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Abstract In this paper, analytical analysis of the
vibrational tristable energy harvester with a RL res-
onant circuit is presented. The analytical solutions of
the steady-state response displacement and the steady-
state output voltage are derived via the method of mul-
tiple scales. The influence mechanism of the excitation
amplitude and frequency, the electromechanical cou-
pling coefficient, the damping and the detuning param-
eters on the dynamic response characteristics and the
output voltage is studied. In order to enhance the energy
harvesting performance, the appropriate choice of the
excitation amplitude and the electromechanical cou-
pling coefficient is discussed.

Keywords Tristable · Vibration · Energy harvesting ·
Nonlinear · Resonant circuit

1 Introduction

Recently, nonlinear vibration energy harvesting has
become a research hot spot, because it owns a very
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good application potential for solving the challenging
issue of energy supply for embedded wireless sensors
andportable electromechanical devices [1,2]. Themain
advantage of nonlinear energy harvesters over tradi-
tional linear energy harvesters is their wide operating
frequency range, which benefits for energy harvest-
ing from frequency broadband vibrations [3–5]. It is
well known that an uncertain factor which is inevitably
existingmay influence the frequency and level of ambi-
ent excitation vibrations. This stimulates researchers to
design suitable broadband nonlinear energy harvesters
[6,7].

For the bistable energy harvesters (BEH) under ran-
dom base excitations, the dynamic response mecha-
nism and enhanced energy harvesting were numeri-
cally and experimentally verified by Cottone et al. [8]
and Litak et al. [9,10]. Under harmonic base exci-
tations, the high-energy interwell oscillations of the
BEH were classified and defined by Erturk and Inman
[11], which lead to large-amplitude output voltage and
enhance energyharvesting.Zhou et al. [12] numerically
and experimentally obtained the high-energy interwell
oscillation frequency range of the BEH in a magnetic-
coupled rotatable energy harvesting structure under
frequency-swept excitations. Stanton et al. [13] devel-
oped a theoretical model of the magnetic-coupled BEH
to predict the nonlinear response characteristics and
the energy harvesting performance. Fotsa and Woafo
[14] demonstrated the chaotic response of the BEH
under some excitation conditions. These characteristics
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were also found in bidirectional and plate-based BEHs
[15,16]. It was found that the high-energy oscillations
in the multisolution range of the BEH are difficult to
realize under zero initial conditions [17,18]. Mean-
while, the high-branch oscillations of nonlinearmonos-
table energy harvesters [19,20] and internal resonance-
based nonlinear energy harvesters with zero initial con-
ditions [21,22] are also expected but difficult to realize
under constant frequency excitations.

Zhou et al. [23] designed a vibrational tristable
energy harvester (TEH) for the purpose of improving
energy harvesting performance under low-level ambi-
ent vibrations. TEHs were numerically and experimen-
tally verified: they have better energy harvesting per-
formance when compared with their bistable counter-
parts under low-level harmonic or random excitations
[23–25]. In order to explore the influence of material
properties of the TEH, Tékam et al. [26] and Kwuimy
et al. [27] numerically presented the energy harvesting
performance of a TEH with fractional-order viscoelas-
tic material. The complete parameter influence mecha-
nism of TEHs was explored by Panyam et al. [28] and
Zhou et al. [29]. It is found that the effective work-
ing frequency range and interwell oscillations of the
TEH are impossible to perform when the constant fre-
quency excitation level is very low. This demonstrates
that above-mentioned nonlinear energy harvesters have
their expected performance enhancement only when
they vibrate at the higher orbits. However, with zero
initial conditions, the nonlinear energy harvesters usu-
ally follow the low-energy orbits, which will result in
small-amplitude voltage output.

