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Abstract This paper seeks to investigate the dynamic
relationship between daily stock market indices in
NAFTA countries from 8 November 1991 to 16 March
2018, using for the first time nonlinear, nonparametric,
non-stationary methods. We apply two novel nonlin-
ear, nonparametric, non-stationary dynamic correlation
techniques—rolling window Spearman correlation and
wavelet coherence—to study the relationships between
the three pairwise comparisons. We apply a nonlin-
ear, nonparametric causality test to four specific sub-
periods and to the full period of these indices to check
the direction of causality. Our results show the follow-
ing: (1) the correlation between the indices increases
from 2000 to 2011, but that correlation increase is
interrupted around 2011/2012 and then falls noticeably,
picking up again from 2015 onwards. (2) The pairs that
show the lowest correlation are those involving the IPC.
(3) The causality test reveals nonlinear bidirectional
causality for all three indices and all the intervals anal-
ysed, indicating that there is a strong interrelationship
between NAFTA members. These results are relevant
to obtain a better understanding of the complex dynam-
ical system formed by NAFTA stock markets and have
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direct implications for hedging and portfolio diversifi-
cation policies.
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Nonlinear causality · Rolling window Spearman
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1 Introduction

The North American Free Trade Agreement (NAFTA)
was signed between the USA, Mexico and Canada in
November 1993 and ratified in January 1994. It is one
of the world’s most important trading blocs. On the
one hand, NAFTA seeks to liberalise trade between the
USA, Mexico and Canada and promote trade in goods
and services in the region by allowing the free flow of
capital. On the other hand, it also seeks to strengthen
links and promote cross-border investment between
the stock markets of those countries [1,17]. Numerous
recent studies and a considerable body of research have
shown strong integration and interdependence between
NAFTA stock markets since the signing of the NAFTA
agreement [1,17,25,40]. These markets have become
more closely linked under the NAFTA regime, espe-
cially as regards links between the USA and Mexico
and between Canada and Mexico [1,16,17,25,40]. For
these reasons, and in the wake of the 2008 global finan-
cial crisis, the study of the NAFTA as a complex sys-
tem has become a multidisciplinary hot topic and has
attracted great attention in recent years.
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Financial stock markets have been an active area of
research since the 1990s [46], and year after year math-
ematicians, statisticians and physicists have increas-
ingly taken an interest in this type of research (known
as “Econophysics”). Recent advances in the under-
standing of several economic phenomena (e.g. finan-
cial crises, financial market crashes and bubbles) and
the analysis of the statistical properties of their cor-
responding variables use concepts and methods taken
fromphysics (especially from statisticalmechanics and
the physics of complex systems) [19,42,44,62].

A topic of particular interest is the study of the
links between stock market indices (these are usually
interconnected, particularly those that belong to trading
blocs), which is mainly conducted by means of a large
number of bivariate and multivariate correlation tech-
niques in time (e.g. Pearson or Spearman correlation,
correlation matrix or cross-correlation) or in frequency
(e.g. cross-spectrum or spectral coherence) [64,67,80].
However, stock markets are not stationary and involve
heterogeneous agents who make decisions on differ-
ent time horizons (or “windows”) and operate on dif-
ferent timescales (or frequencies) [29,32,62,67]. On
the other hand, stock market indices may have a non-
Gaussian distribution as well as containing outliers (i.e.
inconsistent observations with the large part of popu-
lation of observations). The presence of outliers can
significantly reduce the efficiency of linear estimation
algorithms derived on the assumptions that observa-
tions have Gaussian distributions [26,75]. Therefore, it
is extremely useful and necessary to use nonparametric
correlation techniques (that do not rely on data belong-
ing to any particular distribution) that are dynamic in
time and/or frequency that allow to analyse the evolu-
tion in correlation in time or frequency, such as rolling
window Spearman correlation [32,52]. By contrast,
financial markets are dynamic systems that can mani-
fest nonlinearities (e.g. structural breaks, regime shifts,
extreme volatility, etc.) [62,69] and as such could elude
common linear statistical tests, including linear causal-
ity tests [69].

Following this philosophy, the aim of this paper is
to analyse dynamically the relationships between the
three main NAFTA daily stock market indices over the
08/11/1991–16/03/2018 period, focusing on the pre-
2008 crisis, 2008 crisis and post-2008 crisis periods.
We propose the combined use of three advanced sta-
tistical methods. On the one hand, two nonparamet-
ric, nonlinear, non-stationary mathematical tools for

analysing the evolution of correlation in time and in
time–frequency to gain a deeper understanding of the
dynamic system comprised by NAFTA country stock
markets: (1) rolling window Spearman correlation and
(2) wavelet coherence. On the other hand, we use a
nonparametric, nonlinear causality test to analyse the
cause–effect relationships in the time domain between
NAFTA stock market indices. We split the full period
studied into four sub-periods (1991–2001, 2002–2006,
2007–2011 and 2012–2018) chosen in such a way that
they cover certain financial events of interest, e.g. the
2008 global financial crisis. We also analyse the full
period (1991–2018). Such statistical methods have not
been previously widely explored for the study of stock
market indices. In particular, rollingwindowSpearman
correlation via the Spearman estimator and wavelet
coherence in combination with an areawise signifi-
cance test have not been used previously to analyse
financial time series and, to the best of our knowledge,
these three statistical methods have never before been
used individually or in combination to analyse NAFTA
stock market indices.

The rest of the paper is organised as follows: Sect. 2
describes the data and methodologies used. Section 3
presents the results and discussion, and Sect. 4 con-
cludes and provides some final remarks.

2 Material and methods

2.1 Data description

The data employed in this study comprise daily closing
price indices from the USA (DJI), Mexico (IPC) and
Canada (GSPTSE). All data sets cover the period from
8November 1991 to 16March 2018 (6876 data points).
However, the causality analysis is performed in four
sub-periods: (1) from 8 November 1991 to 31 Decem-
ber 2001 (the “unstable IPC period”, comprising 2647
data points); (2) from 2 January 2002 to 31 Decem-
ber 2006 (the “pre-2008 crisis period”, with 1305 data
points); (3) from 2 January 2007 to 31 December 2011
(the “2008-crisis period”, with 1304 data points); and
(4) from 2 January 2012 to 16 March 2018 (the “post-
2008 crisis period”, with 1076 data points). The causal-
ity test also is applied to the full period from 8 Novem-
ber 1991 to 16March 2018 (6875 data points). To cope
with the different official holidays,wehave adjusted the
indices by using the last closing price corresponding to
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(A)

(B)

(C)

Fig. 1 Daily stock returns for the 08/11/1991–16/03/2018
period (the number of elements is 6875). The labels (x-axis
above) indicate the most representative sociopolitical–economic
events. 1. NAFTA treaty, 2. Tequila effect, 3. East Asian crisis,
4. Ruble crisis, 5. Long-Term Capital Management collapse, 6.
Brazilian crisis, 7. Turkish crisis, 8. US subprime crisis, 9. Euro
Area Sovereign Debt crisis, and 10. 11 September attacks

each official holiday. Data were obtained from Yahoo
Finance.1 All the analyses were conducted using daily
log returns (called simply “returns” hereafter) (Fig. 1),
that is, Rt = log(St/St−1) = Δ log St , where St are
the adjusted stock market indices at time t . The main
advantage of the log returns is that the average correc-
tion of scale changes is incorporated without requiring
additional correction factors (e.g. deflators or discount-
ing factors). However, this transformation is nonlin-
ear, and nonlinearity could strongly affect the statistical
properties of a stochastic process [46]. Thus, nonlinear
statistical analysis methods must be used to analyse
these kinds of data.

