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Abstract In this paper, the flow switchability theory
of discontinuous dynamical systems is used to illus-
trate the dynamical behavior of a 2-DOF (two degrees
of freedom) friction-induced oscillator with one-sided
impact on a conveyor belt. All the possible motion
states such as stick and non-stick motions, impact
motion, and stuck motion for such an oscillator are
introduced. The phase space in system can be divided
into different domains and boundaries according to the
discontinuity caused by the friction force jumping and
the impact between themass and the rigid obstacle. The
vector field in each domain is continuous and different
from that in its adjacent domain. The flow barrier on the
separation boundary is considered in this paper. Once
the boundary flow leaves the boundary, the boundary
flow barrier on the velocity boundary may exist and the
leaving flow barriers on the velocity boundarymay also
exist. The G-functions on different separation bound-
aries are defined to illustrate the flow switching on
the corresponding boundaries. The analytical condi-
tions of the passable, stick, grazing, impact, and stuck
motions are developed through G-functions and analy-
sis of vector fields. Since themotions of the twomasses
interact with each other, the four-dimensional switch-
ing sets are given by the form of direct product and the
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four-dimensional mappings are given to describe peri-
odic motions with different mapping structures. The
analytical prediction of different periodic motions is
performed through the mapping dynamics. For a bet-
ter understanding of the motion switching mechanism
in such a 2-DOF oscillator , the time histories of dis-
placement, velocity, G-function and the trajectories in
phase space for the passable motion, stick motion,
impact motion, grazingmotion, stuckmotion, and peri-
odic motion in system are given by simulation numer-
ically. This investigation has important significance in
the optimization design of machinery with friction and
impact etc.

Keywords Discontinuous dynamical system · Flow
switchability · Flow barrier · Mapping structure ·
Periodic motion

1 Introduction

In mechanical engineering, discontinuous dynamical
systems exist extensively. The reasons causing the dis-
continuity are various, it is usually related to the impact
and friction between two objects or among multiple
objects. As examples for such discontinuous dynamical
systems, the discontinuities in the dry friction oscilla-
tor and the vibrating system are caused by friction and
impact, respectively. In fact, some industrial models
which are affected by friction and impact exist more
complex dynamical behaviors, such as machine tools,
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brake systems or turbo machines. The discontinuity
caused by impact or friction is advantage for some cases
or disadvantage for other cases in engineering applica-
tions, so it is necessary to establish such models in
practical problems and to study their dynamical behav-
iors, which can provide us information for applying or
controlling them.

Usually, themathematical models with some kind of
discontinuity or non-smoothness are used to investigate
the physical phenomena such as impact and dry fric-
tion in mechanical systems. Impact and dry friction are
abundant in nature, machines and other processes like
machine tool chattering and torsional vibration in oil
well drill strings etc., which is therefore an important
topic in scientific and engineering research. In 1960,
Levatan [1] studied the dynamical behavior of a spring-
mass system with Coulomb friction and viscous damp-
ing. Filippov [2] investigated the differential equations
with discontinuous right-hand side by analyzing of a
friction oscillator in 1964. He introduced the concept
of the differential inclusion and discussed the existence
and uniqueness of solutions for discontinuous dynami-
cal systems.After someyears, Filippov [3] gave the the-
ory of differential equations with discontinuous right-
hand side systematically. More and more models about
discontinuous dynamical systemswere built since then,
and the 1-DOF (single degree of freedom) oscillator
was investigated widely. In 1982, Holmes [4] studied
the periodicmotion and chaotic motion of a ball bounc-
ing vertically on a massive sinusoidally vibrating plate.
In 1986, Shaw [5] investigated the stability for periodic
motions in the base-driven friction oscillator by using
the method of Poincare mapping. A class of harmon-
ically excited 1-DOF oscillators with piecewise linear
characteristics were investigated and the stability anal-
ysis for periodic motions was presented by Natsiavas
[6] in 1998. In 2000, Andreaus and Casini [7] analyzed
the motion of 1-DOF systemwith dry friction on a base
with a constant velocity, and obtained the periodic orbit
in system by numerical approaches. In 2002, Andreaus
and Casini [8] investigated the dynamical behavior of
an oscillator with impact and friction, and presented the
closed-form solutions. In 2005 and 2006, Casini et al.
[9,10] numerically studied the dynamics of a stop-belt
friction oscillator and made the analytical and experi-
mental investigations on the dynamic behavior of a non-
smooth rotational oscillator, which exhibits multiple
discontinuity boundaries in phase space. Other exam-
ples for 1-DOF oscillator see [11–16]. Compared with

1-DOF oscillator, the motion of the multi-degree of
freedom oscillator is more complicated. Awrejcewicz
andDelfs [17,18] studied a self-excited roll-slide oscil-
lator with 2-DOF (two degrees of freedom) and gave
the stability of periodic orbits in 1990. In 1992, Foale
and Bishop [19] discussed the motion of a forced lin-
ear oscillator with instantaneous impact at one or two
stops. In 1997, Hinriches et al. [20,21] investigated an
impact oscillator and a self-sustained friction oscilla-
tor, which are two types of non-smooth oscillators. The
stick and non-stickmotions can be observed. The bifur-
cationbehavior of such systemwaspredictedbynumer-
ical simulations. Since 2006, Pascal [22–24] began to
study the dynamics and stability of 2-DOF oscillators
with an elastic stop. The dynamics of coupled oscilla-
tors excited by dry friction and the dynamical behav-
iors in stick-slip oscillators were investigated. After
some years, Pascal [25] discussed a new model of dry
friction oscillator colliding with a rigid obstacle by
using Coulomb friction law. Balachandran et al. [26–
29] investigated the dynamical behaviors for a beam-
mass structure with the influence of resonance and low
excitation levels, a thin-walled structure subjected to
impact excitations and an elastic structure affected by
harmonic or periodic excitations etc. In 2018 and 2019,
Lenci et al. [30,31] studied the nonlinear oscillations of
an Euler–Bernoulli beam hinged at one end and hav-
ing a roller support sliding on an inclined line at the
other end and the dynamic behavior of a ball bounc-
ing on a flexible beam. Other discontinuous systems
with impulsive or Boolean control are investigated in
[32–43].

In 2001, two discontinuous bifurcations inmechani-
cal stick-slip systems affected by dry friction were pre-
sented byGalvanetto [44]. In 2004,Leine andNijmeijer
[45] systematically studied the dynamical behaviors of
Filippov systems and used mechanical systems with
dry friction which constitute an important subclass of
Filippov systems as examples to illustrate the theory
and methods of dealing with the mechanical Filippov
systems, and established a bridge between engineering-
oriented and mathematics-oriented research in this
field. In 2008, Bernardo et al. [46] introduced a qualita-
tive theory for non-smooth systems which is similar to
the qualitative theory of smooth systems, and gave the
general techniques for analyzing the bifurcations that
are unique to non-smoothdynamical systems [so-called
discontinuity-induced bifurcations (DIBs for short)],
and also gave a consistent classification of all known
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DIBs for piecewise-smooth continuous-time dynami-
cal systems (flows), including such diverse phenomena
as sliding, chattering, grazing and corner collision etc.
In 2016, Lancioni et al. [47] modeled the motion of
a windshield wiper blade by a mass–spring–damper
system on a moving frictional surface and investigated
the dynamical behavior of such system. Attention is
focused on the causes of squeal, reversal and chatter-
ing noises, and remedies for reducing or avoiding them
were proposed. Theory and applications of piecewise-
smooth dynamical systems can see Refs. [45,46] in
detail.

For most practical problems or applications in the
field of mechanical engineering, the motion regions of
objects are usually dynamic and the dynamic friction
force and maximum static friction force is not equal.
Thus the switching motions on dynamic boundaries
and the stability of the periodic motions and so on need
to be further studied enough. Moreover, there are rel-
atively few results about the multi-degree of freedom
systems in the coexistence of friction and impact. In
2005, Luo [48,49] developed the theory of flow switch-
ability on discontinuous boundaries between two adja-
cent domains to investigate discontinuous dynamical
systems. By using such theory, Luo and Gegg [50]
presented the force criteria for stick and non-stick
motions in a periodically forced friction-induced oscil-
lator in 2006, and gave the numerical simulation of
some motions in system. The G-function for discon-
tinuous dynamical systems was further introduced in
Luo [51] and the non-passable flows of sink and source
to the separation boundary were discussed. In 2007,
Luo and Thapa [52] investigated the nonlinear dynam-
ics of a brake system driven by a periodic excitation.
The switching conditions of the sliding motions were
developed. For a 2-DOF friction-induced oscillator on a
constant speed belt, Luo andMao [53] discussed all the
possible stick and non-stick motions in such a model
and gave the corresponding analytical conditions of
switching motions on discontinuous boundaries in sys-
tem. The systematic elaboration of the switching the-
ory of flow in discontinuous dynamical systems and
some of its applications can be referred to Luo [54,55].
Using such theory, more and more results of discontin-
uous dynamical systems in mechanical engineering are
obtained. In 2012, Luo and Huang [56] studied discon-
tinuous dynamics of a nonlinear, self-excited, friction-
induced, periodically forced oscillator. In 2015, Fu et
al. [57–59] discussed the dry friction oscillator with

impulsive effect or impact, and presented the analyti-
cal prediction for several periodic motions. From 2016
to 2019, Fan et al. [60–70] studied the discontinu-
ous dynamical behaviors of several oscillation systems
derived from mechanical engineering and the synchro-
nization of two different dynamical systems.

In this paper, the flow switching theory for discon-
tinuous dynamical systems will be applied to perform
a theoretical and numerical investigation concerning
the non-smooth dynamics of a 2-DOF oscillator in the
coexistence of friction and impacts and the inequal-
ity of dynamic friction force and maximum static fric-
tion force. The flow switching theory of discontinu-
ous dynamic system regards the motion of objects and
the friction or collision between objects as occurring
in the dynamic domain and on its dynamic boundary,
which becomes one of the important tools to study such
mechanical problem. Using G-function as the main
research tool, the motion switching mechanism in such
a 2-DOF oscillator system will be studied from a new
perspective, which would facilitate a better explana-
tion of the discontinuous dynamic behavior in mechan-
ical systems. The 2-DOF system studied in this paper
is complex and several configurations can occur. This
paper will be focused on providing a complete ana-
lytical description of all the possible motions with the
relevant switching conditions in systemonmultiple dis-
continuity boundaries and carrying out the numerical
simulations of stick motion, impact motion, grazing
motion, periodic motions and so on through the time
history responses of displacement, velocity, G-function
and the trajectories in phase space for such system. The
rest of the paper is organized as follows. In Sect. 2, the
physical model of the 2-DOF friction-induced oscilla-
tor with one-sided impact on a conveyor belt is intro-
duced. In Sect. 3, the phase space for each mass is
partitioned into different domains and boundaries due
to the discontinuity caused by friction and impact. The
G-functions are defined to illustrate the flow switching
mechanism on different separation boundaries and the
switching conditions for different motions are given by
the form of theorem in Sect. 4. In Sect. 5, the four-
dimensional switching sets and mappings are intro-
duced to illustrate the periodic motions in the 2-DOF
friction-induced oscillator. For a better understanding
of the complex dynamical behaviors of this oscillator
system, the numerical simulations are given in Sect. 6.
Finally, Sect. 7 concludes the whole paper.
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Fig. 1 Physical model

2 Physical model

A new 2-DOF, friction-induced oscillator with one-
sided impact on a conveyor belt will be investigated
in this paper. The corresponding physical model is
shown in Fig. 1. The system consists of two masses
mα(α = 1, 2) which are in contact with a belt moving
at a constant velocity ofV and are subjected to two peri-
odic excitation forces. The two masses are connected
by a spring of stiffness k2 and a damper of coefficient
r2. The massm1 is attached to the fixed wall by the lin-
ear spring of stiffness k1 and the damper of coefficient
r1. The distance between the mass m2 and the right
fixed rigid obstacle is d. The mass m2 can impact with
the fixed rigid obstacle and the restitution coefficient of
impact is R (R ∈ (0, 1)). The two periodic excitations
acting on the two masses are

Fα = Bαsin(Ωt + ϕα) + Aα (α = 1, 2), (1)

where Bα , Ω , ϕα and Aα are amplitude, frequency,
phase angle and the constant force, respectively.Through
prestressing the masses m1 and m2, the constant force
magnitudes of A1 and A2 could be adjusted to adapt
to different working environments. The displacements
of the two masses mα(α = 1, 2) are represented by
xα(α = 1, 2), where the origins of the coordinates are
set at their own equilibrium positions, i.e., when the
conveyor belt is at rest and the object is not subjected
to external force and the spring to which the object is
connected has no extension and the damper towhich the
object is connected has no damping force, the position
of each object is defined as its equilibrium position.
The friction force F (α)

f (ẋα)(α ∈ {1, 2}) between the
mass mα(α ∈ {1, 2}) and the belt shown in Fig. 2 can
be described as

Fig. 2 Friction forces (α = 1, 2)

F (α)
f (ẋα)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

= μkF
(α)
N , ẋα > V,

∈ [−μsF
(α)
N , μsF

(α)
N ], ẋα = V,

= −μkF
(α)
N , ẋα < V,

(2)

where ẋα = dxα/dt , μk and μs are the kinetic and
static friction coefficients on the contact surface and
F (α)
N is the normal force to contact surface, F (α)

N =
mαg and g is the acceleration of gravity. The range of
the static friction force is [−μsF

(α)
N , μsF

(α)
N ], where

μsF
(α)
N represents the maximum static friction force.

The kinetic friction force is μkF
(α)
N or −μkF

(α)
N once

the relative motion occurs between the mass mα and
the belt.