To solve this issue, Zhou et al. [30] presented an ini-
tial impact method to facilitate nonlinear vibrational
energy harvesters to overcome their potential barri-
ers and achieve high-energy oscillations under low-
level excitations. Based on this method, the effective
bandwidths of the BEH and the TEH were experimen-
tally increased to 15 Hz and 12 Hz from 3 Hz and
5 Hz, respectively. Later on, Mallicket et al. [31] pre-
sented an electronic control method to switch to the
high-energy orbit of a vibrational nonlinear energy har-
vester. They claimed that this method can improve the
energy harvesting performance over a wide frequency
range under frequency–amplitude-varying excitations.
Lan et al. [32] introduced a voltage impulse perturba-
tion approach via a negative resistance to induce high-
energy oscillations of vibrational nonlinear energy har-
vesters. Multiple solutions were discussed by Syta et

al. [33], and consequently their robust and adaptive
control was proposed by Haji et al. [34]. The above-
mentioned methods can improve the energy harvesting
performance of nonlinear vibrational energy harvesters
by inducing high-energy oscillations in the multisolu-
tion range. However, these methods are active methods
which need additional energy input. Taking a different
approach, Yan et al. [35] presented a passive method
that a resonant circuit was connected with the TEH.
The energy harvesting enhancement was numerically
verified.

This paper theoretically analyzes the responsemech-
anism of the TEH with the resonant circuit to enhance
vibration energy harvesting performance. In Sect. 2,
the theoretical analysis of the TEH with the RL reso-
nant circuit is presented. Then, in order to understand
the energy performance of the harvester in detail, the
effects of the relative parameters on the TEH are con-
sidered in Sect. 3. Lastly, the main conclusions are
given.

2 System description and theoretical analysis

Figure 1 presents the schematic diagram of the TEH
with the RL resonant circuit [35]. Because of the non-
linear magnetic force, the TEH owns five equilibrium
positions (−x2 and x2 are unstable equilibrium posi-
tions, while −x1, 0 and x1 are stable equilibrium posi-
tions). The nonlinearmagnetic force can be experimen-
tallymeasured or numerically calculated [13,14,23]. In
addition, a load resistance R and an electrical induc-
tance L make up a resonant circuit connected to the
TEH.

The governing equation for the mechanical motion
of the TEH is usually expressed as [23,35]:

mẍ(t) + cẋ(t) + Fr − θpυ(t) = F(t) (1)

wherem, c and k, respectively, stand for the equivalent
mass, the equivalent damping and the equivalent stiff-
ness of the harvester. θp is the equivalent electrome-
chanical coupling coefficient, which mainly depends
on the piezoelectric material. υ(t) is the voltage gener-
ated by the piezoelectric material. Fr is the equivalent
nonlinear restoring force, which is made up of external
magnetic force and equivalent linear restoring force.
F(t) is the equivalent excitation force.

The dimensional expression of Eq. (1) is:

ẍ(t) + 2ζωẋ(t) + fr − θυ(t) = f sin(�t) (2)
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Fig. 1 Schematic of the TEH with a RL resonant circuit. −x1,
0, x1 denote the stable while −x2, x2 unstable equilibria

where ζ is the dimensionless damping ratio. θ is the
dimensionless electromechanical coupling coefficient.
ω is the equivalent natural frequency of the TEH. �

is the angular excitation frequency. f sin(�t) is the
external excitation. x is the displacement of the TEH
with respect to the base. fr = ω2x

x21 x
2
2
(x2 − x21 )(x

2 − x22 )

is the dimensional nonlinear restoring force, where ω2

is the first-order stiffness coefficient and x1 and x2 are
the distance of the nonzero equilibrium position to the
zero equilibrium position.

Then, Eq. (2) could be rewritten as:

ẍ(t) + 2ζωẋ(t) + ω2x(t) + a1x
3(t)

+ a2x
5(t) − θυ(t) = f sin(�t) (3)

where a1 and a2 are the coefficients of the nonlinear
stiffness terms.

The governing equation for the electrical response
of the TEH is shown as [35,36]:

Cpυ̇(t) + θ ẋ(t) + υ(t) − L İL
R

= 0 (4)

where IL is the current flows in the load circuit repre-
sented by:

IL = −Cpυ̇(t) − θ ẋ(t) (5)

Thus, the final dimensional governing equations of
the TEH can be obtained [35,36]:

ẍ(t) + 2ζωẋ(t) + ω2x(t) + a1x
3(t)

+ a2x
5(t) − θυ(t) = f sin(�t) (6)

ϋ(t) + 2ζeωeυ̇(t) + ω2
eυ(t)

+meẍ(t) + ce ẋ(t) = 0 (7)

where ζe = R
2ωe L

;ω2
e = 1

LCp
;me = θ

Cp
; ce = Rθω2

e .
Then, the generated voltage across the end of the

electrical resistance R can be expressed as,

υR = IL R = −2ζe
ωe

υ̇ − ce
ω2
e
ẋ (8)