2.2 Rolling window standard deviation

A rolling window analysis is often used to assess the
model’s stability over time and is also very useful to

1 https://finance.yahoo.com/world-indices.

Fig. 2 Graphical procedure to estimate the rolling window
statistics (standard deviation and Spearman correlation), where
w indicates the number of data points (250) and n is the size of the
sample (6875) (modified from https://it.mathworks.com/help/
econ/rolling-window-estimation-of-state-space-models.html)

analyse data whose statistical properties may change
through time [11,86]. We have estimated a 250-day
rolling window standard deviation for each NAFTA
stock market return (Fig. 2 describes graphically this
process) to depict the trend in volatility visually. We
have computed the rolling window standard deviation
withwindows ofw = 250 days or data points (one trad-
ing year), rolling forward one data point at a time and
centred on time t (where the standard deviation value
should be indexed, i.e. this value could be indexed left-
or right-aligned or centred) as in [3,22,62]. We use the
centred option to ensure that variations in the standard
deviation are aligned with the variations in the returns
rather than being shifted (towards the left or right). We
obtained n − w + 1 (where n = 6875 and w = 250)
windows and therefore 6624 standard deviation values.
We choose awindowof 250 days because a shorterwin-
dow would not have had enough data points to analyse
longer timescales and a longer window would not iso-
late different events of interest at short and medium
scales. However, other window lengths (125 and 500
days) were used to estimate the rolling window stan-
dard deviations to ensure this compromise. Our com-
putational code to estimate the rolling window stan-
dard deviation for our analyses was programmed in R
and uses the rollapply function from the R package
Zoo.2 Our R scripts are available upon request.

2 https://cran.r-project.org/web/packages/zoo/index.html.
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2.3 Rolling window Spearman correlation

Stock market prices are not necessarily stationary and
normally distributed, so the conventional Pearson cor-
relation is not themost suitable estimator formeasuring
links between stock market returns as it may lead to a
biased estimation [83,84]. We therefore use Spearman
rank-order correlation that does not require variables
with normal distribution (Gaussian), is based on the
ranked values for each variable rather than the raw data
and is known to be much more robust than the Pear-
son correlation, which means monotonic relationships,
for instance nonlinear associations [65,82,84]. Spear-
man’s rank correlation coefficient can be estimated as
follows [52]:

rs = 1

n

n∑

i=1

(
R(i) − R̄

Sn,R

)
·
(
S(i) − S̄

Sn,S

)
, (1)

where R̄ and S̄ are the sample means and Sn,R and
Sn,S are the sample standard deviations calculated with
the denominator n (sample size). The rank correlation
(rs) measures the degree of the monotonic relationship
between two time series and takes values from −1 to 1
[52].

Spearman’s rank correlation is a useful initial
approach for analysing correlation between two time
series because it is an overall measure of associa-
tion, but relationships between financial time series
can vary over time [11,65]. We apply the rolling win-
dow method to investigate the evolution of correlation
over time from “short” (approximately less than 6 trad-
ing months) and “medium” (approximately between
6 and 12 trading months) to “long term” (more than
12 trading months) for the three pairs formed by the
NAFTA stock market returns to deal with potential
drawbacks occasioned by an overall measure of associ-
ation and to find out whether correlations between the
variables under analysis change over time. We com-
pute the pairwise rolling window correlation for six
windows—w = 30, 60, 125, 250, 500 and 750 days or
data points (from one and a half trading month to three
trading years)—covering a wide range of variability,
rolling forward one data point at a time, and centred
(Fig. 2 describes graphically this process) on time t
as in [3,22,62]. As in the last subsection, we use the
centred option to ensure that variations in the corre-
lation are aligned with the variations in the relation-
ship of the returns rather than being shifted. Further-

more, these running correlationwindowswith different
lengths help to carry out a comparison with the results
of the other correlation method used here (see Sect.
3.3). Therefore, we obtain n−w+1 (where n = 6875)
windows and, as a consequence, n − w + 1 correlation
coefficients.

A statistical significance (95% confidence level) test
is applied to the rolling window Spearman’s rank cor-
relation coefficients. This test takes into account the
multiple testing/comparison problem (inflation of the
Type I error) and thus includes p value adjustments (or
corrections) following the false discovery rate method
of Benjamini and Hochberg (BH) [8]. We have applied
theBHmethod despiteBonferroni correction being fre-
quently used to face the multiple testing/comparison
problem for the following reasons. BH method is less
conservative, performs much better (in terms of statis-
tical power) than Bonferroni and is most adequate if
a large number of comparisons are performed [8,11].
Our computational code was also programmed in R
to estimate the rolling window Spearman correlation
and uses the running function from the R package
gtools3 [76] and the R native function p.adjust
to perform the p value corrections. Our R scripts are
available upon request.

The computational procedure to estimate the rolling
windowSpearman correlation is presented in Fig. 3 and
is described in detail in the following lines:

1. Input: two time series Xt and Yt (stock market log
returns in our case) for t = 1, . . . , n

2. Compute the n − w + 1 (number of windows;
see Fig. 2) rolling window Spearman correlation
coefficients (cor.XY) and p values (pval.XY)
through the function running from the R pack-
age gtools3

(a) cor.XY < − running(Xt , Yt , width=w,
fun= corfun, align="center"),
where corfun < − function(Xt , Yt )
{cor(Xt , Yt , method="spearman")}

(b) pval.XY <− running(Xt , Yt , width=w,
fun= pvalfun, align="center"),
wherepvalfun<−function(Xt ,Yt ){cor.
test(Xt , Yt , method="spearman")}

where w is the size of the window (in our work
we use windows with n=30, 60, 125, 250, 480 and
750 data points); align allows short subsets at both

3 https://cran.r-project.org/web/packages/gtools/index.html.
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Fig. 3 Graphical procedure to perform rollingwindowspearman
correlation analysis

ends of the time series so that complete subsets are
centred; cor and cor.test are native R functions
to estimate correlations and their corresponding p
values.

3. p value corrections following the method of Ben-
jamini and Hochberg (BH) [8] as implemented in
the native R function p.adjust:

(a) Input: pval.XY obtained in Step 2 (b), i.e. n−
w + 1 p values p1, p2, . . . , pn−w+1.

(b) Sort the n − w + 1 p values in ascending order
p′
1 ≤ p′

2 ≤ · · · ≤ p′
n−w+1 to assign ranks, i.e.

set the smallest p value has a rank of i = 1,
then next smallest p value has i = 2, etc. (Note
that for the case when there are p values with
equal values the rank is obtained as the average
of their corresponding ordinal ranks).

(c) For a given false discovery rate α (0.05 in
our case), let k be the largest rank i such that
p′
i ≤ i

n−w+1α (the BH critical value). Declare
all tests of rank 1, 2, . . . , i as significant with p
values smaller or equal to p′(k).

4. Output: Spearman correlation coefficients with p
values statistically significant obtained in 3 (c).

2.4 Wavelet coherence analysis

A vast number of studies investigating the correlation
among stock markets are conducted using a large num-
ber of bivariate and multivariate correlation techniques
in time (e.g. Pearson or Spearman correlation, correla-
tion matrix or cross-correlation) or in frequency (e.g.
cross-spectrum or spectral coherence), or by multivari-
ate cointegration techniques and generalised VAR or
(G)ARCH models [64,67,80]. However, cointegration
theory can only tackle short-run versus long-run time
horizons and the VAR or (G)ARCH approaches are
sensitive to model specifications [41,62]. In contrast,
we may point out that stock markets are not necessarily
stationary and involve heterogeneous agents whomake
decisions across different time horizons and operate on
different timescales (frequencies) [29,32,62,67].