The non-friction forces exerting on the two masses
mα(α = 1, 2) in the xα-direction are defined as

F (1)
s = B1sin(Ωt + ϕ1) + A1 − k1x1 − r1 ẋ1

− k2(x1 − x2) − r2(ẋ1 − ẋ2),

F (2)
s = B2sin(Ωt + ϕ2) + A2 − k2(x2 − x1)

− r2(ẋ2 − ẋ1). (3)

The motion of the system can be generally fallen
into two categories: the mass m2 cannot contact with
the fixed rigid obstacle (i.e., x2 < d), and the mass m2

contacts with the fixed rigid obstacle (i.e., x2 = d).
For the first category (i.e., x2 < d), both the masses
have two kinds of motion states: non-stick motion and
stick motion. If the mass mα(α ∈ {1, 2}) moves along
the belt, i.e., the velocity of the mass mα is different to
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that of the belt, such motion is called non-stick motion
or free-flight motion. For this case, the mass has the
relative motion to the belt, and the non-friction force
can overcome the maximum static friction force. For
the non-stick motion of the masses mα(α = 1, 2), the
resultant forces acting on the two masses are

F (1) = B1sin(Ωt + ϕ1) + A1 − k1x1 − r1 ẋ1

− k2(x1 − x2) − r2(ẋ1 − ẋ2)

−μkF
(1)
N sgn(ẋ1 − V ),

F (2) = B2sin(Ωt + ϕ2) + A2 − k2(x2 − x1)

− r2(ẋ2 − ẋ1) − μkF
(2)
N sgn(ẋ2 − V ). (4)

If the velocity of the mass mα(α ∈ {1, 2}) is equal
to that of the belt, the corresponding motion is called
stickmotion. For this case, the non-friction force cannot
overcome the maximum static friction force acting on
the corresponding mass (i.e., |F (α)

s | ≤ μsF
(α)
N , α ∈

{1, 2}), and the mass moves together with the belt at
this time. For the stick motion, the equation of motion
for the mass mα(α ∈ {1, 2}) is
ẍα = 0 for ẋα = V and α ∈ {1, 2}. (5)

From the above discussion, the motion when the
mass m2 does not touch with the right-hand obstacle
can be divided into four cases.

Case I non-stick motion (ẋα �= V, α = 1, 2).
The equations of non-stick motion for the two

masses mα(α = 1, 2) are

m1 ẍ1 + k1x1 + r1 ẋ1 + k2(x1 − x2) + r2(ẋ1 − ẋ2)

= B1sin(Ωt + ϕ1) + A1 − μkm1gsgn(ẋ1 − V ),

m2 ẍ2 + k2(x2 − x1) + r2(ẋ2 − ẋ1)

= B2sin(Ωt + ϕ2) + A2 − μkm2gsgn(ẋ2 − V ).

(6)

Case II single stick motion (ẋ1 = V, ẋ2 �= V ).
The mass m1 has the stick motion and the mass m2

has the non-stick motion. The equations for the two
masses mα(α = 1, 2) are

ẍ1 = 0 for ẋ1 = V with |F (1)
s | ≤ μsF

(1)
N ,

m2 ẍ2 + k2(x2 − x1) + r2(ẋ2 − ẋ1)

= B2sin(Ωt + ϕ2) + A2 − μkm2gsgn(ẋ2 − V ).

(7)

Case III single stick motion (ẋ1 �= V, ẋ2 = V ).
The massm1 has the non-stick motion and the mass

m2 has the stick motion. The equations for the two
masses mα(α = 1, 2) are

m1 ẍ1 + k1x1 + r1 ẋ1 + k2(x1 − x2) + r2(ẋ1 − ẋ2)

= B1sin(Ωt + ϕ1) + A1 − μkm1gsgn(ẋ1 − V ),

ẍ2 = 0 for ẋ2 = V with |F (2)
s | ≤ μsF

(2)
N . (8)

Case IV double stick motion (ẋα = V, α = 1, 2).
The equations of stickmotion for the twomasses are

ẍ1 = 0 for ẋ1 = V with |F (1)
s | ≤ μsF

(1)
N ,

ẍ2 = 0 for ẋ2 = V with |F (2)
s | ≤ μsF

(2)
N . (9)

When the mass m2 contacts with the fixed rigid
obstacle, the mass m1 still has the stick or non-stick
motion as the above discussion. For the stick motion of
the mass m1, the corresponding equation is

ẍ1 = 0 for ẋ1 = V with |F (1)
s | ≤ μsF

(1)
N . (10)

For the non-stick motion of the mass m1, the corre-
sponding equation is

m1 ẍ1 + k1x1 + r1 ẋ1 + k2(x1 − x2) + r2(ẋ1 − ẋ2)

= B1sin(Ωt + ϕ1) + A1

−μkm1gsgn(ẋ1 − V ). (11)

The motion of the mass m2 has two cases. The first
case is that the massm2 contacts with the obstacle with
the nonzero velocity and then separates with the obsta-
cle immediately, such case is called impactmotion. The
second case is that themassm2 contacts with the obsta-
cle with zero velocity and continues to contact with
the obstacle for a period of time, such case is called
stuck motion. For the impact motion, the impact rela-
tion between the mass m2 and the obstacle is

x+
2 = x−

2 , x2 = d; ẋ+
2 = −Rẋ−

2 (R ∈ (0, 1)),

(12)

where ()+ and ()− represent after and before an impact
between the mass m2 and the fixed rigid obstacle. For
the stuck motion, the corresponding equation is

x2 = d, ẋ2 = 0; and F (2) ≥ 0 at x2 = d. (13)

3 Domains and boundaries

Because the impact between the mass m2 and the rigid
obstacle can make the velocity of the mass m2 change
immediately, and the friction force is dependent on the
direction of the relative velocity between the mass mα
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Fig. 3 Domains and
boundaries with the mass
m2 touching the obstacle: a
mass m1 and b mass m2.
(Color figure online)

(α ∈ {1, 2}) and the traveling belt, themotions of the 2-
DOF impact oscillator become discontinuous andmore
complex. In order to analyze the discontinuous dynam-
ical behaviors of the masses mα(α = 1, 2), the phase
spaces of the two masses can be divided into different
domains and different boundaries based on impact and
friction.

The corresponding non-stick domains Ω
(α)
i (i =

1, 2; α = 1, 2) for the masses mα(α = 1, 2) and the
stuck domain Ω

(2)
3 for the mass m2 are defined as

Ω
(1)
1 = {(x1, ẋ1) | x1 ∈ (−∞,∞), ẋ1 − V > 0},

Ω
(1)
2 = {(x1, ẋ1) | x1 ∈ (−∞,∞), ẋ1 − V < 0},

Ω
(2)
1 = {(x2, ẋ2) | x2 ∈ (−∞, d), ẋ2 − V > 0},

Ω
(2)
2 = {(x2, ẋ2) | x2 ∈ (−∞, d), ẋ2 − V < 0},

Ω
(2)
3 = {(x2, ẋ2) | x2 = d, ẋ2 = 0}, (14)

and the boundaries are defined as

∂Ω
(1)
12 ≡ ∂Ω

(1)
21

= {(x1, ẋ1) |ϕ(1)
12 ≡ ẋ1 − V = 0,

x1 ∈ (−∞,∞)},
∂Ω

(2)
12 ≡ ∂Ω

(2)
21

= {(x2, ẋ2) |ϕ(2)
12 ≡ ẋ2 − V = 0,

x2 ∈ (−∞, d)},
∂Ω

(2)
1(+∞) = {(x2, ẋ2) |ϕ(2)

1(+∞) ≡ x2 − d = 0,

ẋ2 − V > 0},
∂Ω

(2)
2(+∞) = {(x2, ẋ2) |ϕ(2)

2(+∞) ≡ x2 − d = 0,

ẋ2 − V < 0 and ẋ2 �= 0},
∂Ω

(2)
23 ≡ ∂Ω

(2)
32

= {(x2, ẋ2) |ϕ(2)
23 ≡ ẋ2 = 0,

x2 − d = 0}, (15)

where the velocity boundaries ∂Ω
(α)
12 (α = 1, 2) are the

passable or stick boundaries, i.e., the flow in system
can pass through or slide on them. The impact bound-
aries ∂Ω

(2)
i(+∞)(i = 1, 2) are the permanent bound-

aries, which means that the flow in system cannot pass
through them. The boundary ∂Ω

(2)
23 denotes the stuck

boundary formed by the domain Ω
(2)
2 and the stuck

domain Ω
(2)
3 .

The partitions of the domains and boundaries for
the masses m1 and m2 are shown in Fig. 3a and b,
respectively. The domains Ω

(α)
1 and Ω

(α)
2 (α = 1, 2)

are covered by blue areas and gray areas. The velocity
boundaries ∂Ω

(α)
12 (α = 1, 2) are represented by the

black dashed curves. The impact boundaries ∂Ω
(2)
1(+∞)

and ∂Ω
(2)
2(+∞) are depicted by red dotted line and green

dotted line, respectively. The hollow circle in Fig. 3b
denotes the stuck domain Ω3 and the stuck boundary
∂Ω

(2)
23 .
Based on the above discussion, the state vectors and

the vectors of field vector for the motions of the masses
m1 and m2 are introduced as

x(λ1)
1 = (x (λ1)

1 , ẋ (λ1)
1 )T,

x(λ2)
2 = (x (λ2)

2 , ẋ (λ2)
2 )T, (16)

F(λ1)
1 (x(λ1)

1 , x(λ2)
2 , t)

= (ẋ (λ1)
1 , F (λ1)

1 (x(λ1)
1 , x(λ2)

2 , t))T,

F(λ2)
2 (x(λ2)

2 , x(λ1)
1 , t)

= (ẋ (λ2)
2 , F (λ2)

2 (x(λ2)
2 , x(λ1)

1 , t))T, (17)

where λ1 = 0, 1, 2, λ2 = 0, 1, 2, 3; λα = 0 (α ∈
{1, 2}) represents the stickmotion of themassmα (α ∈
{1, 2}) on the boundary ∂Ω

(α)
12 ; λα = 1, 2 (α = 1, 2)

stand for the free-flight motion for themassesmα (α =
1, 2) in domains Ω

(α)
1 and Ω

(α)
2 , respectively; λ2 = 3
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Analysis of dynamical behaviors of a 2-DOF friction-induced oscillator 803

denotes that the mass m2 has a stuck motion, i.e., the
mass m2 contacts the obstacle on the right with zero
velocity and stays in touch for a while.

The equations ofmotion for the twomassesmα(α =
1, 2) can be rewritten in the vector form of

ẋ(λ1)
1 = F(λ1)

1 (x(λ1)
1 , x(λ2)

2 , t), (18)

ẋ(λ2)
2 = F(λ2)

2 (x(λ2)
2 , x(λ1)

1 , t), (19)

where λ1 = 0, 1, 2 and λ2 = 0, 1, 2, 3.
For convenience, the following notations will be

used below:

aα = Aα

mα

, bα = Bα

mα

, cα = rα
mα

,

dα = kα

mα

(α = 1, 2), p = k2
m1

,

q = r2
m1

, F (1)
fk

= μkg, F (2)
fk

= −μkg,

F(λ1)
1 ≡ F(λ1)

1 (x(λ1)
1 , t) ≡ F(λ1)

1 (x(λ1)
1 , x(λ2)

2 , t),

F(λ2)
2 ≡ F(λ2)

2 (x(λ2)
2 , t) ≡ F(λ2)

2 (x(λ2)
2 , x(λ1)

1 , t),

F (λ1)
1 ≡ F (λ1)

1 (x(λ1)
1 , t) ≡ F (λ1)

1 (x(λ1)
1 , x(λ2)

2 , t),

F (λ2)
2 ≡ F (λ2)

2 (x(λ2)
2 , t) ≡ F (λ2)

2 (x(λ2)
2 , x(λ1)

1 , t),

(20)

where λ1 = 0, 1, 2 and λ2 = 0, 1, 2, 3.
For the non-stick motions (λ1 = 1, 2, λ2 = 1, 2)

of the two masses m1 and m2 in the domains Ω
(α)
1 and

Ω
(α)
2 (α = 1, 2), the forces of per unit mass acting on

the masses m1 and m2 are

F (λ1)
1 = b1sin(Ωt + ϕ1) + a1 − d1x

(λ1)
1 − c1 ẋ

(λ1)
1

−p(x (λ1)
1 − x (λ2)

2 ) − q(ẋ (λ1)
1 − ẋ (λ2)

2 )

−μkgsgn(ẋ
(λ1)
1 − V ),

F (λ2)
2 = b2sin(Ωt + ϕ2) + a2 − d2(x

(λ2)
2 − x (λ1)

1 )

c2(ẋ
(λ2)
2 − ẋ (λ1)

1 ) − μkgsgn(ẋ
(λ2)
2 − V ).

(21)

For the single stick motion (λ1 = 0, λ2 = 1, 2) of the
masses m1 and m2, the forces of per unit mass acting
on the masses m1 and m2 are

F (0)
1 = ẍ (0)

1 = V̇ = 0,

F (λ2)
2 = b2sin(Ωt + ϕ2) + a2 − d2(x

(λ2)
2 − x (λ1)

1 )

−c2(ẋ
(λ2)
2 − ẋ (λ1)

1 ) − μkgsgn(ẋ
(λ2)
2 − V ).

