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Abstract This paper presents a comprehensive review
on different theoretical elastic and viscoelastic founda-
tion models in oscillatory systems. The review cov-
ers the simplest foundation models to the most com-
plicated one and fully tracks the recent theories on
the topic of mechanical foundations. It is fully dis-
cussed why each theory has been developed, what lim-
itations each one contains, and which approaches have
been applied to remove these limitations. Moreover,
corresponding theories about structures supported by
such foundations are briefly reviewed. Subsequently,
an introduction to popular solution methods is pre-
sented. Finally, several important practical applica-
tions related to the linear and nonlinear foundations
are reviewed. This paper provides a detailed theoretical
background and also physical understanding from dif-
ferent types of foundations with applications in struc-
tural mechanics, nanosystems, bio-devices, composite
structures, and aerospace-based mechanical systems.
The presented information of this review article can
be used by researchers to select an appropriate kind of
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foundation/structure for their dynamical systems. The
paper ends with a new idea of intelligent foundations
based on nanogenerators, which can be exploited in
future smart cities for both energy harvesting and self-
powered sensing applications.
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1 Introduction

Foundations are important parts of physical systems
due to their wide range of applications in different
science and engineering areas including mechanical,
civil, electrical, nanotechnology, and even biotechnol-
ogy. They are highly attractive for researchers because
of their crucial applications in different systems. One
of the principle focuses of researchers is to investigate
dynamical behavior of foundations. Foundations play
a pivotal role to preserve structural system under oscil-
lations. In fact, it is inevitable to utilize foundations in
a structural system to avoid mechanical failure. There-
fore, three main criteria should be considered by engi-
neers and researchers when they design a system under
any type of oscillations. First, it is highly necessary to
develop a continuum model for the structure; second,
it is inescapable to develop a mathematical model for
the foundations of the system; and the last one is a full
model of the whole structural system, which considers
the interaction between the foundation and the system
rested on it.

Depending on the applications of the considered
structural system, researchers have proposed several
types of modelings for foundations. The first and sim-

plest presentation for a foundation was proposed by
Winkler. This model is known as the linear elasticWin-
klermodel [1]. Themain shortcoming of the linear elas-
ticmodel is its failure in the presentation of viscoelastic
behavior ofmaterials. Therefore, a viscoelastic element
has been added to the foundation models proposed by
Winkler. Different arrangements can be assumed for
the elastic and viscoelastic elements of a foundation,
and accordingly, the original model of Winkler was
improved by researchers with proposing several novel
foundation models such as Kelvin–Voigt, Maxwell,
Zener, Poynting-Thomson, and Burger [2–4]. In the
aforesaid models, elements of foundations show inde-
pendent reactions to any external load. In addition, they
react uniformly to an applied load whether the load is
uniform or not; and the deflection of top layer of foun-
dation is discontinuous (Fig.7).

Two-parameter models are known as the models
that a layer connects top ends of foundation’s element
to each other. Accordingly, the force–displacement
functions for this type of foundations are continuous
(because the top ends of elements are joined by a shear
layer—see Fig.7). The main examples of these types
of foundations include Filonenko–Borodich [5], Het-
enyi [6], Pasternak [7], Vlasov [8], and Reissner [9]
models. Filonenko–Borodich, Hetenyi, and Pasternak
models have been developed based on Winkler model,
while Vlasov and Reissner models have been proposed
in accordance with the theory of the elastic contin-
uum model [10]. According to the type of study or
type of foundation–structure, all of these models can
be assumed to be continuous or discrete. The multilay-
ered foundations have been proposed to model foun-
dations with different layers. The multilayered mod-
els are mostly used in studying railway track vibra-
tion, soil interaction vibration, and ground-borne vibra-
tion. In addition, partial and discontinuous foundation
models can be implemented in modeling structures,
which are partially supported by a foundation. Further-
more, a few approaches have been utilized in order to
strengthen foundations against settlements. Therefore,
reinforced foundation has been proposed by adding
reinforcements to a foundation. Floating foundations
are designed to isolate ground-borne vibrations.

The above-mentioned foundations have the same
reactions in both compression and tensile conditions.
In fact, this is not the actual behavior in most of the
practical cases. As a result, tensionless and bilinear
models have been suggested [11,12]. In these mod-
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Elastic and viscoelastic foundations 855

els, possible separations can occur between supporting
and supporter, which cause nonlinearity in the response
of foundation even in the case of having a founda-
tion with linear nature. The reaction of material in
large deflections and under heavy loading has prompted
the researchers to use nonlinear models [13]. Most of
the materials have a nonlinear response with respect
to the tension/compression loading; in the small dis-
placements, however, the linear models can provide an
acceptable accuracy. In general, the nonlinear model
is more practical and more realistic [14]. Also, friction
nonlinearity has been observed in the behavior of foun-
dations due to foundation fillers. Another important
case in the hierarchy of foundations evolution is ran-
domness feature. Uncertainty in the foundation param-
eters is introduced as one of the reasons, which results
in random vibrations. Randomness has been consid-
ered along the continuous foundation and in the stiff-
ness, damping, and loss factor of them [15–17]. Non-
linear fractional foundation can be introduced as the
last model, which can be used for modeling different
types of substrates. This model, in addition to load-
dependent properties, which are presented by nonlinear
elements, describes frequency-dependent properties of
foundations by fractional elements [18].

The category of structures includes a beam/string
and a membrane/plate/shell on a foundation. The prob-
lem of a beam on a foundation is mostly used for mod-
eling railway tracks, bridges, pavements, and runways,
among which the railway track problem is the most
wide-spreading topic [19,20].Aplate resting on a foun-
dation can describe the behavior of panel element, floor
systems, and slab foundations. Also, the behavior of
rotor disks, parts of a clutch, and housings of differ-
ent electrical as well as mechanical equipment can be
presented by the plate theory. Liquid storage tanks and
pipelines, to name but a few, are the problems which
can be modeled by a shell on a foundation. Strings and
membranes are widely used in biomechanics and in
modeling of music instruments. Another possible type
is the oscillations of nanosystems on linear or nonlinear
foundations.

There are a few review studies pertinent to the
present topic, i.e., the history of beam/plate on elas-
tic foundation as well as interaction between soil and
structure were reported in [21–23]. Fryba [24] covered
the content of beams andplates on foundation subjected
to moving loads, till 1999. However, a review paper on

the study of foundation theories and their applications
has not been addressed so far.

The principal objective of this paper is to provide
a comprehensive survey on the different theories of
foundations, from the simplest to the evolution of the
most complicated one, nonlinear fractional founda-
tions. Accordingly, the present review is started from
the simplest presentation of a foundation to the most
complicated model. Types of structures, the practical
usage of the models, and impediments for the appli-
cations of each one are comprehensively provided. In
addition, a few solution methods are presented [25].
Finally, a few attractive, state-of-the-art field studies of
flexible structures resting on elastic/viscoelastic foun-
dations are introduced.

2 Theoretical foundation models

2.1 Linear elastic and viscoelastic models

2.1.1 Winkler model

Winkler first modeled an Euler–Bernoulli beam on an
elastic foundation as a railroad track [1]. This model
of foundation is based on the hypothesis that the every
point’s reaction is proportional to the point’s displace-
ment, and the springs are linear and independent as
described in Eq. (1). The reaction force of foundation
is [1]:

p (x, t) = kw (x, t) , (1)

where w(x, t) is the vertical displacement and k is the
stiffness of linear springs. As a result, this theory leads
to the same answer in both compressions and tensions.
This kind of mechanical behavior is called bilateral
(bilateral foundation) (Fig. 1).

In the mathematical modeling, the method of
describing the mechanics of a foundation is based on
idealizing its behavior. The linear one-parametermodel
ofWinkler is the simplest one; however, due to the vari-
ous properties of different materials and soils (granular
soils, clay soils, wet soils, pressured soils, etc.), more
parameters should be involved to represent the behavior
of materials used as a foundation. The following mod-
els, presented in the next parts, are developed based
on the Winkler model. In fact, researchers have started
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Fig. 1 Winkler model

with theWinkler theory and have inserted more param-
eters and elements into the Winkler model in order to
present a more accurate reaction behavior for a struc-
tural foundation.

2.1.2 Kelvin–Voigt model

One weakness of Winkler model is the lack of vis-
coelastic elements. Kelvin–Voigt model includes the
viscoelastic behavior and presents the behavior of a
media with a series of discrete springs parallel with
dampers (as shown in Fig. 2). In another word, Kelvin–
Voigt enters the effects of viscoelasticity into the elas-
tic Winkler model. The relation between the restoring
force and displacement is found using the following
relation [4]:

p (x, t) = kw (x, t) + cẇ (x, t) , (2)

where c is the damping of viscous elements. The
Kelvin–Voigt model has been used in several works
including nonlinear frequency analysis of beam on
Kelvin–Voigt foundation, finite element formulation of
infinite beam on Kelvin–Voigt foundation, and wave
propagation study of an infinite beam on the founda-
tion [26–28].

2.1.3 Maxwell model

In this model, a series of springs along with dampers
are placed as shown in Fig. 3. The reaction force of
the foundation can be calculated from the following
equation [4]:

p(x, t) = k�1(x, t) = c�̇2(x, t)
w(x, t) = �tot (x, t) = �1(x, t) + �2(x, t)

}

⇒ ∂w(x, t)

∂t
= 1

k

∂p(x, t)

∂t
+ 1

c
p(x, t), (3)

Fig. 2 Kelvin–Voigt model

Fig. 3 Maxwell model
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where p(x, t) is the foundation reaction, �1(x, t) and
�2(x, t) are the displacement changes of spring ele-
ments and damper elements, respectively (presented in
Fig. 3). Hatada et al. modeled the assembly of braces
and viscous dampers, which are used in tall buildings
by themodel ofMaxwell. In their analysis, theMaxwell
model was selected because of the arrangement of the
braces and dampers [29]. Soukup and Volek used the
Maxwell model to describe viscoelastic behavior of
plates, and then, they conducted stress analysis for a
thin plate [30].

2.1.4 Zener model

Zener model—also known as standard linear solid
(SLS) model—consists of the Winkler and Maxwell
models in parallel (Fig. 4) with the following force–
displacement relation [4]:

p(x, t) = k2�2(x, t) + k1�s1(x, t) = k2�2(x, t) + c1�̇d1(x, t)
w(x, t) = �tot (x, t) = �s1(x, t) + �d1(x, t) = �2(x, t)

}

⇒ ∂w(x, t)

∂t
=

∂p(x,t)
∂t + k1

c1
p(x, t) − k1k2w(x, t)

k1 + k2
. (4)

Muscolino and Palmeri [31] used SLS model in com-
bination with state space formulation to describe the
vibrations of a beam rested on a foundation; Hörmann
et al. presented the response of a beam on a foundation
with considering the generalized Zener model [32].

2.1.5 Poynting-Thomson model

This kind of foundation is built by an arrangement of
three damper and spring elements. The arrangement
can have various combinations, two of which are pre-
sented in Fig. 5.

The force–displacement relation for the first type of
Poynting-Thomson model (Fig. 5a) can be expressed
as:

p(x, t) = k1�1(x, t) = k2�2(x, t) + c2�̇2(x, t)
w(x, t) = �tot (x, t) = �1(x, t) + �2(x, t)

}

⇒ k1
∂w(x, t)

∂t
+ k1k2

c2
w(x, t) = ∂p(x, t)

∂t

+k1 + k2
c2

p(x, t), (5)

and for the second type (presented in Fig. 5b) we have:

p(x, t) = c1�̇1(x, t) = k2�2(x, t) + c2�̇2(x, t)
w(x, t) = �tot (x, t) = �1(x, t) + �2(x, t)

}

⇒ k2
∂w(x, t)

∂t
+ c2

∂2w(x, t)

∂t2
= c2

c1

∂p(x, t)

∂t

+c1 + k2
c1

p(x, t). (6)

In the above equations, p(x, t) shows the foundation
reaction force. Poynting-Thomson model is widely
used in modeling dynamic characteristics of viscoelas-
tic materials [33,34]. In fact, if the Maxwell model
became attached to a spring/damper element in series,

Fig. 4 Zener model

Fig. 5 Poynting-Thomson models a: type 1, b: type 2
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the Poynting-Thomsonmodel is achieved. In Ref. [33],
the effect of model parameters on the eigenvalues was
scrutinized; particularly, the eigenvalues were calcu-
lated for different values of k1, till k1 → ∞ in which
the Poynting-Thomson model becomes equivalent to
the Maxwell model.