A mathematical tool that can handle non-stationary
time series and works in the combined time-and-scale
domain is the wavelet correlation estimated through
the wavelet transform (WT) [32,59]. There are dif-
ferent methods or algorithms to compute the WT,
e.g. the discrete wavelet transform (DWT), the max-
imal overlap discrete wavelet transform (MODWT),
the multi-resolution analysis (MRA), or the wavelet
packet decomposition (WPD). However, wavelet cor-
relation via the (MO)DWT has been traditionally used
to analyse relationships among stock markets time
series [7,15,29,32,56,62] in comparison with wavelet
coherence obtained via the CWT, which has not been
widely exploited to analyse relationships between this
kind of time series (some exceptions are [2,39,45,66,
77]). This paper makes use of the wavelet correla-
tion obtained through the continuouswavelet transform
(CWT) given its advantages over the other methods.
For example, the wavelet correlation (obtained either
bymeans of cross-correlation or bywavelet coherence)
estimated through the CWT easily allows the evolution
of correlation and the co-movements between two time
series in time and scale (frequency) to be analysed at
once [2,48]. Furthermore, the CWT can be used with
complex wavelet functions, such as Morlet; therefore,
it is possible to estimate the phase difference (or phase
coherence), which is very useful to obtain information
on the delay or synchronisation (lead–lag relationships)
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between oscillations of the two time series under study
[2,61].

We compute thewavelet coherence (WCO) obtained
through the continuous wavelet transform (a graphi-
cal explanation is presented in Fig. 4) to analyse the
relationships between the three stock market returns of
the NAFTA countries in different time windows and
frequency bands (scales). We follow the methodology
for computing the WCO (and the wavelet spectrum
for each variable analysed) proposed by Maraun and
Kurths [48] and Maraun et al. [49], as implemented in
the R package SOWAS [47]. The SOWAS package uses
the CWT with the Morlet mother function. The CWT
is defined for a time series Xt at time b and scale a
(scales refer to 1/frequency) according to [10,49] as

WX (a, b)= 1√
a

∫ +∞

−∞
XtG

∗
(
t − b

a

)
dt, a>0, (2)

whereG∗(t)denotes the complex conjugate of theMor-
let function G(t) that is defined as

Ga,b(t) = π−1/4eiω0(
t−b
a )e−(t−b)2/2a2 (3)

Fig. 4 Graphical procedure to perform wavelet coherence anal-
ysis (modified from [38])

andω0 (the central frequency) determines the time/scale
resolution and is equal to 2π to satisfy the admissibil-
ity condition [24,78]. It is important to point out that
Fourier (wavelength) frequency f and wavelet scale a
are not necessarily reciprocals, and it is necessary to
rescale the result of the wavelet transform with a factor
depending on the mother wavelet [48,78]. For the case
of Morlet, the conversion, that was deduced by [50], is
given by

1

f
= 4πa

ωo + √
2 + ω2

o

, (4)

but, due to ωo = 2π and from Eq. 4, it is obtained that
a = 1

f [50].
However, dealing with discrete time series Xt , t =

0, 1, . . . , n−1 with a uniform time step δt , the integral
in (2) has to be discretised, and theCWTof Xt becomes
[2,78]

WX
t (a) = δt√

a

n−1∑

i=0

XtG
∗( i − t

a
δt

)
,

i = 0, 1, . . . , n − 1 (5)

However, it is possible to calculate the wavelet trans-
form from the discretised form (Eq. 5) for each value
of a and t . In practice, we can also identify the compu-
tation for all the values of t simultaneously as a simple
convolution of two sequences. This convolution can
then be computed as a simple product in the Fourier
space using the fast Fourier transform algorithm to go
back and forth from time to spectral domain [2,78].As a
consequence of working with finite-length time series,
we inevitably suffer from boarder distortions as the val-
ues of the wavelet transform at the beginning and at the
end of the series under scrutiny are always incorrectly
computed. The values of the wavelet transform involve
missing values of the series which are then artificially
prescribed (the most common choices are zero padding
or periodisation). The time–frequency region in which
the wavelet transform suffers from these edge effects is
called cone of influence (COI), and this region is unre-
liable and must be interpreted carefully [2,45,78].

ThewaveletMorlet provides a goodbalancebetween
scale (frequencies) and time localisations [34,51] and is
oneof the bestmother functions in termsof reproducing
frequency [37,61]. However, despite theWCOmethod
(via Morlet) of Maraun and Kurths ([48]) having been
successfully used to analyse different kinds of time
series (e.g. ecological [58,61], geophysical [48,73],
financial [14] among others), this method [48] (and
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other similar WCOmethods, such as [34]) requires the
time series analysed to be not far from a normal distri-
bution [34,48], but financial time series (and its returns)
are not necessarily normally distributed [12,46]. For
this reason, it is highly recommendable to corroborate
whether the time series under analysis fill this require-
ment. A typical way to establish where the time series
are or are not normally distributed is to plot the his-
togram, the box-and-whisker or the Q–Q (quantile–
quantile) of the series under study to verify visually
their Gaussianity and/or to apply tests of normality
to these series (e.g. Jarque–Bera test, Shapiro–Wilk
for samples with ≤ 5000 data points or Kolmogorov–
Smirnov or Anderson–Darling for samples>5000 data
points). In the event that the time series under analy-
ses are far from being normally distributed, a common
way to tackle the lack of normality is to transform the
target time series to be normally distributed (there are
several methods to carry out this task, e.g. the Box–
Cox, the Lambert W×F, the Yeo-Johnson, the ordered
quantile transformation and others)4 and then use these
transformed time series to carry out theWCO analysis.
However, we should be cautious against rashly chang-
ing their PDF (probability density function) [34]. For-
tunately, for the casewhen at least one of the time series
analysed can be “modelled” by Gaussian white noise,
the WCO method [48] used in our paper includes an
approximation formula to easily calculate the critical
value for the WCO significance on the 95% level (see
end of this section).

Normalised wavelet coherence (WCO) is defined as
the amplitude of the wavelet cross-spectrum (WCS)
normalised by the smoothed wavelet spectrum of each
signal or time series Xt and Yt , respectively, [2,81], i.e.

R2
t (a) = |〈a−1WXY

t (a)〉|2
〈a−1|WX

t (a)|2〉〈a−1|WY
t (a)|2〉 , (6)

where theWCS is givenbyWXY
t (a) = WX

t (a)WY∗
t (a),

WX
t (a) and WY

t (a) are the wavelet power spectra of
the time series, X (i) and Y (i), which are defined as
< |WX

t (a)|2 > and < |WY
t (a)|2 > [78,81]. The 〈〉

denotes a smoothing operator in time or scale (fre-
quency), which must be applied at least to the numer-
ator or denominator, otherwise WCO would be one
[48,61]. The smoothing is performed through the con-
volution with a constant-length window function in

4 A versatile R package to carry out this aim is
bestNormalize (https://CRAN.R-project.org/package=best
Normalize).

Fig. 5 Wavelet phase coherence circle

time or scale [48,49]. The normalised wavelet coher-
ence takes values between 0 and 1.A 0 valuemeans that
there is no link between the time series under study at
the timescale considered; similarly, a value of 1 implies
a perfect linear relationship [34,48].