(22)

For the single stick motion (λ1 = 1, 2, λ2 = 0) of the
masses m1 and m2, the forces of per unit mass acting
on the masses m1 and m2 are

F (λ1)
1 = b1sin(Ωt + ϕ1) + a1 − d1x

(λ1)
1 − c1 ẋ

(λ1)
1

−p(x (λ1)
1 − x (λ2)

2 ) − q(ẋ (λ1)
1 − ẋ (λ2)

2 )

−μkgsgn(ẋ
(λ1)
1 − V ),

F (0)
2 = ẍ (0)

2 = V̇ = 0. (23)

For the double stick motion (λα = 0, α = 1, 2) of
the two masses mα (α = 1, 2) on the corresponding
boundaries ∂Ω

(α)
12 (α = 1, 2), the forces of per unit

mass acting on the masses m1 and m2 are

F (0)
1 = ẍ (0)

1 = V̇ = 0,

F (0)
2 = ẍ (0)

2 = V̇ = 0. (24)

For the non-stick motion (λ1 = 1, 2) for the mass m1

and the stuck motion (λ2 = 3) for the mass m2 on
the stuck domain Ω

(2)
3 or the stuck boundary ∂Ω

(2)
23 of

the mass m2, the forces of per unit mass acting on the
masses m1 and m2 are

F (λ1)
1 = b1sin(Ωt + ϕ1) + a1 − d1x

(λ1)
1

− c1 ẋ
(λ1)
1 − p(x (λ1)

1 − d) − qẋ (λ1)
1

−μkgsgn(ẋ
(λ1)
1 − V ),

F (3)
2 = b2sin(Ωt + ϕ2) + a2 − d2(d − x (λ1)

1 )

+ c2 ẋ
(λ1)
1 + μkg. (25)

For the stick motion (λ1 = 0) of the mass m1 and the
stuck motion (λ2 = 3) of the mass m2 on the stuck
domain Ω

(2)
3 or stuck boundary ∂Ω

(2)
23 , the forces of

per unit mass acting on the masses m1 and m2 are

F (0)
1 = ẍ (0)

1 = V̇ = 0,

F (3)
2 = b2sin(Ωt + ϕ2) + a2 − d2(d − x (0)

1 )

+ c2V + μkg. (26)

Since the kinetic and static friction coefficients on
the contact surface between the mass mα(α ∈ 1, 2)
and the belt is unequal, i.e., the maximum static fric-
tion force is not equal to the dynamic friction force
for the mass mα , the flow barrier exists on the velocity
boundary ∂Ω

(α)
12 (α ∈ {1, 2}) and the flow barrier vec-

tor fields for x(α)
m = (xαm, ẋαm) ∈ ∂Ω

(α)
12 (α ∈ {1, 2})

at time tm are

F(0�0λ)
1 (x(1)

m , tm, τ (λ))

≡ F(0�0λ)
1 (x(1)

m , x(λ2)
2 , tm, τ (λ))

= (ẋ1m, F (0�0λ)
1 (x(1)

m , x(λ2)
2 , tm, τ (λ)))T,

F(0�0λ)
2 (x(2)

m , tm, τ (λ))

≡ F(0�0λ)
2 (x(2)

m , x(λ1)
1 , tm, τ (λ))
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= (ẋ2m, F (0�0λ)
2 (x(2)

m , x(λ1)
1 , tm, τ (λ)))T, (27)

where

F (0�0λ)
1 (x(1)

m , tm, τ (λ))

≡ F (0�0λ)
1 (x(1)

m , x(λ2)
2 , tm, τ (λ))

= b1sin(Ωtm + ϕ1) + a1 − d1x1m

−c1 ẋ1m − p(x1m − x (λ2)
2 )

−q(ẋ1m − ẋ (λ2)
2 ) − F (λ)

fs
(τ (λ)),

F (0�0λ)
2 (x(2)

m , tm, τ (λ))

≡ F (0�0λ)
2 (x(2)

m , x(λ1)
1 , tm, τ (λ))

= b2sin(Ωtm + ϕ2) + a2

−d2(x2m − x (λ1)
1 )

−c2(ẋ2m − ẋ (λ1)
1 ) − F (λ)

fs
(τ (λ)), (28)

andλ = 1, 2, τ (λ) ∈ [τ (λ)
1 , τ

(λ)
2 ], λ1 ∈ {0, 1, 2}, λ2 ∈

{0, 1, 2, 3}.
From Eq. (3), the static friction forces F (λ)

fs
(τ (λ))

(λ = 1, 2) of per unit mass exerting on the masses
mα (α = 1, 2) on the boundaries ∂Ω

(α)
12 (α = 1, 2) are

F (1)
fs

(τ (1)) ∈ (−∞, μsg] and

F (2)
fs

(τ (2)) ∈ [−μsg,+∞). (29)

The boundary flow barrier on the λ-side (λ ∈ {1, 2}) of
the boundary ∂Ω

(α)
12 for x(α)

m = (xαm, ẋαm) ∈ ∂Ω
(α)
12

(α ∈ {1, 2}) at time tm is

F(0�0λ)
α (x(α)

m , tm, τ
(λ)
1 )

= (ẋαm, F (0�0λ)
α (x(α)

m , tm, τ
(λ)
1 ))T, (30)

where

F (0�0λ)
1 (x(1)

m , tm, τ
(λ)
1 )

≡ b1sin(Ωtm + ϕ1) + a1

−d1x1m − c1 ẋ1m

−p(x1m − x (λ2)
2 )

−q(ẋ1m − ẋ (λ2)
2 ) − F (λ)

fs
(τ

(λ)
1 ),

F (0�0λ)
2 (x(2)

m , tm, τ
(λ)
1 )

≡ b2sin(Ωtm + ϕ2) + a2

−d2(x2m − x (λ1)
1 )

−c2(ẋ2m − ẋ (λ1)
1 ) − F (λ)

fs
(τ

(λ)
1 ); (31)

F(0�01)
α (x(α)

m , tm, τ
(1)
2 ) = (ẋαm,+∞)T,

F(0�02)
α (x(α)

m , tm, τ
(2)
2 ) = (ẋαm,−∞)T, (32)

and λ1 ∈ {0, 1, 2}, λ2 ∈ {0, 1, 2, 3}.

4 Switching conditions

For the 2-DOF friction-induced oscillator with one-
sided impact on a conveyor belt described in Sect. 2,
the analytical conditions of flow switchability will be
discussed in this section. The definition of G-functions
and the conditions of several kinds of flow switchability
on separate boundaries were given in Luo [48,49], and
the theory of flow switching in discontinuous dynami-
cal systems were presented in a detailed manner in Luo
[54,55]. Based on the fundamental theory of discontin-
uous dynamical systems, the corresponding definitions
and theorems will be given in the following.

From Eq. (15), the velocity boundaries ∂Ω
(α)
12 (α =

1, 2), the impact boundaries ∂Ω
(2)
i(+∞) (i = 1, 2) and

the stuck boundary ∂Ω
(2)
23 are independent of time

and the normal vectors of the velocity boundaries, the
impact boundaries and the stuck boundary are obtained
by

n
∂Ω

(α)
12

≡ tn
∂Ω

(α)
12

= ∇ϕ
(α)
12 =

(
∂ϕ

(α)
12

∂xα

,
∂ϕ

(α)
12

∂ ẋα

)T

= (0, 1)T, (33)

n
∂Ω

(2)
i(+∞)

≡ tn
∂Ω

(2)
i(+∞)

= ∇ϕ
(2)
i(+∞) =

(
∂ϕ

(2)
i(+∞)

∂x2
,
∂ϕ

(2)
i(+∞)

∂ ẋ2

)T

= (1, 0)T, (34)

n
∂Ω

(2)
23

≡ tn
∂Ω

(2)
23

= ∇ϕ
(2)
23 =

(
∂ϕ

(2)
23

∂x2
,
∂ϕ

(2)
23

∂ ẋ2

)T

= (0, 1)T, (35)

where ∇ = (∂/∂x, ∂/ẋ)T.
For the 2-DOF oscillator described in Sect. 2, the

corresponding zeroth-orderG–functions andfirst-order
G-functions are defined as follows.

Definition 1 (i) For the 2-DOF one-sided impact
model described in Sect. 2, the zeroth-order G-function
G(0,λ)

∂Ω
(α)
12

of the flow x(λ)
α (t) in domain Ω

(α)
λ (α, λ ∈

{1, 2}) to the flow x(0)
α (t) on the velocity boundary

∂Ω
(α)
12 (α ∈ {1, 2}) is defined as

G(0,λ)

∂Ω
(α)
12

(x(α)
m , tm±) = nT

∂Ω
(α)
12

· F(λ)
α (x(α)

m , tm±), (36)
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where x(λ)
α (tm±) = x(0)

α (tm) = x(α)
m ∈ ∂Ω

(α)
12 , the time

tm± = tm ± 0 reflects the flow in the domain instead of
the separation boundary.

(ii) For the2-DOFone-sided impactmodel described
in Sect. 2, the zeroth-orderG-functionG(0,λ)

∂Ω
(2)
i(+∞)

(λ, i ∈
{1, 2}) of the flow x(λ)

2 (t) in domainΩ
(2)
λ (λ ∈ {1, 2}) to

the flow x(4)
2 (t) on the impact boundary ∂Ω

(2)
i(+∞) (i ∈

{1, 2}) is defined as

G(0,λ)

∂Ω
(2)
i(+∞)

(x(2)
m , tm±)

= nT
∂Ω

(2)
i(+∞)

· F(λ)
2 (x(2)

m , tm±),
(37)

where x(λ)
2 (tm±) = x(4)

2 (tm) = x(2)
m ≡ (x2m, ẋ2m) ∈

∂Ω
(2)
i(+∞).
(iii) For the2-DOFone-sided impactmodel described

in Sect. 2, the zeroth-order G-function G(0,λ)

∂Ω
(2)
23

of the

flow x(λ)
2 (t) in domain Ω

(2)
λ (λ ∈ {2, 3}) to the flow

x(3)
2 (t) on the stuck boundary ∂Ω

(2)
23 is defined as

G(0,λ)

∂Ω
(2)
23

(x(2)
m , tm±) = nT

∂Ω
(2)
23

· F(λ)
2 (x(2)

m , tm±), (38)

where x(λ)
2 (tm±) = x(3)

2 (tm) = x(2)
m ∈ ∂Ω

(2)
23 .

Definition 2 (i) For the 2-DOF one-sided impact
model described in Sect. 2, the first-order G-function
G(1,λ)

∂Ω
(α)
12

of the flow x(λ)
α (t) in domain Ω

(α)
λ (α, λ ∈

{1, 2}) to the flow x(0)
α (t) on the velocity boundary

∂Ω
(α)
12 (α ∈ {1, 2}) is defined as

G(1,λ)

∂Ω
(α)
12

(x(α)
m , tm±) = nT

∂Ω
(α)
12

· DF(λ)
α (x(α)

m , tm±), (39)

where x(λ)
α (tm±) = x(0)

α (tm) = x(α)
m ∈ ∂Ω

(α)
12 .

(ii) For the2-DOFone-sided impactmodel described
in Sect. 2, the first-order G-function G(1,λ)

∂Ω
(2)
i(+∞)

(λ, i ∈
{1, 2})of the flowx(λ)

2 (t) in domainΩ
(2)
λ (λ ∈ {1, 2}) to

the flow x(4)
2 (t) on the impact boundary ∂Ω

(2)
i(+∞) (i ∈

{1, 2}) is defined as

G(1,λ)

∂Ω
(2)
i(+∞)

(x(2)
m , tm±)

= nT
∂Ω

(2)
i(+∞)

· DF(λ)
2 (x(2)

m , tm±),
(40)

where x(λ)
2 (tm±) = x(4)

2 (tm) = x(2)
m ≡ (x2m, ẋ2m) ∈

∂Ω
(2)
i(+∞).
(iii) For the2-DOFone-sided impactmodel described

in Sect. 2, the first-order G-function G(1,λ)

∂Ω
(2)
23

of the flow

x(λ)
2 (t) in domain Ω

(2)
λ (λ ∈ {2, 3}) to the flow x(3)

2 (t)

on the stuck boundary ∂Ω
(2)
23 is defined as

G(1,λ)

∂Ω
(2)
23

(x(2)
m , tm±) = nT

∂Ω
(2)
23

· DF(λ)
2 (x(2)

m , tm±), (41)

where x(λ)
2 (tm±) = x(3)

2 (tm) = x(2)
m ∈ ∂Ω

(2)
23 .

TheG-functions can be used to judge the situation of
the flow switchability when the flow of motion reaches
to the separate boundary. If the flowbarrier exists on the
separate boundary, the flow property on the boundary
with flow barrier should be investigated. For the 2-DOF
one-sided impact model considered in this paper, the
dynamic friction force is not equal to the maximum
static friction force, so there exist the flow barriers on
the velocity boundaries. The G-functions for the flow
barrier should be introduced. The corresponding defi-
nition is given as follows.

Definition 3 For the 2-DOF one-sided impact model
described in Sect. 2, there is a point x(0)

α (tm) ≡ x(0)
m =

xm ∈ ∂Ω
(α)
12 (α ∈ {1, 2}) at time tm between two adja-

cent domains Ω
(α)
1 and Ω

(α)
2 . There are two vector

fields of F(ρ�γ )
α (x(λ)

α , t, τ (λ)) for τ (λ) ∈ [τ (λ)
1 , τ

(λ)
2 ]

(ρ, γ ∈ {0, 1, 2}, λ ∈ {1, 2} and ρ �= γ if ρ �= 0)
and F(0)

α (x(0)
α , t) on the boundary ∂Ω

(α)
12 . For the point

x(λ)
α (tm) ≡ x(α)

m = xm , the G-function of the vector
field F(ρ�γ )

α (x(λ)
α , t, τ (λ)) is defined as

G(0,ρ�γ )

∂Ω
(α)
12

(x(α)
m , tm±, τ (λ))

= nT
∂Ω

(α)
12

· [F(ρ�γ )
α (x(λ)

α , t, τ (λ))

− F(0)
α (x(0)

α , t)]
∣
∣
∣
(x(α)

m ,x(0)
m ,tm±)

;
(42)

and the higher-order G-function of the vector field
F(ρ�γ )

α (x(λ)
α , t, τ (λ)) is defined for kλ = 0, 1, 2, . . .

as
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G(kλ,ρ�γ )

∂Ω
(α)
12

(x(α)
m , tm±, τ (λ))

= Σ
kλ+1
r=1 Cr

kλ+1D
kλ+1−r
0 nT

∂Ω
(α)
12

· [Dr−1
λ F(ρ�γ )

α (x(λ)
α , t, τ (λ))

− Dr−1
0 F(0)

α (x(0)
α , t)]

∣
∣
∣
(x(α)

m ,x(0)
m ,tm±)

,

(43)

where D0(·) ≡ ∂(·)
∂x(0)

α

ẋ(0)
α + ∂(·)

∂t
, Dλ(·) ≡ ∂(·)

∂x(λ)
α

ẋ(λ)
α +

∂(·)
∂t

.

Since the velocity boundaries ∂Ω
(α)
12 (α = 1, 2) are

straight lines in phase space, the normal vectors are
constant vectors. So Dn

∂Ω
(α)
12

= 0 (α = 1, 2) can be

obtained. Note that nT
∂Ω

(α)
12

· F(0)
α (x(0)

α (tm±), tm±, λ) =
0, thus the zeroth-order and first-order G-functions of
the flow barrier on x(α)

m ∈ ∂Ω
(α)
12 (α = 1, 2) at time tm

can be expressed by

G(0,0�0λ)

∂Ω
(α)
12

(x(α)
m , tm±, τ (λ))

= nT
∂Ω

(α)
12

· F(0�0λ)
α (x(α)

m , tm±, τ (λ)),

G(1,0�0λ)

∂Ω
(α)
12

(x(α)
m , tm±, τ (λ))

= nT
∂Ω

(α)
12

· DF(0�0λ)
α (x(α)

m , tm±, τ (λ)).