2.1.6 Burger model

Burger model considers four spring and damper ele-
ments, which can be placed in different combinations.
One well-known combination is the placement of the
Kelvin–Voigt model series with the Maxwell model
(presented in Fig. 6). The restoring force of the foun-
dation can be calculated as [4]:

p(x, t) = k1�2(x, t) = c1�̇2(x, t) = k2�3(x, t) + c2�̇3(x, t)
w(x, t) = �tot (x, t) = �1(x, t) + �2(x, t) + �̇3(x, t)

}

⇒
[

∂2

∂t2
+

(
k1
c1

+ k1
c2

+ k2
c2

)
∂

∂t
+ k1k2

c1c2

]
p(x, t)

=
[
k1k2
c2

∂

∂t
+ k1

∂2

∂t2

]
w(x, t). (7)

Displacement, damping, and stiffness of the elements
are shown in Fig. 6. Dey et al. showed the excellent
potential ofBurgermodel in presenting time-dependent
behavior of continuum media subjected to cyclic loads
[3]. They observed a satisfactory agreement by per-
forming a curve fitting between the observed results
and results from mathematical model. After that, they

developed the inverse analysis formulation in order to
estimate burger’s parameters [35].

Because of the fact that Winkler model uses only
one parameter—as outlined previously—in the model-
ing foundation reactions, this model is known as one-
parameter model. One-parameter model does not con-
sider the interactions between springs, and it reacts uni-
formly whether it is subjected to a uniform load or
not, i.e., every point of this model reacts proportion-
ally to the load, which is applied to the point. It should
be noted that, in one-parameter model, the point’s
displacement is independent of the load applied to
other points (Fig. 7). Consequently, inaccurate results
emerge in practical cases. Kelvin–Voigt, Maxwell,
Zener, Poynting-Thomson, andBurgermodels have the
same shortcoming. Therefore, two-parameter founda-
tions are presented to address the above issue [2]. The
two-parametermodel refers to the foundations inwhich
a top layer has connected the ends of springs or dampers
to each other. As a result, continuity is created in the
displacement and restoring force of adjacent points
(Fig. 7b). Different assumptions and constrains have
been considered for the top layer of the two-parameter
model, and based on them, several two-parametermod-
els have been developed such as Filonenko–Borodich,
Hetenyi, Pasternak, Vlasov, and Reissner.

Filonenko–Borodich, Hetenyi, and Pasternak mod-
els are developed based onWinkler model. These mod-
els have been initially developed based on Winkler
theory; and by adding some elements and constants,

Fig. 6 Burger model

Fig. 7 a Winkler foundation, b two-parameter foundation
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the continuous functions for displacement and restor-
ing force are provided. Vlasov and Reissner models are
originated from the continuousmodel, and by the use of
some constrains, they provide the force–displacement
relation for the foundation.

2.1.7 Filonenko–Borodich model

In this model, the reaction of springs is not independent
and the ends of springs are connected to each other by a
tensioned, massless membrane. The equilibrium equa-
tion in the direction of z, which represents the reaction
of the foundation, is [5]:

p (x, t) = kw (x, t) − T
∂2w (x, t)

∂x2
, (8)

where T is the tensile force of the membrane. A
schematic sketch of the Filonenko–Borodich model is
depicted in Fig. 8.

2.1.8 Hetenyi model

The reaction of springs is not independent in this model
either. An Euler–Bernoulli beam (in one-dimensional
problems) or a thin plate (in two-dimensional prob-
lems) provides the connection between the springs of
Winklermodel. Thebeamor theplate is shown inFig. 9,
which is consideredwithoutmass and has only bending
reaction.

The relationbetween force anddisplacement through
this foundation is [6]

p (x, t) = kw (x, t) + k1
∂2w (x, t)

∂x2
, (9)

where k1 = E I , the flexural rigidity of the beam, or
k1 = D is flexural rigidity of the plate [6].

2.1.9 Pasternak model

In this section, the most well-known two-parameter
foundation model (the Pasternak model) is described.
In the Pasternak model, the foundation elements are
assumed to be connected by a layer, which acts as a
horizontal linkage of vertical elements. The elastic, vis-
coelastic, and generalized Pasternak models are intro-
duced in this section.

2.1.9.1 Elastic Pasternak model In the Pasternak
model, an elastic shearing layer connects the end top
of springs (Fig. 10). The layer only undergoes lateral
shear deformations.

In order to derive the restoring force of the Pasternak
foundation, an element of shearing layer is considered
as shown in Fig. 11.

It is assumed that the foundationmaterial is homoge-
nous and isotropic, accordingly, we will have:

{
τxz = G ∂w(x,y)

∂x
τyz = G ∂w(x,y)

∂y
, (10)

Fig. 8 Filonenko–Borodich
model

Fig. 9 Hetenyi model
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Fig. 10 Elastic Pasternak
model

Fig. 11 An element of shearing layer

in which G is the coefficient of viscosity due to shear
deformations. According to the Newton’s law for elas-
ticmaterials, the shear force per unit length of the shear-
ing layer is as below:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Nx =
1∫
0

τxzdz =G ∂w(x,y,t)
∂x

Ny =
1∫
0

τxzdz =G ∂w(x,y,t)
∂y

. (11)

The force–displacement relation is achieved by writing
the equilibrium equation of forces in the direction of z
as below[7]:

p (x, y, t) = kw (x, y, t) − G∇2w (x, y, t) . (12)

2.1.9.2 The viscoelastic Pasternak In this section, the
concept of the Pasternak foundation is extended to the
case of viscoelastic one. Therefore, elastic elements are
stood in parallel with viscous elements, and instead of
the elastic shearing layer, a viscoelastic layer is taken
into account (depicted in Fig. 12).

Again, an element of viscoelastic layer is consid-
ered as Fig. 11. For this case, the shear forces through
the unit length of sharing layer are obtained from the
Newton’s law for viscoelastic materials as below:

{
Nx = μ

∂2w(x,y,t)
∂x∂t

Ny = μ
∂2w(x,y,t)

∂y∂t

, (13)

in which μ is the coefficient of elastic resistance due to
shear deformations. The force–displacement relation
in the direction of z is as follows:

p (x, y, t) = kw (x, y, t) + c
∂w (x, y, t)

∂t

−μ
∂

∂t
∇2w (x, y, t) . (14)

2.1.9.3 The generalized Pasternak Younesian and Kar-
garnovin added momentum reaction to the viscoelastic
Pasternak model and called the model as the general-
ized Pasternak viscoelastic foundation. The momen-
tum transmitted from foundation to the structure is
expressed as [36]:

M (x, t) = kφφ (x, t) + cφ

∂φ (x, t)

∂t
, (15)

Fig. 12 Viscoelastic
Pasternak model
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where kφ and cφ are the rotational stiffness and damp-
ing, respectively. The relation of force–displacement
can be written in the form of Eq. (14) (Fig. 13).

Zhaohua and Cook [37] introduced the use of two-
parameter foundations under beam elements. They
related the second parameter to shear deformations or
bending properties and presented the following gen-
eral equation for the restoring force of two-parameter
foundations:

p (x, t) = kw (x, t) − k1
∂2w (x, t)

∂x2
, (16)

where k is Winkler’s modulus and k1 is the second
parameter related to the interactions between springs.
Equation (16) is the presentation of the Pasternak
model. It was concluded that when k1 is not large,
the Winkler foundation can provide a reliable result.
On the contrary, when k1 is large and especially is
close to k, the use of Winkler model leads to con-
siderable error [37]. Since the introduction of two-
parameter foundation models, the Pasternak model has
attracted the most attentions among different types of
two-parameter foundations, and it is considered as the
most generalized two-parameter foundation [38–41].
Wang and Stephens investigated the effect of shear
layer by comparing the natural frequencies of a beam
resting on the Winkler and Pasternak foundation and
demonstrated that the shear layer increases the fre-

quencies [42]. Shen [43] studied the buckling and post-
buckling phenomena for orthotropic rectangular plates
resting on a Pasternak foundation. They showed that
the post-buckling phenomenon is strongly influenced
by the foundation parameters.

2.1.10 Kerr (three-parameter) model

Three-parameter model was suggested by Kerr [44]
and also known as the Kerr-type foundation. The foun-
dation was introduced as the development of Paster-
nak model in which the foundation is consisted of
a beam embedded into an elastic media as presented
in Fig. 14. Accordingly, three independent parameters
represent the restoring force of the foundation that is
c (kN/m3), k (kN/m3), andG (kN/m). By using these
three parameters, a wide range of viscoelastic mate-
rials can be mathematically modeled. The deflection
response of the foundation can be achieved by solving
the following equation [44]:(
1 + k

c

)
p (x, t) −G

c
∇2 p (x, t) = kw (x, t)

−G∇2w (x, t) , (17)

where c and k are the constants of elastic springs, G is
the flexural rigidity, and w(x, t) is the displacement of
foundation surface. The foundation was mainly used to
model the behavior of flexible soil and can present the
boundary condition between a structure and soil.

Fig. 13 Generalized
viscoelastic Pasternak
foundation under a
Timoshenko beam [36]

Fig. 14 Kerr-type
foundation[44]
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Avramidis and Morfidis accomplished a compari-
son between the response of one-, two-, and three-
parameter foundationmodels and showed that theKerr-
type foundation provides more realistic results for the
considered case [45]. Hetenyi [46] presented the gen-
eral procedure for analyzing beams on Kerr-type foun-
dation using an analytical scheme. The procedure pre-
sented by Hetenyi can provide dynamic response of
a beam on Kerr foundation subjected to any kind of
load and boundary conditions. Based on exact solution
of the governing differential equation, Morfidis formu-
lated the problem of a Timoshenko beam on the three-
parameter foundation inmatrices form and investigated
the natural frequency of the vibrations of the structure
[47,48]. Limkatanyu et al. [49] derived the stiffness
matrix for the foundation based on the virtual force
principle. Wang and Zhang used the three-parameter
foundation to model the adhesive layer between curved
beam structures and fiber-reinforced polymer (FRP)
plates [50]. They also used the three-parameter model
to satisfy the boundary condition of zero shear stress
at the edge of adhesive joints [51]. Wang et al. studied
parametric instability of an inextensional beam taking
into account Winkler, Pasternak, and Kerr foundations
[52].

2.1.11 Half-space model

The half-space foundation has been proposed for
the modeling of infinite/semi-infinite problems. Based
on the Hertz contact theory, when the contact sur-
face is small compared with the problem dimensions,
the foundation medium can be presented by a half-
space medium. A half-space medium is considered as
Fig. 15 (z > 0,∞ < x < ∞,∞ < y < ∞). These
kinds of media are chosen based on the load type [e.g.,
Fig. 15 is appropriate for a normal loading F(x, y, t)].

The equation which governs the motion of an
isotropic elastic half-space in the direction of x and
subjected to the load of F(x, y, z, t) is [24] (the same
relation can be written in y and z directions)

(λ + G)
∂θ

∂x
+ G∇2ux + Fx = ρ

∂2ux
∂t2

, (18)

where

– ux (x, y, z, t): displacement in x direction
– ρ: density of the media
– ∇2: Laplace operator

Fig. 15 System of a half-space medium [24]

– Fx (x, y, z, t): force per unit volume in the direction
of x

– θ : volume relative change
– λ = νE

(1+ν)(1−2ν)
: Lame’s constant

– G = E
2(1+ν)

: shear modulus

In order to simplify this type of foundation, a few
idealized models have been presented by researchers
with consideration of elastic continuum model. These
models are isotropic elastic continuum, anisotropic
elastic continuum, and inhomogeneous elastic contin-
uum. Study of different structures such as beams and
plates on half-space foundation has attracted attentions
of vibration engineers. But these simplified models
are still complicated to be used. The following two-
parameter models are also developed based on contin-
uum theory, which can provide the continuity between
the spring’s elements, and are usually more preferable
than the half-space model.