On the other hand, the wavelet phase coherence or
phase difference (WPH) is defined as [2,81]

φXY
t (a) = tan−1

(
Im

{〈a−1WXY
t (a)〉}

Re
{〈a−1WXY

t (a)〉}
)

, (7)

where Im and Remean the real and imaginary parts of
the WXY

t (a), respectively. The wavelet phase coher-
ence provides information about the possible delay
between two time series at time t on a scale a [10].
The phase coherence takes values from−π (−180◦) to
π (180◦). The time series under study are either in (if
−π/2 ≤ φXY

t (a) ≤ 0 or 0 ≤ φXY
t (s) ≤ π/2) or out

(if −π/2 ≤ φXY
t (s) ≤ −π or π/2 ≤ φXY

t (s) ≤ π )
of phase (Fig. 5). A zero value indicates perfect syn-
chrony between two time series. More details about
wavelet phase coherence are given in [28,34,48].

A pointwise significance test of the results of the
WCO is applied (90% confidence level) in our WCO
analysis as a first approach. This test was proposed in
[48] and is included in the R package SOWAS.5 The
pointwise statistical significance test for zero wavelet
coherence is based on Monte Carlo simulations since
such tests cannot easily (if not impossibly) be calcu-
lated analytically [48]. However, this test based on

5 http://tocsy.pik-potsdam.de/wavelets/.
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Monte Carlo simulation can only be used in the case of
both time series under study being normally distributed
or are not far from that being the case. Otherwise, and
if at least one of these time series can be modelled by
Gaussian white noise, the following approximation can
be used [48]:

WCO95 = 8.23 × 10−5ω3
0 + 4.24 × 10−5ω2

0ω

+1.13 × 10−5ω0ω
2 + 1.54 × 10−5ω3

−2.30 × 10−3ω2
0 − 2.19 × 10−3ω0ω

−7.51 × 10−4ω2 + 2.05 × 10−2ω0

+1.27 × 10−2ω + 0.95, (8)

where 3 ≤ ωo ≤ 12 (the central frequency) and
0 ≤ ω ≤ 25 (smoothing length in scale direction a),
i.e. this approximation is only valid for these intervals.
The reason why only scale is used in Eq. 8 is due to
the fact that smoothing in time direction is practically
ineffective [48]. This approximation (8) is especially
useful to save computational time when the statistical
significance is estimated for the WCO of time series
under scrutiny with a large number of elements.

On the other hand, the statistical significance esti-
mated for the WCO is not free of the multiple testing
or comparison problem (such as the rolling window
Spearman correlation). A way to tackle this drawback
is to apply a type of statistical significance correction to
address themultiple comparison problem and to reduce
false positive errors using, for example, Bonferroni cor-
rections. However, Bonferroni often results in many
true positives being rejected and is particularly permis-
sive for correlated realisations. Overall, this kind of
correction only states whether any coherency exists at
all between the two time series without specifying at
what scale and time. Therefore, Bonferroni corrections
(and other similarmethods) are not useful for this situa-
tion [48,70]. Furthermore, a pointwise significance test
could produce spurious results occurring in clusters or
patches and should be used with caution (it is highly
recommendable to estimate theWCO and its statistical
significance for various smoothing windows—in time
and scale, compare them, and select only the patches
that appear in most) [48]. For this reason, Maraun et al.
[49] propose an areawise significance test to overcome
the intrinsic multiple testing problem of the pointwise
significance test and to reduce spurious spectral patches
as far as possible. This test uses information about the
size and geometry of a detected spectro-temporal area
or patch in the WCO to decide whether it is significant

or not (details can be found in [49]) [49]. However,
from a computational point of view the areawise test
is only applicable for a significance level of 0.90 (that
is, the areawise test is able of sorting out ∼ 90% of
the spuriously significant area from the pointwise test)
[49]6 We also use the areawise test of Maraun et al.
[49] (also implemented in the R package SOWAS) in
our analysis, and we would highlight that to the best of
our knowledge, it is the first time that this test has been
used to estimate the statistical significance of wavelet
coherence to analyse financial time series.

A summary of the computational procedure to
estimate the wavelet coherence analysis is presented
below:

1. Input: two time series Xt and Yt (stock market log
returns in our case) for t = 1, . . . , n and verify if
both time series have a normal distribution, if not,
use an adequate method to transform them to be
normally distributed.

2. Estimate the discretised form of the continuous
wavelet transform (Eq. 5) for both time series Xt

and Yt .
3. Estimate the wavelet cross-spectrum for the time

series Xt and Yt .
4. Estimate the wavelet coherence and phase differ-

ence by means of Eqs. 6 and 7 including the signif-
icance testing (pointwise and areawise).

5. (An additional step is included to operate the soft-
ware.) The main inputs for SOWAS should be
set up as follows: wco.s1 < − wco(Xt, Yt,
s0=0.05, noctave=8, nvoice=10,sw=
0.5, tw=1.5, units= "Years", sigl
evel=0.90, arealsiglevel=0.90, ph
ase=T) where s0 is the lowest calculated scale
a, noctave is the number of octaves, nvoice
number of voices per octave, sw and tw are the
lengths of smoothing window in scale direction
(given by2*sw*nvoice + 1) and in time direc-
tion (given by 2*a*tw + 1), siglevel and
arealsiglevel are the significance levels for
the pointwise and areawise tests (for more details
about the softwareSOWASvisit http://tocsy.pik-pot

6 Currently, some very interesting developments related to
significance testing in wavelet analysis are being developed
(Schulte: Statistical Hypothesis Testing in Wavelet Analysis:
Theoretical Developments and Applications to India Rainfall,
Nonlinear ProcessesGeophys.Discuss., https://doi.org/10.5194/
npg-2018-55, in review, 2018).
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sdam.de/wavelets/), andphase=T (TRUE) to esti-
mate the phase coherence.

2.5 Nonlinear causality test

Financial markets are dynamic systems that could
manifest nonlinearities (e.g. structural breaks, regime
shifts or extreme volatility), especially when the time
series under study contain a great many of data points
[62,63,69]. [69] argues that these dynamic systems
could elude common linear statistical tests, including
linear causality tests. For this reason, many nonlinear
causality tests have been developed to address nonlin-
ear causality in bivariate analysis (see e.g. [4,6,35,74]).
However, here we use the test developed by Diks and
Panchenko [18], as implemented in the C program
GCTtest, which is freely available online.7 [18] pro-
poses a nonparametric, nonlinearGranger causality test
to avoid over-rejection of the null hypothesis when the
test is satisfied, as occurs in the causality test proposed
by [35] (which is one of the main nonlinear causality
tests used in economics and finance).

The nonlinear and nonparametric causality test of
Diks and Panchenko [18] is described in the follow-
ing lines. For a strictly stationary bivariate process
{Xt ,Yt , t ≥ 1}, {Xt } is a Granger cause of {Yt } if
past and current values of X contain additional infor-
mation on future values of Y that is not contained in
past and current Y values [18,33]. The formal defini-
tion according to [18] is established in the following
manner. For a strictly stationary bivariate time series
process {Xt ,Yt }, t ∈ Z , {Xt } is a Granger cause of
{Yt } if, for some k ≥ 1

(Yt+1, . . . ,Yt+k)|(FX,t ,FY,t )

∼ (Yt+1, . . . ,Yt+k)|FY,t , (9)

whereFX,t andFY,t denote the information sets con-
sisting of past observations of Xt and Yt up to and
including time t and ∼ denotes equivalence in distri-
bution [5,18].