(44)

For simplicity, the following notations are adopted:

F ( j)
α (tm±) ≡ F ( j)

α (x(α)
m , tm±),

DF ( j)
α (tm±) ≡ DF ( j)

α (x(α)
m , tm±),

G(0,λ)

∂Ω
(α)
12

(tm±) ≡ G(0,λ)

∂Ω
(α)
12

(x(α)
m , tm±),

G(1,λ)

∂Ω
(α)
12

(tm±) ≡ G(1,λ)

∂Ω
(α)
12

(x(α)
m , tm±),

G(0,λ)

∂Ω
(2)
i(+∞)

(tm±) ≡ G(0,λ)

∂Ω
(2)
i(+∞)

(x(2)
m , tm±),

G(0,0�0λ)

∂Ω
(α)
12

(tm±) ≡ G(0,0�0λ)

∂Ω
(α)
12

(x(α)
m , tm±, τ (λ)),

G(1,0�0λ)

∂Ω
(α)
12

(tm±) ≡ G(1,0�0λ)

∂Ω
(α)
12

(x(α)
m , tm±, τ (λ)),

(45)

where α, λ, i ∈ {1, 2} and j ∈ {1, 2, 3}.
According to the different situations when the flows

reach to the separate boundaries, the analytical condi-
tions of the passable flows, the appearance and vanish-
ing of the stick motion and the stuck motion will be
given in the form of theorems.

Theorem 1 For the physical model with one-sided
impact described in Sect. 2, the following conditions
can guarantee that the flow in domain Ω

(α)
i passes

through the boundary ∂Ω
(α)
i j at (x(α)

m , tm) and enters

into the domain Ω
(α)
j (α ∈ {1, 2}; i, j ∈ {1, 2}, i �= j)

for the mass mα(α ∈ {1, 2}):
F (1)

α (x(α)
m , tm−) < 0,

F (2)
α (x(α)

m , tm+) < 0

⎫
⎪⎬

⎪⎭
for Ω

(α)
1 → Ω

(α)
2 , (46)

F (2)
α (x(α)

m , tm−) > 0,

F (1)
α (x(α)

m , tm+) > 0

⎫
⎪⎬

⎪⎭
for Ω

(α)
2 → Ω

(α)
1 , (47)

where x(α)
m ∈ ∂Ω

(α)
i j .

Proof By the theory of flow switchability, the zeroth-
order G-functions are needed to judge the passable
flow from one domain to another domain. For passable
motion, the switching conditions are

G(0,1)

∂Ω
(α)
12

(x(α)
m , tm−) < 0, G(0,2)

∂Ω
(α)
12

(x(α)
m , tm+) < 0

for Ω
(α)
1 → Ω

(α)
2 ,

G(0,2)

∂Ω
(α)
21

(x(α)
m , tm−) > 0, G(0,1)

∂Ω
(α)
21

(x(α)
m , tm+) > 0

for Ω
(α)
2 → Ω

(α)
1 .

(48)

For a more intuitive presentation, the process is
described in Fig. 4. The G-function for the velocity
boundary ∂Ω

(α)
12 (α ∈ {1, 2}) is given in Definition 1

(i). Combiningwith Eqs. (17) and (33), the correspond-
ing G-functions can be obtained:

G(0,1)

∂Ω
(α)
12

(xm, tm±) = nT
∂Ω

(α)
12

· F(1)
α (x(α)

m , tm±)

= F (1)
α (xm, tm±),

G(0,2)

∂Ω
(α)
12

(xm, tm±) = nT
∂Ω

(α)
12

· F(2)
α (x(α)

m , tm±)

= F (2)
α (xm, tm±).

(49)

From Eqs. (48) and (49), Eqs. (46) and (47) can be
obtained. The proof is completed. ��
Remark 1 The direction of the friction force acting
on the corresponding mass changes with the speed of
the mass mα (α ∈ {1, 2}). The velocity of the mass
mα(α ∈ {1, 2}) is not equal to that of the belt before
time tm . At time tm , the relative velocity between the
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Fig. 4 The passable
motions on the velocity
boundaries (assuming
V > 0): a mass m1 and b
mass m2

mass and the belt is zero, that is to say that the flow
reaches to the velocity boundary. And after time tm ,
the direction of the relative motion between the mass
mα(α ∈ {1, 2}) and the belt is changed, so the direc-
tion of the friction force is opposite to the direction
before time tm , this means that the flow passes through
the velocity boundary from one domain to another
one.

Theorem 2 For the physical model with one-sided
impact described in Sect. 2, the stick motion exists on
x(α)
m ∈ ∂Ω

(α)
i j (α ∈ {1, 2}; i, j ∈ {1, 2}, i �= j) at time

tm for the mass mα(α ∈ {1, 2}) if and only if

F (0�01)
α (x(α)

m , tm−, τ
(1)
1 ) < 0,

F (0�02)
α (x(α)

m , tm−, τ
(2)
1 ) > 0.

(50)

Proof The mass mα(α ∈ {1, 2}) moves together with
the belt for some time, this motion is called the
stick motion. The zeroth-order G-functions are needed
to judge the stick motion on the velocity boundary.
The analytical conditions of the stick motion exist-
ing on the velocity boundary ∂Ω

(α)
12 with flow barriers

are

G(0,0�01)

∂Ω
(α)
12

(x(α)
m , tm−, τ

(1)
1 ) < 0,

G(0,0�02)

∂Ω
(α)
12

(x(α)
m , tm−, τ

(2)
1 ) > 0.

(51)

By Definition 3 and Eqs. (30), (33), the corresponding
G-functions can be computed as

G(0,0�01)

∂Ω
(α)
12

(x(α)
m , tm−, τ

(1)
1 )

= nT
∂Ω

(α)
12

· F(0�01)
α (x(α)

m , tm−, τ (1))

= F (0�01)
α (x(α)

m , tm−, τ
(1)
1 ),

G(0,0�02)

∂Ω
(α)
12

(x(α)
m , tm−, τ

(2)
1 )

= nT
∂Ω

(α)
12

· F(0�02)
α (x(α)

m , tm−, τ (2))

= F (0�02)
α (x(α)

m , tm−, τ
(2)
1 ).

(52)

FromEqs. (51) and (52), the conclusion of this theorem
holds. ��
Remark 2 If the non-friction force acting on the mass
mα(α ∈ {1, 2}) cannot overcome the maximum static
friction force between themass and thebelt(i.e., |F (α)

s |≤
μsF

(α)
N , α ∈ {1, 2}), the mass will move together with

the belt. When the mass mα(α ∈ {1, 2}) has the stick
motion, the relative velocity between the mass and the
belt is zero. If the conditions in Theorem 2 are satis-
fied, the mass will move together with the belt for some
time.

Theorem 3 For the physical model with one-sided
impact described in Sect. 2, the appearance of stick
motion on x(α)

m ∈ ∂Ω
(α)
i j (α ∈ {1, 2}; i, j ∈ {1, 2}, i �=

j) at time tm for the mass mα(α ∈ {1, 2}) requires

F (1)
α (x(α)

m , tm−) < 0, F (2)
α (x(α)

m , tm−) > 0. (53)

Proof When the motion of the mass mα(α ∈ {1, 2})
switches from non-stick motion to stick motion, the
stick motion occurs at this time. By the theory of flow
switchability, the onset of stick motion is that the flows
in domain Ω

(α)
i and domain Ω

(α)
j come to the velocity

boundary ∂Ω
(α)
i j (α ∈ {1, 2}; i, j ∈ {1, 2}, i �= j) at the
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same time tm . The zeroth-order G-functions are needed
to judge the appearing of stick motion on the velocity
boundary. The analytical conditions of the appearing of
stick motion fromΩ

(α)
1 orΩ(α)

2 to the boundary ∂Ω
(α)
12

are

G(0,1)

∂Ω
(α)
12

(x(α)
m , tm−) < 0, G(0,2)

∂Ω
(α)
12

(x(α)
m , tm−) > 0. (54)

FromEqs. (49) and (54), the conclusion of this theorem
holds. ��
Remark 3 The onset of stick motion is that the motion
of the mass mα(α ∈ {1, 2}) is changed from non-stick
motion to stick motion. At this moment, the force in
domain Ω

(α)
1 is negative, and the force in domain Ω

(α)
2

is positive at the same time when the flow is from
domain Ω

(α)
1 or Ω

(α)
2 to the velocity boundary. The

conditions in Theorem 3 is just the sufficient condi-
tions of the appearance of the stick motion, and it can
guarantee that the stick motion occurs. The sufficient
and necessary conditions of the appearance of the stick
motion can be referred in Luo [51,54] or [55].

Theorem 4 For the physical model with one-sided
impact described in Sect. 2, once the stick motion is
formed on the velocity boundary ∂Ω

(α)
i j (α ∈ {1, 2};

i, j ∈ {1, 2}, i �= j) with flow barrier, the vanishing of
the stick motion on the δ-side (δ ∈ {1, 2}) at time tm
and point x(α)

m ∈ ∂Ω
(α)
i j for the mass mα (α ∈ {1, 2})

requires

F (0�01)
α (x(α)

m , tm−, τ
(1)
1 ) < 0

F (0�02)
α (x(α)

m , tm∓, τ
(2)
1 ) = 0,

DF (0�02)
α (x(α)

m , tm∓, τ
(2)
1 ) < 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

from ∂Ω
(α)
12 → Ω

(α)
2 ;

(55)

and

F (0�02)
α (x(α)

m , tm−, τ
(2)
1 ) > 0

F (0�01)
α (x(α)

m , tm∓, τ
(1)
1 ) = 0,

DF (0�01)
α (x(α)

m , tm∓, τ
(1)
1 ) > 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

from ∂Ω
(α)
12 → Ω

(α)
1 .

(56)

Proof The mass mα(α ∈ {1, 2}) moves together with
the belt for some time, but at time tm the non-friction
force on the horizontal direction canovercome themax-
imum static friction force of the mass, which results in
the relative motion between the mass and the belt after
this time. By the theory of flow switchability, the van-
ishing of stick motion is that the flow sliding on the
velocity boundary ∂Ω

(α)
i j (α ∈ {1, 2}; i, j ∈ {1, 2}, i �=

j) will enter into domain Ω
(α)
i or domain Ω

(α)
j . The

zeroth-order and first-order G-functions are needed to
judge the vanishing of stick motion on the velocity
boundary ∂Ω

(α)
i j (α ∈ {1, 2}; i, j ∈ {1, 2}, i �= j). The

switching conditions of the vanishing of stick motion
on the 2–side of the boundary ∂Ω

(α)
21 (α ∈ {1, 2}) with

flow barrier are

G(0,0�01)

∂Ω
(α)
12

(x(α)
m , tm−, τ

(1)
1 ) < 0

G(0,0�02)

∂Ω
(α)
12

(x(α)
m , tm∓, τ

(2)
1 ) = 0,

G(1,0�02)

∂Ω
(α)
12

(x(α)
m , tm∓, τ

(2)
1 ) < 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(57)

By Eqs. (30), (33) and (44), the corresponding flow
barrier G-functions can be computed as

G(0,0�0λ)

∂Ω
(α)
21

(x(α)
m , tm∓, τ

(λ)
1 )

= nT
∂Ω

(α)
21

· F(0�0λ)
α (x(α)

m , tm∓, τ
(λ)
1 )

= F (0�0λ)
α (x(α)

m , tm∓, τ
(λ)
1 ), (58)

G(1,0�0λ)

∂Ω
(α)
21

(x(α)
m , tm∓, τ

(λ)
1 )

= nT
∂Ω

(α)
21

· DF(0�0λ)
α (x(α)

m , tm∓, τ
(λ)
1 )

= DF (0�0λ)
α (x(α)

m , tm∓, τ
(λ)
1 ), (59)

where λ ∈ {1, 2}.
From Eqs. (57), (58) and (59), Eq. (55) holds. Sim-

ilarly, the switching conditions of the vanishing of
stick motion on the 1–side of the boundary ∂Ω

(α)
12 (α ∈

{1, 2}) with flow barrier can be obtained, i.e., Eq. (56)
holds. The proof is completed. ��
Remark 4 The flow barrier exists on the velocity
boundary because of the static friction force. When
the non-friction force is greater than the maximum
static friction force, the flow on the boundary will over-
come the flow barrier and enter to the corresponding
domain, i.e., the stick motion will vanish. Before time
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tm , the non-friction force cannot overcome the maxi-
mum static friction force for the mass mα(α ∈ {1, 2}),
themassmoves togetherwith the belt at the same veloc-
ity. After time tm , the non-friction force can overcome
the maximum static friction force, the relative velocity
between the mass and the belt is not equal to zero. That
is to say, the mass begins to slip on the belt, and the
stick motion will disappear at time tm . If the conditions
in Theorem 4 can be satisfied, the mass will have the
relative motion to the belt.

The four kinds of process of the stick motion for the
mass m1 are depicted in Fig. 5, and the stick motion
for the mass m2 is similar to that of the mass m1.

Theorem 5 (i) For the physical model with one-sided
impact described in Sect. 2, the grazing motion on
x(α)
m ∈ ∂Ω

(α)
12 (α ∈ {1, 2}) for the mass mα(α ∈ {1, 2})

in domain Ω
(α)
1 (α ∈ {1, 2}) at time tm appears if and

only if

F (1)
α (x(α)

m , tm±) = 0, DF (1)
α (x(α)

m , tm±) > 0. (60)

(ii) For the physical model with one-sided impact
described in Sect. 2, the grazing motion on x(α)

m ∈
∂Ω

(α)
21 (α ∈ {1, 2}) for the mass mα(α ∈ {1, 2}) in

domain Ω
(α)
2 (α ∈ {1, 2}) at time tm appears if and

only if

F (2)
α (x(α)

m , tm±) = 0, DF (2)
α (x(α)

m , tm±) < 0. (61)

Proof Before and after time tm , the velocity of themass
mα(α ∈ {1, 2}) is greater (or less) than the velocity
of the belt, and at time tm , the velocities of the mass
mα (α ∈ {1, 2}) and the belt are equal. This means
that the direction of the relative velocity between mass
mα(α ∈ {1, 2}) and the belt does not change before
and after time tm . By the theory of flow switchability,
the domain flow comes to the velocity boundary, and is
tangential to it at time tm . After time tm , the flow returns
to the original domain. The zeroth-order and first-order
G-functions are needed to judge the grazing motion
on the velocity boundary. The switching conditions of
the grazing motion on the boundary ∂Ω

(α)
12 in domain

Ω
(α)
j (α, j ∈ {1, 2}) are

G(0, j)

∂Ω
(α)
12

(x(α)
m , tm±) = 0,

(−1) j+1G(1, j)

∂Ω
(α)
12

(x(α)
m , tm±) > 0.