In order to utilize the method of multiple scales [37–
39], the small parameters are introduced as follows:

ζ = εζ̂ , a1 = εâ1, a2 = εâ2, θ = εθ̂ , f = ε f̂ ,

ζe = εζ̂e,me = εm̂e, ce = εĉe (9)

Then, Eqs. (6) and (7) can be expressed as:

ẍ(t) + 2εζ̂ωẋ(t) + ω2x(t) + εâ1x
3(t)

+ εâ2x
5(t) − εθ̂υ(t) = ε f̂ sin(�t) (10)

ϋ(t) + 2εζ̂eωeυ̇(t) + ω2
eυ(t)

+ εm̂e ẍ(t) + εce ẋ(t) = 0 (11)

According to the method of multiple scales, the
approximate solutions of x(t) and υ(t) are expressed
as:

x(t, ε) = x0(T0, T1) + εx1(T0, T1) + · · · (12)

υ(t, ε) = υ0(T0, T1) + ευ1(T0, T1) + · · · (13)

where T0 = t is a fast time scale, T1 = εt is the slow
time scale.

By denoting the differential operators D0 = ∂/∂T0,
D1 = ∂/∂T1 and using the following differential oper-
ators, we can obtain:

d

dt
= D0 + εD1 + · · · (14)

d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + · · ·

(15)

Substituting Eqs. (12–15) into Eqs. (10) and (11), it
is easy to obtain:

D2
0x0(T0, T1) + ω2x0(T0, T1) = 0 (16)

D2
0x1(T0, T1) + ω2x1(T0, T1)

= −2D0D1x0 − 2ζ̂ωD0υ0 − â1x
3
0

− â2x
5
0 + θ̂υ0 + f̂ sin(�t) (17)
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D2
0υ0(T0, T1) + ω2

eυ0(T0, T1) = 0 (18)

D2
0υ1(T0, T1) + ω2

eυ1(T0, T1)

= −2D0D1υ0 − 2ζ̂eωeD0υ0 − m̂eD
2
0x0

− ĉeD0x0 (19)

The general solutions of Eqs. (16) and (18) can be
expressed as:

x0(T0, T1) = a(T1) exp(iωT0) + cc (20)

υ0(T0, T1) = b(T1) exp(iωeT0) + cc (21)

where cc denotes the complex conjugate. a(T1) and
b(T1) denote the slowly varying amplitude of the
response.

Substituting Eqs. (20) and (21) to Eqs. (17) and (19),
we can obtain the following equations:

D2
0x1 + ω2x1

= −2D0D1(a(T1) exp(iωT0) + cc)

− 2ζ̂ ωD0(a(T1) exp(iωT0) + cc)

− â1(a(T1) exp(iωT0) + cc)3

− â2(a(T1) exp(iωT0) + cc)5

+ θ̂ (b(T1) exp(iωeT0) + cc)

+ f̂

2i
(exp(i�T0) − cc) (22)

D2
0υ1 + ω2

eυ1

= −2D0D1(b(T1) exp(iωeT0) + cc)

− 2ζ̂eωeD0(b(T1) exp(iωeT0) + cc)

− m̂eD
2
0(a(T1) exp(iωT0) + cc)

− ĉeD0(a(T1) exp(iωT0) + cc) (23)

To investigate the primary resonance of governing
equations (10) and (11), the detuning parameters σ and
σ1 are introduced such that � = ω + εσ and ωe =
ω + εσ1 and the 1:1 internal resonance is considered.