2.1.12 Vlasov model

The Vlasov model is also considered as a two-
parameter foundation. This method simplifies the
model of an elastic continuous medium by imposing
a few constraints on the top layer. Using the con-
straints and variational method, Vlasov presented a
relation similar to Eq. (16) as the force–displacement
relation of a continuous medium. Here, a summary for
the case of Vlasov model is presented [53]. Consider-
ing Fig. 16 as the case of a plane strain of the elastic
layer in x-z plane, the displacement components are as
below:

u(x, z) = 0, w(x, z) = w(x)h(z), (19)
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where the function h(z) provides the vertical variations
of displacement. For a linear variation case, the func-
tion can be considered as:

h(z) = 1 − z

H
, (20)

in which H is the vertical thickness of elastic medium.
By the use of stress–strain relation and the Lagrange’s
principle of virtual work, the force–displacement rela-
tion of the Vlasov foundation can be expressed as:

p(x) = kw(x) − k1
d2w(x)

dx2
, (21)

in which

k = E0(
1−v20

) H∫
0

(
dh(z)
dz

)2
dz, k1 = E0

2(1+v0)

H∫
0

(h (z))2 dz

E0 = Es

(1−v2s )
, v0 = vs (1 − vs)

,

(22)

where Es is the elastic modulus and vs is the Poisson’s
ratio of elastic media. The procedure to achieve the first
and second parameters of Vlasov model also can pro-
vide a general understanding about the nature of shear
and elastic modulus used in the Pasternak and other
two-parameter models. Mullapudi and Ayoub showed
the importance of considering the second parameter
in the mathematical modeling of soil reaction forces.
They also presented an iterative algorithm in order to
calculate parameters of a soil medium, which are pre-
sented by Vlasov and Pasternakmodel [54]. Ozgan and
Daloglu used finite element analysis to study vibra-
tions of a plate on Vlasov foundation [55]. In their

considered vibrating system, the Vlasov model was
used to present the interactions between soil and the
plate.

2.1.13 Reissner model

Reissner model is also developed to make the half-
space model less complicated. It is based on the
assumption that all the stresses in z-plane of a soil layer
(as presented in Fig. 16) with thickness of H are zero:

σx = σy = τxy = 0. (23)

Also, the following constraints on the displacements of
the contact and bottom surfaces of the foundation are
considered as:

u|z=0 = 0; u|z=H = w|z=H = 0. (24)

Based on the assumption of elastic as well as isotropic
material, the following relation is derived from the gov-
erning equations of a continuum medium [53]:

c1w (x, y, t) − c2∇2w (x, y, t) = p (x, y, t)

− c2
4c1

∇2 p (x, y, t) , (25)

in which c1 = E
H , c2 = HG

3 and E,G, and H are
Young’s modulus, shear modulus, and thickness of
foundation, respectively. Zhangdemonstrated the supe-
riority of using Reissner model over using Winkler
model by studying contacts between a beamand a foun-
dation [56]. Nobili used the Reissner foundation model
as the mathematical model of soil media [57].

Fig. 16 Vlasov model
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2.2 Discrete models

All of the above-mentioned models describe continu-
ous foundations; however, the foundation can be pre-
sented in a discrete form. Railway track, for example,
is a structure, which is actually supported by a discrete
foundation, and in the case that the length of considered
system is finite, the discrete model is more appropriate.
On the contrary, for the infinite problem, the founda-
tion is usually assumed to be continuous. Therefore,
all of the presented theories for different models can
be expanded to the discrete models. The reaction force
of discrete Winkler foundation, which contains linear
springs, can be described by the following equation:

p (x) = k
n∑

i=1

w (xi ) δ (x − xi ), (26)

in which xi is the location of i th spring and δ is the
Dirac function (Fig. 17).
And for the Kelvin–Voigt model, the relation can be
expressed as:

p (x) = k
n∑

i=1

w (xi ) δ (x − xi )+c
n∑

i=1

ẇ (xi ) δ (x − xi ).

(27)

The reaction force can be developed for the other
foundation models (such as Maxwell and Poynting-
Thomson) (Fig. 18).

Over time, due to settlements and decompositions,
the foundations (especially soils) act like a multilayer
model in which the properties of each layer are differ-
ent. In this case, multilayered models have provided
more realistic responses than single-layered or contin-
uous half-space models. In the next section, we discuss
multilayered models.

2.3 Multilayered models

Based on the type of analysis, structure/foundation,
and range of frequency, the number of considered
layers varies in the mathematical/numerical model-
ing of a foundation. Single-layer model is utilized
when the subgrade is rigid or its stiffness is much
larger than the stiffness of the considered founda-
tions. For analysis of railway vibrations, the single-
layer model is implemented when the frequency of
vibration is low. Multilayered models are usually used
in the modeling of structures on soil foundation and
for high-frequency modeling of railway track. Further-
more, when the ground-borne vibration is transmitted
to nearby structures, it is necessary to consider the
lower layers in the modeling of soil/foundation inter-
actions [58].

Fig. 17 Discrete Winkler
model

Fig. 18 Discrete
Kelvin–Voigt model
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2.3.1 Two-layered model

Analyzing dynamical behavior of ballasted railway
tracks is mostly done by the implementation of two-
layered models. Generally, these models are simple,
which considers the effects of main components (rail,
rail pads, sleepers, and ballast) into mathematical mod-
eling. Researchers have used both continuous and dis-
crete two-layered models to study dynamics of bal-
lasted railway tracks [58] (Fig. 19).

The mass and stiffness of beneath layers can be
inserted into the model by the aid of three-layered and
poly-layered (more than three) models.

2.3.2 Three-layered model

For the modeling of railway track, three-layered foun-
dation models are used with taking into account the
effects of track–soil interactions, ballast mass, stiffness
as well as the damping of soil (presented in Fig. 20)
[59].

2.3.3 Poly-layered model

As the properties of soil are layered, it is best to use the
poly-layered models to describe the soil-based founda-
tions (Fig. 21). Ai and Cai have conducted research
on the poly-layered soil foundation. The layers are
assumed to be in contact, and thus, the boundary con-
dition between the layers can be presented as Eq. (28).
They first derived the stiffness matrix for a single layer,

Fig. 21 Poly-layered soil foundation [61]

and based on the boundary conditions between the lay-
ers, the matrix was then extended to n layers. The finite
element method, boundary element method, and ana-
lytical layer element method were used to solve the
considered problem [60,61].

⎡
⎢⎢⎣

− τxz
(
xi , z

−
i

)
− σxz

(
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−
i

)
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(
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−
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)
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(
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)
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(
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(
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)
u

(
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+
i

)
w

(
xi , z

+
i

)

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
i+1

. (28)

2.4 Partially distributed and discontinuous models

In the practical problems, partially distributed support-
ers and discontinuous foundations are frequently used.

Fig. 19 a Continuous two-layered model; b discrete two-layered model

Fig. 20 Three-layered
model of railway track
including ballast mass[59]
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The partial configuration of a foundation directly influ-
ences buckling load of beams/columns. Stability and
control of beams, pipes, and strings on partial foun-
dations have been examined considering the effects of
partial configuration of the foundation [62]. In the case
of stability analysis, the stability, critical velocity, and
flutter velocity of fluid conveying pipes depend on the
attachment ratio (the ratio of the length of partial foun-
dation over the entire length of the system) and also the
foundation parameters [63]. The governing equations
are usually in the form of integro-differential equations
[64]. Stojanovic [65] presented the natural frequencies,
mode shapes, and maximum deflection of beams on
Winkler/Pasternak foundations taking into account the
size and location of discontinuity (Fig. 22).

2.5 Reinforced model

Settlement is a potential phenomenon in soft founda-
tions (for example in soft soils), where shearing resis-
tance is weak. A soft substrate can experience partial or
total subsidence due to sudden and complex loadings.
For insuring a structure against settlement, the rein-
forced foundations have been introduced and utilized
(especially in order to reinforce the shearing strength).
Placement of a granular layer on top of a soft soil is
highly effective on the settlement characteristics of the
system. The study of settlement and foundation rein-

forcement is usually conducted considering the exam-
ple of a beam on a foundation.

Dey conducted a study to provide a comparison
between stress distribution in the foundation of a rein-
forced and unreinforced elastic foundation bed. He
showed that the stress distribution in the reinforced
foundation is higher andmore uniform than in the unre-
inforced one. As a result, the reinforced foundation
enhances settlement characteristics and decreases the
non-uniformness of contact stress [66]. Maheshwari et
al. studied reinforced foundation coated by a beam sub-
jected to a moving load. The model of a membrane
placed between two Pasternak layers was assumed as
the reinforcement, and the underlying soil was consid-
ered as Winkler model [67]. They showed that flexu-
ral vibrations are significantly influenced by geotex-
tile stiffness, granular fill compressibility, and the load
condition. Dey et al. reinforced a soft clay soil using
granular fills and geosynthetic layer. They presented
the model of a footing on soil as the model of a beam
on an elastic foundation. A footing, also known as a
shallow foundation, is used under walls and buildings
to distribute loads on a wider area and preserve struc-
tures from large concentrated loads. Different models
such as Winkler, Maxwell, Pasternak, and a tensioned
membrane were used in modeling of the foundation
[68,69] (Fig. 23).

Fig. 22 a Structure on partially distributed supporter; b foundation with discontinuity

Fig. 23 Schematic of reinforced soil bed and the simulated model [68]
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2.6 Floating model

Floating foundations (known as floating slabs in the
field of railway engineering) are used in tunnels and
urban areaswhere the vibration control/isolation is crit-
ical. This foundation can drastically reduce the trans-
mitted vibrations to nearby structures and buildings. In
the structure of a floating slab track, the rail is placed on
a concrete slab foundation by the use of rail pads, and
the slab is rested on a compressiblemat layer (themat is
known as the slab mat and usually is rubber bearings or
steel springs); and a resonance frequency is assigned to
the slab, which is calculated from the ratio of mass slab
and mat stiffness. The floating slab tracks effectively
work at the frequencies higher than the resonance fre-
quency at which the slab detached from the underlying
layer, and as a result, high reduction in vibration trans-
mission is provided. A few researchers have studied the
optimum resonance frequency using both experimen-
tal and theoretical techniques. Their research shows
that the optimal resonance frequency is in the range
of 8–16Hz [70–72]. The mathematical and simulation
of the problem is was performed by the use of contin-
uous/discrete multilayered models (Fig. 24).

2.7 Nonlinear models

In this section, nonlinear models are presented. These
models are classified according to the type of nonlinear-
ity. The types of nonlinearity (or the sources of nonlin-

earity) in the system of a flexible structure on a founda-
tion are divided into three branches: nonlinearity from
the lift-up phenomena, nonlinearity due to amplitude
dependency behavior of foundation, and nonlinearity
due to friction from the fillers, which are used in the
formation of foundation elements.

2.7.1 Lift-off nonlinearity

Bilateral model (a model of foundation which has the
same behavior in both compression and tension cases)
is not an actual representative for the most of practi-
cal cases. A foundation model may present different
behavior under tension and pressure loads; it is also
possible that it only reacts in one direction and has a
neutral behavior in the other direction. Initially, it was
assumed that a foundation can only react in compres-
sion case; therefore, the idea of tensionless foundations
or unilateral foundation was brought up. Separation
between structure and foundation is a very common
assumption in the modeling of tensionless foundations
(as presented in Fig. 25). This phenomenon results in
emergence of nonlinearity in the force–displacement
behavior.

Weitsman studied a beam subjected to amoving load
rested on a tensionless Winkler foundation. He related
the speed of load to the lift-up phenomenon and named
the speed atwhich the separation takes place as the criti-
cal speed [74].Choros andAdams [75] showed that sev-
eral lift-ups are possible in overcritical region and pre-
sented closed-form solutions for such problems, which

Fig. 24 Floating slab tracks [72,73]

Fig. 25 Different kinds of
lift-up phenomena due to
types of loading
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are valid for contact and noncontact regions. Celep et
al. [11] investigated the effect of tensionless param-
eters on the response of a beam. They showed once
such models undergo lift-ups, nonlinearity appears in
the static and dynamic analysis. In this case, the non-
linear equation described the behavior of engineering
foundations better than those of linear ones.

Farshad and Shahinpoor [12] used a bilinear elas-
tic foundation, which considers different responses for
foundation in compression and tension cases. They
extracted two equations for foundation in compression
and tension and combined them into one valid equa-
tion for the whole region under the consideration. The
problemwas solved by a perturbationmethod.An itera-
tion procedure was presented by Bhattiprolu et al. [76]
to solve lift-off problem of a beam on a viscoelastic
foundation. Based on partitioning a beam, Johnson and
Kouskoulas linearized the nonlinear equation, which
describes the problem of the beam on bilinear foun-
dations [77]. Celep used eigenvalues of a beam as an
approximation of displacement function of rectangular
plates. He employed an auxiliary function to present
the tensionless behavior of plates on Winkler founda-
tion [78]; for the circular plates, he presented a method
to solve the lift-up problem by minimizing the total
potential energy of the system [79].

