independent
phenomenological models have been proposed in the
literature to simulate the dynamicbehavior of hysteretic
mechanical systems [22].

According to the type of equation that needs to
be solved to evaluate the output variable, existing
rate-dependent and rate-independent phenomenologi-
cal models can be classified into four main categories:
(i) algebraic models, (ii) transcendental models, (iii)
differential models, and (iv) integral models.

In the following, we briefly describe an alge-
braic rate-dependent model and two differential rate-
independent models, widely used to simulate, respec-
tively, the typical rate-dependent andkinematic harden-
ing non-stiffening rate-independent hysteretic behav-
iors, that are of specific interest in this work.

2.2.1 Rate-dependent model

Let frd(t) denote a generic component of the vector
frd(t) in Eq. (3). An expression of its nonlinear part
frdn(t) can be obtained by adopting the widely used
algebraic rate-dependent model proposed by Seleemah
and Constantinou [41]:

frdn(t) = cn |u̇(t)|q sgn[u̇(t)], (6)

where cn is the generalized damping coefficient and q is
an exponent whose value defines the shape of the gen-
eralized rate-dependent force–displacement hysteresis
loop.

Figure 1a (b) presents an example of generalized
rate-dependent hysteretic forces, plotted versus the
generalized displacement (velocity), generally mod-
eled by employing the above-described Seleemah and
Constantinou model.

In particular, Fig. 1 shows that the shape of the gen-
eralized rate-dependent force–displacement hysteresis
loop, obtained by applying a generalized harmonic dis-
placement, is an ellipse if the relation between frd and
u̇ is linear; on the contrary, the shape of the hysteresis
loop becomes the blue (red) one if the relation between
frd and u̇ is nonlinear and the first derivative of frd
with respect to u̇ increases (decreases) with increasing
generalized velocity.

2.2.2 Rate-independent models

One of the most widespread rate-independent models
is the celebrated differential Bouc–WenModel (BWM)
[5,49,50] whose flexibility in modeling a large variety
of hysteretic behaviors has fostered several improve-
ments and extensions over years [1–3,8,9,11,23,29,
30,34].

Let fri(t) denote a generic component of the vec-
tor fri(t). An expression of the generalized rate-
independent hysteretic force fri(t), for the case of hys-
teresis due to plastic deformation mechanisms, can be
defined by employing the above-mentioned BWM:
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u

(a) (b)

Fig. 1 An example of generalized rate-dependent hysteretic forces, plotted versus displacement (a) and velocity (b), generally modeled
by employing the Seleemah and Constantinou model

(a) (b)

Fig. 2 An example of generalized rate-independent hysteretic forces, plotted versus displacement, generally modeled by employing
the BWM (a) and the MBWM (b)

fri (t) = aku(t) + (1 − a) kdz(t), (7)

where a ∈ (0, 1) is a dimensionless parameter, k > 0
and d > 0 are parameters having dimension of gen-
eralized stiffness and displacement, respectively, and
z(t) is a dimensionless variable obtained by solving
the following first-order nonlinear ODE:

ż(t) = d−1
[
Au̇(t) − b |u̇(t)| z(t) |z(t)|e−1

−cu̇(t) |z(t)|e] , (8)

where e is a positive number, and A, b, and c are scalars.
A Modified Bouc–Wen Model (MBWM), proposed

by Constantinou et al. [21], is often used to express the
generalized rate-independent hysteretic force fri(t) for
the case of friction-based hysteresis:

fri(t) = μs N z(t), (9)

whereμs is the generalized friction coefficient, N is the
generalized axial force, and z(t) is the dimensionless
variable obtained by solving Eq. (8).

Figure 2a (b) presents an example of generalized
rate-independent hysteretic force, plotted versus the
generalized displacement, typical of mechanical sys-
tems with kinematic hardening non-stiffening rate-
independent hysteretic behavior due to plastic defor-
mation mechanisms (friction), generally modeled by
employing the above-described BWM (MBWM).

In particular, Fig. 2 shows that the generalized
rate-independent force–displacement hysteresis loops,
obtained by applying a generalized harmonic displace-
ment, are bounded between two parallel straight lines
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that are affected neither by cyclic loading phenomena,
nor by stiffening behaviors.

It is important to note that the above-described dif-
ferential models are not computationally efficient since
they require the numerical solution of Eq. (8), typically
solved by usingmulti-steps [38] or Runge–Kutta meth-
ods [40], for each time step of a nonlinear time history
analysis.

2.3 Conventional time integration method

The system of coupled nonlinear ODEs, governing the
dynamic response of a MDOF hysteretic mechanical
system, can be conveniently expressed at the generic
time t + Δt as:

Mü(t + Δt) + Cu̇(t + Δt) + Ku(t + Δt)

+ frdn(t + Δt) + fri(t + Δt)

+ fen(t + Δt) = p(t + Δt),

(10)

where Δt is the time step of a Nonlinear Time History
Analysis (NLTHA).

Equation (10) canbenumerically solvedby adopting
a time integration method, that is generally obtained by
supplementing the equations of motion with two differ-
ence equations for the evaluation of the unknowngener-
alized displacement and velocity vectors. Specifically,
the general formulation of a family of time integration
methods can be expressed as:

Mai+1+Cvi+1+Kdi+1+(f̃rdn)i+1+(f̃ri)i+1

+ (f̃en)i+1=pi+1, (11a)

di+1=di+A1Δtvi+A2(Δt)2ai+A3(Δt)2ai+1+qi+1,

(11b)

vi+1 = vi + B1Δtai + B2Δtai+1 + ri+1, (11c)

where di+1, vi+1, and ai+1 are approximate estimates
of the generalized displacement u(t + Δt), velocity
u̇(t + Δt), and acceleration ü(t + Δt) vectors at the
(i+1)th time step, respectively; (f̃rdn)i+1 = frdn(vi+1),
(f̃ri)i+1 = fri(di+1), (f̃en)i+1 = fen(di+1), and pi+1
are approximate estimates of the generalized nonlin-
ear rate-dependent hysteretic force frdn(t + Δt), rate-
independent hysteretic force fri(t+Δt), nonlinear elas-
tic force fen(t +Δt), and external force p(t +Δt) vec-
tors at the (i+1)th time step, respectively. Thematrices
A1, A2, A3, as well as B1, B2 are coefficient matrices

that define a specific family of time integration meth-
ods, whereasqi+1 and ri+1 are load-dependent vectors,
namely vectors that are functions of the external force
vector, introduced to eliminate the unusual amplitude
growth that occurs in the steady-state response of a high
frequencymodewhen structure-dependentmethods are
employed in forced vibration problems [16,17].