The secular terms of Eqs. (22) and (23) can be
neglected if:

−2iωa′(T1) − 2ζ̂ iω2a(T1)

− 3â1a
2(T1)ā(T1) − 10â2a

3(T1)ā
2(T1)

+ θ̂b(T1) exp(iσ1T1) + f̂

2i
exp(iσT1) = 0

(24)

−2iωeb
′(T1) − 2i ζ̂eω

2
eb(T1)

+ m̂ea(T1)ω
2 exp(−iσ1T1)

− ĉeiωa(T1) exp(−iσ1T1) = 0 (25)

To simplify Eqs. (24) and (25), we should set:

a(T1) = 1

2
A(T1) exp(iφ(T1)) (26)

b(T1) = 1

2
B(T1) exp(iψ(T1)) (27)

Substituting Eqs. (26) and (27) into Eqs. (24) and
(25), we obtain:

−2iω[A′(T1) + i A(T1)φ
′(T1)] − 2ζ̂ iω2A(T1)

− 3

4
â1A

3(T1) − 5

8
â2A

5(T1)

+ θ̂B(T1) exp(i�(T1)) − i f̂ exp(i(T1)) = 0

(28)

− iωe
[
B ′(T1) + i B(T1)ψ

′(T1)
] − i ζ̂eω

2
e B(T1)

+ 1

2
m̂eω

2A(T1) exp(−i�(T1)))

− i
1

2
ĉeωA(T1) exp(−i�(T1))) = 0 (29)

where the new variables (T1) = σT1 − φ(T1) and
�(T1) = σ1T1 + ψ(T1) − φ(T1) are used.

Separating the real part from the imaginary part, it
is easy to obtain:

2ωA′ + 2ζ̂ω2A + f̂ cos − θ̂B sin� = 0 (30)

2ωσ A − 2ωA′ − 3

4
â1A

3

− 5

8
â2A

5 + f̂ sin + θ̂B cos� = 0 (31)

2ωeB
′ + 2ζ̂eω

2
e B + m̂eω

2A sin�

+ ĉeωA cos� = 0 (32)

2ωe(�
′ − ′ + σ − σ1)B + m̂e Aω2 cos�

− ĉe Aω sin� = 0 (33)

Considering the steady-state cases for A′ = 0.0,
′ = 0.0, B ′ = 0.0, �′ = 0.0 and denoting them
as A0, 0, B0 and �0, the following equations are
obtained:

2ζ̂ω2A0 + f̂ cos0 − θ̂B0 sin�0 = 0 (34)

2ωσ A0 − 3

4
â1A

3
0 − 5

8
â2A

5
0

+ f̂ sin0 + θ̂B0 cos�0 = 0 (35)

2ζ̂eω
2
e B0 + m̂eω

2A0 sin�0

+ ĉeωA0 cos�0 = 0 (36)

2ωe(σ − σ1)B0 + m̂eω
2A0 cos�0

− ĉeωA0 sin�0 = 0 (37)
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Above equations can be converted to:

(2ζ̂ω2A0 − θ̂B0 sin�0)
2

+
(
2ωσ A0 − 3

4
â1A

3
0 − 5

8
â2A

5
0 + θ̂B0 cos�0

)2

= f̂ 2 (38)

2ζ̂eω
2
e B0 + m̂eω

2A0 sin�0 + ĉeωA cos�0 = 0 (39)

2ωe(σ − σ1)B0 + m̂eω
2A0 cos�0

− ĉeωA0 sin�0 = 0 (40)

Thus, the following relationship can be derived:

{[2ζ̂eω2
e ĉeω + 2ωe(σ − σ1)m̂eω

2]2
+[2ζ̂eω2

e m̂eω
2 − 2ωe(σ − σ1)ĉeω]2}B2

0

= (m̂2
eω

4 + c2eω
2)2A2

0 (41)

Furthermore, Eq. (41) is converted into:

{2ζ̂ω2(m̂2
eω

4 + ĉ2eω
2)A2

0

+ θ̂ [2ζ̂eω2
e m̂eω

2 − 2ωe(σ − σ1)ĉeω]B2
0 }2

+
{(

2ωσ A0 − 3

4
â1A

3
0 − 5

8
â2A

5
0

)

×(m̂2
eω

4 + ĉ2eω
2)A0

− θ̂
[
2ζ̂eω

2
e ĉeω + 2ωe(σ − σ1)m̂eω

2
]
B2
0

}2

= f̂ 2(m̂2
eω

4 + ĉ2eω
2)2A2

0 (42)

Therefore, the effective output voltage across R is:

υR(T0, T1) = ευR0(T0, T1) + ε2υR1(T0, T1)

= − 2εζ̂e
ωe

(D0 + εD1 + · · · )(υ0(T0, T1)
+ ευ1(T0, T1))

− εĉe
ω2
e

(D0 + εD1 + · · · )(x0(T0, T1)
+ εx1(T0, T1)) (43)