Dynamic response of a beam on a tensionless two-
parameter foundation was studied by Celep et al. con-
sidering different types of boundary conditions [80].
Ahmadian et al. [81] studied vibrations of a beam rested
on a Pasternak foundation and subjected to a periodi-
cal moving load. The focus of their research was on
the reduction in separation between load and beam by
adjusting the parameters of considered foundation.

2.7.2 Cubic nonlinearity

Nonlinear foundation was first proposed to develop
more accurate model for the behavior of soil. Beaufait
and Hoadley approximated the nonlinear behavior of a
foundation using a bilinear curve. This foundation was
only active in compression condition. Then, they used
the midpoint difference method, which is an effective
approach for dealing with higher-order equations in the
presence of discontinuities [82]. Birman [83] explored
the effect of hardening nonlinearity on the natural fre-
quencies of a beam. He used a cubic relation between
the displacement and the foundation reaction as below:

p (x) = kw (x) ± k3w
3 (x) , (29)

where the positive sign stands for hardening nonlin-
earity and the negative sign stands for softening non-
linearity. Kou and Lee [84] considered a non-uniform
beam problem on nonlinear foundation and solved it
using the perturbation method. They showed that the
response of a vibrating system can be obtained from
solving linear ordinary differential equations, which
are extracted based on perturbation technique. Harden
and Hutchinson conducted a practical and numerical
study on the nonlinear behavior of foundations in order
to model seismic energy dissipation in rocking domi-
nant structures. The problem was modeled by a beam
on the nonlinear Winkler foundation [85]. Bhattiprolu
et al. [86] used a nonlinear viscoelastic foundation to
model restoring force of flexible polyurethane foams,
which are used in furniture and automotive industry.
They applied different types of excitation loading to
a structure on the foundation for two cases, namely
the bilateral foundation (the structure was stuck to the
foundation so the foundation acts same in pressure and
tension) and the unilateral foundation (the structurewas
not stuck to the foundation so the foundation acts only
in one direction) [87].

Wu and Thompson [88] considered the effect of
preload on the nonlinear behavior of the pad and bal-
last stiffness in railway track and observed that the
preload improves damping effect at low frequencies.
They observed that the supports around the load point
are stiffened; and at more than 2m away from the
load point, the effect of preload is negligible [89].
They investigated the effect of linearity and nonlin-
earity on the wheel–rail impact for soft, medium, and
hard types of rail pad. Itwas shown that the linearmodel
is not appropriate for wheel–rail impact problem [90]
because the points which are subjected to large defor-
mation react stiffer than other ones.

Nguyen et al. [91] proposed a new general model
which includes the shear characteristic of Pasternak
foundation, the linear as well as nonlinear features of
nonlinear Winkler foundation. In addition, they con-
sidered the effect of foundation mass on the maxi-
mum deflections and observed maximum deflections
are influenced by foundation mass in high velocity
range. Şimşek [92] studied a microbeam on three-
layered foundation (shear, linear, and nonlinear layers).
Effects of nonlinear foundation on the large amplitude
of a beam were examined by Kanani et al. [93]. The
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foundation includes nonlinear Winkler and shear layer
of Pasternak foundations. They concluded that increas-
ing the nonlinear parameter of foundation can magnify
nonlinearity of the system.On the other hand, linear and
shear parameters can weaken the nonlinearity. Since
the nonlinearity is influenced by the above-mentioned
parameters, the nonlinearity of vibrations can be con-
trolled or even omitted by the aid of linear and shear
parameters. Civalek stated that the effect of shear and
nonlinear parameters on the amplitude of oscillations is
highly significant in comparison with the linear model
[94]. Senalp [95] examined the influences of damping
and speed of load on nonlinear response of beams con-
sidering a nonlinear foundation.

Younesian et al. provided the response of an infi-
nite beam on nonlinear Kelvin–Voigt foundation under
harmonic moving load, investigated chaotic behavior
of beam on foundation with cubic nonlinearity, pre-
sented frequency response of an imperfect beam on
nonlinear foundation, and employed variational itera-
tion method as an analytical method to solve nonlinear
problems of beams on a foundation [96–99]. Coskun
considered nonlinearity in the governing equation due
to both cubic and lift-off nonlinearity and studied lift-
off phenomenon for a beam resting on a tensionless
Pasternak andWinkler foundation. By investigating the
effects of foundation parameters on beam/foundation
contact as well as noncontact length, Coskun showed
the effects of foundation nonlinearity on contact length
[100–102].

2.7.3 Friction nonlinearity

The nonlinearity due to friction is mainly used for
rubber springs. Because of several advantages, rubber
springs are conventionally used in railway vehicles and

bushings. Berg conducted several experimental tests
on the rubber springs subjected to harmonic excitation
at low frequencies and reported a force–displacement
curve for the spring as shown in Fig. 26a. He showed
that the sharp corners are due to frictional nature of
rubber fillers. Therefore, a friction force was inserted
into the model of rubber springs, and the springs were
modeled by three elements: elastic, viscous, and fric-
tion [103].

A reference point is defined as (xs, p f s) on the
graph of force–displacement, which is updated dur-
ing any motion; and the nonlinear force depends on
the displacement and the reference state (as shown in
Fig. 26b). This force is expressed by the following rela-
tion [103,104]:

p f = p fs + x − xs

x2
(
1 − sign (ẋ)

p fs
p fmax

)
+ sign (ẋ) (x − xs)(

p fmax − sign (ẋ) p fs
)
, (30)

where p fmax is themaximum of friction force; x2 is the
displacement which is started from x = 0, p f = 0. It
increases monotonically as it is needed for the force to
reach to p f = p fmax/2. Use of this relation provides
the effect of changes of stiffness in small amplitudes
[105].

The model presented by Berg has been widely
used and adopted for presenting behavior of rubber
springs in different frequency ranges and load ampli-
tudes [106].

2.8 Random model

Random vibrations occur due to random excitations
from a stochastic load or randomness of structure
parameters. Elements of a structure might experience

Fig. 26 a Force
displacement behavior of
nonlinear friction model, b
updating reference point
during motion [104]
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deteriorations due to erosion, frictions, and heavy load-
ings over a period of time [16]. In railway engineering,
the randomness usually has been observed in irregu-
larities of rail and stiffness, damping as well as loss
factor of the track foundation. The random parame-
ter can be expressed by a mean value plus a variance.
Accordingly, we have the following form for a random
stiffness:

k (x) = k0 + kε (x) , (31)

in which k0 is the mean value of spring stiffness and
kε(x) is the longitudinal variations of stiffness.

Fryba et al. [107] considered a beam resting on a
foundation with random stiffness and uncertain damp-
ing coefficient subjected to a moving load. They per-
formed a stochastic finite element analysis for evaluat-
ing the deflection and the bending moment variances
[17]. It was found that the influence of stiffness ran-
domness is far more important than the effect of uncer-
tainty in damping. Also, it was observed that increas-
ing the velocity enhances the subcritical region and
decreases the supercritical region due to the stochas-
tic effects. Naprstek and Fryba [108] considered the
practical use of the last case as the railway track struc-
ture and included track irregularity randomness in the
equations. Younesian et al. studied a foundation with
random stiffness [109] and random loss factor [16] as
the supporter of a Timoshenko beam subjected to a
moving load. They presented the dynamic responses
in the form of variance–mean by the use of first-order
two-dimensional perturbation method.

Andersen and Nielsen investigated a beam on the
Kelvin foundation with stochastic vertical stiffness. A
shear layer was used to modify the foundation’s model.
They explored how variations of stiffness affect beam
response and indicated correlation length of the stiff-
ness variation increases dynamic response of the beam
[110]. Koziol et al. [111] proposed the stiffness of foun-
dation as a function of the space variable. They pre-
sented a comparison between Adomian’s decomposi-
tion method and Bourret’s approximation as the solu-
tion methods of the problem of a beam on the ran-
dom foundation [112]. Schevenels et al. [113] stud-
ied the wave propagation in an Euler–Bernoulli beam
on a random foundation. They also studied the effects
of correlation length on the wave propagation. It was
observed that spatial variations canhave an influence on
the dynamic response only when the amplitude of cor-

Fig. 27 Rail pad model suggested by Zhu et al.[117]

relation length is near the amplitude ofwavelength. Jag-
tap et al. [114] considered the randomness problem of
a structure on a foundation taking into account the ther-
mal variation. Singh et al. [115] investigated stochas-
tic responses of composite plates on nonlinear shear-
deformable foundation. The randomness was consid-
ered in material properties and foundation parameters
[116]. Kumar et al. [117] studied nonlinear vibration
of a random nonlinear foundation covered by a com-
posite laminated plate. The randomness was consid-
ered in different parameters and sensitivity analysis
was performed to find their effect on the transverse
deflection of a plate. Among the different parameters
which were considered in the sensitivity analysis, the
elastic constants have shown the most important influ-
ence.

2.9 Fractional model

Till here, the nonlinear model is introduced as the
model which can enter the effect of heavy load-
ings or large displacement into calculations. Thus,
the displacement-dependent feature of foundations is
already satisfied by the use of nonlinear models. How-
ever, a few parameters of foundations are frequency
dependent. Loss factor, for example, is a parameter
which is moderately influenced by the frequency of
vibrations. Therefore, the fractional model has been
introduced to present frequency-dependent features of
a foundation. In Fig. 27, an example of using fractional
element for rail pads suggested by Zhu et al. [117] is
illustrated.

The reaction force of the fractional element can be
presented by the following equation:

p = Ca
G
0 Dα

t x, (32)
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in which p and x are the reaction force and the deflec-
tion of fractional element. Dα

t denotes the fractional
derivative of αth order for x . For the systems includ-
ing fractional as well as nonlinear elements (i.e., cubic
hardening nonlinearity), the time-domain governing
equation is a nonlinear fractional differential equation
(NFDE) type, for example

ẍ (t) + cẋ (t) + kx (t)

+ kN x
3 (t) + kαD

αx (t) = Fext (t) + lDα p (t) ,

(33)

where Fext (t) is the external applied load, p (t) is the
fractional force through fractional elements, l and kα

are fractional parameters of foundation model which
are specified from experimental tests.

Berg [103] used a five-parameter model in describ-
ing the behavior of rubber springs in primary sus-
pension of railway vehicles in accordance with elas-
tic, viscous, and friction forces. He presented a pro-
cedure in which all the five parameters can be calcu-
lated only with two force–displacement measurement
tests. However, he stated that more accurate model is
desirable at high frequencies. Fenander [118] provided
experimental analysis on rubbers and showed that the
parameters of such foundations are frequency depen-
dent. Hence, he proposed a fractional derivative model
to describe the frequency-dependent behavior of the
foundation in a practical application (as the model of
rail pads in a railway track) [119]. Zhu et al. [105]
presented an amplitude- and frequency-dependent rail
pad model including a fractional element correspond-
ing to the frequency-dependent behavior plus a nonlin-
ear element representing amplitude-dependent behav-
ior. They compared their proposed model with the tra-
ditional viscous model and demonstrated that the tra-
ditional model overestimates stiffness and damping at
high frequencies [18]. Zhang and Zhu [120] used a
fractional derivative, nonlinear friction model to sur-
mount the frequency-dependent behavior of the model.
Hosseinkhani andYounesian studied the vibro-acoustic
analysis of a railway track including fractional and non-
linear elements. Based on a parametric analysis, they
showed that deflections, stresses, and radiated acous-
tic pressure from the railway track can be controlled
by fractional parameters [121]. They also provided the
closed-form solution for dynamic response of a plate
on the most generalized form of foundation model, i.e.,
generalized stiffness and generalized damping (linear,
nonlinear, and fractional damping) [122].

Paola et al. investigated exponential distance-
decaying and fractional power distance-decaying func-
tions to present the restoring force of a foundation. The
former model yielded to an integro-differential govern-
ing equation, while the latter results in fractional dif-
ferential one with better results [123]. Cammarata and
Zingales [124] showed that the fractional model can
present the relation between the force and displacement
as well as distance-decaying.

3 Structures on foundations

In this part, different models of structures on a founda-
tion are presented. According to the dimensions, the
structures are classified into one-dimensional struc-
ture (beam and string) on a foundation and two-
dimensional structures (plate, shell, and membrane)
on a foundation. Applications, theories, and math-
ematical formulations of each one are briefly illus-
trated.