In conventional time integration methods, such as
the Newmark’s family of methods [33], all the coeffi-
cient matrices become scalar quantities, that is, A1, A2,
A3, B1, and B2, and both the load-dependent vectors
become zero vectors, that is, qi+1 = ri+1 = 0.

For the case of structure-dependent time integra-
tion methods, such as the Chang’s families of methods
[14,15], only some of the coefficient matrices become
scalars; moreover, some of them are functions of the
time step Δt and of the initial properties of the system,
namely the mass matrix M, and the initial generalized
tangent damping C0 and stiffness K0 matrices.

One of the widely used methods employed to per-
form NLTHAs of hysteretic mechanical systems is
the Newmark’s constant Average AccelerationMethod
(AAM) [13],whose formulation can be obtained by set-
ting A1 = 1, A2 = A3 = 1/4, B1 = B2 = 1/2, and
qi+1 = ri+1 = 0 in Eq. (11).

Such an implicit unconditionally stable conventional
time integration method allows for the use of a rel-
atively large time step, the accuracy being the only
requirement to fulfill [4]; unfortunately, it is not com-
putationally efficient and may suffer from convergence
issues since it needs to be employed in conjunctionwith
an iterative procedure, such as the Newton–Raphson
method or the pseudo-force method [20].

3 Proposed rate-independent model

The computational efficiency of the solution strategy
described in Sect. 2 is substantially hampered by the
need of solving, at each time step, the first-order non-
linear ODE associated with the BWM or its modified
version. For this reason, we develop a novel accurate
and computationally efficient hysteretic model able to
reproduce non-stiffening rate-independent hysteretic
behaviors characterized by kinematic hardening. It rep-
resents a particular instance of the more general Class
of Hysteretic Models (CHMs) recently proposed by
Vaiana et al. [47]. Thus, after a brief review of this
general class, the formulation and the implementation
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Fig. 3 Curves cu, cl, c+, and c− for a hysteresis loop bounded
by two parallel straight lines

details of the Proposed Hysteretic Model (PHM) are
illustrated.

3.1 Review of a class of hysteretic models

In the class of uniaxial phenomenological models
developed by Vaiana et al. [47], the generalized dis-
placement u (generalized rate-independent hysteretic
force fri) is assumed to be the input (output) variable,
and ageneralized rate-independent force–displacement
hysteresis loop is described by means of four types of
curves, that is, the upper cu and the lower cl limiting
curves and the generic loading c+ and unloading c−
curves.

Figure 3 illustrates the four curves for a hysteresis
loop bounded by two parallel straight lines, that is of
particular interest in this work. The generic loading
(unloading) curve, defined by a positive (negative) sign
of the generalized velocity u̇, is identified by an arrow
plotted on the curve.

As shown in Fig. 3, the upper (lower) limiting
curve cu (cl) intercepts the vertical axis at fri = f̄
( fri = − f̄ ). Furthermore, the generic loading (unload-
ing) curve has a starting point, lying on the lower
(upper) limiting curve, having abscissa u+

i (u−
i ) and

an ending point, lying on the upper (lower) limiting
curve, having abscissa u+

j (u−
j ), being u

+
i = u+

j − 2u0
(u−

i = u−
j + 2u0).

The generalized tangent stiffness kt is described by
means of a general expression that, for the generic load-
ing case (u̇ > 0), is:

kt
(
u, u+

j

)
= ke (u) + kh

(
u, u+

j

)
, (12)

),( +
jt uuk

+
j  u+

i  u = 02uu j  −
+

),( −
jt uuk

−
j  u −

i  u = 02uu j  +
−

(a)

(b)

Fig. 4 Graph of kt for the generic loading (a) and unloading (b)
cases in Fig. 3

whereas, for the generic unloading case (u̇ < 0),
becomes:

kt
(
u, u−

j

)
= ke (u) + kh

(
u, u−

j

)
. (13)

In the previous formulas, ke is a function of u,
whereas kh is a function of a relative generalized dis-
placement evaluated by relating u to u+

j (u−
j ).

Figure 4a (b) presents the graphof function kt(u, u+
j )

(kt(u, u−
j )), namely the generalized tangent stiffness

of the upper (lower) limiting curve cu (cl) and of the
generic loading (unloading) curve c+ (c−) of Fig. 3. It
can be observed that, assuming ke(u) = 0, kt(u, u+

j )

(kt(u, u−
j )) nonlinearly decreases from ka to kb, on

[u+
j − 2u0, u

+
j ] ([u−

j , u−
j + 2u0]), whereas it is con-

stant and equal to kb on [u+
j ,∞) ((−∞, u−

j ]).
Similarly, the generalized rate-independent hys-

teretic force fri is defined by a general expression that,
for the generic loading case (u̇ > 0), is:

fri
(
u, u+

j

)
=

⎧⎪⎨
⎪⎩

c+
(
u, u+

j

)
u ∈

[
u+
j − 2u0, u

+
j

]
(14a)

cu (u) u ∈
[
u+
j ,∞

)
, (14b)

whereas, for a generic unloading case (u̇ < 0),
becomes:
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fri
(
u, u−

j

)
=

⎧
⎪⎨
⎪⎩

c−
(
u, u−

j

)
u ∈

[
u−
j , u−

j + 2u0
]

(15a)

cl (u) u ∈
(
−∞, u−

j

]
. (15b)

The general expressions of the upper (lower) limit-
ing curve and of the generic loading (unloading) curve
are derived by integrating the expression of the gener-
alized tangent stiffness kt , Eq. (12) (Eq. (13)). Specifi-
cally, as described in detail in [47], the general expres-
sions of the upper and lower limiting curves are:

cu (u) = fe (u) + kbu + f̄ , (16)

cl (u) = fe (u) + kbu − f̄ , (17)

being:

fe (u) =
∫

ke (u) du, (18)

whereas the general expressions of the generic loading
and unloading curves are:

c+ (
u, u+

j

)
= fe (u) + fh

(
u, u+

j

)
+ kbu

+
j

+ f̄ − fh
(
u+
j , u+

j

)
, (19)

c− (
u, u−

j

)
= fe (u) + fh

(
u, u−

j

)
+ kbu

−
j

− f̄ − fh
(
u−
j , u−

j

)
, (20)

being:

fh
(
u, u+

j

)
=

∫
kh

(
u, u+

j

)
du, (21)

and

fh
(
u, u−

j

)
=

∫
kh

(
u, u−

j

)
du. (22)

The model parameters f̄ and u0 are related by the
following general expression:

fh
(
u+
j − 2u0, u

+
j

)
+2kbu0+2 f̄ − fh

(
u+
j , u+

j

)
= 0,

(23)

that can be solved for f̄ or u0, in closed form or numer-
ically depending on the complexity of the function fh .