Note that although k ≥ 1, for simplification, Diks
and Panchenko [18] limit the test for k = 1 (the case
used most often). This is due to the fact that under
the null hypothesis Yt+1 is conditionally independent
of Xt , Xt−1, . . . , given Yt ,Yt−1, . . . , and, in a non-
parametric context, conditioning on the infinite past

7 http://research.economics.unsw.edu.au/vpanchenko/software
/2006_GC_JEDC_c_and_exe_code.zip.

is not possible without a model restriction, such as
an assumption that the order of the process is finite
[5,18]. Thus, in practice, conditional independence is
tested using finite lags lX and lY (lX and lY ≥ 1) [18];
then, the null hypothesis Ho “that past observations of
XlX
t contain no additional information—beyond that in

YlY
t —about Yt+1” is

Ho : Yt+1|(XlX
t ; YlY

t ) ∼ Yt+1|YlY
t , (10)

whereXlX
t = (Xt−lX+1,...,Xt ) andYlY

t = (Yt−lY+1,...,Yt )

are the so-called delay vectors.
For a strictly stationary bivariate time series, Eq. 10

comes down to a statement about the invariant distri-
bution of the (lX + lY + 1)-dimensional vector Wt =
(XlX

t , YlY
t , Zt ), where Zt = Yt+1 [5,18]. To keepmath-

ematical consistency, we also use the same notation as
in Diks and Panchenko [18], and taking into account
that the null hypothesis is a statement about the invari-
ant distribution ofWt , we drop the time index t and also
consider lX = lY = 1 as in [18]; thus, W = (X,Y, Z)

(which denotes a three-variate continuous random vari-
able). Consequently, under the null, the conditional dis-
tribution of Z given (X,Y ) = (x, y) is the same as that
of Z given Y = y [5,18]. Therefore, the null hypoth-
esis (Eq. 10) can be restated in terms of ratios of joint
distributions. Particularly, the joint probability density
function fX,Y,Z (x, y, z) and its marginals must satisfy
the relationship

fX,Y,Z (x, y, z)

fX,Y (x, y)
= fY,Z (y, z)

fY (y)
(11)

or equivalently

fX,Y,Z (x, y, z)

fY (y)
= fX,Y (x, y)

fY (y)

fY,Z (y, z)

fY (y)
(12)

for each vector (x, y, z) in the support of (X,Y, Z)

[18]. This explicitly states that X and Z are independent
conditionally on Y = y for each fixed value of y [5,
18]. Diks and Panchenko [18] demonstrated that this
reformulated null hypothesis Ho (Eq. 10) implies

q ≡ E[ fX,Y,Z (X,Y, Z) fY (Y )

− fX,Y (X,Y ) fY,Z (Y, Z)] = 0, (13)

where E denotes the expectation operator. According
to Diks and Panchenko [18], an estimator for q based
on indicator functions is
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Tn(εn) = (2ε)−dX−2dY−dZ

n(n − 1)(n − 2)

∑

i

⎡

⎣
∑

k,k �=i

∑

j, j �=i

(
I XY Z
ik IYi j

−I XYik IY Z
i j

)
⎤

⎦ , (14)

where IWi j = I(||Wi −Wj || < ε) (I is the indicator or
characteristic function), Wi and Wj are elements of a
dW -variate random vectorW , ε is the bandwidth and n
is the sample size [5,18]. Taking into account that the
local density estimators of a dW -variate random vector

W can be described as f̂W (Wi ) = (2ε)−dW

n−1

∑
j, j �=i I

W
i j ,

the test statistic according to Diks and Panchenko [18]
can be simplified as the sample scaled version of q
(Eq. 13), i.e.

Tn(εn) = (n − 1)

n(n − 2)

∑

i

[
f̂ X,Y,Z (Xi ,Yi , Zi ) f̂Y (Yi )

− f̂ X,Y (Xi ,Yi ) f̂Y,Z (Yi , Zi )

]
. (15)

For the case εn = Cn−β , with β ∈ (1/4, 1/3) and
C > 0, and for the lag 1, lX = lY = 1, the test statis-
tics Tn (Eq. 15) are asymptotically normally distributed
in the absence of dependence between vectors Wi and
satisfies

√
n

(Tn(εn) − q)

Sn

d−→ N (0, 1), (16)

where
d−→ indicates convergence in distribution and Sn

is an estimator of the asymptotic variance of Tn [5,18].
The computational procedure (Fig. 6) to estimate the

nonlinear causality test [18] is described as follows:

1. Input: two time series Xt and Yt (stock market log
returns in our case) for t = 1, . . . , n

2. The bandwidth εn is computed to each couple of
time series (returns) as εn = max(C∗n−2/7, 1.5),
where n is the number of data points and C∗ the
optimal “constant” is ≈ 8 for unfiltered financial
returns time series [18].

3. The test is applied (using the software GCTtest
8) in both directions (Xt → Yt and Yt → Xt ) using
the parameters embeddim (embedding dimen-
sion; lX = lY = 1) and bandwidth (εn) that
are computed in step 3.

8 http://research.economics.unsw.edu.au/vpanchenko/software
/2006_GC_JEDC_c_and_exe_code.zip.

Fig. 6 Graphical procedure to perform nonlinear Granger
causality

4. Output: T statistics and p values for Xt → Yt and
Yt → Xt .

3 Results and discussion

3.1 Preliminary analysis

Basic descriptive statistics for returns are shown in
Table1. The mean and median have practically the
same values (zero) for all four sub-periods and for
the full period studied. The minimum and maximum
values for the four sub-periods are found in the cri-
sis period (2007–2011), except for the IPC, where the
maximum is found in the 1991–2001 “unstable” IPC
period. Moreover, skewness (a measure of asymmetry)
shows that Rt has an asymmetric probability distribu-
tion in all cases (except for the IPC in the crisis period)
and a skewness value relatively close to zero. Addi-
tionally, practically none of the kurtosis values have
a value close to 39 (except the GSPTSE for the pre-
crisis period), indicating that none of the probability
distributions of these time series appear to be normally

9 The theoretical value for a Gaussian probability distribution.
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distributed. To confirm this finding, we perform the
Jarque–Bera test of the null hypothesis that the respec-
tive probability distribution of Rt are Gaussian (Chi-
square with d f = 2). The p values reported lead us
to reject the null hypothesis in all cases. Note that this
lack of normality for Rt is consistent with the well-
known “stylised facts” of market returns, as pointed
out in previous studies [12,46]. Finally, the standard
deviation, which is a measure of volatility, is practi-
cally at its highest for all three indices during the crisis
period (2007–2011). This is expected because it is well
known that volatility of financialmarkets increases dur-
ing financial crises.

One of the most interesting features of the returns is
a decrease in volatility on the IPC, which is most evi-
dent from 1991 to 2004 (Fig. 1). A decrease in volatil-
ity values on the IPC can clearly be seen in Fig. 7,

which was obtained via a 250-day rolling window stan-
dard deviation for each stock market. Other window
lengths (125 and 500 days) were used to estimate the
rolling window standard deviations, but the result did
not change substantially and they are therefore not
reported. This result is consistent with the previous
studies. For instance, [9] model changes in volatility in
the Mexican Stock Exchange Index using a Bayesian
approach for 1994–2016 and finds as an indirect result
that periods of volatility coincide with different finan-
cial crises and that volatility decreases over time.More-
over, [13] statistically analyses the IPC index (through
a simple moving average of its standard deviation) and
finds, among other results, a clear decreasing trend in
the standard deviation of the IPC from 1978 to 2006.
The conclusion drawn is that the IPC shows compelling
evidence of increased efficiency over time. By con-

Table 1 Descriptive statistic for the returns (Rt ) of the stock market indices under study

Period Index Mean Median Min. Max.