⎫
⎪⎪⎬

⎪⎪⎭

(62)

It is depicted in Fig. 6. By Eqs. (17), (33), (36) and
(39), the corresponding G-functions can be computed
as

G(0, j)

∂Ω
(α)
12

(x(α)
m , tm±) = nT

∂Ω
(α)
12

· F( j)
α (x(α)

m , tm±)

= F ( j)
α (x(α)

m , tm±),

G(1, j)

∂Ω
(α)
12

(x(α)
m , tm±) = nT

∂Ω
(α)
12

· DF( j)
α (x(α)

m , tm±)

= DF ( j)
α (x(α)

m , tm±).

(63)

From Eqs. (62) and (63), (i) and (ii) hold. ��
Remark 5 The mass mα(α ∈ {1, 2}) moves on the belt
at a variable velocity. The varying of the velocity will
cause the appearance of grazingmotion. From the view
of flow switching in discontinuous dynamical systems,
the grazingmotion is that the domainflow reaches to the
boundary and is tangential to the boundary. After that,
the flow returns to this domain again. The zeroth-order
G-function is zero, it means that the flow is tangential
to the velocity boundary. The first-order G-function is
used to judge the trend of the flow at the next moment.

Theorem 6 For the physical model with one-sided
impact described in Sect. 2, the impact motion on
x(2)
m ∈ ∂Ω

(2)
i(+∞)(i = 1, 2) occurs for the mass m2

at time tm if the following conditions are satisfied:

ẋ (1)
2 (tm−) > 0,

ẋ (2)
2 (tm+) < 0

⎫
⎪⎬

⎪⎭
on ∂Ω

(2)
1(+∞); (64)

ẋ (2)
2 (tm−) > 0,

ẋ (2)
2 (tm+) < 0

⎫
⎪⎬

⎪⎭
on ∂Ω

(2)
2(+∞). (65)

Proof The mass m2 impacts with the right-hand rigid
obstacle when the mass touches the obstacle with
the nonzero velocity and separates with the obstacle
immediately, which means that the flow in the domain
reaches to the impact boundary ∂Ω

(2)
i(+∞)(i ∈ {1, 2}) at

time tm by the theory of flow switchability. Because the
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Fig. 5 The four kinds of
stick motion on the velocity
boundary for the mass m1,
and the mass m2 is similar

Fig. 6 The grazing motions
on the velocity boundaries
for the two masses
mα(α = 1, 2): a mass m1
and b mass m2

impact boundary is the non-passable boundary, the flow
will return to the freemovement domain. The switching
conditions of the impact motion are

G(0,1)

∂Ω
(2)
1(+∞)

(x(2)
m , tm−) > 0,

G(0,2)

∂Ω
(2)
2(+∞)

(x(2)
m , tm+) < 0

⎫
⎪⎪⎬

⎪⎪⎭

on ∂Ω
(2)
1(+∞); (66)

G(0,2)

∂Ω
(2)
2(+∞)

(x(2)
m , tm−) > 0,

G(0,2)

∂Ω
(2)
2(+∞)

(x(2)
m , tm+) < 0

⎫
⎪⎪⎬

⎪⎪⎭

on ∂Ω
(2)
2(+∞). (67)

The process of the impact motion is described in
Fig. 6. By Eqs. (17), (34) and (37), the corresponding
G-functions can be obtained as follows:

G(0,1)

∂Ω
(2)
1(+∞)

(x(2)
m , tm−) = nT

∂Ω
(2)
1(+∞)

· F(1)
2 (x(2)

m , tm−)

= ẋ (1)
2 (tm−),

G(0,2)

∂Ω
(2)
2(+∞)

(x(2)
m , tm±) = nT

∂Ω
(2)
2(+∞)

· F(2)
2 (x(2)

m , tm±)

= ẋ (2)
2 (tm±). (68)

The proof is completed by Eqs. (66), (67) and (68). ��
Remark 6 When the mass m2 impacts the rigid obsta-
cle at time tm , the mass m2 approaches to it with a
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Fig. 7 The impact motion
between the mass m2 and
the right-hand rigid
obstacle: a on ∂Ω

(2)
1(+∞); b

on ∂Ω
(2)
2(+∞)

positive velocity before time tm and leaves it with a
negative velocity after time tm , as shown in Fig. 7. The
conditions in Theorem 6 can guarantee that the mass
m2 will impact with the rigid obstacle and vice versa.

Theorem 7 For the physical model with one-sided
impact described in Sect. 2, the stuck motion on x(2)

m ∈
∂Ω

(2)
23 (stuck boundary) at time tm for the mass m2

appears if and only if

F (2)
2 (x(2)

m , tm−) > 0, F (3)
2 (x(2)

m , tm+) > 0. (69)

Proof The mass m2 touches with the right-hand rigid
obstacle with the zero velocity for some time, such
motion is called stuckmotion. By the theory of the flow
switchability, the stuck motion is that the flow in free
movement domain comes to the stuck boundary and
tries to pass through the stuck boundary and to enter
into the stuck domain. The zeroth-order G-functions
are needed to judge the onset of stuck motion on the
stuck boundary. The switching conditions are

G(0,2)

∂Ω
(2)
23

(x(2)
m , tm−) > 0, G(0,3)

∂Ω
(2)
23

(x(2)
m , tm+) > 0. (70)

By Eqs. (17), (35) and (38), the corresponding G-
functions can be computed as

G(0,2)

∂Ω
(2)
23

(x(2)
m , tm−) = nT

∂Ω
(2)
23

· F(2)
2 (x(2)

m , tm−)

= F (2)
2 (x(2)

m , tm−),

G(0,3)

∂Ω
(2)
23

(x(2)
m , tm+) = nT

∂Ω
(2)
23

· F(3)
2 (x(2)

m , tm+)

= F (3)
2 (x(2)

m , tm+). (71)

FromEqs. (70) and (71), the conclusion of this theorem
holds, as shown in Fig. 8. ��

Fig. 8 The onset of stuck motion between the mass m2 and the
right-hand rigid obstacle

Remark 7 When themassm2 reaches to the right-hand
rigid obstacle with zero velocity and continues to push
it, this obstacle will give an opposite and equal reaction
force to the mass at the same time due to the right-
hand rigid obstacle beingfixed. Thiswillmake themass
keep the stuck motion for some time. So the mass m2

has a stuck motion if the conditions in Theorem 7 are
satisfied.

Theorem 8 For the physical model with one-sided
impact described in Sect. 2, once the stuck motion is
formed on the stuck boundary ∂Ω

(2)
23 , the stuck motion

will vanish on x(2)
m ∈ ∂Ω

(2)
23 at time tm for the mass m2

if and only if

F (3)
2 (x(2)

m , tm−) = 0, DF (3)
2 (x(2)

m , tm−) < 0,
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Fig. 9 The vanishing of stuck motion between the mass m2 and
the right-hand rigid obstacle

F (2)
2 (x(2)

m , tm+) = 0, DF (2)
2 (x(2)

m , tm+) < 0

for ∂Ω
(2)
23 → Ω

(2)
2 . (72)

Proof When the mass m2 has a stuck motion on the
stuck boundary ∂Ω

(2)
23 , the velocity of the mass is zero.

If it has a tendency to leave the right-hand rigid obsta-
cle, the acceleration of the massm2 will change. By the
theory of flow switchability, the vanishing of the stuck
motion is that the flow on the stuck boundary ∂Ω

(2)
23

will come into the free movement domain Ω
(2)
2 . The

zeroth-order and first-order G-functions are needed to
judge the vanishing of stuckmotion on the stuck bound-
ary. The switching conditions of disappearance of stuck
motion are

G(0,3)

∂Ω
(2)
23

(x(2)
m , tm−) = 0, G(1,3)

∂Ω
(2)
23

(x(2)
m , tm−) < 0,

G(0,2)

∂Ω
(2)
23

(x(2)
m , tm+) = 0, G(1,2)

∂Ω
(2)
23

(x(2)
m , tm+) < 0

for ∂Ω
(2)
23 → Ω

(2)
2 . (73)

The vanishing of stuck motion is shown in Fig. 9. By
(17), (35), (38) and (41), the correspondingG-functions
can be computed as

G(0,3)

∂Ω
(2)
23

(x(2)
m , tm−) = nT

∂Ω
(2)
23

· F(3)
2 (x(2)

m , tm−)

= F (3)
2 (x(2)

m , tm−),

G(1,3)

∂Ω
(2)
23

(x(2)
m , tm−) = nT

∂Ω
(2)
23

· DF(3)
2 (x(2)

m , tm−)

= DF (3)
2 (x(2)

m , tm−), (74)

G(0,2)

∂Ω
(2)
23

(x(2)
m , tm+) = nT

∂Ω
(2)
23

· F(2)
2 (x(2)

m , tm+)

= F (2)
2 (x(2)

m , tm+),

G(1,2)

∂Ω
(2)
23

(x(2)
m , tm+) = nT

∂Ω
(2)
23

· DF(2)
2 (x(2)

m , tm+)

= DF (2)
2 (x(2)

m , tm+). (75)

From Eqs. (73), (74) and (75), the conclusion of this
theorem holds. ��
Remark 8 Before time tm , the mass m2 is stuck on the
right-hand obstacle, which means that a pair of equilib-
rium forces acting on the mass keep the system at equi-
librium for this time. At time tm , the stuck motion will
vanish when the mass m2 will leave the rigid obstacle.
The zeroth-order G-function represents the accelera-
tion of the mass and the zeroth-order G-functionmeans
the jerk. So the zeroth-order G-function and first-order
G-function are needed to judge the vanishing of stuck
motion. If the conditions in Theorem 8 are satisfied,
the stuck motion for the mass m2 will vanish on the
stuck boundary ∂Ω

(2)
23 .

5 Mapping structures and periodic motions

In order to better discuss periodic motions and other
motions of the 2-DOF friction-induced oscillator with
one-sided impact on a conveyer belt described in
Sect. 2, the corresponding mapping structures will be
introduced through the discontinuous boundaries, as
shown in Appendix A. By connecting some of these
mappings, it is possible to define periodic solutions of
the system.

Based on the mappings defined in Appendix A, a
periodic motion of the two masses mα(α = 1, 2) with
impact and stick is considered by the following simple
mapping structure

P = (P3c ◦ P8a)
M3 ◦ (P3c ◦ P2a)

M2

◦(P1c ◦ P1a ◦ P1b)
M1 , (76)

where M1, M2 and M3 are positive integers or zero,
and P0 = I ; or a more general periodic motion is con-
sidered with the following general mapping structure

P = (P3c ◦ P8a)
M3s ◦ (P3c ◦ P2a)

M2s

◦ (P1c ◦ P1a ◦ P1b)
M1s ◦ · · · ◦ (P3c ◦ P8a)

M31

◦ (P3c ◦ P2a)
M21 ◦ (P1c ◦ P1a ◦ P1b)

M11 , (77)
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whereM1ξ ,M2ξ andM3ξ (ξ = 1, 2, . . . , s) are positive
integers or zero.

Consider another periodic motion of the masses m1

andm2 with stuck and stick expressed by the following
mapping structure

P = (P7c ◦ P6a ◦ P5c ◦ P4a)
M3 ◦ (P7c ◦ P4a)

M2

◦ (P1c ◦ P1a ◦ P1b)
M1 , (78)

whereM1,M2 andM3 are positive integers or zero, and
P0 = I ; or consider a more general periodic motion
with the following general mapping structure

P = (P7c ◦ P6a ◦ P5c ◦ P4a)
M3s ◦ (P7c ◦ P4a)

M2s

◦ (P1c ◦ P1a ◦ P1b)
M1s ◦ · · ·

◦ (P7c ◦ P6a ◦ P5c ◦ P4a)
M31

◦ (P7c ◦ P4a)
M21 ◦ (P1c ◦ P1a ◦ P1b)

M11 , (79)

where M1ξ , M2ξ and M3ξ (ξ = 1, 2, . . . , s) are posi-
tive integers or zero.

In a similar fashion, a complex periodic motion of
the masses m1 and m2 with stuck, impact and stick
described by the following general mapping structure
can be also considered:

P = (P7c ◦ P6a ◦ P5c ◦ P4a)
M5 ◦ (P7c ◦ P4a)

M4

◦ ( P3c ◦ P8a)
M3 ◦ (P3c ◦ P2a)

M2

◦ (P1c ◦ P1a ◦ P1b)
M1 , (80)

where M1, M2, M3, M4 and M5 are positive integers or
zero, and P0 = I ; or consider more general periodic
motion with the following general mapping structure

P = (P7c ◦ P6a ◦ P5c ◦ P4a)
M5s ◦ (P7c ◦ P4a)

M4s

◦ (P3c ◦ P8a)
M3s ◦ (P3c ◦ P2a)

M2s

◦ (P1c ◦ P1a ◦ P1b)
M1s ◦ · · ·

◦ (P7c ◦ P6a ◦ P5c ◦ P4a)
M51 ◦ (P7c ◦ P4a)

M41

◦ (P3c ◦ P8a)
M31 ◦ (P3c ◦ P2a)

M21

◦ (P1c ◦ P1a ◦ P1b)
M11 , (81)

where M1ξ , M2ξ , M3ξ , M4ξ and M5ξ (ξ = 1, 2, . . . , s)
are positive integers or zero.

In addition, other periodic motions for the masses
m1 and m2 can be also considered as in Eq. (81).

Theorem 9 For periodic motion with the above map-
ping structure described in Eq. (81), the switching sets
for a specific regularmotion can be determined through
solving a set of nonlinear equations.