Finally, the history variable is evaluated by a general
expression that, for the generic loading case (u̇ > 0),
is:

fe (uP ) + fh
(
uP , u+

j

)
+kbu

+
j + f̄ − fh

(
u+
j , u+

j

)
= fP ,

(24)

whereas, for the generic unloading case (u̇ < 0),
becomes:

fe (uP )+ fh
(
uP , u−

j

)
+kbu

−
j − f̄ − fh

(
u−
j , u−

j

)
= fP ,

(25)

where uP and fP are the coordinates of a generic point
P that lies between the two limiting curves.

Equations (24) and (25) can be solved for u+
j and u

−
j ,

respectively, in closed form or numerically depending
on the complexity of the function fh .

3.2 Proposed hysteretic model

In this subsection, we first develop the PHM, that is
a specific instance of the above-described CHMs pro-
posed by Vaiana et al. [47]. Subsequently, we demon-
strate its ability to reproduce hysteresis loops limited by
two parallel straight lines, typical of kinematic harden-
ing non-stiffening rate-independent hysteretic behav-
iors, by employing a set of only three parameters and
we examine the influence of each model parameter on
the hysteresis loop size. Finally, we present the imple-
mentation scheme of the model, useful for computer
implementation.

3.2.1 Development of the model

To develop the model, we first select the generalized
tangent stiffness functions, that is, ke and kh ; then,
we analytically derive the expressions of the general-
ized rate-independent hysteretic force andof the history
variable.

Generalized tangent stiffness
The proposed generalized tangent stiffness functions
are:

ke (u) = 0 on (−∞,∞) , (26)
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Fig. 5 Graph of kh for the generic loading case

kh
(
u, u+

j

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kb+ ka−kb[
1+ū−1

(
u−u+

j +2u0
)]γ on

[
u+
j −2u0, u

+
j

[
(27a)

kb on
]
u+
j ,∞

)
, (27b)

kh
(
u, u−

j

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kb+ ka−kb[
1+ū−1

(
−u+u−

j +2u0
)]γ on

]
u−
j , u−

j +2u0
]

(28a)

kb on
(
−∞, u−

j

[
, (28b)

where ka > kb, ka > 0, γ > 0, γ �= 1, ū = 1, u0 > 0.
In particular, ka , kb, and γ are model parameters to
be calibrated by using experimental data, ū is a model
parameter adopted to non-dimensionalize the denom-
inator in Eqs. (27a) and (28a), whereas u0 is a model
parameter evaluated as a function of ka , kb, and γ , as
demonstrated in the following.

The selected kh is a function that nonlinearly
decreases, from ka to kb + (ka − kb) (1 + 2u0)−γ , on
[u+

j − 2u0, u
+
j [, when u̇ > 0, and on ]u−

j , u−
j + 2u0],

when u̇ < 0; moreover, kh is constant and equal to
kb on ]u+

j ,∞), when u̇ > 0, and on (−∞, u−
j [, when

u̇ < 0. The parameter γ rules the velocity of variation
of kh , from ka to kb + (ka − kb) (1 + 2u0)−γ , as illus-
trated in Fig. 5 for the generic loading case (u̇ > 0).
The graph of kh for the generic unloading case (u̇ < 0)
is not illustrated for brevity.

In order to derive the expression of the internal
model parameter u0 and show that it can be evaluated as
a function of the parameters ka , kb, and γ , we observe
that kh is discontinuous at u

+
j (u−

j ), as shown in Fig. 5
for the generic loading case. Thus, if we denote by δk
the difference between the two different values of kh at
u+
j (u−

j ), we can write:

ka − kb
(1 + 2u0)γ

= δk, (29)

from which we obtain:

u0 = 1

2

[(
ka − kb

δk

) 1
γ − 1

]
, (30)

that is an expression giving positive values of u0 for
0 < δk < ka − kb. In order to have a generic loading
(unloading) curve c+ (c−) that smoothly approaches
the upper (lower) limiting curve cu (cl), that is, with a
generalized tangent stiffness at u+

j (u−
j ) very close to

the one of the upper (lower) limiting curve cu (cl), we
set δk equal to 10−20 in Eq. (30). The choice of such a
value has been assumed for purely numerical reasons.

Generalized rate-independent hysteretic force
According to the general formulation described in 3.1,
the evaluation of the generalized rate-independent hys-
teretic force fri, for the generic loading (unloading)
case, requires the derivation of the expressions for the
upper (lower) limiting curve cu (cl) and for the generic
loading (unloading) curve c+ (c−).

As regards the upper and lower limiting curves, on
account of the definition (18) and of the assumption
(26), we have:

fe (u) = 0. (31)

Hence, Eq. (16) specializes to:

cu (u) = kbu + f̄ , (32)

whereas Eq. (17) provides:

cl (u) = kbu − f̄ . (33)

As far as the generic loading and unloading curves
are concerned, on account of the assumption (27a),
Eq. (21) specializes to:

fh
(
u, u+

j

)
= kbu + (ka − kb)

×
(
1 + u − u+

j + 2u0
)(1−γ )

1 − γ
, (34)
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so that, recalling (31), Eq. (19) yields:

c+ (
u, u+

j

)
= kbu + (ka − kb)

×
⎡
⎢⎣

(
1 + u − u+

j + 2u0
)(1−γ )

1 − γ

− (1 + 2u0)(1−γ )

1 − γ

⎤
⎥⎦ + f̄ .

(35)

Similarly, on account of the assumption (28a), Eq. (22)
specializes to:

fh
(
u, u−

j

)
= kbu + (ka − kb)

×
(
1 − u + u−

j + 2u0
)(1−γ )

γ − 1
, (36)

so that, recalling (31), Eq. (20) yields:

c− (
u, u−

j

)
= kbu + (ka − kb)

×
⎡
⎢⎣

(
1 − u + u−

j + 2u0
)(1−γ )

γ − 1

− (1 + 2u0)(1−γ )

γ − 1

⎤
⎥⎦ − f̄ .