1991–2001

Unstable IPC period

DJI 0.000 0.001 −0.065 0.062

IPC 0.001 0.000 −0.113 0.123

GSPTSE 0.001 0.000 −0.069 0.047

2002–2006

Pre-crisis period

DJI 0.000 0.000 −0.055 0.056

IPC 0.001 0.001 −0.057 0.063

GSPTSE 0.000 0.001 −0.031 0.039

2007–2011

Crisis period

DJI 0.000 0.000 −0.080 0.093

IPC 0.000 0.001 −0.086 0.106

GSPTSE 0.000 0.001 −0.117 0.086

2012–2018

Post-crisis period

DJI 0.000 0.000 −0.040 0.045

IPC 0.000 0.000 −0.060 0.037

GSPTSE 0.000 0.000 −0.030 0.034

1991–2018

All period

DJI 0.000 0.000 −0.080 0.093

IPC 0.001 0.000 −0.113 0.123

GSPTSE 0.000 0.000 −0.117 0.086
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Table 1 continued

Period Index Skewness Kurtosis JB test SD

1991–2001

Unstable IPC period

DJI −0.501 5.465 3412.617 0.009

IPC 0.221 5.269 3090.354 0.017

GSPTSE −0.809 8.225 7765.609 0.009

2002–2006

Pre-crisis period

DJI 0.275 5.539 1692.870 0.009

IPC −0.107 3.393 632.106 0.011

GSPTSE −0.255 2.910 477.373 0.007

2007–2011

Crisis period

DJI −0.189 6.781 2517.590 0.013

IPC 0.016 6.335 2190.471 0.014

GSPTSE −0.637 9.800 5328.013 0.014

2012–2018

Post-crisis period

DJI −0.314 4.598 1458.900 0.007

IPC −0.282 4.535 1414.833 0.008

GSPTSE −0.092 3.295 738.236 0.007

1991–2018

All period

DJI −0.274 8.357 20,108.959 0.009

IPC 0.149 7.485 16,085.505 0.014

GSPTSE −0.719 12.932 48,531.755 0.009

Bold numbers indicate p values ≤ 0.01

trast, the volatility of the DJI and GSPTSE increases
slightly over time for the full period studied (Fig. 7).
This can be explained by the deep 2008 financial cri-
sis (as observed in Fig. 7, the highest volatility values
for DJI and GSPTSE are found during the 2008 crisis).
This extreme volatility could affect the estimation of
the linear trend in both indices. However, our results
are consistent with other studies, such as [21], where
the DJI index is found to show a considerable level of
volatility for 1928–2009, and one that has been increas-
ing in recent years. On the other hand, a noteworthy
result presented in Fig. 7, over and above the expected
strongly coupled DJI-GSPTSE system, is that the IPC
has been trying to “follow” and “couple with” the DJI
andGSPTSE since 1998 (though this ismost noticeable
from 2002 onwards). This result is a good indication of
market integration in the NAFTA stock market system.

3.2 Dynamic correlation in the time domain

The rolling window Spearman correlation for the
NAFTA returns (Fig. 8) shows that there is a medium/
high degree of correlation in all six windows, with
a general increasing trend over time. The strongest
relationship is in the DJI-GSPTSE pairing, which is
expected because both indices belong to developed
markets and the USA is Canada’s main trading part-
ner. Moreover, the trade relationship between the USA
and Canada is known to be the second largest in the
world after that of China and the USA [23,40]. By
contrast, the relatively weakest correlations are found
for the DJI–IPC and GSPTSE–IPC pairings, i.e. when
the Mexican stock market is present. This result is also
expected because the Mexican stock market belongs
to an emerging market, and one which is not yet an
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efficient and competitive market as the corresponding
markets in the USA or Canada. Despite this, there is
a compelling evidence of increasing efficiency in the
IPC over time [13].

The most conspicuous result is that the degree of
correlation between NAFTA stock returns varies con-
siderably over time and scale (from the short and
medium to the long term), taking statistically signif-
icant values (5% level) running approximately from
0.10 to 0.85 (Fig. 8). This indicates that the rela-
tionships between NAFTA equity markets are highly
time dependent. For example, although these correla-
tions increase over the full period studied, there are
sub-periods for which they decrease, e.g. approxi-
mately from 2011 to 2014. This decreasing correla-
tion is present in all six windows but is more evi-
dent in the 250-, 500- and 750-day windows (Fig. 8d–
f). This indicates that the main drivers influencing
the decrease are related more to economic phenom-
ena which are highly persistent or which took place
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Fig. 7 Rolling window standard deviation (continuous lines
in black, green and blue) for returns and for the 08/11/1991–
16/03/2018 period (the total number of elements is 6625 with a
window length of 250 data points). Dashed lines indicate the lin-
ear trends for the rolling window standard deviations. Red lines
indicate the lower and upper 95% confidence bounds. The labels
(x-axis above) 1–10 are described in the legends. (Color figure
online)

over several years. A plausible explanation is that this
may well be caused by indirect impacts of the recent
global financial crisis, which lasted for many years
(from the financial subprime crisis in 2007 and the
Lehman Brothers bankruptcy in 2008 to the Euro Area
Sovereign multi-year Debt Crisis that broke out in
2009). In other words, they can be explained by a slow
recovery of the economy after a global financial cri-
sis.

The increasing correlation is most pronounced for
the DJI–IPC and GSPTSE–IPC pairings. It can be
observed in all time windows, from short to long
term, but is clearer on the longest scales (Fig. 8).
This increasing correlation is most noticeable for the
DJI–IPC pair in the 2008 crisis period, when their
respective correlation values have the highest val-
ues for all the pairings analysed here. This means
that the Mexican stock market is increasing its inte-
gration with the other two NAFTA stock markets,
which is consistent with results reported by other
authors [1,16,40,60]. For instance, [60] investigate
the evolving nature of NAFTA stock market interde-
pendencies and their association with diversification
gains from the perspective of US investors and find
a time-varying long-term relationship. Furthermore,
[40] have recently studied the impact of NAFTA on
North American stock market linkages and found that
NAFTA has increased links between the US and Mex-
ican equity markets and between Canadian and Mex-
ican markets. A strong relationship in the long term
may be good indication of market integration between
the US and Canadian stock markets and the Mexican
market. However, from a financial investment view-
point, this means high risk in diversification gains for
North American stock market investors in the long-
term perspective. That is, if the correlation between
stock market returns is strong, a loss in one stock
is likely to be accompanied by a loss in the other.
This means that the benefits of diversification increase
when the correlation between stock returns is low
[1,17]. On the other hand, countries with higher lev-
els of correlation and integration in their stock mar-
kets have higher risk exposure to global financial tur-
moil (such as the 2008 financial crisis). This infor-
mation is therefore useful for policymakers and man-
agers.
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Fig. 8 Rolling window Spearman correlations statistically sig-
nificant (95% confidence level and taking into account multiple
comparison corrections) for theNAFTA stock returns. The labels
a–f correspond to the window length of 30, 60, 125, 250, 500 and
750 data points (days). The labels (x-axis above) 1–10 have been
previously defined

3.3 Dynamic correlation in the time–frequency
domain

Figures 9 and 10 present the estimated wavelet coher-
ence (WCO) and phase coherence (WPH) for the
NAFTA stock returns for the full period studied
(08/11/1991–16/03/2018) after applying a (ordered
quantile normalisation) transformation to these returns
to be normally distributed.10 Thin and thick contour
lines denote statistically significant wavelet coherences
(90% confidence level) obtained through the pointwise
and areawise significance tests, respectively, and the
black curve is the cone of influence (COI) inwhich edge
effects cannot be ignored. In thewavelet coherence heat
maps, the colour code for spectral power ranges from
blue (lowWCO values) to red (highWCO values). The
phase coherence ranges from−π (−180◦) to π (180◦),
where a zero value indicates that the two time series
under analysis are synchronous.All heatmaps show the
wavelet coherence between two time series, where the
name of the index presented first is the first time series
and the other the second. We use the DJI as the first
series in all cases because it is expected to lead the other
indices, although this need not be the case. It should be
highlighted that wavelet coherence techniques, e.g. the
technique [48] used in our paper and other techniques
such as those in [10,34,79], do not take into account
the “causal” relationship between two time series, as
was previously pointed out by [10,57,62,63]. Thus,
care must be taken when talking about leads and lags
in wavelet coherence analysis.