3.1 Beam on a foundation

Many practical experiments and problems in various
fields, such as aerospace, physics, biomechanics, and
railway engineering, as one special case, have been effi-
ciently handled by the model of beams on a founda-
tion. The railway track is consisted of a rail and foun-
dation. The foundation, also known as the track sup-
port, includes sleepers, rail pads, and the ballast. Each
component undergoes complicated different loads, and
consequently they react differently according to the
amplitude, frequency, and type of the applied load
[19,22]. The fundamental of foundation theories and
their behavior in the presence of different load condi-
tions is already covered in Sect. 2.

Four theories exist for presenting the behavior of a
beam to name, the Euler–Bernoulli, Rayleigh, shear,
and Timoshenko. Euler–Bernoulli model neglects the
effects of rotary inertia and deformation, but the Tim-
oshenko model considers both of them. The theory
of Rayleigh beam is positioned between the Euler–
Bernoulli and Timoshenko theories, which considers
effects of rotation of cross section. The shear model is
also a model between the Euler–Bernoulli and Timo-
shenko and only includes the effect of shear deforma-
tion.
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3.1.1 Euler–Bernoulli beam

Euler–Bernoulli model is also known as shear-
indeformable beam, classical beam, and thin beam
theory. It is the simplest model among the above-
mentioned beam theories, since it neglects the effects
of rotary inertia and transverse shear deformations. The
Euler–Bernoulli theory can be derived based on the
three-dimensional elasticity theory, by the use of New-
ton’s second law, or by the generalized Hamiltonian’s
principle [125]. This theory is valid when the thickness
of a beam is less than 1

20 wavelength of the deforma-
tions. For anEuler–Bernoulli beam resting on a founda-
tion subjected to a general load as presented in Fig. 28,
a differential element can be considered (Fig. 29), in
which V (x, t) and a M (x, t) are the shear force and
bending moment, respectively. Therefore, the govern-
ing equation is expressed as

E I
∂4w (x, t)

∂x4
+ ρA

∂2w (x, t)

∂t2
+ p (x, t) = f (x, t) ,

(34)

in which p (x, t) is the foundation reaction. In the fol-
lowing part of this review article, a few fundamental
works related to the study of Euler–Bernoulli beam on
a foundation are presented.

Tanahashi formulated the problem of Euler–
Bernoulli beam on a two-parameter foundation in order
to obtain displacement and stress functions [126].
Ansari et al. [127] employed the Galerkin method and
the multiple time scales method (MTSM) to investi-
gate nonlinear frequency of a beam on a foundation
subjected to a moving load. They studied the effects of
load, nonlinear stiffness, and damping parameters on
the frequency response of a railway track usingMTSM.
Results of their research show the internal and external
resonances for their objective structure [26,128].

Younesian et al. [96] presented analytical solution
for vibrations of a beam rested on a nonlinear foun-
dation using variational iteration method (VIM). In

Fig. 29 Differential element of Euler–Bernoulli beam [125]

another paper, they performed frequency analysis of a
cracked Euler–Bernoulli beam. In order to analyze the
considered problem, they divided the beam into two
parts, and the crack was modeled by a rotational spring
[97]. Nayfeh and Lacarbonara [129] compared two
approaches, namely discretization method and direct
method, for solving quadratic, cubic nonlinear dif-
ferential equations to obtain primary resonance and
sub-harmonic resonance of the considered structure. It
was concluded that the discretization method leads to
erroneous responses; therefore, in some special cases
(when quadratic nonlinearity exists), the discretization
method is not an applicable procedure.

Dimitrovová and Varandas [130] studied the effects
of sudden change in the stiffness of a foundation under
a beam, modeled by Euler–Bernoulli theory, with the
specific attention to the application in high-speed trains.
Influences of load velocity and amplitude as well as
foundation stiffness on the dynamic response of Euler–
Bernoulli beam were investigated by Jorge et al. [131].
Yuan et al. [132] used a double Euler–Bernoulli beam
model to present the behavior of floating slab track.

Nagaya and Kato [133] suggested the use of non-
symmetric piecewise linear support for presenting the
non-symmetric, nonlinear behavior of magnetic lev-
itation supports. Levitation supports are widely used
in linear vehicle guideways. They used a combination
of Laplace transformation, Fourier series expansion,

Fig. 28 Beam subjected to
a general load
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and the residue theorem for analyzing the model sub-
jected to a stationary decaying force. Lee [134] ana-
lyzed the same model on the condition that the load is
moving with a constant speed. He employed Hamilto-
nian’s principle and the mode method to investigate the
difference between the transient response of piecewise
linear support and linear support.

Using the model of a beam on a nonlinear foun-
dation, Li et al. [135] investigated the possibility of
chaos for the model of a vehicle moving on a road
by Melnikov method. Norouzi and Younesian investi-
gated the chaotic vibration in the Euler–Bernoulli beam
on a nonlinear foundation. They analyzed the effect of
foundation parameters on the chaotic behavior of the
considered structure [98].

Naidu and Rao [136] presented the results corre-
sponding to the effects of various boundary condi-
tions on free vibration and stability behavior of uni-
form beams and columns resting on a nonlinear foun-
dation.Hui [137] examined buckling and post-buckling
behavior of an infinite beam on a nonlinear foundation
using Koiter’s general and Koiter’s improved theory.
It was found that if only the linear foundation is used,
post-buckling behavior is unstable, while the nonlinear
foundation can provide stability. Sheinman and Adan
developed [138] a nonlinear higher-order shear defor-
mation theory to study the effect of imperfection on the
vibration of a beam rested on a nonlinear elastic foun-
dation. It was shown that imperfection is highly effec-
tive on foundation behavior in the case of softening
nonlinearity. Santee and Gonçalves obtained the post-
buckling load for a beam on a nonlinear foundation
as a function of beam parameters, foundation parame-
ters, as well as load parameters. They also investigated
the conditions in which the beam remains stable [139].
Fallah and Aghdam [140] presented analytical solution
for the post-buckling analysis of a beam on a nonlinear
foundation with shearing layer and tensile force. They
used Euler–Bernoulli and von Karman’s assumption to
develop the governing equation [141].

3.1.2 Rayleigh beam

Rayleigh improved the Euler–Bernoulli beam theory
by including the effects of rotary inertia or the inertia
due to axial displacement. The theory ofRayleigh beam
on a foundation is obtained by considering the effect
of rotatory inertia in Eq. (34) [125]:

E I
∂4w (x, t)

∂x4
−ρ I

∂4w (x, t)

∂x2∂t2
+ ρA

∂2w (x, t)

∂t2

+p (x) = f (x, t) . (35)

The term ρ I ∂4w
∂x2∂t2

stands for the effect of rotatory
inertia. Nevertheless, there are not many studies about
Rayleigh theory, and in themost cases, Euler–Bernoulli
or Timoshenko models are used to model vibrations of
beams.

Dynamics of Rayleigh beam on nonlinear foun-
dation subjected to moving load were studied by
Hryniewicz [142]. The aimwas to analyze the response
of an infinite Rayleigh beam. Oni and Omolofe consid-
ered prestresses in Rayleigh beam and presented the
resonance condition [143]. The effect of rotatory iner-
tia on the resonance condition showed that increasing
the rotatory inertia decreases the risk of resonance.Kim
studied the effects of rotatory inertia on the stability and
frequencies of Rayleigh beam–columns under variable
harmonic load [144]. When the effect of rotatory iner-
tia was considered, the first frequency increased while
no change was observed for the second frequency.

3.1.3 Shear beam

The shear model improves the Euler–Bernoulli model
by including effect of shear distortion [145]. The gov-
erning equations of themotion of the shear beammodel
are [145]:

ρA ∂2w(x,t)
∂t2

+ k∗AG
(

∂φ(x,t)
∂x − ∂2w(x,t)

∂x2

)
+ p (x) = f (x, t)

E I ∂2φ(x,t)
∂x2

− k∗AG
(
φ (x, t) − ∂w(x,t)

∂x

)
= 0

,

(36)

where A is the area of cross section, k∗ is the shear
coefficient of section, and φ is the rotation angle of
cross section. This model is mostly used to examine
dynamic behavior of tall buildings [146].

3.1.4 Timoshenko beam

Timoshenko or thick beam theory was first introduced
by Stephen Timoshenko in 1921 [147]. The theory con-
siders the effects of both rotary inertia and shear defor-
mations [148]. Assuming we have the following set of
equations for a beam rested on a foundation and sub-
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jected to an external load based on the Timoshenko
beam theory (as it is shown in Fig. 30):

ρA ∂2w(x,t)
∂t2

+ k∗AG
(

∂φ(x,t)
∂x − ∂2w(x,t)

∂x2

)
+ p (x) = f (x, t)

E I ∂2φ(x,t)
∂x2

− k∗AG
(
φ (x, t) − ∂w(x,t)

∂x

)
= ρ I ∂2φ(x,t)

∂t2

.

(37)

Accordingly, several researchers presented differ-
ent methods to evaluate shear coefficient of Timo-
shenko beam theory [149–151]. Natural frequencies
of Timoshenko beam were analyzed in [42,152,153].
Attarnejad et al. [154] used differential transform
method to extract natural frequencies of Timoshenko
beam on a two-parameter foundation. Chen et al.
[155]investigated the effects of Poisson’s ratio and
foundation parameters on the natural frequencies of the
thick beam, using a mixed method, which combines
the methods of state space and the differential quadra-
ture (DQ). They observed that increasing the Poisson’s
ratio decreases the natural frequencies. Since the Pois-
son’s ratio is different for different materials and the
Poisson’s ratio affects natural frequencies, the type of
material can be considered as an important criterion in
designing the properties of a structure. Mo et al. [156]
investigated the effect of shear deformation and non-
linearity of foundation on the nonlinear frequency of
Timoshenko beam and showed the frequency is highly
influenced by these two parameters.

Zhu and Leung studied nonlinearity due to the
geometry of Timoshenko beam using FEM scheme
[157]. These nonlinear vibrations caused intensive
axial stresses to the beam, while the level of vibra-
tions is highly influenced by the foundation parame-
ters. Arboleda-Monsalve et al. [158] considered gener-
alized boundary conditions for Timoshenko beam on a
foundation and presented the corresponding dynamic
stiffness matrix and load vector. Sapountzakis and
Kampitsis used boundary element method to deal with
arbitrary boundary condition of Timoshenko beam-
columns on a nonlinear foundation. They utilized the

average acceleration approach in combination with
the modified Newton–Raphson method to solve the
obtained coupled nonlinear equations [62]. Kargar-
novin et al. investigated the comfort of passengers of
high-speed trains passing on a bridge. They probed the
effects of foundation parameters (stiffness of rail pad
and ballast), suspension parameters, and track irregu-
larities. Rail and bridge were modeled by Timoshenko
beam [159,160].

3.2 String on a foundation

Belts, cables, and ropes are the elements that are mod-
eled by string. It is highly needed to model the trans-
verse vibrations of the aforesaid structures [161,162]
owing to their critical applications.

Strings are preloaded by a tensile load (shown as
T in Fig. 31b) and can withstand tensile forces. For
a string rested on a foundation subjected to a general
load, depicted in Fig. 31a, the governing equation is
derived as:

ρ
∂2w (x, t)

∂t2
+p (x, t) = ∂

∂x

(
T

∂w (x, t)

∂x

)
+ f (x, t) ,

(38)

where p(x, t) is the restoring force of foundation.
Metrikine [163] investigated responses of an infinite

string on a nonlinear foundation subjected to a moving
load whether or not the speed of load is slower than
the speed of wave. It was observed when the speed of
load exceeds the speed of wave in the string, the sym-
metry of the string response was violated and a wave
response was observed behind the load position. This
model aims to represent the behavior of catenary sys-
tem in high-speed trains. Gottlieb and Cohen studied
oscillations of a string on an elastic foundation, with
concentration on its application in modeling mecha-
nisms of the mammalian cochlea [164]. Demeio and
Lenci conducted nonlinear analysis of cables on non-
linear foundation using MTSM [165].

Fig. 30 A Timoshenko
beam subjected to a general
load
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Fig. 31 a Full body
diagram of a vibrating
string, b free body diagram
of the string element

Fig. 32 a A schematic of
membrane on a general
foundation in x–z plane, b
schematic of tensioned
membrane in x–y plane, c
free diagram of a membrane
element [125]

3.3 Membrane on a foundation

Membranes have a wide range of applications in mod-
eling acoustical andmusical instruments, and in biome-
chanics. Behavior of skull, skin, and air vehicle wings
can be presented by the membrane theory.