(37)

In order to derive the expression of the internal
model parameter f̄ , required to compute cu, cl, c+,
and c−, we exploit Eq. (23). Thus, adopting (34), the
former equation becomes:

kb
(
u+
j − 2u0

)
+ (ka − kb)

1 − γ
+ 2kbu0 + 2 f̄ − kbu

+
j

− (ka − kb)
(1 + 2u0)(1−γ )

1 − γ
= 0,

(38)

from which we obtain:

f̄ = ka − kb
2

[
(1 + 2u0)(1−γ ) − 1

1 − γ

]
. (39)

Since ka > kb, γ �= 1, and u0 > 0, Eq. (39) gives a
positive value of f̄ .

History variable
The expression of the history variable, for the load-
ing case, is derived by invoking (31) and (34), so that
Eq. (24) specializes to:

kbuP + (ka − kb)

(
1 + uP − u+

j + 2u0
)(1−γ )

1 − γ

+ kbu
+
j + f̄ − kbu

+
j

− (ka − kb)
(1 + 2u0)(1−γ )

1 − γ
= fP ,

(40)

from which we obtain:

u+
j = 1 + uP + 2u0 −

{
1 − γ

ka − kb

[
fP − kbuP

− f̄ + (ka − kb)
(1 + 2u0)(1−γ )

1 − γ

]}(
1

1−γ

)

.

(41)

Similarly, for the unloading case, the expression of
the history variable is derived by invoking (31) and
(36), so that Eq. (25) specializes to:

kbuP + (ka − kb)

(
1 − uP + u−

j + 2u0
)(1−γ )

γ − 1

+ kbu
−
j − f̄ − kbu

−
j

− (ka − kb)
(1 + 2u0)(1−γ )

γ − 1
= fP ,

(42)

from which we obtain:

u−
j = −1 + uP − 2u0 +

{
γ − 1

ka − kb

[
fP − kbuP

+ f̄ + (ka − kb)
(1 + 2u0)(1−γ )

γ − 1

]}(
1

1−γ

)

.

(43)

3.2.2 Hysteresis loop shape

Figure 6 shows two different generalized rate-
independent force–displacement hysteresis loops,
bounded by two parallel straight lines, obtained by
imposing a sinusoidal generalized displacement, hav-
ing unit amplitude and frequency, and simulated by
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Fig. 6 Hysteresis loops,
simulated by using the PHM
parameters listed in Table 1,
typically due to plastic
deformation mechanisms
(a) and friction (b)
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Table 1 PHM parameters

ka kb γ

(a) 10 0.5 10

(b) 200 0.0 100

using the PHM parameters listed in Table 1. In par-
ticular, the hysteresis loop of Fig. 6a (b) is typical
of mechanical systems having a kinematic harden-
ing non-stiffening rate-independent hysteretic behav-
ior induced by plastic deformation mechanisms (fric-
tion).

Figure 7 shows the influence of each PHM parame-
ter on the size of generalized force–displacement hys-
teresis loops simulated by applying a sinusoidal trans-
verse displacement with unit amplitude and frequency.
In particular, the hysteresis loops in Fig. 7a have been
reproduced setting kb = 0.5, γ = 10, and adopting
three values of ka , that is, 5, 10, and 15. It is evident
that the larger is ka , the larger is the size of the hystere-
sis loop.

Figure 7b (c) illustrates hysteresis loops obtained
setting ka = 10, γ = 10, and using three values
of kb, that is, 0, 0.5, and 1 (0, − 0.5, and − 1). It is
clear that if kb is increased (decreased), the hysteresis
loop rotates counter-clockwise (clockwise) and its size
slightly decreases (increases).

Finally, Fig. 7d presents hysteresis loops simulated
setting ka = 10, kb = 0.5, and adopting three val-
ues of γ , that is, 10, 15, and 20. It is evident that the
larger is γ , the smaller is the size of the hysteresis
loop.

3.2.3 Computer implementation

The implementation scheme of the proposed model
is presented in Table 2. Such a schematic flowchart,
composed of two parts, called Initial settings and Cal-
culations at each time step, respectively, is based on the
assumptions that a hystereticmechanical system is sub-
jected to a given time-dependent generalized external
force and that a displacement-driven solution scheme
is employed. In particular, considering a generic time
interval ti ≤ t ≤ ti+1, the approximate estimates
of the generalized displacement, velocity, and rate-
independent hysteretic force at time step i , namely di ,
vi , and ( f̃ri)i , as well as the approximate estimates
of the generalized displacement and velocity at time
step i + 1, namely di+1 and vi+1, are assumed to
be known. On the contrary, the approximate estimate
of the generalized rate-independent hysteretic force at
time step i + 1, namely ( f̃ri)i+1, has to be computed
taking into account that the history variable u j needs
to be updated if the sign of the generalized velocity,
s = sgn(v), changes over the generic time interval,
that is, if si si+1 < 0.

4 Proposed explicit time integration method

It has been repeatedly emphasized that the phenomeno-
logical models and the time integration method are
the key issues affecting the efficiency of the strate-
gies typically employed to perform NLTHAs of hys-
teretic mechanical systems. The first issue has been
addressed in the previous section by proposing a novel
rate-independent model that avoids, within each time
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Fig. 7 Influence of the
PHM parameters on the size
of the hysteresis loops
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Table 2 PHM Algorithm

1. Initial settings

1.1 Set the three model parameters: ka , kb, and γ .

1.2 Evaluate the internal model parameters [see (30) and (39)]:

u0 = 1
2

[(
ka−kb

δk

) 1
γ − 1

]
and f̄ = ka−kb

2

[
(1+2u0)(1−γ )−1

1−γ

]
, with δk = 10−20.

2. Calculations at each time step

2.1 If si si+1 < 0, where s = sgn(v), update the history variable [see (41) and (43)]:

u j = di + si+1 (1 + 2u0) − si+1

{
si+1(1−γ )
ka−kb

[
( f̃ri)i − kbdi − si+1 f̄ + (ka − kb)

(1+2u0)(1−γ )

si+1(1−γ )

]}(
1

1−γ

)
,

otherwise, go to point (2.2).