The wavelet coherence results corroborate the pre-
vious results obtained using rolling window Spearman
correlation (see Fig. 8, Sect. 3.2), i.e. there is a good
degree of correlation between NAFTA stock returns,
correlation is highly variable in time and in scale (fre-
quency) and correlation increases not only over time
but also over scale. This is most noteworthy for the
DJI–IPC and GSPTSE–IPC pairings, particularly for
the 2004–2011 period and for theDJI–GSPTSEpairing
and for the period 1995–2004. However, it is clear that
wavelet coherence provides more detail about correla-
tion over time and overall over scales. For example, the
WCO analysis (Fig. 9) enables to visualise the evolu-

10 We also applied WCO analysis to the returns, and the results
are quite similar to the exception for the largest scales for the
pair DJI–GSPTSE. These results are not shown but are available
upon request.
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Fig. 9 Wavelet coherence (WCO) computed for the NAFTA
stock returns after applying a normal distribution transformation.
a WCO between DJI and IPC, b WCO between GSPTSE and
IPC; and c WCO between DJI and GSPTSE. The area marked
by the black lines indicates the cone of influence (COI) where
edge effects become important. The solid thin and thick black
contours enclose regions of 90% confidence obtained through
the pointwise and the areawise tests, respectively. The letters A,
B, C, D, E and F correspond to the scales of 30, 60, 125, 250,
500 and 750 data points (days)

tion of correlation between NAFTA returns at different
scales (from short and medium to long term) and over
time (from the beginning to the end of the time series
under study). Furthermore, the WCO provides all this
information in a single plot instead of several plots as
the case of rolling window correlation (Fig. 8). In addi-
tion, WCO provides the phase difference between the
two time series under scrutiny, which enables to anal-
yse the lead–lag relationships.

For the short-term scale band (Fig. 9, labels A and B
on the right Y -axis11), there is a moderate/strong level
of wavelet coherence that appears “clustered” around
1996, 2002–2004, 2008–2011 and 2015–2016. This
is clearer particularly for the DJI–IPC and GSPTSE–

11 Note that labels A and B on the right Y -axis in Fig. 9 corre-
spond to the same scales presented in Fig. 8a, b.

IPC pairings and in the 2008–2011 period. However,
although these wavelet coherences are always in phase
(Fig. 10) there is no preferential stock return that
“leads” or “follows” the other. This also happens in the
DJI–GSPTSE pairing, although there are other time
intervals with moderate coherence and with no pref-
erential direction in the phases, e.g. around 1996 or
2002–2004. These features indicate a common origin
that could be related to financial contagion (at least dur-
ing the 2008–2011 interval), i.e. significant increase in
cross-market links after a shock to one country or group
of countries [27]. Taking into account that wavelet
coherence in the short term is more closely related
to volatile events than to fundamental macroeconomic
factors (trade monetary policy, common shocks, etc.),
that there was a long global financial crisis during the

Fig. 10 The wavelet phase coherence (WPH) computed for
the NAFTA stock returns after applying a normal distribution
transformation. a WPH between DJI and IPC, b WPH between
GSPTSE and IPC; and c WPH between DJI and GSPTSE. The
area marked by the black lines indicates the cone of influence
(COI) where edge effects become important. The solid black
contour encloses regions of 90% confidence obtained through
the pointwise and the areawise tests, respectively. The letters A,
B, C, D, E and F correspond to the scales of 30, 60, 125, 250,
500 and 750 data points (days)
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2008–2011 period and that several studies of other
stock markets (e.g. [31,36,62,68,85], among others)
have established that different financial markets tend
to be more closely linked during financial crises, finan-
cial contagion seems to be the main mechanism for
explaining this phenomenon.

Wavelet coherence in the medium-term band (Fig.
9 labels C and D on the right Y -axis12) reveals inter-
esting information. For example, coherence is stronger,
as in the shorter timescales, but it is more noticeable
that correlation increases not only over time but also in
scale. These results confirm our findings obtained with
the rolling window Spearman correlation (see Fig. 8,
Sect. 3.2). However, the most noteworthy result is that
in the medium-term statistical significant coherences
(and in phase) are mainly present for the DJI–GSPTSE
pairing and for the interval 1994–2005. This result cor-
roborates the finding found through rolling window
Spearman correlation (Fig. 8c, d). This result indi-
cates that in the medium term and from 1994 to 2005,
the economical and financial mechanisms behind this
behaviour are mainly related to the economies of USA
and Canada.

Finally, on the long-term scale band (Fig. 9, labels
E and F on the right Y -axis13), one of the most con-
spicuous results is that in 2005/2006–2011 with a fre-
quency band of approximately between∼ 1 and 3 trad-
ing years, the wavelet coherence in the DJI–IPC and
GSPTSE–IPC pairings shows strong correlation val-
ues which are in phase, and large statistical signifi-
cant spectral regions (Figs. 9 and 10). This is clearly
not due to chance. A likely explanation, in addition to
macroeconomic factors that usually take place at lower
scales, could be found in the effects of the 2008 global
financial crisis (which originated in the USA), even
though this phenomenon is often associated with short-
term scales. The prolonged, persistent strong global
financial crisis, considered to be one of the most seri-
ous ever reported [20,30], could have influenced other
economic factors, variables, agents, etc., not normally
altered in non-crisis times. As a result, NAFTA stock
markets entered a vicious circle (note that the direction
of phases changes over time and scales), increasing cor-
relation and interrelationships (“feedbacks”) between

12 Note that labels C and D on the right Y -axis in Fig. 9 corre-
spond to the same scales presented in Fig. 8c, d.
13 Note that labels E and F on the right Y -axis in Fig. 9 corre-
spond to the same scales presented in Fig. 8c, d.

them. Lastly, on the longest scales (more than 3 trad-
ing years) the wavelet coherences (which are in phase)
are strong and statistically significant (mainly obtained
through the pointwise test) only for DJI–IPC pair.
These strong co-movements and this close correlation
in the long term for DJI and IPC stock returns could
be explained by the interdependence and the increas-
ing economic integration of these NAFTA markets, as
pointed out by other authors [17,43].

3.4 Nonlinear causality

To gain more insight into the interrelations between
pairs of all the daily stock returns under scrutiny in
the time domain, we present and discuss the results
obtained with the nonlinear bivariate causality test [18]
applied to several sub-periods for NAFTA stock returns
(Fig. 11 and Table 2). However, before discussing these
results it is important to stress the following two points:
(1) one-way causality indicates that changes in one
stock return can cause changes in another; (2) two-way
(or simultaneous) causality indicates that changes in
one stock return can affect a second one, but changes
in the second market can also affect the first. Two-way
causality indicates a high degree of interaction between
returns from twomarkets. From a financial perspective,
causality in returns from two stock markets means that,
to some extent, onemarket could be used to forecast the
other. This information should be taken into account in
portfolio diversification strategies [62,63].