A membrane is defined as a flexible structure whose
one dimension is thin compared to other dimensions.

Themembrane is subjected to an initial tension and due
to that bears tensile forces (the force of T in Fig. 32). It
withstands no shear or bending loads. The membrane
theory can be considered as the string theorywhose dis-
placement is a function of two spatial variables; how-
ever, the string displacement has only one spatial direc-
tion. The equation of transverse vibration, by writing
Newton’s second law in the direction of z, is expressed
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as [125,166]:

Tx
∂2w (x, y, t)

∂x2
+ 2Txy

∂2w (x, y, t)

∂x∂y

+ Ty
∂2w (x, y, t)

∂y2
+ f (x, y, t)

= ρh
∂2w (x, y, t)

∂t2
+ p(x, y, t). (39)

Mack and McQueary [167] developed the general
perturbation method for solving the oscillations of a
circular membrane on the elastic foundation with cubic
nonlinearity taking into account the first nonlinear peri-
odic mode. Soares and Gonçalves studied nonlinear
vibrations of a pre-stretched membrane on a founda-
tion with hardening and softening nonlinearities [168].
Effects of foundation parameters and initial stretching
ratios on the frequency–amplitude were investigated. It
was shown that increasing the stretching ratio leads to
higher natural frequencies.

3.4 Plate on a foundation

Geometrically, a plate is a membrane which can bear
bending forces. Plates are thicker than membranes;
nevertheless, one of its dimensions is still thin com-
pared with the two other dimensions. The following
equation governs the vibrations of the plate illustrated
in Fig. 33:

D∇4w (x, y, t) +ρh
∂2w (x, y, t)

∂t2
+ p(x, y, t)

= f (x, y, t) , (40)

where D = Eh3

12(1−ν2)
is the flexural rigidity; and in

Fig. 33b, Q is the shearing force and M is the bending
moment.

Yamaki [169] and Dumir [170] are among the first
researchers in the nonlinear analysis of plates on foun-
dation and in presenting solution method for the prob-
lem, of a plate with different shapes under different
loads taking into account various boundary conditions.
Sincar [171] analyzed a simply supported plate resting
on a weak nonlinear foundation subjected to a certain
initial condition to calculate the fundamental frequency
of plate. He applied the Galerkin method to the gov-
erning equation for extracting the related partial dif-
ferential equation, and afterward, Lindstedt’s pertur-

Fig. 33 a Schematic of a plate on a general foundation and
subjected to general loading b free diagram of a plate element
[125]

bation method was employed to obtain the fundamen-
tal frequency. Collet and Pouget [172] used the two-
dimensional nonlinear Schrodinger equation to study
the behavior of a thin plate on a nonlinear foundation
in small-amplitude limits. The equation paved the way
for analyzing the appearance of localized modes and
waves excited by modulational instability. They inves-
tigated the effects of material nonlinearity and geomet-
ric dispersion on the system’s vibrations modes [173].

Vibration analysis can be used as the method of
studying frequency resonances for components of a
structure and as the method of designing them to be
resonance free (if it is desired). In connection with
this subject, Chien and Chen studied nonlinear vibra-
tions of plates resting on a nonlinear foundation [174–
176].They found that besides the vibration amplitude,
modulus ratio, and foundation stiffness, initial stresses
affect frequency responses of laminate plates. The
nonlinear governing equation was derived using the
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Galerkin method and was solved numerically by the
use ofRunge–Kuttamethod.Younesian et al. [177] pre-
sented a closed-form solution for the dynamic response
of a plate on a nonlinear foundation and investigated
sensitivity of frequency resonances with respect to the
initial amplitude of plate. Ping et al. [178] studied the
bifurcation and chaos behavior of circular plates on a
foundation with Duffing equation.

Reissner considered a simplified version of a spher-
ical shell problem as a uniform infinite elastic plate.
He modeled the foundation as a nonlinear one, and he
investigated post-buckling behavior for both quadratic
and cubic foundations [179]. Chai [180] formulated
nonlinear vibration and post-buckling behavior of
unsymmetrically laminated imperfect shallow cylin-
drical panels using the dynamic Marguerre-type equa-
tions. He used mixed condition as the boundary con-
dition and investigated the effect of such parameters
as parabolically varying rotational constraint, in-plane
edge tension, vibration mode, curvature and geomet-
ric imperfection, and rotational edge stiffness. Effects
of complex mechanical load on post-buckling behav-
ior of flat and curved panels were investigated by
Librescu and Lin [181]. Lin and Librescu [182] consid-
ered the case of geometrical imperfection of flat/curved
plates on a nonlinear foundation subjected to thermo-
mechanical loading. They showed that achieving to
higher buckling load and lower snapping phenomenon
is possible by increasing the foundation moduli.

In thepost-buckling region, anunstable phenomenon
calledmode jumpingmay occur. This phenomenon can
unbalance the equilibrium configurations and devas-
tate the system. Imperfections, boundary conditions,
and foundation configurations affect the onset of mode
jumping [183]. This can be prevented by appropri-
ate selection of foundation parameters [64]. The mode
jumping is investigated in post-buckling of beams and
plates resting on a foundation in [64,184,185].

3.5 Shell on a foundation

The last two-dimensional flexible structure on a foun-
dation, in the present category, is shell. Shells are
employed to model dynamical behavior of curved-
shape component of many practical structures, which
are used in aerospace vehicles, automotive, and build-
ings.A shell is a curvedplate andbear bendingmoment.
The governing equation is:

D∇4w (x, y, t) + ρh
∂2w (x, y, t)

∂t2
+ p(x, y, )

= f (x, y, t) −
(

1

Rx

∂2φ(x, y, t)

∂y2

+ 1

Ry

∂2φ(x, y, t)

∂x2
− 2

Rxy

∂2φ(x, y, t)

∂x∂y

)
. (41)

Most of the engineering materials show nonlinear
behavior in the presence of large deformations.Accord-
ing to that, Jain and Nath [13] investigated the soft-
ening, hardening nonlinear behavior of a foundation
under clamped orthotropic shallow spherical shells. It
was shown that by increasing the hardening nonlin-
earity of the foundation, the maximum deformation
decreases.

Based onRitz’s variational and theR-functionmeth-
ods, a new method was presented by Kurpa et al. [186]
in order to deal with the problem of orthotropic shal-
low shells on the Pasternak foundation. Ramachandran
and Murthy [187] studied snap-through phenomenon
as well as the influence of large amplitude on the flex-
ural vibrations of a shallow cylindrical shell resting on
theWinkler foundation. The same topicwas considered
by Massalas and Kafousias [188] in which the founda-
tion was a nonlinear one. They obtained an analytical
expression for the first natural frequency of the con-
sidered structure. Sofiyev [189] investigated the large-
amplitude vibration and frequency–amplitude charac-
teristics of FGM cylindrical shells interacting with the
nonlinear Winkler elastic foundation. They studied the
effects of shell characteristics on the nonlinear fre-
quency parameters.

4 Methods of solution

Since the beginning of the vibration analysis of beams,
plates, and shells on foundations, different kinds of
solution methods have been presented and developed
for extracting, discretizing, and solving their governing
equations.

The first step in the mathematically modeling of the
vibration problem is deriving the governing equation.
A fewmethods such as Newton’s law, Hamilton’s prin-
ciple, D’Alembert’s principle, and energy method are
applied to derive the governing equation of the motion
[190]. Then, a discretizing method (the Galerkin
method and the Ritzmethod)must be utilized to decou-
ple the equation into time and space domain. The
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obtained time-domain differential equation is the most
important equation that needs to be analyzed. Accord-
ing to the structure, assumptions, requirement, and sim-
plifications, which are considered in the formulation,
the time-domain governing equation can appear in the
form of ordinary differential equation (ODE), nonlin-
ear differential equation (NDE), and nonlinear/linear
fractional differential equation (FDE).According to the
type of equation, several numerical, approximate, and
analyticalmethods have been developed.A fewof these
methods and their applications are presented in this
section. Accordingly, a general overview on the most
well-known solution methods pertinent to the problem
of flexible structures on a foundation is discussed.

4.1 Analytical/approximate methods

Analytical methods are in the priority of the meth-
ods because they provide exact and closed-form solu-
tions for the developed mathematical model. Neverthe-
less, analytical methods are usually hard to be applied
or they need several simplification assumptions. In
this regard, analytical/approximate methods have been
developed. The analytical/approximate methods have
succeeded to provide advantages of analytical meth-
ods, to some extent. They usually present the response
of the problem in the form of a series which converge
to the exact solution. In this part, three of analyti-
cal/approximate methods named variational iteration
method (VIM), homotopy analysis method (HAM),
and Adomian decomposition method (ADM) are first
described. Then, perturbation techniques and differen-
tial transform method are introduced.

VIM is one of the methods which can be used in
extracting solution of differential equations and in con-
ducting frequency analysis of nonlinear systems. It
is known as an analytical/approximate method [191].
VIM has an approximately high speed of convergence.
The method has been exploited by a few researches
to present semi-analytical solution for the problem
of a structure rested on a foundation. For example,
researchers have developed analytical solution for the
free oscillations of a beam on nonlinear foundations
[96]. In addition, free vibration analysis of a beam on
elastic foundation was conducted using VIM in [192].
The use of VIM for buckling problems was presented
by Atay and Coşkun [193] and by Baghani et al. [194].

HAM is considered as a reliable and straightfor-
ward approximate/analytical technique for nonlinear
oscillation problems [195]. Pirbodaghi et al. [196] pre-
sented analytical expression for the dynamic response
of laminated composite plates resting on a nonlinear
foundationusing thehomotopyanalysismethod. Jafari-
Talookolae et al.[197] investigated laminated compos-
ite beams on a nonlinear foundation. The time-domain
equation was extracted by Ritz method, and the exact
solution was obtained by HAM where the HAM was
truncated at third approximation. Younesian et al. [177]
considered the problem of plate on a foundation. They
showed that both HAM and VIM can solve NDEs.
HAM was also used by Shahlaei-Far et al., taking into
account both quadratic and cubic nonlinearity for the
foundation [198].

Adomian decomposition method (ADM) is based
on the expansion of the solution to an infinite series. In
this method, the Adomian’s polynomial is employed to
enable the convergence of nonlinear terms. The analyt-
ical solutions of Euler–Bernoulli, Rayleigh, and Tim-
oshenko beams on a foundation have been obtained
using ADM [142,199,200]. The method was utilized
for dealing with nonlinear terms of the formulation
[201], non-uniform beams [202,203], and random
foundations [112]. Hryniewicz and Kozioł [204,205]
combined wavelet approximation with ADM in order
to present analytical method for vibrations of a Tim-
oshenko beam rested on a nonlinear foundation. Arefi
employed the Adomian decomposition method to eval-
uate the response of Euler–Bernoulli beam on a non-
linear foundation considering the effects of nonhomo-
geneous index [206].

Perturbation techniques and their applications in
solving different problems are explained in [207]
among which multiple time scales method (MTSM)
is a well-established and widely used approach in
the vibration analysis of structures [127,208]. These
techniques are applicable for two kinds of problems:
strongly nonlinear and small deflection; weakly non-
linear and large deflection. They are mostly used for
obtaining frequency and harmonic responses as well
as investigating stability conditions [16,99]. Lancioni
and Lenci [209] utilized perturbation technique as a
semi-analytical method and the finite element algo-
rithm as a numerical method for solving the problem of
Euler–Bernoulli beam on a nonlinear foundation. Zaru-
binskaya and Van Horssen studied the initial bound-
ary value problem, which represents the behavior of a
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simply supported plate on a weakly nonlinear elastic
foundation. Two time scales perturbation method was
used to achieve the approximate solution of plates on
foundations [210]. Mareishi et al. [211] usedMTSM to
derive frequency response of free and forced vibrations
of FG nanobeams on a nonlinear supporter.

Differential transform method (DTM) is a semi-
analytical approach in solving differential equations,
and it is based on Taylor series expansion. Attarne-
jad et al. [154] assessed the application and accuracy
of DTM for extracting natural frequencies of the Tim-
oshenko beam on a two-parameter foundation. They
observed as the number of terms in DTM grows, the
accuracy of transverse displacement and bending angle
of rotation increases, and by considering about 20 terms
in the DTM, the relative error in the calculation of
the natural frequencies becomes zero. Balkaya et al.
[212] solved the differential equation of the vibrations
of Euler–Bernoulli and Timoshenko beams on a Paster-
nak foundation (as the model of soil). Exact solution
and natural frequencies of a beamon the soil foundation
were obtained by the method of differential transform
in Ref [213].