Proof A set of nonlinear equations are

f (1b)(mk,mk+1) = 0,

f (1a)(mk+1,mk+2) = 0,

f (1c)(mk+2,mk+3) = 0, . . . ,

f (1b)(mk+3M11−3,

mk+3M11−2) = 0,

f (1a)(mk+3M11−2,mk+3M11−1) = 0,

f (1c)(mk+3M11−1,mk+3M11) = 0; (82(1-1))

f (2a)(mk+3M11 ,mk+3M11+1) = 0,

f (3c)(mk+3M11+1,mk+3M11+2) = 0, . . . ,

f (2a)(mk+3M11+2M21−2,

mk+3M11+2M21−1) = 0,

f (3c)(mk+3M11+2M21−1,

mk+3M11+2M21) = 0; (82(1-2))

f (8a)(mk+3M11+2M21 ,

mk+3M11+2M21+1) = 0,

f (3c)(mk+3M11+2M21+1,

mk+3M11+2M21+2) = 0, . . . ,

f (8a)(mk+3M11+2M21+2M31−2,

mk+3M11+2M21+2M31−1) = 0,

f (3c)(mk+3M11+2M21+2M31−1,

mk+3M11+2M21+2M31) = 0; (82(1-3))

f (4a)(mk+3M11+2M21+2M31 ,

mk+3M11+2M21+2M31+1) = 0,

f (7c)(mk+3M11+2M21+2M31+1,

mk+3M11+2M21+2M31+2) = 0, . . . ,

f (4a)(mk+3M11+2M21+2M31+2M41−2,

mk+3M11+2M21+2M31+2M41−1) = 0,

f (7c)(mk+3M11+2M21+2M31+2M41−1,

mk+3M11+2M21+2M31+2M41) = 0; (82(1-4))
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f (4a)(mk+3M11+2M21+2M31+2M41 ,

mk+3M11+2M21+2M31+2M41+1) = 0,

f (5c)(mk+3M11+2M21+2M31+2M41+1,

mk+3M11+2M21+2M31+2M41+2) = 0,

f (6a)(mk+3M11+2M21+2M31+2M41+2,

mk+3M11+2M21+2M31+2M41+3) = 0,

f (7c)(mk+3M11+2M21+2M31+2M41+3,

mk+3M11+2M21+2M31+2M41+4) = 0, . . . ,

f (4a)(mk+3M11+2M21+2M31+2M41+4M51−4,

mk+3M11+2M21+2M31+2M41+4M51−3) = 0,

f (5c)(mk+3M11+2M21+2M31+2M41+4M51−3,

mk+3M11+2M21+2M31+2M41+4M51−2) = 0,

f (6a)(mk+3M11+2M21+2M31+2M41+4M51−2,

mk+3M11+2M21+2M31+2M41+4M51−1) = 0,

f (7c)(mk+3M11+2M21+2M31+2M41+4M51−1,

mk+3M11+2M21+2M31+2M41+4M51) = 0; (82(1-5))

...

f (1b)(mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i
,

mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1) = 0,

f (1a)(mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1,

mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+2) = 0,

f (1c)(mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+2,

mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+3) = 0, . . . ,

f (1b)(mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−3,

mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−2) = 0,

f (1a)(mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−2,

mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−1) = 0,

f (1c)(mk+3
∑s−1

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−1,

mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i
) = 0; (82(s-1))

f (2a)(mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i
,

mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1) = 0,

f (3c)(mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1,
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mk+3
∑s

i=1 M1i+2
∑s−1

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+2) = 0, . . . ,

f (2a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−2,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−1) = 0,

f (3c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i
) = 0; (82(s-2))

f (8a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i
,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1) = 0,

f (3c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s−1

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+2) = 0, . . . ,

f (8a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−2,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−1) = 0,

f (3c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i−1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i
) = 0; (82(s-3))

f (4a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i
,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1) = 0,

f (7c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s−1

i=1 M4i

+4
∑s−1

i=1 M5i+2) = 0, . . . ,

f (4a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s

i=1 M4i

+4
∑s−1

i=1 M5i−2,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s

i=1 M4i

+4
∑s−1

i=1 M5i−1) = 0,

f (7c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s

i=1 M4i

+4
∑s−1

i=1 M5i−1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i

+2
∑s

i=1 M3i+2
∑s

i=1 M4i

+4
∑s−1

i=1 M5i
) = 0; (82(s-4))
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f (4a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s−1

i=1 M5i
,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s−1

i=1 M5i+1) = 0,

f (5c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s−1

i=1 M5i+1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s−1

i=1 M5i+2) = 0,

f (6a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s−1

i=1 M5i+1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s−1

i=1 M5i+2) = 0,

f (7c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s−1

i=1 M5i+3,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s−1

i=1 M5i+4) = 0, . . . ,

f (4a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i−4,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s

i=1 M5i−3) = 0,

f (5c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i−3,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s

i=1 M5i−2) = 0,

f (6a)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i−2,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s

i=1 M5i−1) = 0,

f (7c)(mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i−1,

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s−1

i=1 M4i+4
∑s

i=1 M5i
) = 0. (82(s-5))

The periodic motion pertaining to such a mapping
requires

mk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i
= mk, (83)

i.e.,

x (α)

k+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i
= x (α)

k ,

ẋ (α)

k+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i
= ẋ (α)

k ,

Ωtk+3
∑s

i=1 M1i+2
∑s

i=1 M2i+2
∑s

i=1 M3i

+2
∑s

i=1 M4i+4
∑s

i=1 M5i
= Ωtk + 2Nπ, (84)

where N is a positive integer.
Solving Eqs. (82) and (83) or (84) can generate

the switching sets for periodic motions. The proof is
completed. ��

6 Numerical simulations

The conditions of switching between one configuration
to another one in the 2-DOF friction-induced oscil-
lator with one-sided impact on a conveyer belt have
been discussed in Sect. 4, and the corresponding map-
ping structures for periodic motions have been inves-
tigated in Sect. 5. To illustrate the analytical condi-
tions for switchability more vividly, several kinds of
motions such as stick motion, impact motion, graz-
ing motion and periodic motions for the system will
be demonstrated through the numerical simulations in
this section. The trajectories in phase space, time his-
tory responses of displacement, velocity and force of
per unit mass will be presented in Figs. 10, 11, 12,
13, 14, and 15a, b, c and d, respectively. In these pic-
tures, the velocity boundary ∂Ω

(α)
12 (α ∈ {1, 2}) and

the displacement boundary ∂Ω
(2)
i(+∞) (i ∈ {1, 2}) are

respectively depicted by black and blue thick dotted
lines. The green filled dots and the hollow dots repre-
sent the starting points and the switching points of the
corresponding motions, respectively. The responses of
motion for the mass m1 and mass m2 are pictured by
red curves and black curves, respectively. In Figs. 13
and 14d–f, the red and blue lines represent the forces in
domainsΩ

(1)
1 andΩ

(1)
2 for the massm1, and the forces

in domains Ω
(2)
1 and Ω

(2)
2 for the mass m2 are denoted

by black and purple lines.
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Consider a set of system parameters as m1 =
4 kg, m2 = 1 kg, k1 = 4 N/m, k2 = 1 N/m,
r1 = 0.05 N/m2, r2 = 0.5 N/m2, B1 = −15 N,
B2 = 15 N, ϕ1 = 0 rad, ϕ2 = 0 rad, A1 = 0 N,
A2 = 0 N, Ω = 2.25 rad/s, μk = 0.55, μs = 0.654;
g = 9.8 m/s2, V = 2 m/s, d = 5 m to establish a
stick motion of the mass m1. The trajectories in phase
plane, time histories of displacement, velocity, force
of per unit mass and the first-order force of per unit
mass are shown in Fig. 10a–ewith the initial conditions
t0 = 2.8363 s, x10 = −4.7155 m, ẋ10 = 5.1647 m/s,
x20 = −8.1777 m, ẋ20 = 2 m/s. In the group of
pictures, the appearance and vanishing points of stick
motion are signed by yellow and blue filled circles,
respectively, the regions shaded by gray color repre-
sent the stick areas. In Fig. 10d, the forces for the mass
m1 in domains Ω

(1)
1 and Ω

(1)
2 are described by red and

blue lines, respectively. And for themassm2, the forces
F (1)
2 and F (2)

2 are depicted by black and purple lines,
respectively. For the first derivative of the force(first-
order force for short) of themassm1 in Fig. 10e, the red
line represents the first-order force in domain Ω

(1)
1 and

the blue line describes the first-order force in domain
Ω

(1)
2 . It can be seen that the initial point for themassm2

is set on the velocity boundary ∂Ω
(2)
12 from Fig. 10a.

In the time interval (2.8363 s, 3.4265 s), the mass mα

moves in domain Ω
(α)
1 (α ∈ {1, 2}), and the velocities

of the two masses are greater than that of the belt. At
time t = 3.4265 s, the mass m1 reaches to the veloc-
ity boundary ∂Ω

(1)
12 . And the forces of per unit mass

are F (1)
1 < 0 and F (2)

1 > 0 for the mass m1 at this
moment. Therefore, the conditions of the stick motion
appearing for the mass m1 on the velocity boundary in
Theorem3are satisfied. Since the coefficients of kinetic
friction and static friction are different, the flow barri-
ers exist in this dynamical system. The discontinuity of
the friction force on the velocity boundary causes the
existence of the stickmotion along the boundary ∂Ω

(1)
12 .

For simplicity, the notation F (0�0λ)
α is used to instead of

F (0�0λ)
α (x(α)

m , tm, τ (λ))(λ, α ∈ {1, 2}). When the mass
m1 begins to stick with the belt, the kinetic friction
force is changed to the static friction force between the
mass and the belt. So the force of the boundary barrier
F (0�0λ)
1 (λ ∈ {1, 2}) is used to judge the existence and

vanishing of the stick motion. As shown in Fig. 10d,
the forces of the boundary flow barrier are F (0�01)

1 < 0

(red solid curve) and F (0�02)
1 > 0 (blue solid curve) in

the time interval (3.4265 s, 6.0642 s). In the process of

the stick motion, the velocity of the massm1 is equal to
the belt’s, so the trajectory of the mass m1 is a straight
line as shown in Fig. 10a. At time t = 6.0642 s, the
forces of the boundary flow barrier are F (0�02)

1 = 0,

F (0�01)
1 < 0 and the first-order force of the boundary

flow barrier is DF (0�02)
1 < 0 (as shown in Fig. 10d

and e). So the vanishing conditions of stick motion in
Theorem 4 are satisfied, therefore the stick motion dis-
appears at time t = 6.0642 s. When the stick motion
vanishes on the velocity boundary ∂Ω

(1)
12 , the relative

motion occurs between the mass m1 and the belt, so
the static friction force is changed to the kinetic fric-
tion force at once. From Fig. 10d, it can be observed
that the corresponding force of per unit mass jumps
from zero to a negative at time t = 6.0642 s. After this
time, the massm1 enters into the domain Ω

(1)
2 because

the forces of per unit mass are F (1)
1 < 0 and F (2)

1 < 0
(as shown in Fig. 10d). At time t = 6.2358 s, the
massm2 reaches to the velocity boundary ∂Ω

(2)
12 again.

In such process of the motion, the mass m2 has pass-
able motions on the velocity boundary ∂Ω

(2)
12 with the

mapping structure p(2)
3 ◦ p(2)

1 .
Consider another set of system parameters as m1 =

4 kg, m2 = 0.8 kg, k1 = 10 N/m, k2 = 3 N/m,
r1 = 2 N/m2, r2 = 2.5 N/m2, B1 = −20 N, B2 =
5 N, ϕ1 = 2.5 rad, ϕ2 = 5.5 rad, A1 = 2 N, A2 =
10 N, Ω = 1.1 rad/s, μk = 0.25, g = 9.8 m/s2, V =
2 m/s, d = 6 m, R = 0.75 and the initial conditions
t0 = 2.55 s, x10 = −5 m, ẋ10 = 2 m/s, x20 = −3 m,
ẋ20 = 2 m/s to determine the impact motion of the
massm2. The process of the impact motion is shown in
Fig. 11. In Fig. 11d, the forces F (1)

1 , F (2)
1 , F (1)

2 , F (2)
2 are

denoted by solid lines colored with red, blue, black and
purple, respectively. The yellow filled circles represent
the impact points in this group of figures. In Fig. 11a,
the initial points of masses m1 and m2 are both set on
the velocity boundary ∂Ω

(α)
12 (α ∈ {1, 2}). After time

t = 2.55 s, the two masses enter into the domain Ω
(α)
1

(α ∈ {1, 2}), that is to say the velocities of the two
masses are both greater than the belt’s V (as shown in
Fig. 11c). The motion of the mass m2 exists in domain
Ω

(2)
1 until it reaches to the impact boundary ∂Ω

(2)
1(+∞)

at t = 3.9796 s. At this time, the massm2 impacts with
the right-hand fixed rigid obstacle, and its velocity is
greater than that of the belt. After impact, the direction
of motion for the mass m2 changes immediately, and
the velocity of the mass m2 after impact (as shown
in Fig. 11a and c) can be computed by Eq. (12). In the
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time interval (3.9796 s, 4.0339 s), themassm1 is still in
domainΩ

(1)
1 and themassm2 exists in domainΩ

(2)
2 . At

time t = 4.0339 s, themassm1 reaches to the boundary
∂Ω

(1)
12 , the forces of per unitmass F (1)

1 and F (2)
1 are both

less than zero (as shown in Fig. 11d), so the mass m1

will pass through the velocity boundary and enter to
domain Ω

(1)
2 according to Theorem 1. The velocities

of two masses are both less than the belt’s V in the time
interval (4.0339 s, 6.4372 s). At time t = 6.4372 s,
the velocity of the mass m1 is equal to the belt’s, the
massm1 reaches to the velocity boundary ∂Ω

(1)
12 again.