The most relevant result from our bivariate causal-
ity test is that there are nonlinear two-way causali-
ties which are statistically significant in all the sub-
periods analysed and for the full period. These results
indicate that there is a strong level of interrelation-

DJI

GSPTSEIPC
1991-2001

DJI

GSPTSEIPC
2002-2006

DJI

GSPTSEIPC
2007-2011

DJI

GSPTSEIPC
2012-2018

DJI

GSPTSEIPC
1991-2018

Fig. 11 Nonlinear Granger causality test for the NAFTA stock
returns. Details for the test estimation and statistics are provided
in Table 2. The arrows in the solid lines indicate the causal-
ity direction between each stock return pairing (significance 5%
level)
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ship between NAFTA members and that there is feed-
back not only from the stock markets of the USA and
Canada to Mexico, but also from that of Mexico to the
USA and Canada. These results are consistent with the
results presented previously and with those of other
authors (e.g. [1,17,25,43]), although our paper is the
first to use a causality test to analyse the interrela-
tionships between NAFTA stock markets. By contrast,
there are three pairs of returns that do not show non-
linear causality but which pass the test of significance
in the 2002–2001 and 2012–2018 sub-periods (Fig. 11
and Table 2): the pairs DJI–IPC and GSPTSE–DJI for
the second sub-period and IPC-DJI for the fourth sub-
period. Finally, an intriguing result is that all the pairs
for the full period (1991–2018) show nonlinear causal-
ities which are statistically significant, such as the first
and especially the third sub-period (crisis period). In
other words, more interrelationships are expected dur-
ing crisis periods than non-crisis periods [62]. How-
ever, there is no clear explanation for this, so further
research is needed.

4 Conclusions and final remarks

We here investigate for the first time the dynamic rela-
tionship between daily NAFTA stock market indices
over the 8/11/1991–16/03/2018 period, focusing on the

pre-2008 crisis, 2008 crisis and post-2008 crisis peri-
ods. To depict the trend in volatility in theNAFTAstock
markets visually, we estimate a 250-day rolling win-
dow standard deviation for each NAFTA stock market
return. This analysis reveals that volatility decreases for
all three stock market indices (most markedly for the
Mexicanmarket (IPC)) throughout the period analysed,
except for the 2008 financial crisis, where the highest
volatility in the whole period of study is found.

Weuse the rollingwindowSpearmancorrelation and
wavelet coherence to analyse the evolution of correla-
tion in time and in time–frequency of NAFTA stock
market indices. The Spearman correlation (nonpara-
metric statistical technique) does not require variables
with normal distribution (Gaussian), and stock market
prices are not necessarily normally distributed. On the
other hand, wavelet coherence is able to handle non-
stationary time series (such as stock markets and other
financial time series) and to lesser extent time series that
are not far from a normal distribution (otherwise the
target time series has to be transformed to be normally
distributed) and works in the combined time and scale
domain.The correlation (Spearman rollingwindowand
wavelet coherence) between the pairs of indices anal-
ysed increases in the 2000–2011 period. However, this
increasing correlation is interrupted around 2011/2012
and then falls noticeably before increasing again from

Table 2 Pairwise nonlinear Granger causality test for the NAFTA stock returns

1991–2001 Pair εn T statistics p value Direction

DJI-IPC 0.87 2.233 0.0128 →
IPC-DJI 0.85 2.138 0.0162 →
DJI-GSPTSE 0.87 3.278 0.0000 →
GSPTSE-DJI 0.82 4.094 0.0000 →
GSPTSE-IPC 0.82 3.396 0.0000 →
IPC-GSPTSE 0.85 2.945 0.0016 →

2002–2006 Pair εn T statistics p value Direction

2008 Pre-crisis

DJI-IPC 1.41 0.877 0.1901

IPC-DJI 1.21 2.193 0.0142 →
DJI-GSPTSE 1.41 2.398 0.0082 →
GSPTSE-DJI 1.48 1.070 0.1423

GSPTSE-IPC 1.48 1.926 0.0270 →
IPC-GSPTSE 1.21 3.814 0.0001 →
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Table 2 continued

2007–2011 Pair εn T statistics p value Direction

2008 Crisis

DJI-IPC 0.90 3.039 0.0012 →
IPC-DJI 1.00 3.875 0.0000 →
DJI-GSPTSE 0.90 3.799 0.0001 →
GSPTSE-DJI 0.81 5.055 0.0000 →
GSPTSE-IPC 0.81 4.243 0.0000 →
IPC-GSPTSE 1.00 2.789 0.0026 →

2012–2018 Pair εn T statistics p value Direction

2008 Post-crisis

DJI-IPC 0.97 3.755 0.0001 →
IPC-DJI 1.25 1.542 0.0615

DJI-GSPTSE 0.97 4.977 0.0000 →
GSPTSE-DJI 1.10 2.552 0.0054 →
GSPTSE-IPC 1.10 3.318 0.0001 →
IPC-GSPTSE 1.25 3.192 0.0000 →

1991–2018 Pair εn T statistics p value Direction

All period

DJI-IPC 0.60 5.362 0.0000 →
IPC-DJI 0.59 4.945 0.0000 →
DJI-GSPTSE 0.60 7.064 0.0000 →
GSPTSE-DJI 0.57 7.234 0.0000 →
GSPTSE-IPC 0.57 6.173 0.0000 →
IPC-GSPTSE 0.59 5.386 0.0000 →

εn is the bandwidth for each pair (taking as reference the first element) and lX = lY = 1. The arrows indicate the direction of the
causality (statistically significantly) between the pairs of stock markets. A lack of statistical significance is indicated by a blank space.
Bold numbers indicate p values ≤0.05

2015 onwards. The pairs that show the lowest correla-
tion are those that involve the IPC.

On the other hand, to analyse the cause–effect rela-
tionships in the time domain between NAFTA stock
markets, we apply a nonlinear, nonparametric causal-
ity test. Financial time series belong to dynamic sys-
tems that can manifest nonlinearities and as such could
elude common linear statistical tests, including linear
causality tests. For this reason, the test that we use is
adequate to prevent this situation. That test reveals non-
linear two-way causality for all three indices for the
intervals analysed, indicating that there are strong links
between NAFTA members.

It must be highlighted that the statistical methods
used in this paper, to the best of our knowledge, have

never before been used individually or in combination
to analyse NAFTA stock market indices. In particular,
rolling window correlation via the Spearman estimator
and wavelet coherence in combination with an area-
wise significance test have not been used previously to
analyse financial time series.

A better understanding of NAFTA stock markets is
vital for investors, economists and policymakers, espe-
cially in the wake of the recent global economic crisis,
which was recognised as one of the most serious ever
reported. Thus, our results are relevant to obtaining a
better understanding of economic systems formed by
countries with trade agreements, strong regional influ-
ence and interdependence.
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Future directions of research include the combina-
tion between empirical analysis using advanced nonlin-
ear, nonparametric and non-stationary statistical tech-
niques (such as the techniques used in this paper), opti-
mal control of parameters used as inputs for the sta-
tistical methods used to analyse the time series under
study [53,54], and sophisticated stochastic methods to
model transition of stock fluctuations such as [71,72]
or [55].
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