4.2 Numerical methods

Numerical methods are used for solving the compli-
cated problems when finding a closed-form solution
to be difficult or impossible. Analytical approaches
present exact responses and provide direct solutions of
the equation. However, these methods are sometimes
difficult to be exploited and they lose their functional-
ity. In this regard, the numerical methods are employed
[214–217]. The numerical methods use assumptions
and constraints, which make finding the solution of the
most complicated problems possible. Finite element
and boundary element methods (FEM and BEM) are
utilized to deal with the effects of complicated geom-
etry and boundary conditions. FEM has been used
for analyzing vibrations of different kinds of struc-
ture onWinkler, two-parameter, and nonlinear founda-
tions [194,217–221]. In this context, extraction of stiff-
ness, mass matrices as well as force vector have been
developed by several works [47,222,223]; in imple-
mentation of FEM, the kind of theory considered for
structures (i.e., the Euler–Bernoulli, Rayleigh, Shear,
and Timoshenko theories for one-dimensional struc-
tures; membrane, plate, and shell theories for two-

dimensional structures) is an important case either
[220,224,225]. Lua andTeng studied buckling of shells
on a nonlinear elastic foundation. They used finite
element formulation and presented a number of dis-
crete data points in order to model the foundation
reaction–displacement relationship in a general form
[226]. Hong et al. [227] applied the discrete data points
to model the nonlinear behavior of elastic foundation
and studied the large deflection analysis of shells and
plates on tensionless foundation using a finite element
scheme. Finite elementmethodwas developed by Jorge
et al. [228] for a railway track system, while analyti-
cal solution was not available for the problem. They
modeled the system as a beam on bilinear founda-
tion with different stiffness in tension and compres-
sion. The effect of different stiffness was investigated
on rail deflection and critical velocity of load (the veloc-
ity above which rail deflection increases significantly).
It was observed as the stiffness in tension increases,
this critical velocity also increases. Stojanovic used p-
version of the finite element method for the problem
of a Timoshenko beam rested on a nonlinear founda-
tion. He implemented the method to the general case of
beams/plates on a foundation taking into account the
effects of variable discontinuity and geometric nonlin-
earity [65].

Boundary element method (BEM) is a well-known
method for analyzing dynamics of structures. It is
especially used to solve free and forced vibration of
a foundation under a structure. The method also is
applied for deriving stiffness as well as mass matri-
ces, and therefore, analyzing the eigenvalue problems
[214,229,230]. Dynamic response of a beam on a foun-
dation subjected to cyclic load [231], Reissner plates on
an elastic foundation [232], soil structures [233] have
been analyzed using BEM.

Ding et al. [234] solved the governing equation
of the Euler–Bernoulli beam on a nonlinear founda-
tion using the Galerkin and Runge–Kutta method. The
Galerkin method proposes the response of a problem
as an infinite series of multiple trial functions. This
infinite series must be truncated at a point. Therefore,
Ding et al. investigated the convergence of the Galerkin
method. They pointed out that the convergence rate
of the method increases as the nonlinear parameter of
the foundation increases and it decreases as the linear
parameter of foundation increases. The combination of
Runge–Kutta and Galerkin methods was used by Yang
et al. [235] in order to deal with the problem of Tim-
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oshenko beam on a foundation. They also investigated
the convergence for the case of Timoshenko beam and
showed that shearmodulus of the beam plays an impor-
tant role on the rate of convergence. Chen et al. [174]
also used the Galerkin and Runge–Kutta methods to
solve the governing differential equation of plates.

5 Practical applications

5.1 Mechanical/structural applications

The most well-known and tangible applications of the
model of a structure resting on a foundation can be
found in mechanical, civil, and railway engineering
systems. The model of railway track, bridges, pave-
ments, and soil–tank interactions are a few applica-
tions among which railway track has gained the attrac-
tion of several researchers. Investigating the behavior
of railway track was one of the primary stimuli to the
implementation of a beam on a foundation. The railway
track includes a rail (modeled with one of the beam
theories) fastened to sleepers. Rail pads are embedded
between rail and sleeper. Sleepers are placed on the
ballast. Each of these components undergoes compli-
cated loading force with different frequency range and
reacts basedon the applied loading.Therefore, different
models have been developed to formulate vibrations of
the track. Puzavac et al. [236] assumed that the stress–
deformation relation of railway track is based on Win-
kler model. They considered geometry deteriorations
in the track and investigated the effect of stiffness on
the vertical quality of track geometry. Fenander used a
fractional foundation model to present the frequency-

Fig. 34 Application of half-space model in ground-borne vibra-
tion analysis. Reproducedwith permission [58], Copyright 2015,
Elsevier

dependent properties of the railway track [119]. Wu
and Thompson [237] used double-Timoshenko beam
to study high-frequency behavior of a railway track
[238–240].

In order to study the induced vibration from railway
track loads or from highway loads to adjacent build-
ings and structures, the two-dimensional models such
as structures on a half-space foundation (Fig. 34) and
plates on a foundation were used [135,241–243].

However, in the case of one-dimensional pavements
(Fig. 35), the model of a Timoshenko/Euler–Bernoulli
beam on a foundation can be used [244–246]. In addi-
tion to track, the overhead catenary system is mod-
eled by a string on a foundation with varying stiffness
[165,247,248].

The interaction forces between vehicle and pave-
ment, vehicle and road, and rail and track are impor-
tant. In this regard, the dynamics of vehicle and
road/pavement need to be investigated. In the present
review article, the dynamics of vehicle is outside of its
scope, and its effects can be considered in the problem
as a concentrated moving load. The model of founda-
tion canbe considered as a layered plate on a foundation
[249]. In Ref [250], nonlinear dynamics of vehicle–
road interactions is studied. The road was modeled as
a simply supported double plate on a foundation. The
nonlinear viscoelastic behavior of the foundation was
presented by a nonlinear Kelvin–Voigt model. Yang et
al. studied the effects of coupling action on the car–road
interactions. They also studied the effects of roughness
amplitude on coupling action. They showed that as the
roughness amplitude of road decreases, the effects of
coupling action become more considerable; therefore,
the effects of coupling action cannot be neglected when
a vehicle is running on a smooth surface [251].

Modeling bridges in railway and highways is a sim-
ilar subject. Brun et al. [252] considered the model of
a bridge using the Euler–Bernoulli beam theory rested
on a foundation. Parametrically excited vibrations of a
bridge on a nonlinear foundation were studied by Zhou
et al. [253]. Human-induced vibrations can be assumed
as a structure on a foundation. Pavements and pedes-
trian bridge are the primary examples for the human-
induced vibrations on a foundation [254,255]. Also,
bridges are supported by piles (columns). These piles
are located on a foundation. Accordingly, many papers
have been published to investigate vibrations of piles on
foundations. Methods for increasing their strength and
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Fig. 35 A model of
vehicle–pavement
interactions [244]

Fig. 36 Catenary system.
Reproduced with
permission [248], Copyright
2008, Elsevier

effects of their vibration on adjacent structures were
also fully discussed in [256,257] (Fig. 36).

Polyurethane foams used in furniture and automo-
tive industry usually present complex nonlinear behav-
iors. They usually are modeled as a foundation under
a beam or a plate. In this regard, Bhattiprolu con-
ducted vibration analysis of beams/plates on nonlinear
Polyurethane foams [76,86,258]. Tanks, slabs, build-
ings, and pipes are other structures, which are placed
on viscoelastic foundations with the aim of vibration
reduction [189,219] (Fig. 37).

5.2 Marine pipelines

The model of infinite/semi-infinite cables/beams on
a foundation is considered as the system of marine
pipelines or moorings as shown in Fig. 38a [259,260].
Vibration-induced forces play a key role in stability and
safety of these structures. The foundation,which is sub-
strate of sea, acts only in compression (unilateral foun-
dation) and includes linear as well as nonlinear coeffi-
cients (Fig. 38b). The applied load is composed of con-

stant distributed load due to the weight and boundary
harmonic excitations. Demeio and Lenci [261] trans-
formed the moving-boundary problem of cables on
unilateral foundation to a fixed-boundary problem by
changing variables. They investigated forced nonlinear
dynamics of such systems. In their other works, res-
onance harmonics of these continuous systems were
investigated using perturbation techniques [262]. They
also studied both stability and nonlinear vibrations of
the structures [165,263]. In order to install pipelines in

Fig. 37 Sketch of a shell on a foundation as the model of storage
tanks or pipes interacting with soil
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Fig. 38 Model of pipelines
in the deep sea. Reproduced
with permission [261],
Copyright 2006, Springer

deepwaters, an analytical model is proposed by Wang
et al. [264]. Zan et al. [265] presented amethod to deter-
mine nonlinear matrix for the system of J-lay pipelines.
Gonget al. [266] studieddynamics ofS-laypipelines on
nonlinear hysteretic soil using finite element method.

5.3 Aerospace applications

The effects of foundation parameters on the vibration
suppression and their effects on preventing unwanted
phenomenon are important and substantial in aerospace
structures where structures undergo a combination of
elastic forces, thermal forces, and aerodynamic forces.
Because of their lightweight and astonishing bending
rigidity, sandwich and composite plates/beams are used
in this field. The model of structures on a foundation
(Fig. 39) is widely used in modeling aerospace plates
and shells [267–269]. Fluttering motion and thermal
buckling are undesirable phenomena, which endanger
safety and stability of the flight vehicle [270]. External
surface of an aerospace vehicle, which is subjected to
aerodynamic forces, suffers from self-excited oscilla-
tions (fluttering motion). Chai et al. [271] investigated
the effects of elastic foundation to avoid supersonic
flutter of aerospace panels subjected to aero-thermo-
elastic forces. Rao and Rao[270] employed the finite
element method to examine the effects of elastic foun-
dation on the supersonic flutter of short panels. Gold-
man and Dowell studied nonlinear dynamic of flutter-
ing plates on an elastic foundation. A nonlinear form
was considered for the interaction force between the
plate and the foundation [272].

5.4 Biomechanics applications

Vibration analysis of human body is important from
HSE aspects, and also, highly needed for designing
artificial organs. In this regard, some parts of human

Fig. 39 Model of a sandwich plate in supersonic airflow. Repro-
duced with permission [271], Copyright 2017, Elsevier

body can be represented by the aforementioned mod-
els; i.e., human skull can be modeled by a membrane,
tissues, and vessels are modeled by a string, and skin
is modeled by a thin layer on a soft substrate. Since
the concentration of the present paper is on the founda-
tions, in this section, we investigate the cochlea which
is one of the important parts of the mammalian audi-
tory system [273]. Cochlea is divided into two channels
by a membrane called basilar membrane (BM). Actual
shape of cochlea is spiral; however, for presenting trav-
elingwaves features, the unwrappedmodel is an appro-
priate simplified assumption (Fig. 40a). The dynamic
problem of basilar membrane is considered as a fluid–
structure interaction (FSI) example, as themembrane is
between two fluid-filled channels. The structural part is
considered as a beam on a foundation (in 2-D models)
and a plate on a foundation (in 3-D ones) (Fig. 40b).
The dynamic equation of structural part is as below:

mZ̈ (x, t)+cŻ (x, t)+k(x)Z (x, t) = Ff (x, t) , (42)

in which m is the mass of MB per unit length, c is
the damping coefficient, Ff (x, t) is the force due to
fluid traction, and Z(x, t) is the displacement of MB
in the direction of z. The longitudinal variable stiffness
of the BM is developed as an exponential function in
the following form [274]:

k (x) = k0e
−ax , (43)
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where k0 and a are constant values. According to the
frequency of input sound, the amplitude of traveling
waves reaches amaximum at a different section of BM.
These astounding characteristics provide the sensitivity
of human ear to different frequencies.

Vibrationpatterns andfluidproperties of the cochlear
stimulated by input sound with different frequencies
have been studied in Ref. [275]. Effective mechanical
properties of BM such as stiffness and damping on the
response of cochlear were studied by Ren et al. [276].
Meaud and Grosh considered longitudinal coupling of
the basilar membrane BM and the tectorial membrane
in the mathematical modeling of cochlear mechanics,
and investigated these effects on the tuning of cochlea
[277].