The first-order approximate solution of υR is derived
as follows:

υR(t) = 2ζeB(εt) sin(ωet + ψ(εt))

+ ce
ω2
e
ωA(εt) sin(ωt + φ(εt)) + O(ε2) (44)

3 Analytical solutions

To discuss the nonlinear dynamic characteristics of the
TEHwith the RL resonant circuit, the analytical results
derived in Sect. 2 will be presented in the following

text. The equivalent potential energy function of the
TEH can be expressed as:

U (x) = ω2

2
x2 + a1

4
x4 + a2

6
x6

= ω2

x21 x
2
2

x6

6
− ω2

x21 x
2
2

(x21 + x22 )
x4

4
+ ω2 x

2

2
(45)

Thus, the corresponding equivalent restoring force
can be obtained as follows:

fr (x) = ω2

x21 x
2
2

x(x − x1)(x + x1)(x − x2)(x + x2)

= ω2

x21 x
2
2

x5 − ω2

x21 x
2
2

(x21 + x22 )x
3 + ω2x (46)

The variation of the potential energy function U (x)
as a function of the variable x and the parameter x1 in
the cases of x2 = 2.0 is shown in Fig. 2. Under certain
x1 or x2, the effect of x2 or x1 on the potential energy is
consistent; thus, the other casewill not be plotted again.
It is found that the shape of potential energy wells with
different x1 is different. In Fig. 2b, the potential well
depth of the TEH in the case of x1 = 1.2 and x2 = 2.0
is lowest among the four cases. Thus, the corresponding
parameters a1 and a2 are calculated as a1 ≈ −0.9444
and a2 ≈ 0.1736. The other system parameters of the
TEH are defined as: ζ = 0.6, ω = 1.0, θ = 0.5,
ζe = 0.5, me = 0.1, ce = 0.5, f = 3.0. In each case,
above parameter values are default, and the new value
will be given if any of them is changed.

To verify the effectiveness of the method of multiple
scales, the numerical displacement amplitude and out-
put voltage amplitude versus the excitation frequency
are constructed by using the fourth-order Runge–Kutta
algorithm. In numerical simulations, the relationships
A2
0 = x2 + ẋ2

ω2 and B2
0 = υ2 + υ̇2

ω2
e
are used. Several

cases are plotted in Fig. 3, the approximate analytical
results derived by Eq. (42) are depicted in solid lines
and the numerical results are given in circles. It can
be seen that a good agreement can be found between
numerical simulations and analytical solutions.

In the following part, the effects of the system
parameters on the displacement amplitude A0 and the
output voltage amplitude B0 will be discussed.

Firstly, without the existence of the electromechan-
ical coupling coefficient term (θ = 0), the output volt-
age will not be discussed. As shown in Fig. 4, the dis-
placement amplitude of the TEH for θ = 0 is the tra-
ditional mechanical response curve (the dotted line in
Fig. 4). Along with the increase of θ , the interesting
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Fig. 2 a 3D surface of the potential energy function U (x) with the variation in x and x1; b potential energy function U (x) with the
variation in x for various sets of parameters x1 and x2

Fig. 3 Response of the system with the variation in excitation frequency �: a displacement amplitude A0; b output voltage amplitude
B0

phenomenon can be observed. When θ is very small,
the response curve is one continuous curve with a sin-
gle peak as indicated in Fig. 4a. Then, the increase in
the value of θ leads to the appearance of one small peak
at the right side which can be seen in Fig. 4b at Point P.
Further, the amplitude of the small peak will become
higher (PointQ in Fig. 4c); meanwhile, one closed loop
appears above the response curve in Fig. 4c, which is
the phenomenon of frequency island. This kind of phe-

nomenon also can be observed in Fig. 4d–f. The size
of the island becomes larger.