2.2 Compute the generalized rate-independent hysteretic force at time step i + 1:

if u j si+1 − 2u0 ≤ di+1si+1 < u j si+1:

( f̃ri)i+1 = kbdi+1 + (ka − kb)

[
(1+si+1di+1−si+1u j+2u0)

(1−γ )

si+1(1−γ )
− (1+2u0)(1−γ )

si+1(1−γ )

]
+ si+1 f̄ [see (35) and (37)],

otherwise:

( f̃ri)i+1 = kbdi+1 + si+1 f̄ [see (32) and (33)].
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step, the solution of the first-order nonlinear ODE asso-
ciated with the Bouc–Wen model or its modified ver-
sion.

The second issue is addressed in this section by
proposing an explicit structure-dependent time integra-
tion method that belongs to the more general Chang’s
Family of Explicit Methods (CFEMs) [15] and extends
its range of validity from elastic systems to the hys-
teretic ones. Thus, after a brief review of this general
family, we present the formulation as well as the imple-
mentation details of the proposed Chang’s Explicit
Method (CEM).

4.1 Review of the Chang’s family of explicit methods

The family of explicit structure-dependent time inte-
gration methods developed by Chang [15] can be
obtained from Eq. (11) by assuming:

A1 = 1, A3 = 0, and B2 = 0. (44)

Hence, the formulation of the CFEMs is:

Mai+1 + Cvi+1 + Kdi+1 + (f̃rdn)i+1 + (f̃ri)i+1

+ (f̃en)i+1 = pi+1, (45a)

di+1 = di + Δtvi + A2(Δt)2ai + qi+1, (45b)

vi+1 = vi + B1Δtai + ri+1, (45c)

where the coefficient matrices A2 and B1, assumed to
be constant during the complete numerical integration
procedure, depend on the time stepΔt and on the initial
properties of the analyzed hysteretic mechanical sys-
tem, that is, M, C0, and K0. Specifically, A2 and B1 are
evaluated as follows:

A2 =
[
M + βΔtC0 + α(Δt)2K0

]−1
M = S−1

0 M,

(46)

B1 = A2, (47)

where the scalar parameters α and β determine the
numerical properties (i.e., accuracy and stability) of
the algorithm under consideration. The load-dependent
vectors q and r at the (i +1)th time step are defined as:

qi+1 = S−1
0

[
α(Δt)2

(
pi+1 − pi

)]
, (48)

ri+1 = 0. (49)

ConsideringEqs. (3) and (4), the initial generalized tan-
gent damping C0 and stiffness K0 matrices of a hys-
teretic mechanical system can be computed as follows:

C0 = ∂frd
∂u̇

∣∣∣∣
v0

= C + ∂frdn
∂u̇

∣∣∣∣
v0

, (50)

K0 = ∂fri
∂u

∣∣∣∣
d0

+ ∂fe
∂u

∣∣∣∣
d0

= ∂fri
∂u

∣∣∣∣
d0

+ K + ∂fen
∂u

∣∣∣∣
d0

.

(51)

For a MDOF hysteretic mechanical system, the crit-
ical time step Δtcr, that is, the maximum value of the
time step that can be adopted to avoid stability prob-
lems, is different for each natural mode evaluated at the
(i+1)th time step of a NLTHA. Specifically, assuming
a zero viscous damping ratio, the value of the critical
time step of the j th mode at the (i +1)th time step, that
is, (Δtcr)

( j)
i+1, can be evaluated as [15]:

(Δtcr)
( j)
i+1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if α ≥ 1

4
κ

( j)
i+1 (52a)

T ( j)
0

2π
√

1
4κ

( j)
i+1 − α

if α <
1

4
κ

( j)
i+1, (52b)

where T ( j)
0 is the initial natural period, that is, the nat-

ural period at the beginning of the analysis, of the j th
mode, whereas κ

( j)
i+1 is the current degree of nonlinear-

ity of the j th mode at the (i + 1)th time step:

κ
( j)
i+1 =

[
T ( j)
0

T ( j)
i+1

]2

, (53)

where T ( j)
i+1 is the natural period of the j th mode eval-

uated by using the generalized tangent stiffness matrix
Ki+1 at the (i+1)th time step. It is worth being empha-
sized that κ

( j)
i+1 turns out to be greater (smaller) than 1

in presence of (non-)stiffening rate-independent hys-
teretic behavior.

4.2 Proposed Chang’s explicit method

The proposed CEM is obtained by setting α = 1/4 and
β = 1/2 in Eqs. (46) and (47). Such a method exhibits
excellent accuracy and stability properties. Indeed, as
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Table 3 Proposed CEM
numerical properties

Critical time step Accuracy Numerical damping Relative period error

∞ if κ
( j)
i+1 ≤ 1

T ( j)
0

π

√
κ

( j)
i+1 − 1

if κ
( j)
i+1 > 1

Second-order No Small for Δt ≤ 0.05 T ( j)
0

shown in Table 3, CEM is unconditionally stable for
all non-stiffening hysteretic mechanical systems that
are of interest in this paper. Furthermore, belonging to
the subfamily of methods for which β = 1/2, it has a
second-order accuracy, does not suffer from numerical
damping, and displays a small relative period error for
Δt ≤ 0.05 T ( j)

0 .

4.2.1 CEM formulation

Let us consider a generic time interval ti ≤ t ≤ ti+1

and let the generalized external force vector pi (pi+1)
be assigned at the beginning (end) of the interval. We
assume that the generalized displacement, velocity, and
acceleration vectors at time step i , that is, di , vi , and
ai , are known. Our aim is to evaluate such vectors at
time step i + 1, that is, di+1, vi+1, and ai+1, by means
of the proposed algorithm. To this end, we first observe
that Eq. (45b) provides, on account of Eqs. (46) and
(48), the expression for the evaluation of the unknown
generalized displacement vector di+1:

di+1 = di + Δtvi + S−1
0

×
[
M(Δt)2ai + α(Δt)2

(
pi+1 − pi

)]
. (54)

The unknown generalized velocity vector vi+1 can
be computed by using Eq. (45c) that, on account of
Eqs. (47) and (49), can be also written as:

vi+1 = vi + S−1
0 MΔtai . (55)

Once the generalized nonlinear forces vectors
(f̃rdn)i+1 = frdn(vi+1), (f̃ri)i+1 = fri(di+1), and
(f̃en)i+1 = fen(di+1) have been evaluated by employ-
ing suitable phenomenological models, the unknown
generalized acceleration vector ai+1 can be com-
puted by using the following expression derived from
Eq. (45a):

ai+1 = M−1
[
pi+1 − Cvi+1 − Kdi+1 − (f̃rdn)i+1

−(f̃ri)i+1 − (f̃en)i+1

]
.

