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Abstract We study a deformed Fokas–Lenells equa-
tion which is related to the integrable derivative non-
linear Schrödinger hierarchy with higher-order non-
holonomic constraint. The baseband modulation insta-
bility as an origin of rogue waves is displayed. The
explicit rogue wave solutions are obtained via the
Darboux transformation. Typical rogue wave patterns
such as the standard rogue wave, dark rogue wave
and twisted rogue wave pair in three different com-
ponents of the deformed Fokas–Lenells equation are
presented. Besides, the state transitions between rogue
waves and solitons are analytically found when the
modulation instability growth rate tends to zero in the
zero-frequency perturbation region. The explicit soli-
ton solutions under the special parameter condition are
given. The anti-dark and W-shaped solitons in their
respective components are shown.
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1 Introduction

A generalized nonlinear Schrödinger (NLS) equation

iut−νutx+γ uxx+σ |u|2(u+iνux ) = 0, σ = ±1, (1)

the so-called Fokas–Lenells (FL) equation, was first
proposed by Fokas through the bi-Hamiltonian method
[1] and then derived by Lenells in single-mode optical
fibers when certain higher-order nonlinear effects are
taken into account [2]. In Eq. (1), γ and ν are two
nonzero real parameters that can be assigned to have
the same sign as a result of the transformation x →
−x , and u(x, t) represents the complex field envelope.
The relationship between Eq. (1) and the NLS equation
is the same as the relationship between the Camassa–
Holm equation and the Korteweg–de Vries equation in
view of the bi-Hamiltonian point [2–4]. When ν = 0,
Eq. (1) degenerates to the NLS equation.

Asmentioned before, one can assume γ /ν > 0, then
the gauge transformation u → √

γ /ν3 exp(i x/ν)u
converts Eq. (1) into the following equation [4]

iuxt − iγ

ν
uxx + 2γ

ν2
ux + γ

ν3
σ |u|2ux + iγ

ν3
u = 0.
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For simplicity, by setting ν = γ = σ = 1 we have

iuxt − iuxx + 2ux + |u|2ux + iu = 0, (2)

which admits a Lax pair that ensures that one can solve
the initial value problem for it via the inverse scattering
transform [4]. Recent developments for Eqs. (2) or (1)
concentrate on finding its soliton solutions, breather
solutions and rogue wave solutions by means of the
dressing method [5], the Hirota’ direct method [6],
the Darboux transformation (DT) method [7–9] and
the complex envelope function method [10]. More
recently, the two-component integrable generalization
of Eq. (2) and its explicit soliton solutions and rogue
wave solutions have been researched with the aid of the
Riemann–Hilbert method and the DT method [11–14].

The nonholonomic deformation of the classical inte-
grable system has been extensively investigated during
the past decades [15,16]. On the one hand, such defor-
mations can be viewed as a perturbation of the original
integrable system with certain differential constraint
on the perturbing function without spoiling the system
integrability and thus can be used to obtain some novel
integrable equations such as the sixth-order KdV equa-
tion [15], the multiple self-induced transparency sys-
tem [16,17] and the aforementioned FL equation. On
the other hand, this new class of deformed integrable
equations actually possesses some interesting features,
such as the solitons with shape changing and accelerat-
ing motion [16] and the breather/rogue wave-to-soliton
transitions [17–21]. Moreover, they are applicable in
very different physical fields, from shallow water wave
to optical fiber communication and so on [16]. In this
paper, we consider a deformedFL equationwhich takes
a normalized form as

iuxt − iuxx + 2ux + |u|2ux + iu + 2gux + 2w = 0,
(3a)

gx = i(uxw
∗ − u∗

xw), (3b)

wx = (i |u|2ux − u). (3c)

Equation (3) was derived by Kundu when studying the
nonholonomic deformation of the integrable derivative
nonlinear Schrödinger hierarchy [22]. It is clearly seen
that the first part of Eq. (3a) is exactly identical to the
standard FL equation with the complex field envelope
u(x, t), which, however, is deformed by the perturbing
real function g(x, t) and complex functionw(x, t)with

nonholonomic constraints (3b) and (3c). Here, asterisk
means complex conjugation. In Ref. [22], the integra-
bility such as the Lax pair and the simple soliton solu-
tions for Eq. (3) have been obtained.