Finally, the increase in the height of the right peak
attaches to the island part, as depicted in Fig. 4g for
the case of θ = 4.7. Then, the displacement ampli-
tude from two independent parts becomes one con-
tinuous curve with two peaks, such as the case of
θ = 5.5 in Fig. 4h. And the jump phenomenon can
be observed in the right branch with increasing excita-
tion frequency�. Then, increasing θ results in the right
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Analytical analysis of the vibrational tristable energy harvester 669

Fig. 4 Displacement amplitude A0 with the variation in exci-
tation frequency � under different electromechanical coupling
coefficients θ : a θ = 0.5; b θ = 1.0; c θ = 1.5; d θ = 2.0; e

θ = 3.5; f θ = 4.5; g θ = 4.7; h θ = 5.5; i θ = 11.5. Note that
‘Uncoupled’ means θ = 0

branch degenerating to the original frequency island
and the continuous curve being below the island, as
shown in Fig. 4i for the case of θ = 11.5. The larger
value of θ will lead to the lower displacement ampli-
tude. In other words, the generated electric energy is
transformed from mechanical energy of the TEH. The

mechanical displacement will be suppressed if some
mechanical energy is extracted. Thus, the variation in
θ leads to the different dynamic response which must
induce different characteristics of the output voltage.
This will be discussed in Fig. 5.
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Fig. 5 Output voltage amplitude B0 with the variation in excitation frequency� under different electromechanical coupling coefficients
θ : a θ = 0.5; b θ = 1.0; c θ = 1.5; d θ = 2.0; e θ = 3.5; f θ = 4.5; g θ = 4.7; h θ = 5.5; i θ = 11.5

Although the output voltage amplitude B0 depends
on the response displacement amplitude A0, different
response properties are indicated in Fig. 5. In the limit
of small θ , the curve of output voltage amplitude B0

is one independent branch, as shown in Fig. 5a, b.
With the increase in θ , the peak value of output volt-

age amplitude B0 also becomes larger. Meanwhile, the
original curve is separated into two branches, which is
also similar to the phenomenon of frequency island, as
the cases indicated in Fig. 5c–f. The size of the island
part becomes larger with the increase in θ ; finally, the
two branches attach to each other at the critical case
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Analytical analysis of the vibrational tristable energy harvester 671

θ = 4.7, which can be seen in Fig. 5g. Then, the curve
of output voltage amplitude degenerates to one contin-
uous curve, such as the case of θ = 5.5 in Fig. 5h. The
peak value still almost remains unchanged. However,
when θ is too large, the peakvalue of B0 decreases grad-
ually, and meanwhile the phenomenon of frequency
island is induced, which can be seen in Fig. 5i. This
conclusion is the same as that from nonlinear energy
harvesters with a pure load resistance [2]. Thus, the
selection of the electromechanical coupling coefficient
θ is important for improving the efficiency of the energy
harvester.

Then, the effect of ωe on the output voltage ampli-
tude B0 of the TEH with the RL resonant circuit is
shown in Fig. 6a. Along with the variation of the detun-
ing parameters� andωe, the change of the output volt-
age amplitude B0 is shown in Fig. 6b. From the 3D
plot, it can be found that with a small value of ωe, two
peaks could be found in the curve of output voltage
amplitude B0. Specifically, reducing the value of ωe

improves the level of output voltage amplitude B0, as
shown in Fig. 6a. For a larger value of ωe, the curve of
output voltage amplitude B0 has one peak in the case of
ωe = 2.8 as shown in Fig. 6a. Meanwhile, decreasing
the value of ωe makes the output voltage curve tend to
show the other peak, such as the cases of ωe = 1.5 and
ωe = 1.2 in Fig. 6a. Further, the height of the new peak

increases gradually, and the value of this peak on the
right side is greater than the peak on the left side at last,
which can be seen clearly from the case of ωe = 1.0 in
Fig. 6a.

Correspondingly, the direct result by numerical sim-
ulation for � = 1.5 is plotted in Fig. 7 to verify the
result in Fig. 6. The time histories of voltage υ(t) for
the cases of ωe = 1.0, ωe = 1.5, ωe = 2.0, ωe = 2.8
are plotted, respectively. It can be seen that the maxi-
mum value of υ(t) decreases with the increase in ωe,
which is consistent with the results in Fig. 6a.