Tissues, vessels, aneurysms, and skin are the other
parts of body which have been modeled and studied
using the aforesaid mechanisms. In order to study sur-
facemorphological post-buckling, Xu and Potier-Ferry
presented a macroscopic framework of a thin layer on
a soft foundation as the model of wrinkle surfaces (for
example human skin or other living tissues [278]). The
layerwas presented using the plate theory, and the foun-
dation was presented by the theory of linear isotropic
elasticity. They investigated the onset of instability due
to post-buckling phenomenon [279]. Buckling phe-
nomenon in wrinkle surfaces results in slight varia-
tion in wrinkle amplitude and wavelength. Owing to
complexity of geometry and boundary conditions, the
numerical methods are employed to study these prob-
lems [280]. Analyzing mechanical properties of skin
is crucial to create artificial skin and also detect skin
lesions as well as under skin disease [281,282]. Sasai et
al.[283] designed a tactile sensor to measure mechan-
ical properties of skin by touching it. The probe can
report stiffness of skin surface and stiffness of deeper
tissues.

Pamplona andMota [284] used themodel of a mem-
brane filled by a fluid on a rigid/elastic foundation
to study skin expansion phenomena during skin surg-
eries. The foundation was considered to be both elastic
and rigid, because surface of human body has differ-
ent stiffness; fatty tissues, for example, were consid-
ered as elastic foundations. Patil et al. [285] studied
the effects of substrate layer on the mechanical behav-
ior of membranes during inflation and deflation. The
model was based on the contact between cells or a cell
and a deformable substrate (Fig. 41).

Wakeling and Nigg conducted an experimental
study to determine the frequency and damping coef-
ficients of soft tissues in leg. Free vibrations of the tis-
sue were measured by an acceleration sensor attached
to the skin. The frequency and damping of vibrations
were determined from the response of harmonic vibra-
tions [286]. David and Humphrey presented the model
of intracranial saccular aneurysms by amembrane sub-
merged in a viscous fluid. Bifurcation and instabilities
due to natural frequencies of saccular aneurysms were
found as the reasons of saccular aneurysm raptures.
They studied fluid and viscoelasticity of the material
from the stability viewpoint [287].

5.5 Nanoresonators and foundations

Vibrations of nanoresonators including nanobeams,
nanotubes, nanowires, graphene sheets, and nanoplates
have been fascinating for researchers in the area of
applied mechanics, structural analysis and vibrations
[288,289]. Plenty of articles have been published so
far to investigate the vibrations of the nanoresonators.
Herein, we briefly review the vibrations of nanores-
onators considering different types of foundations. We
first start with vibration analysis of nanobeams, which
can include nanotubes and nanowires aswell. Recently,
Eyebe et al. studied nonlinear vibrations of a nanobeam
rested on fractional-order viscoelastic Pasternak foun-
dations [290]. Lei et al. studied vibrations of viscoelas-
tic damped nanobeams using nonlocal Timoshenko
beam theory rested on Kelvin–Voigt elastic founda-
tion [291]. Malekzadeh and Shojaee investigated sur-
face and nonlocal effects on the nonlinear free vibration
of non-uniform nanobeams rested on a damped Win-
kler foundations using both Timoshenko and Euler–
Bernoulli beam theory [292]. Askari and Esmailzadeh
studied nonlinear vibrations of fluid conveying nan-
otubes rested on the nonlinear Winkler foundation
using the nonlocal Euler–Bernoulli beam theory con-
sidering both thermal and surface effects [293]. They
also studied forced vibrations of curved carbon nan-
otubes and higher modes of carbon nanotubes rested on
nonlinearWinkler–Pasternak foundations using nonlo-
cal Euler–Bernoulli beam theory [294–299]. In another
work, Askari et al. studied nonlinear vibrations of
nanobeam considering Winkler–Pasternak foundation
with quadratic rational Bezier arc curvature [300].
Another model was also developed by them using the
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Fig. 40 Schematic diagram
of basilar membrane with
longitudinal varying
stiffness suggested by Ren
et al. [275]; a 2-D model of
cochlea, b schematic of BM
and varying stiffness
attached to it

Fig. 41 Model of inflated membrane on a foundation used in
numerical study. reproduced with permission [284], Copyright
2012, Elsevier

nonlocal Rayleigh beam theory to investigate the vibra-
tions of nanobeams consideringWinkler and Pasternak
foundations [301].

Kiani has published several papers in which he stud-
ied vibrations of nanowires, nanobeams, and nanotubes
rested on a foundation based on different beam theo-
ries [302–305]. Su et al. studied both free and forced
vibrations of nanowires rested on an elastic substrate.
They considered Winkler, Pasternak, and also gener-
alized substrate models for the considered foundation
of the nanowire [306]. Rahmanian et al. investigated
free vibrations of carbon nanotubes rested on a nonlin-

ear Winkler foundation using nonlocal models. They
showed that by increasing the foundation stiffness, the
natural frequencies incline to specific values which are
related to the clamped conditions[307]. Sadri et al.
analyzed vibrations of double-walled carbon nanotube
resonators embedded in an elastic medium utilizing
the variational iteration method [308]. They showed
that enhancing the stiffness of the surrounding elastic
medium increases the nonlinear frequencies [308]. Saa-
datnia and Esmailzadeh studied chaotic flexural vibra-
tions of carbon nanotubes under axial loads rested on
Winkler and Pasternak foundations [309]. Zhang inves-
tigated transverse vibrations of embedded nanowires
under axial compression considering the higher-order
surface effects and Winkler foundation model [310].
Nonlinear vibration of nanobeams was modeled using
nonlocal Euler Bernoulli beam theory by Togun and
Bagdatlı. The considered foundation in their modeling
is in the form of linear Winkler–Pasternak [311].

Graphene sheets and nanoplates have also attracted
researchers to investigate their vibrations when they
are rested on a foundation. A few of recent examples
can be started with a research in which a nanoplate
rested on a nonlinear Winkler Pasternak foundation
was used for ultra-high small mass sensing. The high
nonlinearity of the stiffness allows the system to have
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higher sensitivity in order to detect a very tiny mass in
the scale of femtogram [312,313]. Zhang et al. ana-
lyzed thermo-electro-mechanical vibration of piezo-
electric nanoplates resting on viscoelastic foundations
using nonlocal Kirchhoff plate theory. They showed
that decreasing the foundation stiffness increases the
effect of nonlocal parameter on the natural frequencies
of nanoplates [314]. Two-parameter elastic foundations
were utilized by Sobhy as the model of foundation for
determining the natural frequency of the orthotropic
nanoplates [315]. Very recently, Fan et al. determined
exact solutions for forced vibrations of completely free
orthotropic rectangular nanoplates with a viscoelastic
foundation. They used the Kelvin–Voigt foundation for
the modeling of the foundation of nanoplates [316].
Anjomshoa and Tahani obtained natural frequency of
orthotropic circular and elliptical nanoplates embed-
ded in an elastic medium. In order to model the elastic
medium, they used the damped Winkler and Pasternak
foundations [317].

6 Conclusions and future work

In the present work, we reviewed theoretical mod-
els of foundations considering a wide range of lin-
ear and nonlinear elastic and viscoelastic models. We
first focused on Winkler model and discussed the evo-
lution and theoretical background of this principal
model. Afterwards, we presented theories of Kelvin–
Voigt, Maxwell, Zener, Poynting-Thomson, Burger,
Filonenko-Borodich, Hetenyi, and Pasternak models.
A comprehensive review was also provided on dis-
crete, multilayered, partially distributed supporter and
discontinuous, reinforced, floating, and nonlinearmod-
els. Different types of nonlinear models including lift-
off, cubic, and friction nonlinearities were fully dis-
cussed. We then focused on the random and fractional
models. After fully reviewing different types of foun-
dations, their applications in different structural sys-
tems such as beams, plates, strings, membranes, and
shell were presented. A few approximate and numeri-
cal approaches were investigated to show their poten-
tial for analyzing structural systems rested on foun-
dations. Very last part of this review article shows
the applications of reviewed foundations in differ-
ent systems including mechanical/structural applica-
tion, marine pipelines, aerospace devices, biomechan-
ics, and nanoresonators. This review article can be used

by researchers from different disciplines as a compre-
hensive and technical source for better understanding
of mechanical foundations, and their potential applica-
tions in different systems. The research in this area can
be categorized into three different branches:

• The first branch is related to foundationmodels and
development of novel theories in order to have a
more accurate and reliable models for substrates
and mediums in different systems.

• The second branch contains the solution methods
for analyzing the developed mathematical models
in accordance with these foundation models.

• Applications of the foundation models in different
systems can be considered as the last main cate-
gory of research in this area. Vibration behavior
of many structures can be investigated taking into
account different foundation models presented in
this research.

Accordingly, researchers can extend vibration mod-
eling of different types of structures in macro- to
nanoscale using the presented foundation models in
this review article. Furthermore, new foundation mod-
els can be developed considering fractional nonlinear-
ity and fractional damping. The practical applications
of these foundation models can be studied for different
structural systems such as bridges and railways for the
sake of vibration suppression.

The mechanical behavior of foundation should be
also investigated under the effect of different param-
eters such as thermal variation and cyclic loads. For
designing the structural systems, this review article
can provide useful information to select an appropri-
ate foundation model taking into account the stability,
control, and vibrations of the targeted system.

Thus far, several interesting models and practical
applications have been suggested for the mechanical
foundations, but there is a lack of research on the
implementation of intelligent materials into mechani-
cal foundations. However, the field of foundation mod-
eling is still in progress and many exciting works will
be published in future; herein, we plan to propose a new
area of research based on the foundation models and
recently proposed technology of nanogenerators (NGs)
to develop the intelligent foundation [318]. NGs, espe-
cially triboelectric nanogenerators (TENGs), have been
recently proposed to convert wasted kinetic energy to
electrical power. TENGs can be easily embedded in
mechanical foundations to harvest the kinetic energy
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Fig. 42 Conceptual design of intelligent foundation using nano-
generators [319]

applied to the vibrating system, and use it for energy
harvesting or self-powered sensing. In fact, the dissi-
patedmechanical energy through the foundation can be
scavengedwith adding TENGpart.With using this new
technology in foundation, we can develop intelligent
foundation for different parts of our cities and trans-
portation systems including railways, parks, roads, and
even sidewalks [319] (Fig. 42).

The technology of nanogenerators should be inves-
tigated by vibration engineers and material scientists
to develop intelligent foundations for both energy har-
vesting and transportation monitoring applications. It
opens a new door to researchers from different areas
such as networks systems, vibrations, materials, IoT,
and smart cities to propose new mathematical model-
ing of intelligent foundations, optimize and select the
required materials, and fabricate the intelligent foun-
dation of future.
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92. Şimşek, M.: Nonlinear static and free vibration analysis
of microbeams based on the nonlinear elastic foundation
using modified couple stress theory and He’s variational
method. Compos. Struct. 112, 264–272 (2014)

93. Kanani, A., Niknam, H., Ohadi, A., Aghdam, M.: Effect of
nonlinear elastic foundation on large amplitude free and
forced vibration of functionally graded beam. Compos.
Struct. 115, 60–68 (2014)

123



Elastic and viscoelastic foundations 889

94. Civalek, Ö.: Nonlinear dynamic response of laminated
plates resting on nonlinear elastic foundations by the dis-
crete singular convolution-differential quadrature coupled
approaches. Compos. Part B: Eng. 50, 171–179 (2013)

95. Senalp, A.D., Arikoglu, A., Ozkol, I., Dogan, V.Z.:
Dynamic response of a finite length Euler–Bernoulli beam
on linear and nonlinear viscoelastic foundations to a con-
centrated moving force. J. Mech. Sci. Technol. 24(10),
1957–1961 (2010)

96. Younesian, D., Saadatnia, Z., Askari, H.: Analytical solu-
tions for free oscillations of beams on nonlinear elastic
foundations using the variational iterationmethod. J. Theor.
Appl. Mech. 50(2), 639–652 (2012)

97. Younesian, D., Marjani, S., Esmailzadeh, E.: Nonlinear
vibration analysis of harmonically excited cracked beams
on viscoelastic foundations. Nonlinear Dyn. 71(1–2), 109–
120 (2013)

98. Norouzi, H., Younesian, D.: Chaotic vibrations of beams
on nonlinear elastic foundations subjected to reciprocating
loads. Mech. Res. Commun. 69, 121–128 (2015)

99. Kargarnovin, M., Younesian, D., Thompson, D., Jones, C.:
Response of beamsonnonlinear viscoelastic foundations to
harmonicmoving loads. Comput. Struct. 83(23–24), 1865–
1877 (2005)
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