(56)

4.2.2 CEM implementation details

Table 4 summarizes the implementation scheme of the
proposed algorithm that is composed of two parts. In
the first one, called Initial settings, the generalized con-
stant mass M, damping C, and stiffness K matrices as
well as the initial generalized tangent damping C0 and
stiffnessK0 matrices, obtained fromEqs. (50) and (51),
respectively, are first assembled. Then, the initial gen-
eralized displacement d0 and velocity v0 vectors are
initialized and the initial generalized acceleration vec-
tor a0 is evaluated using the following equation:

a0 = M−1
[
p0 − Cv0 − Kd0 − (f̃rdn)0

−(f̃ri)0 − (f̃en)0
]
, (57)

that has been formally obtained by setting i = −1 in
Eq. (56).

Finally, after the selection of the time step Δt and
the definition of the two scalar parameters α = 1/4
and β = 1/2, matrix S0 = M + βΔtC0 + α(Δt)2K0,
appearing in Eqs. (54) and (55), is computed and the
inverse of matrices M and S0, that is, M = M−1 and
S0 = S−1

0 , are evaluated. It is important to note that M
andS0 need to be inverted only once during theNLTHA
and have to be saved for the subsequent computations.

In the second part of the proposed algorithm, called
Calculations at each time step, the generalized dis-
placement, velocity, and acceleration vectors are com-
puted, at each time step of the analysis, by using
Eqs. (54), (55), and (56), respectively.

5 Numerical experiments

This section presents the results of several analy-
ses carried out on hysteretic mechanical systems pre-
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Table 4 Proposed CEM algorithm

1. Initial settings

1.1 Assemble the following matrices: M, C, K, C0, and K0.

1.2 Initialize d0 and v0; then evaluate the initial generalized acceleration vector [see (57)]:

a0 = M−1
[
p0 − Cv0 − Kd0 − (f̃rdn)0 − (f̃ri)0 − (f̃en)0

]
.

1.3 Select time step Δt , set α = 1/4 and β = 1/2, and compute S0:

S0 = M + βΔtC0 + α(Δt)2K0.

1.4 Evaluate the following inverted matrices:

M = M−1,

S0 = S−1
0 .

2. Calculations at each time step

2.1 Set i = 0.

2.2 Compute the generalized displacement vector [see (54)]:

di+1 = di + Δtvi + S0
[
M(Δt)2ai + α(Δt)2

(
pi+1 − pi

)]
.

2.3 Evaluate the generalized velocity vector [see (55)]:

vi+1 = vi + S0MΔtai .

2.4 Compute the generalized nonlinear forces vectors:

(f̃rdn)i+1 = frdn(vi+1), (f̃ri)i+1 = fri(di+1), and (f̃en)i+1 = fen(di+1).

2.5 Evaluate the generalized acceleration vector [see (56)]:

ai+1 = M
[
pi+1 − Cvi+1 − Kdi+1 − (f̃rdn)i+1 − (f̃ri)i+1 − (f̃en)i+1

]
.

2.6 Replace i by i + 1 and repeat points (2.2)–(2.5).

Fig. 8 Schematic drawing
of the adopted family of
hysteretic mechanical
systems
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senting both types of hysteretic behaviors, namely
rate-dependent and kinematic hardening non-stiffening
rate-independent hysteretic behaviors, in order to inves-
tigate the accuracy and the computational efficiency of
the proposed procedure.

Specifically, the family of hystereticmechanical sys-
tems, selected to carry out the numerical experiments,
is represented by a n-DOFs linear mass-spring-damper
system with nonlinear hysteretic elements. Figure 8
illustrates a schematic drawing of such a family of sys-
tems where Mi is the i th generalized mass and u(i) is
its generalized displacement, Ci and Ki are the gen-
eralized viscous damping coefficient and stiffness of
the i th linear viscous damper and linear elastic spring,
respectively, whereas ci and ki are the initial gener-

alized tangent damping coefficient and stiffness of the
i th nonlinear rate-dependent and rate-independent hys-
teretic elements, respectively. For simplicity, a generic
system belonging to such a family is denoted as Sys-
tem RdRiPn (RdRiFn), where Rd is reminiscent of its
rate-dependent behavior, RiP (RiF) is reminiscent of
its rate-independent behavior due to plastic deforma-
tion mechanisms (friction), and n specifies the number
of DOFs.

To perform the analyses, the rate-dependent model
proposed in [41], briefly illustrated in 2.2.1, is adopted
to simulate the dynamic behavior of the nonlinear rate-
dependent hysteretic elements, whereas the novel rate-
independent model, developed in 3.2, is used to repro-
duce the dynamic behavior of the rate-independent hys-
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Fig. 9 Applied generalized
external forces: harmonic
force (a) and random force
(b)
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teretic elements. Furthermore, the proposed explicit
time integration method, described in 4.2, is employed
to numerically integrate the nonlinear equilibrium
equations.

In order to demonstrate the accuracy properties of
the proposed procedure and its capability to signifi-
cantly decrease the computational burden of the analy-
ses, the numerical results and the computational times
are compared with those obtained by employing the
conventional solution strategy described in Sect. 2;
such a strategy combines the celebrated Bouc–Wen
model [5,49,50] or its modified version [21] with the
well-known Newmark’s constant average acceleration
method [13,33].

In particular, the BWM (MBWM) is used to model
the kinematic hardening non-stiffening behavior, due to
plastic deformation mechanisms (friction), displayed
by the rate-independent hysteretic elements. Note that,
in this work, the first-order nonlinear ODE, given by
Eq. (8), is numerically solved by using the uncondition-
ally stable semi-implicit Runge–Kuttamethod [40] and
considering 50 steps. Furthermore, theAAMis adopted
in conjunction with the pseudo-force iterative proce-
dure employed with a convergence tolerance value of
10−8.

The hysteretic models and the solution algorithms
have been programmed inMATLAB and run on a com-
puter having an Intel� CoreTM i7-4700MQ processor
and a CPU at 2.40 GHz with 16 GB of RAM.

5.1 Accuracy

To show the accuracy of the proposed procedure, we
present the results of NLTHAs performed on two dif-

ferent hysteretic mechanical systems: Systems RdRiP1
and RdRiF1.