Furthermore, the dependence of the output voltage
amplitude B0 on the damping coefficient ζe is exam-
ined. The corresponding results are shown in Fig. 8.
The increase in damping coefficient ζe induces the
similar phenomenon as shown in Fig. 6, except that
the frequency island phenomenon appears above on
the response curve, as shown in Fig. 8b. For a small
damping coefficient ζe, the output voltage amplitude
B0 usually will become large. However, the variation
is obvious near to the right peak of the curve of output
voltage amplitude B0, which can be seen from Fig. 8b.
And when the damping coefficient ζe is smaller, the
frequency island phenomenon can be observed on the
response curve of the output voltage amplitude, such as
the case for ζe = 0.2 in Fig. 8a. However, combining
with the phenomena in Fig. 8a, it can be found that the

Fig. 6 a Output voltage amplitude with the variation in excitation frequency � under different values of ωe, b 3D response surface of
the output voltage amplitude with the variation in � and ωe
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Fig. 7 Time histories of
voltage υ(t) for ωe = 1.0,
ωe = 1.5, ωe = 2.0 and
ωe = 2.8 in the case of
� = 1.5
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Fig. 8 a Output voltage amplitude with the variation in excitation frequency � under different values of damping coefficient ζe; b 3D
response surface of the output voltage amplitude with the variation in excitation frequency � and damping coefficient ζe

effect on the left peak is weak. Thus, the appropriate
choice of the damping coefficient ζe is important for
improving the output voltage. Therefore, one certain
ζe has an optimal excitation frequency for maximizing
the output voltage of the TEH with the RL resonant
circuit.

Then, the time histories of voltage υ(t) are plotted in
Fig. 9 for� = 2.0 to verify the results in Fig. 8. As can

be seen that in Fig. 9 for the cases of ζe = 0.2, ζe = 0.5,
ζe = 0.8, ζe = 1.1 and ζe = 1.4, the maximum value
of υ(t) decreases with the increase of the damping ζe,
which is consistent with the results in Fig. 8a.

Under certain value of electromechanical coupling
coefficient θ , the displacement amplitude and the out-
put voltage amplitude versus the excitation amplitude f
and frequency � are plotted in Fig. 10. The interesting
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Fig. 9 Time histories of
voltage υ(t) for ζe = 0.2,
ζe=0.5, ζe = 0.8, ζe = 1.1
and ζe = 1.4 in the case of
� = 2.0
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Fig. 10 3D response
surface of the system with
the variation in the
excitation amplitude f and
frequency �: a
displacement amplitude for
θ = 0.05; b displacement
amplitude for θ = 0.5; c
output voltage amplitude for
θ = 0.05; d output voltage
amplitude for θ = 0.5
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Fig. 11 Response of the system with the variation in � under
different excitation amplitudes f . a Displacement amplitude A0
for θ = 0.05; bDisplacement amplitude A0 for θ = 0.5; c output

voltage amplitude B0 for θ = 0.05; d output voltage amplitude
B0 for θ = 0.5

phenomenon can be found. For θ = 0.05, the displace-
ment amplitude A0 bends to the higher frequency direc-
tion; however, the part of displacement amplitude A0

which tends to the higher frequency direction shows the
novel phenomenon for θ = 0.5. This also leads to the
separation of output voltage amplitude into two parts
as depicted in Fig. 10d, actually, which is also induced
by the appearance of frequency island phenomenon.

In order to further discuss the response phenomenon
in Fig. 10, several values of the excitation amplitude
f are selected, and the corresponding displacement
amplitudes and the output voltage amplitudes of the
TEH with the RL resonant circuit under different exci-
tation amplitudes are calculated in Fig. 11. Naturally,
the increase of f improves the input energy and the
corresponding output voltage will increase. It can be
found from Fig. 11a that increasing f results in the
response property from the traditional response curve
becoming the response with jump phenomenon for the
case of θ = 0.05. When θ = 0.5, the existence of
the frequency island phenomenon with the increase
in the excitation amplitude could be observed, such
as f = 3.5; further, the two branches (continuous
curve and frequency island) are attached to each other

( f = 3.8 in Fig. 11b), and finally, the curve of dis-
placement amplitude reverts to the original continuous
curve.

Correspondingly, the novel phenomenon also
appears at the output voltage curve as shown inFig. 11c,
d. The peak value of the output voltage amplitude B0 on
the left side increases quickly alongwith the increase in
the excitation frequency for the case of f = 4.0. This
peak reaches the highest point near to� = 2.0. Finally,
along with the increase in the excitation frequency, this
branch decreases gradually, while the output voltage is
greater than the other branch. For a larger value of θ ,
the similar phenomenon is observed. The difference is
that the frequency island phenomenon appears above
themain branch for a large value of f , such as the cases
of f = 3.5 and f = 3.7 in Fig. 11d.