Themassm1 has the passablemotionwith themapping
structure p(1)

3 ◦ p(1)
1 in the above process ofmotion. The

impact motion about the system is just discussed here.
Using the group of system parameters as m1 =

4 kg, m2 = 1 kg, k1 = 4 N/m, k2 = 1 N/m,
r1 = 0.05 N/m2, r2 = 0.5 N/m2, B1 = −15 N,
B2 = 15 N, ϕ1 = 0 rad, ϕ2 = 0 rad, A1 = 0 N,
A2 = 0 N, Ω = 1.5 rad/s, μk = 0.65, g = 9.8 m/s2,
V = −26.5 m/s, d = 10 m to describe a grazing
motion for the mass m2. Under the initial conditions
t0 = 1s, x10 = 4.7155m, ẋ10 = −3 m/s, x20 =
−4.5 m, ẋ20 = 5 m/s, the corresponding pictures of
the grazing motion are given in Fig. 12a–e. The force
of per unit mass F (λ)

α (α, λ ∈ {1, 2}) and the first-order
force of per unit mass DF (1)

2 are depicted in Fig. 12d
and e, respectively. In the group of figures, the grazing
points are pictured by purple filled dots. As shown in
Fig. 12a, the initial points of the two masses are both
set in domain Ω

(α)
1 (α ∈ {1, 2}). After the initial time

t0 = 1 s, we can see that the velocity of the mass m1

decreases at first and then increases, but the velocity of
the mass m2 increases at first and then decreases from
Fig. 12c until time t = 3.5643 s. The mass m2 reaches
to the velocity boundary ∂Ω

(2)
12 at time t = 3.5643 s,

i.e., the velocity of the mass m2 is equal to the belt’s
V, and the force of per unit mass is F (1)

2 = 0 and the

first-order force of per unit mass is DF (1)
2 > 0. So

the conditions of the grazing motion on the boundary
∂Ω

(2)
12 in domain Ω

(2)
1 are satisfied from Theorem 5

(i). After the time t = 3.5643 s, the mass m2 returns
to the domain Ω

(2)
1 and the velocity of the mass m2 is

greater than that of the belt.
The process of passable periodicmotion for themass

mα(α ∈ {1, 2}) is pictured in Fig. 13a–f. This group of
figures are obtained from the following system param-
eters and initial conditions: m1 = 4 kg, m2 = 1kg,
k1 = 4 N/m, k2 = 1 N/m, r1 = 0.05 N/m2,

r2 = 0.5 N/m2, B1 = 15 N, B2 = −15 N, ϕ1 = 0 rad,
ϕ2 = 0 rad, A1 = 0 N, A2 = 0 N, Ω = 1.6 rad/s,
μk = 0.15, g = 9.8 m/s2, V = 2 m/s, d = 10 m,
t0 = 2.5083 s, x10 = 3.1002 m, ẋ10 = −1.5826 m/s,
x20 = −7.1436 m, ẋ20 = 2 m/s. The velocity and dis-
placement histories of the force of per unit mass F (λ)

α

(α, λ ∈ {1, 2}) are depicted in Fig. 13e and f, respec-
tively. For the mass m1, the initial point is placed in
the domain Ω

(1)
2 , and the initial point for the mass m2

is set on the velocity boundary ∂Ω
(2)
12 (as shown in

Fig. 13a). At the initial time t0 = 2.5083 s, it is clearly
seen that the mass m2 satisfies the passable conditions
F (λ)
2 > 0(λ = 1, 2) on the velocity boundary in The-

orem 1 from Fig. 13d, so the mass m2 enters to the
domain Ω

(2)
1 after the initial time. In the time inter-

val (2.5083 s, 4.2669 s), the velocity decreases at first
and then increases for the mass m1 but it is just the
opposite for the mass m2 (as shown in Fig. 13c). At
time t = 4.2669 s, the mass m2 reaches to the velocity
boundary ∂Ω

(2)
12 again and then the mass m2 will pass

through the velocity boundary and enter to the domain
Ω

(2)
2 according to Theorem 1 because the forces of

per unit mass satisfy F (λ)
2 < 0(λ = 1, 2) (as shown in

Fig. 13d). At time t = 4.438 s, the mass m1 reaches to
the velocity boundary and the forces of per unit mass
are F (λ)

1 > 0(λ = 1, 2) (as shown in Fig. 13d). So the

massm1 will enter to the domainΩ
(1)
1 at the next time.

In the time interval (4.438s, 5.8505 s), the velocity of
themassm1 is greater than that of the belt, and it is equal
to the velocity of the belt at time t = 5.8505 s. That is
to say, the mass m1 touches to the velocity boundary
at this time. At time t = 6.4353 s, the two masses m1

and m2 return to the initial points. Then the next peri-
odic motion begins, the corresponding trajectories of
the two masses are completely coincide with the ones
in the previous period (as shown in Fig. 13a or b and
c). At time t = 10.3623 s, the second periodic motion
finishes. The periodic motion will continue and remain
the same as before. From Fig. 13e and f, the periodicity
of motion can be also observed.

By using the system parameters m1 = 4 kg, m2 =
1 kg, k1 = 3 N/m, k2 = 1 N/m, r1 = 0.05 N/m2,
r2 = 0.5 N/m2, B1 = 20 N, B2 = −15 N, ϕ1 = 0 rad,
ϕ2 = 0 rad, A1 = 0 N, A2 = 0 N, Ω = 1.65 rad/s,
μk = 0.15, g = 9.8 m/s2, V = 2 m/s, d = 6 m,
R = 0.75 and the initial conditions t0 = 2.1783 s,
x10 = 0.945m, ẋ10 = 0.025m/s, x20 = −17m, ẋ20 =
2 m/s, the impact periodic motion for the mass m2 and
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Fig. 10 Numerical
simulation of the stick
motion for the mass m1: a
phase trajectory, b
displacement–time history,
c velocity–time history, d
force of per unit mass–time
history, e first-order force of
per unit mass–time history.
(Color figure online)

the passable periodic motion for the mass m1 are illus-
trated by Fig. 14a–f. To observe the variation tendency
of per unit mass force more widely, the velocity history
of the force of per unit mass and the displacement his-
tory of the force of per unit mass are given in Fig. 14e
and f. In this group of figures, the yellow filled circles
represent the impact points. It can be seen that the initial
point for the mass m2 is set on the velocity boundary
∂Ω

(2)
12 . At the time t0 = 2.1783 s, the velocity of the

massm1 is less than the belt’s V, and the velocity of the
mass m2 is equal to the velocity of the belt (as shown
in Fig. 14a and c) and the forces of per unit mass are
F (λ)
2 > 0(λ = 1, 2) (as shown in Fig. 14d) for the

mass m2, so the mass m2 enters to the domain Ω
(2)
1

after time t = 2.1783 s (referring to Theorem 1). At
time t = 3.8229 s, the displacement of the mass m2

is equal to the distance d, that is to say the mass m2

touches with the fixed rigid obstacle on the right hand
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Fig. 11 Numerical
simulation of the impact
motion for the mass m2: a
phase trajectory, b
displacement–time history,
c velocity–time history, d
force of per unit mass–time
history. (Color figure online)

(as shown in Fig. 14b), and the velocity of the mass
m2 is greater than the belt’s (as shown in Fig. 14c),
so the impact motion occurs. The mass m2 impacts
with the fixed rigid obstacle at time t = 3.8229 s, and
leaves the obstacle immediately. The velocity of the
mass m2 after impact can be computed by Eq. (12).
After time t = 3.8229 s, the velocity’s direction of the
mass m2 is changed to negative. From Fig. 14a and c,
the trajectory of the mass mα(α ∈ {1, 2}) exists in the
domainΩ

(α)
2 (α ∈ {1, 2}) in the time interval (3.8229 s,

4.3028 s). The mass m1 reaches to the velocity bound-
ary ∂Ω

(1)
12 at time t = 4.3028 s. At this time, the forces

of per unitmass F (1)
1 and F (2)

1 are both greater than zero
(as shown in Fig. 14d). So the mass m1 comes into the
domainΩ

(1)
1 after time t = 4.3028 s byTheorem1.The

mass m1 arrives at the velocity boundary again at time
t = 5.5453 s and passes through the velocity boundary
after this time. In the time interval (5.5453 s, 5.9863 s),
the two masses move in the domain Ω

(α)
2 (α ∈ {1, 2}).

At time t = 5.9863 s, the massm2 reaches to the veloc-
ity boundary and the two masses return to their respec-
tive starting points. The first periodic motion finishes

at this time. The second periodic motion begins at the
same time, and the trajectories of the two masses stay
the same with the ones in the first periodic motion (as
shown in Fig. 14b–f). At time t = 9.7943 s, the third
periodic motion starts and keeps the same trajectories
as before. In addition, the periodicity of motion for the
massesm1(with passable motion) andm2 (with impact
motion) can be also seen from Fig. 14e and f.

Consider the stick periodic motion of the mass m2

with the mapping structure p(2)
2 ◦ p(2)

3 ◦ p(2)
2 ◦ p(2)

1 and
a passable periodic motion of the massm1 with the ini-
tial conditions t0 = 16.7595 s, x10 = 0.7652 m, ẋ10 =
−0.3045 m/s, x20 = 0.7285 m, ẋ20 = 2 m/s. The fre-
quency isΩ = 0.2 rad/s, the static friction coefficient is
μs = 0.18, the kinetic friction coefficient isμk = 0.13
and the distance between the mass m2 and the fixed
rigid obstacle on the right hand is d = 22 m. The rest
system parameters are the same as the example in Fig.
13. The corresponding pictures of the stick periodic
motion are expressed in Fig. 15a–g, where Figs. 15d–
15g are the force and first-order force of per unit mass–
time histories, the velocity and displacement histories
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Fig. 12 Numerical
simulation of the grazing
motion for the mass m2: a
phase trajectory, b
displacement–time history,
c velocity–time history, d
force of per unit mass–time
history, e first-order force of
per unit mass–time history.
(Color figure online)

of force of per unit mass for the mass m2, respectively.
In the group of figures, the yellow filled circle and
the blue filled circle represent the starting and vanish-
ing points of stick motion, respectively. And the stick
domains for the massm2 are filled by the gray color. In
Fig. 15d–g, the forces and first-order forces of per unit
mass in domains Ω

(2)
1 and Ω

(2)
2 for the mass m2 are

represented by black and purple lines, respectively. In
the whole process of motion, the massm1 always stays
in the domain Ω

(1)
2 . At the initial time t0 = 16.7595 s,

the starting point of themassm2 is fixed on the velocity
boundary ∂Ω

(2)
12 . And the forces of per unit mass F (1)

2

and F (2)
2 are both greater than zero from Fig. 15d.

So the conditions of passable motion in Theorem 1
are satisfied. The mass m2 enters into the domain Ω

(2)
1

after time t0 = 16.7595 s. It exists in the domain Ω
(2)
1

in the time interval (16.7595 s, 21.5693 s) and reaches
to the velocity boundary again at time t = 21.5693 s.
The forces of per unit mass are F (1)

2 < 0 and F (2)
2 > 0

(as shown in Fig. 15d) at this time, so the stick motion
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Fig. 13 Numerical
simulation of the passable
periodic motion for the
mass mα(α ∈ {1, 2}): a
phase trajectory, b
displacement–time history,
c velocity–time history, d
force of per unit mass–time
history, e force of per unit
mass–velocity history, f
force of per unit
mass–displacement history.
(Color figure online)

of the mass m2 appears according to Theorem 3, i.e.,
the relative motion between the mass m2 and the belt
does not exist. So the friction force between the mass
and the belt is changed to static friction force at the
stick stage, and the flow barrier is formed. In the time
interval (21.5693 s, 23.1805 s), the forces of boundary
flow barrier F (0�01)

2 < 0 and F (0�02)
2 > 0 (as shown

in Fig. 15d), so the stick motion exists according to
Theorem 2. As shown in Fig. 15d and e, it is obvi-

ously observed that the forces of boundary flow bar-
rier are F (0�01)

2 < 0, F (0�02)
2 = 0 and the first-order

force of boundary flow barrier is DF (0�02)
2 < 0 at time

t = 23.1805 s. It qualifies the vanishing conditions of
stick motion in Theorem 4. So the mass m2 enters to
the domain Ω

(2)
2 after time t = 23.1805 s. In the time

interval (23.1805 s, 43.9398 s), the velocity of themass
m2 is less than the belt’sV and it equals to the belt’sV at
time t = 43.9398 s. That is to say the mass m2 reaches
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Fig. 14 Numerical
simulation of the passable
periodic motion for the
mass m1 and the impact
periodic motion for the
mass m2: a phase trajectory,
b displacement–time
history, c velocity–time
history, d force of per unit
mass–time history, e force
of per unit mass–velocity
history, f force of per unit
mass–displacement history.
(Color figure online)

to the velocity boundary at this time. The stick motion
appears because the forces of per unit mass F (1)

2 < 0

and F (2)
2 > 0 satisfy the conditions in Theorem 3. The

mass m2 sticks with the belt again in the time inter-
val (43.9398 s, 48.1754 s). In this term, the friction
force between the mass m2 and the belt is static fric-
tion force, and the mass m2 moves together with the
belt. At time t = 48.1754 s, the displacement and the
velocity of the mass m2 are the same it was as in the

initial point. So the trajectory at this time comes back
to its starting points for the massm2. At the same time,
the forces of boundary flow barrier are F (0�02)

2 > 0

and F (0�01)
2 = 0 and the first-order force of boundary

flow barrier is DF (0�01)
2 > 0 from Fig. 15d and e. So

the stick motion of the mass m2 vanishes, and the first
stick periodic motion finishes. And the position of the
mass m1 in phase plane at this time is the same as the
position at the initial time, so the first passable periodic
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Fig. 15 Numerical
simulation of the passable
periodic motion for the
mass m1 and the stick
periodic motion for the
mass m2: a phase trajectory,
b displacement–time
history, c velocity–time
history, d force of per unit
mass–time history, e
first-order force of per unit
mass–time history, f force
of per unit mass–velocity
history, g force of per unit
mass–displacement history.
(Color figure online)
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motion for the massm1 finishes at the same time. In the
time interval (48.1754 s, 79.5913 s), the second peri-
odicmotion for themassesm1 andm2 occurs, as shown
in Fig. 15 b and c or a. In addition, the periodicity of
the mass m2 can be also observed from Fig. 15d and e
or f and g.

7 Conclusions

In this paper, the analytical predictions of the 2-DOF
friction-induced oscillator with one-sided impact on a
conveyor belt were given through the theory of flow
switchability for discontinuous dynamical systems.
Due to the friction and impact discontinuities, different
domains and boundaries were defined. The flow barrier
on the separate boundary was introduced. The analyt-
ical conditions of the passable, stick, grazing, impact
and stuck motions were presented in the form of the-
orem to show the complexity of switching motion in
such friction–impact system. For a better understand-
ing of the motion in this system, the switching sets and
mapping structures were adopted to describe the dif-
ferent periodic motions with stick, impact and stuck
in the friction–impact system. The numerical simula-
tions were given to illustrate the different motions in
this system. The obtained results reveal the mechanism
of friction or collision between objects in discontin-
uous dynamical systems, and provide the theoretical
basis for science and technology engineering to use or
control the friction and collision and reference for the
choice of system parameters.
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Appendix A

Firstly, the switching sets will be defined and then the
basic mappings will be obtained from them.