5.1.1 Mechanical systems properties

The initial properties of System RdRiP1 (RdRiF1) are
M1 = 1 Ns2/m, C1 = 1 Ns/m, K1 = 1 N/m, c1 = 0
Ns/m, and k1 = 100 N/m (M1 = 1 Ns2/m, C1 = 1
Ns/m, K1 = 1 N/m, c1 = 0 Ns/m, and k1 = 1000
N/m). Thus, the initial natural period of SystemRdRiP1
(RdRiF1), evaluated as T = 2π

√
M1/ (K1 + k1), is

0.625 s (0.198 s).

5.1.2 Applied generalized external forces

The analyses are performed for two different general-
ized external forces, namely a harmonic force and a
random force.

Figure 9a shows the applied harmonic force, that is,
a sinusoidal force with an amplitude p0, that increases
linearly with time from 0 to 4 N, a forcing frequency
ωp = 2π rad/s, and a time duration td = 10 s.

Figure 9b shows the applied random force, that is, a
Gaussian white noise with an intensity iwn = 9 N, and
a time duration td = 10 s.

5.1.3 Hysteretic models parameters

The dynamic behavior of the nonlinear rate-dependent
hysteretic element of Systems RdRiP1 and RdRiF1 is
simulated, in both the proposed and conventional pro-
cedures, by adopting the rate-dependent model devel-
oped by Seleemah and Constantinou [41], illustrated in
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Table 5 PHM parameters

ka kb γ

RdRiP1 100 10 110

RdRiF1 1000 0 1000

Table 6 (a) BWM parameters and (b) MBWM parameters

k a b c d e A

(a)

RdRiP1 54 0.18 1 0 0.009 1.1 1

N μs b c d e A

(b)

RdRiF1 5 0.10 1 0 0.001 1.1 1

2.2.1. Specifically, the twoparameters used for the eval-
uation of the generalized nonlinear rate-dependent hys-
teretic force, given by Eq. (6), are cn = 1 and q = 1.5.

The dynamic behavior of the rate-independent hys-
teretic element of Systems RdRiP1 and RdRiF1 is
simulated adopting the novel rate-independent model,
developed in 3.2, when the analyses are carried out by
employing the proposed procedure; on the contrary, it is
modeled by means of the Bouc–Wen model (modified
Bouc–Wen model), described in 2.2.2, when the analy-
sis of System RdRiP1 (RdRiF1) is performed by using
the conventional procedure. Specifically, the parame-
ters adopted in the PHM are listed in Table 5, whereas
the ones used in the BWM (MBWM) are listed in
Table 6a (b).

5.1.4 Numerical results

The selection of an appropriate time step Δt is a cru-
cial aspect to accurately analyze the above-described
systems. As suggested in the literature [4,20], time his-
tory analyses of linear elastic systems can be performed
adoptingΔt = T/10 or T/20. Since for nonlinear sys-
tems a smaller time step is required to limit the detri-
mental effects due to factors that affect the accuracy
of the adopted time integration method, such as the
period distortion, the analyses of Systems RdRiP1 and
RdRiF1 are performed adopting a time stepΔt = 0.001
s, that is smaller than T/100.

The results of the analyses carried out on System
RdRiP1 (RdRiF1) are shown in Table 7a (b). The accu-
racy of the proposed procedure is very satisfactory
since themaximumandminimumvalues of the approx-
imate estimates of the generalized displacement, veloc-
ity, and acceleration of the analyzed systems, namely
d(1), v(1), and a(1), respectively, are numerically quite
close to those predicted by using the conventional pro-
cedure.

The response history of System RdRiP1 (RdRiF1),
simulated by applying the harmonic force (random
force), is illustrated in terms of generalized displace-
ment, e.g., Fig. 10a (11a), generalized velocity, e.g.,
Fig. 10b (11b), and generalized acceleration, e.g., Fig.
10c (11c); generalized nonlinear rate dependent and
rate-independent force–displacement hysteresis loops
are shown in Figs. 10d (11d) and 10e (11e), respec-
tively. The plots of the response history of System
RdRiP1 (RdRiF1), obtained for the random force (har-
monic force), are omitted for brevity. Generally speak-
ing, the comparison between the responses of System
RdRiP1 (RdRiF1) obtained with the PHM-CEM and
the conventional BWM-AAM (MBWM-AAM) shows
a very good agreement.

5.2 Computational efficiency

To show the computational efficiency of the proposed
procedure, we present the results of NLTHAs per-
formed on eight different hysteretic mechanical sys-
tems: Systems RdRiPn and RdRiFn, with n = 1, 10,
100, and 1000.

5.2.1 Mechanical systems properties

The initial properties of Systems RdRiPn (RdRiFn),
with n = 1, 10, 100, and 1000, are Mi = 1 Ns2/m,
Ci = 1Ns/m, Ki = 1N/m, ci = 0 Ns/m, and ki = 100
N/m (Mi = 1 Ns2/m, Ci = 1 Ns/m, Ki = 1 N/m,
ci = 0 Ns/m, and ki = 1000 N/m), for i = 1, ..., n.
The initial natural period of System RdRiP1 (RdRiF1),
evaluated as T = 2π

√
M1/ (K1 + k1), is 0.625 s

(0.198 s). As regards Systems RdRiPn (RdRiFn), with
n = 10, 100, and 1000, the lowest initial natural period,
evaluated solving the eigenvalue problem adopting the
initial generalized tangent stiffness matrix K0, is found
to be 0.3126 s (0.0993 s) for all the three systems.
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Table 7 NLTHAs results | (a) system RdRiP1 and (b) system RdRiF1

d(1) (m) v(1)
(
ms−1

)
a(1)

(
ms−2

)

Max Min Max Min Max Min

(a)

Harmonic force

PHM-CEM 0.1236 −0.1175 0.7486 −0.7875 4.8800 −5.1302

BWM-AAM 0.1236 −0.1175 0.7483 −0.7872 4.8762 −5.1261

Random force

PHM-CEM 0.1416 −0.1213 0.5934 −0.6115 34.9451 −29.5250

BWM-AAM 0.1413 −0.1215 0.5866 −0.6104 34.9319 −29.5091

(b)

Harmonic force

PHM-CEM 0.0932 −0.0881 0.5653 −0.5964 3.8520 −4.0498

MBWM-AAM 0.0931 −0.0880 0.5650 −0.5961 3.8465 −4.0446

Random force

PHM-CEM 0.4315 −0.1450 0.6259 −0.5822 34.9678 −29.4609

MBWM-AAM 0.4313 −0.1440 0.6202 −0.5806 34.9629 −29.4401
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Fig. 10 Results of the analyses carried out on System RdRiP1 by applying the Harmonic Force
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Fig. 11 Results of the analyses carried out on System RdRiF1 by applying the Random Force

5.2.2 Applied generalized external forces

The analyses are performed by applying a harmonic
force at the i th mass of each system.