Furthermore, for verifying the analytical results in
Fig. 11, the time histories for the case of � = 2.0 and
θ = 0.05 are taken as an example, which are shown
in Fig. 12. It could be seen that with the increase in
the excitation amplitude f , the value of voltage υ(t)
increases, which is the same as the response result in
Fig. 11a.
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Fig. 12 Time histories of
voltage υ(t) for f = 1.0,
f = 2.0, f = 3.0 and
f = 4.0 in the case of
θ = 0.05 and � = 2.0
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It can be found that the excitation amplitude f and
electromechanical coupling coefficient θ are the utmost
important factors for the output voltage. The selection
of parameter pairs ( f, θ ) is considered for enhancing
the energy harvesting performance of the TEH with
the RL resonant circuit. For a considerably large out-
put voltage, fixed here Bmax = 0.5, the selection of the
parameter pairs ( f, θ ) is shown in Fig. 13. Above the
critical line, under the corresponding values of ( f, θ ),
the maximum output voltage is greater than 1.0, which
can be verified from the results shown in Fig. 11. For
the case of f = 2.0 in Fig. 11d, the maximum out-
put voltage is smaller than 0.5, which can be found in
Fig. 13 that point P1 lies below the critical line. For the
cases of f = 3.0, f = 3.5 and f = 3.7, the maxi-
mum output voltage is greater than 0.5. As shown in
Fig. 13, pointsQ1,M1 andN1 lie in the region satisfied
Bmax > 0.5. For the case of θ = 0.05( f = 3.0 and
f = 4.0), the corresponding output voltage is greater
than 0.5 as shown in Fig. 11c. This is consistent with
the results in Fig. 13, as pointsM0 andN0 are above the
critical line. On the contrary, for the cases of f = 1.0
and f = 2.0, points P0 and Q0 are below the critical
line, which can be found from Fig. 11c. That is the out-
put voltage amplitude in these two cases is smaller than
0.5. Therefore, the parameter pairs which lie above the
critical line are better for high-efficiency energy har-
vesting.

Fig. 13 Selection of the excitation amplitude f and electrome-
chanical coupling coefficient θ . The critical line in red separates
small (below the line) and large (above the line) voltage outputs.
(Colour figure online)

Finally, the effect of the detuning parameter σ1 on
the displacement amplitude and the output voltage of
the TEH with the RL resonant circuit is shown in
Fig. 14. Note that the local minimum of the displace-
ment amplitude A0 appears approximately to� = 1.0.
The reason is that the detuning parameter σ1 is zero.
This viewpoint can be verified by examining the results
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Fig. 14 Response of the system with the variation in � under
different detuning parameters σ1. aDisplacement amplitude A0;
boutput voltage amplitude B0 (ζ = 0.6, θ = 0.5,a1 = −0.9444,
a2 = 0.1736, ζe = 0.1, me = 0.1, ce = 0.5, σ1 = 1.0 and
f = 1.0)

in Fig. 14.With the variation in the value of σ1, the crit-
ical point � for the appearance of the local minimum
amplitude also increases. Correspondingly, the peak of
A0 reduces along with the increase in detuning param-
eter σ1. However, the peak output voltage amplitude
improves along with the increase of σ1.

4 Conclusions

This paper presents a theoretical framework to analyze
and predict the dynamic responses and the energy har-

vesting performance of the vibrational tristable energy
harvester with a RL resonant circuit. Based on the
method of multiple scales, the approximate analyti-
cal solutions of the steady-state displacement and out-
put voltage are derived. Rich dynamic phenomena are
induced by the variable parameters of the harvester.
Results demonstrate that the excitation amplitude and
the electromechanical coupling coefficient play signif-
icant roles for the energy harvesting performance. In
addition, the selection of the parameter pairs (the exci-
tation amplitude and the electromechanical coupling
coefficient) is analyzed. Overall, the influence mecha-
nismof the excitation conditions and the systemparam-
eters on the dynamic responses is revealed. In the future
work, the optimization design of the both structural and
electrical parameters of the tristable energy harvester
will be performed.
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