Based on the discontinuous boundaries in Eq. (15),
the switching sets of the massesm1 andm2 are defined
as

Σ
(1)
12 = Σ

(1)
21

= {(x (1)
k , ẋ (1)

k , tk) | ẋ (1)
k = V, k ∈ N},

+Σ
(1)
12 = {(x (1)

k , ẋ (1)
k , tk) | ẋ (1)

k = V+, k ∈ N},
−Σ

(1)
12 = {(x (1)

k , ẋ (1)
k , tk) | ẋ (1)

k = V−, k ∈ N};
(A.1)

and

Σ
(2)
12 = Σ

(2)
21

= {(x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (2)

k = V, k ∈ N},
+Σ

(2)
12 = {(x (2)

k , ẋ (2)
k , tk) |

x (2)
k ∈ (−∞, d), ẋ (2)

k = V+, k ∈ N},
−Σ

(2)
12 = {(x (2)

k , ẋ (2)
k , tk) |

x (2)
k ∈ (−∞, d), ẋ (2)

k = V−, k ∈ N}, (A.2)

Σ
(2)
1(+∞) = {(x (2)

k , ẋ (2)
k , tk) |

x (2)
k = d, ẋ (2)

k ∈ (V,+∞), k ∈ N},
Σ

(2)
2(+∞) = {(x (2)

k , ẋ (2)
k , tk) |

x (2)
k = d, ẋ (2)

k ∈ (−∞, V )

and ẋ (2)
k �= 0, k ∈ N }, (A.3)

Σ
(2)
23 = {(x (2)

k , ẋ (2)
k , tk) | x (2)

k = d, ẋ (2)
k = 0+,

F (3)
2 > 0, k ∈ N},

Σ
(2)
32 = {(x (2)

k , ẋ (2)
k , tk) | x (2)

k = d, ẋ (2)
k = 0−,

F (3)
2 = 0, k ∈ N}, (A.4)

where x (α)
k = x (α)(tk) and ẋ (α)

k = ẋ (α)(tk), x (α)
k

and ẋ (α)
k represent the switching displacement and the

switching velocity for the mass mα(α ∈ {1, 2}) at the
switching time tm . The switching set Σ

(α)
12 (α ∈ {1, 2})

is defined on the velocity boundary ∂Ω
(α)
12 (α ∈ {1, 2}).

And the switching sets Σ
(2)
i(+∞)(i = 1, 2) are defined

on the impact boundaries ∂Ω
(2)
i(+∞)(i = 1, 2) for the

massm2. The switching setsΣ
(2)
23 andΣ

(2)
32 are defined
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on the stuck boundary ∂Ω23 for the mass m2. In fact,
Σ

(2)
23 and Σ

(2)
32 are the same switching set, they repre-

sent appearing and vanishing of the stuck motion by
restricting different conditions.

Furthermore, the 4-dimensional switching sets of the
twomasses can be defined by the form of direct product
in the following:

Σ
(a)
12 = Σ

(1)
12 ⊗ Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = ẋ (2)
k = V,

k ∈ N},
Σ

(b)
12 =+ Σ

(1)
12 ⊗+ Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = V+,

ẋ (2)
k = V+, k ∈ N},

Σ
(c)
12 =− Σ

(1)
12 ⊗− Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = V−,

ẋ (2)
k = V−, k ∈ N}; (A.5)

Σ
(d)
12 =+ Σ

(1)
12 ⊗ Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = V+,

ẋ (2)
k = V, k ∈ N},

Σ
(e)
12 =+ Σ

(1)
12 ⊗− Σ

(2)
12 ,

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = V+,

ẋ (2)
k = V−, k ∈ N}

Σ
( f )
12 = Σ

(1)
12 ⊗+ Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = V,

ẋ (2)
k = V+, k ∈ N}; (A.6)

Σ
(g)
12 = Σ

(1)
12 ⊗− Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = V,

ẋ (2)
k = V−, k ∈ N},

Σ
(h)
12 =− Σ

(1)
12 ⊗+ Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |

x (2)
k ∈ (−∞, d), ẋ (1)

k = V−,

ẋ (2)
k = V+, k ∈ N},

Σ
(i)
12 =− Σ

(1)
12 ⊗ Σ

(2)
12

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k ∈ (−∞, d), ẋ (1)

k = V−,

ẋ (2)
k = V, k ∈ N}; (A.7)

Σ
(a)
1(+∞) =+ Σ

(1)
12 ⊗ Σ

(2)
1(+∞)

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V+, ẋ (2)
k > V,

k ∈ N},
Σ

(b)
1(+∞) = Σ

(1)
12 ⊗ Σ

(2)
1(+∞)

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V, ẋ (2)
k > V,

k ∈ N},
Σ

(c)
1(+∞) =− Σ

(1)
12 ⊗ Σ

(2)
1(+∞)

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V−, ẋ (2)
k > V,

k ∈ N}; (A.8)

Σ
(a)
2(+∞) =+ Σ

(1)
12 ⊗ Σ

(2)
2(+∞)

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V+, ẋ (2)
k < V

and ẋ (2)
k �= 0, k ∈ N},

Σ
(b)
2(+∞) = Σ

(1)
12 ⊗ Σ

(2)
2(+∞)

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V, ẋ (2)
k < V

and ẋ (2)
k �= 0, k ∈ N},

Σ
(c)
2(+∞) =− Σ

(1)
12 ⊗ Σ

(2)
2(+∞)

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V−, ẋ (2)
k < V

and ẋ (2)
k �= 0, k ∈ N}; (A.9)

Σ
(a)
23 =+ Σ

(1)
12 ⊗ Σ

(2)
23

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V+, ẋ (2)
k = 0+,

F (3)
2 > 0, k ∈ N},

Σ
(b)
23 = Σ

(1)
12 ⊗ Σ

(2)
23
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= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V, ẋ (2)
k = 0+,

F (3)
2 > 0, k ∈ N},

Σ
(c)
23 =− Σ

(1)
12 ⊗ Σ

(2)
23

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V−, ẋ (2)
k = 0+,

F (3)
2 > 0, k ∈ N}; (A.10)

Σ
(a)
32 =+ Σ

(1)
12 ⊗ Σ

(2)
32

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V+, ẋ (2)
k = 0−,

F (3)
2 = 0, k ∈ N},

Σ
(b)
32 = Σ

(1)
12 ⊗ Σ

(2)
32

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V, ẋ (2)
k = 0−,

F (3)
2 = 0, k ∈ N},

Σ
(c)
32 =− Σ

(1)
12 ⊗ Σ

(2)
32

= {(x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk) |
x (2)
k = d, ẋ (1)

k = V−, ẋ (2)
k = 0−,

F (3)
2 = 0, k ∈ N}. (A.11)

For the 2-DOF friction-induced oscillator with one-
side impact on a conveyer belt described in Sect. 2, the
basic mappings for the mass m1 are

p(1)
1 :+ Σ

(1)
12 →+ Σ

(1)
12 ,

p(1)
2 : Σ

(1)
12 → Σ

(1)
12 ,

p(1)
3 :− Σ

(1)
12 →− Σ

(1)
12 .

(A.12)

And the basic mappings for the mass m2 are

p(2)
1 :+ Σ

(2)
12 →+ Σ

(2)
12 ,

p(2)
2 : Σ

(2)
12 → Σ

(2)
12 ,

p(2)
3 :− Σ

(2)
12 →− Σ

(2)
12 ; (A.13)

p(2)
4 :+ Σ

(2)
12 → Σ

(2)
1(+∞),

p(2)
5 : Σ

(2)
2(+∞) →− Σ

(2)
12 ,

p(2)
6 :− Σ

(2)
12 → Σ

(2)
23 ; (A.14)

p(2)
7 : Σ

(2)
23 → Σ

(2)
32 ,

p(2)
8 : Σ

(2)
32 → Σ

(2)
23 ,

p(2)
9 : Σ

(2)
32 →− Σ

(2)
12 ; (A.15)

p(2)
10 :− Σ

(2)
12 → Σ

(2)
2(+∞). (A.16)

The corresponding mapping structures for the massm1

and mass m2 are sketched in Fig. 16a and b, respec-
tively. The above basic mappings can be divided into
two kinds of global mapping and local mapping. The
global mapping means that the motion switches from
one switching set to another one; and the local mapping
means that the motion switches from one switching set
to itself. By the above definitions, the global mappings
are defined as

p(2)
4 : (x (2)

k , V+, tk) → (d, ẋ (2)
k+1, tk+1),

p(2)
5 : (d, ẋ (2)

k , tk) → (x (2)
k+1, V

−, tk+1),

p(2)
6 : (x (2)

k , V−, tk) → (d, 0, tk+1),

p(2)
9 : (d, 0, tk) → (x (2)

k+1, V
−, tk+1),

p(2)
10 : (x (2)

k , V−, tk) → (d, ẋ (2)
k , tk+1);

(A.17)

and the local mappings are defined as

p(1)
1 : (x (1)

k , V+, tk) → (x (1)
k+1, V

+, tk+1),

p(2)
1 : (x (2)

k , V+, tk) → (x (2)
k+1, V

+, tk+1); (A.18)

p(1)
2 : (x (1)

k , V, tk) → (x (1)
k+1, V, tk+1),

p(2)
2 : (x (2)

k , V, tk) → (x (2)
k+1, V, tk+1); (A.19)

p(1)
3 : (x (1)

k , V−, tk) → (x (1)
k+1, V

−, tk+1),

p(2)
3 : (x (2)

k , V−, tk) → (x (2)
k+1, V

−, tk+1); (A.20)

p(2)
7 : (d, 0, tk) → (d, 0, tk+1),

p(2)
8 : (d, 0, tk) → (d, 0, tk+1). (A.21)

Based on the above discussion, the 4-dimensional
resultant mappings of the friction-induced oscillator
with one-sided impact can be given as follows.

P1a = (p(1)
2 , p(2)

2 ) : Σ
(a)
12 → Σ

(a)
12 ,

P1b = (p(1)
1 , p(2)

1 ) : Σ
(b)
12 → Σ

(b)
12 ,

P1c = (p(1)
3 , p(2)

3 ) : Σ
(c)
12 → Σ

(c)
12 ; (A.22)

P1d = (p(1)
1 , p(2)

2 ) : Σ
(d)
12 → Σ

(d)
12 ,

P1e = (p(1)
1 , p(2)

3 ) : Σ
(e)
12 → Σ

(e)
12 ; (A.23)

P1 f = (p(1)
2 , p(2)

1 ) : Σ
( f )
12 → Σ

( f )
12 ,

P1g = (p(1)
2 , p(2)

3 ) : Σ
(g)
12 → Σ

(g)
12 ; (A.24)

P1h = (p(1)
3 , p(2)

1 ) : Σ
(h)
12 → Σ

(h)
12 ,

P1i = (p(1)
3 , p(2)

2 ) : Σ
(i)
12 → Σ

(i)
12 ; (A.25)
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Fig. 16 The mapping
structures for the two
masses mα(α = 1, 2): a
mass m1 and b mass m2

P2a = (p(1)
1 , p(2)

4 ) : Σ
(b)
12 → Σ

(a)
1(+∞),

P2b = (p(1)
2 , p(2)

4 ) : Σ
( f )
12 → Σ

(b)
1(+∞),

P2c = (p(1)
3 , p(2)

4 ) : Σ
(h)
12 → Σ

(c)
1(+∞); (A.26)

P3a = (p(1)
1 , p(2)

5 ) : Σ
(a)
2(+∞) → Σ

(e)
12 ,

P3b = (p(1)
2 , p(2)

5 ) : Σ
(b)
2(+∞) → Σ

(g)
12 ,

P3c = (p(1)
3 , p(2)

5 ) : Σ
(c)
2(+∞) → Σ

(c)
12 ; (A.27)

P4a = (p(1)
1 , p(2)

6 ) : Σ
(e)
12 → Σ

(a)
23 ,

P4b = (p(1)
2 , p(2)

6 ) : Σ
(g)
12 → Σ

(b)
23 ,

P4c = (p(1)
3 , p(2)

6 ) : Σ
(i)
12 → Σ

(c)
23 ; (A.28)

P5a = (p(1)
1 , p(2)

7 ) : Σ
(a)
23 → Σ

(a)
32 ,

P5b = (p(1)
2 , p(2)

7 ) : Σ
(b)
23 → Σ

(b)
32 ,

P5c = (p(1)
3 , p(2)

7 ) : Σ
(c)
23 → Σ

(c)
32 ; (A.29)

P6a = (p(1)
1 , p(2)

8 ) : Σ
(a)
32 → Σ

(a)
23 ,

P6b = (p(1)
2 , p(2)

8 ) : Σ
(b)
32 → Σ

(b)
23 ,

P6c = (p(1)
3 , p(2)

8 ) : Σ
(c)
32 → Σ

(c)
23 ; (A.30)

P7a = (p(1)
1 , p(2)

9 ) : Σ
(a)
32 → Σ

(e)
12 ,

P7b = (p(1)
2 , p(2)

9 ) : Σ
(b)
32 → Σ

(g)
12 ,

P7c = (p(1)
3 , p(2)

9 ) : Σ
(c)
32 → Σ

(c)
12 ; (A.31)

P8a = (p(1)
1 , p(2)

10 ) : Σ
(a)
32 → Σ

(a)
2(+∞),

P8b = (p(1)
2 , p(2)

10 ) : Σ
(b)
32 → Σ

(b)
2(+∞),

P8c = (p(1)
3 , p(2)

10 ) : Σ
(c)
32 → Σ

(c)
2(+∞). (A.32)

For convenience, we introduce an index set N =
{1σ |σ = a, b, . . . , i} ∪ {σ1σ2|σ1 = 2, 3, . . . , 8; σ2 =
a, b, c}.

Based on the above definitions of the basic map-
pings, the governing equations for the 4-dimensional
resultant mapping Pδ (δ ∈ N ) of the two masses
mα(α = 1, 2) can be expressed by

f (δ)(mk,mk+1) = 0 for Pδ (δ ∈ N ) (A.33)

with

mk = (x (1)
k , ẋ (1)

k , x (2)
k , ẋ (2)

k , tk)
T,

mk+1 = (x (1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1)

T,

f (δ) = ( f (δ)
1 , f (δ)

2 , f (δ)
3 , f (δ)

4 )T,

(A.34)

where

f (δ)
1 (x (1)

k , ẋ (1)
k , x (2)

k , ẋ (2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1,

x (2)
k+1, ẋ

(2)
k+1, tk+1) = 0,

f (δ)
2 (x (1)

k , ẋ (1)
k , x (2)

k , ẋ (2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1,

x (2)
k+1, ẋ

(2)
k+1, tk+1) = 0,

f (δ)
3 (x (1)

k , ẋ (1)
k , x (2)

k , ẋ (2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1,

x (2)
k+1, ẋ

(2)
k+1, tk+1) = 0,

f (δ)
4 (x (1)

k , ẋ (1)
k , x (2)

k , ẋ (2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1,

x (2)
k+1, ẋ

(2)
k+1, tk+1) = 0.

(A.35)
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