Such a harmonic force is a sinusoidal force having
a constant amplitude p0 = 4 N, a forcing frequency ωp

= 2π rad/s, and a time duration td = 1 s.

5.2.3 Hysteretic models parameters

The dynamic behavior of the i th nonlinear rate-
dependent hysteretic element of Systems RdRiPn and
RdRiFn, with n = 1, 10, 100, and 1000, is simulated,
in both the proposed and conventional procedures,
by adopting the rate-dependent model developed by
Seleemah and Constantinou [41], illustrated in 2.2.1.
Specifically, the two parameters used for the evalu-
ation of the i th generalized nonlinear rate-dependent
hysteretic force, given by Eq. (6), are cn = 1 and
q = 1.5.

The dynamic behavior of the i th rate-independent
hysteretic element of Systems RdRiPn and RdRiFn,
with n = 1, 10, 100, and 1000, is simulated adopting
the novel rate-independent model, developed in 3.2,
when the analyses are carried out by employing the
proposed procedure; on the contrary, it is modeled by
means of the Bouc–Wen model (modified Bouc–Wen
model), described in 2.2.2, when the analyses of Sys-
tems RdRiPn (RdRiFn) are performed by using the
conventional procedure. Specifically, the three PHM
parameters used for the evaluation of the i th gener-
alized rate-independent hysteretic force of the ana-
lyzed mechanical systems are the same of the ones
listed in Table 5, whereas the seven BWM (MBWM)
parameters used for evaluating the i th generalized
rate-independent hysteretic force of Systems RdRiPn
(RdRiFn) are the same of the ones listed in Table 6a
(b).
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Table 8 NLTHAs results | (a) systems RdRiPn and (b) systems RdRiFn

n = 1 n = 10 n = 100 n = 1000

tct (s) tctp (%) tct (s) tctp (%) tct (s) tctp (%) tct (s) tctp (%)

(a)

PHM-CEM 0.06 0.49 0.24 0.18 2.72 0.17 58.47 0.39

BWM-AAM 12.14 – 129.07 – 1515.88 – 14711.45 –

(b)

PHM-CEM 0.06 0.47 0.23 0.19 2.71 0.19 58.37 0.40

MBWM-AAM 12.69 – 115.07 – 1356.48 – 14565.98 –

Fig. 12 Average total
computational times
required for Systems
RdRiPn (a) and RdRiFn (b)
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5.2.4 Numerical results

The analyses of the above-described systems are per-
formed adopting a time step Δt = 0.001 s that allows
the proposed procedure to give enough accurate results
as those obtained by employing the conventional one
described in Sect. 2; these numerical results are omitted
for brevity.

In order to show the computational efficiency of the
proposed strategy, Table 8a (b) and Fig. 12a (b) present
the average total computational time tct required to
analyze Systems RdRiPn (RdRiFn), with n = 1, 10,
100, and 1000, by employing the PHM-CEM and the
conventional BWM-AAM (MBWM-AAM). It is evi-
dent that the computational burden of the proposed
procedure, expressed by tct , is significantly reduced
with respect to that characterizing the conventional
one.

We also report a second parameter, denominated
tctp, since the parameter tct is not a fully objective
measure of the PHM-CEM efficiency due to its depen-
dencyon the amount of the backgroundprocess running

on the computer, the relevant memory, as well as the
CPU speed. In particular, the parameter tctp has been
obtained by normalizing the tct parameter of the pro-
posed approach with respect to that characterizing the
conventional one. Hence, by defining:

PHM−CEM tctp [%]= PHM − CEM tct

(M)BWM − AAM tct
· 100 ,

(58)

one obtains a more meaningful measure of the com-
putational benefits related to the use of the proposed
strategy.

6 Conclusions

We have presented an accurate and computationally
efficient procedure to analyze non-stiffening hysteretic
mechanical systems. Such a procedure combines a
novel rate-independent model, belonging to the class
of uniaxial phenomenological models recently formu-
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lated by Vaiana et al. [47], and an explicit structure-
dependent time integration method, belonging to the
Chang’s family of explicit methods [15].

To show the accuracy and the computational effi-
ciency of the proposed approach, nonlinear time his-
tory analyses have been performedon several hysteretic
mechanical systems. Specifically, the numerical results
and the computational times obtained with the pro-
posed strategy have been compared to those obtained
by employing a conventional solution approach that
combines the celebrated Bouc–Wen model, or its mod-
ified version, with thewidely usedNewmark’s constant
average acceleration method.

In particular, the accuracy of the proposed proce-
dure has been numerically confirmed by analyzing two
single degree of freedom mechanical systems that dis-
play both rate-dependent and rate-independent hys-
teretic behaviors: Systems RdRiP1 and RdRiF1. The
dynamic responses of such systems, obtained for two
different external forces, that is, a harmonic force and
a random force, reveal that the accuracy of the pre-
sented strategy is very satisfactory since the numeri-
cal results closely match those predicted by the con-
ventional one, independently of the kind of external
force.

The computational efficiency of the proposed proce-
dure has been investigated by analyzing eight mechan-
ical systems, displaying both rate-dependent and rate-
independent hysteretic behaviors, that are charac-
terized by an increasing number n of DOFs: Sys-
tems RdRiPn and RdRiFn, with n = 1, 10, 100,
and 1000. The dynamic responses of such systems,
obtained applying a harmonic force at each mass,
reveal that the computational burden required by
the proposed strategy is significantly reduced with
respect to that characterizing the conventional one;
in particular, the total computational time percent-
age, tctp, of proposed approach is always less than
0.50%.
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Appendix: List of acronyms

AAM Average acceleration method
BWM Bouc–Wen model
CEM Chang’s explicit method
CFEMs Chang’s family of explicit methods
CHMs Class of hysteretic models
MBWM Modified Bouc–Wen model
MDOF Multi-degree-of-freedom
NLTHA Nonlinear time history analysis
ODEs Ordinary differential equations
PHM Proposed hysteretic model
System RdRiFn System with Rate-dependent and

Rate-independent behavior (due to
Friction) having n DOFs

System RdRiPn System with Rate-dependent and
Rate-independent behavior (due to
Plastic deformation mechanisms)
having n DOFs
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