In the past few years, the study of rogue waves has
become a hot issue of numerous theoretical and exper-
imental researches [23,24]. Briefly, a wave can belong
to the rogue wave category when the following two sig-
nificant features are satisfied: (i) Its wave height is at
least twice than the significant wave height [25]; (ii)
it comes seemingly from nowhere and disappear with-
out trace [26]. A landmark formal description of a sin-
gle rogue wave in mathematics is the Peregrine soliton
[27], which is a rational quadratic polynomial solution
of the NLS equation with nonzero plane wave back-
ground, and characterized by a doubly localized wave
packet that reaches a climax of 3 over the background
and eventually decays and vanishes back into the back-
ground.Meanwhile, someclassicalmethods such as the
DTmethod [28–33], the Hirota’ direct method [34–36]
and the symmetry reductionmethod [37–39] have been
modified to derive the more abundant rational solu-
tions and the corresponding interaction solutions.How-
ever, considering the various physical contexts, rogue
wave solutions in several nonlinear models beyond the
NLS description such as the Hirota equation [40,41],
the Sasa–Satsuma (SS) equation [42,43], the coupled
NLS equations (Manakov system) [44,45] and the cou-
pled Hirota equations [46,47] have been investigated.
In addition, it has been recently demonstrated that the
baseband modulational instability (MI) where the MI
gain band contains a limiting case of zero-frequency
perturbation can lead to roguewave generation [48,49],
which fundamentally reveals the mechanism of gener-
ating rogue waves.

In this paper, we focus on studying rogue waves
and state transitions in Eq. (3) by using the MI anal-
ysis method and the DT method. The arrangement of
our paper is as follows. In Sect. 2, we pay attention
to the standard linear instability analysis of the plane
wave solutions and exhibit the baseband MI to reveal
the existence of rogue waves. In Sect. 3, we derive the
explicit rogue wave solutions and show the standard,
dark and twisted roguewavepair [43] structures in three
different components of the deformed FL equation. In
Sect. 4, we obtain the parameter condition for the state
transitions between rogue waves and solitons and then
present the explicit soliton solutions and show the anti-
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dark and W-shaped solitons in their respective compo-
nents.

2 Baseband MI and existence of rogue waves

For our studies, we begin with the plane wave solutions
of Eq. (3)

u[0] = aeiθ , g[0] = g0, w[0] = ia(a2 + 1/q)eiθ ,

θ = qx + νt, (4)

where

ν = [q3 + (a2 + 2g0 + 2)q2 + (2a2 + 1)q + 2]/q2,
in which a, q and g0 are three real constants, which
stand for the background and frequency of the complex
field envelopeu, and the initial excitationof the perturb-
ing real function g, respectively. In order to derive the
MI growth rate, we introduce the following perturbed
backgrounds

u = aeiθ (1 + p1), g = g0 + p2,

w = ia(a2 + 1/q)eiθ (1 + p3),

where p j (x, t) ( j = 1, 2, 3) are the small perturbed
functions and satisfy the linearized deformed FL equa-
tion

q2 p1xt − q2 p1xx + i(2qa2 − q3 + q + 2)p1x

+ iq3 p1t + (q3a2 − 2q2a2 − 2q)p1

+ q3a2 p∗
1 + 2q3 p2 + 2(q2a2 + q)p3 = 0,

qp2x − (qa4 + a2)p1x − (qa4 + a2)p∗
1x

− i(q2a4 + qa2)p1 + i(q2a4 + qa2)p∗
1

+ i(q2a4 + qa2)p3 − i(q2a4 + qa2)p∗
3 = 0,

i(qa2 + 1)p3x − iqa2 p1x + (2q2a2 + q)p1

+ q2a2 p∗
1 − (q2a2 + q)p3 = 0.

Substituting

p1 = f1e
iκ[x−Ωt] + f ∗

2 e
−iκ[x−Ω∗t],

p2 = f3e
iκ[x−Ωt] + f ∗

3 e
−iκ[x−Ω∗t],

p3 = f4e
iκ[x−Ωt] + f ∗

5 e
−iκ[x−Ω∗t]

into the linearized deformed FL equation, where f j
( j = 1, 2, · · · , 5) are the small Fourier amplitudes,
κ denotes the perturbation frequency and Ω repre-
sents the complex propagation parameter of pertur-
bations, we obtain a algebraic equation D( f1, f2, f3,

f4, f5)T = 0, here D = (Di j )1≤i, j≤5 is a 5× 5 matrix
that reads

D11 = q2(Ω + 1)κ2 + [q3Ω − 2(qa2 + 1)

+ q3 − q]κ − q[2(qa2 + 1) − q2a2],
D12 = q3a2, D13 = 2q3, D14 = 2q(qa2 + 1),

D15 = 0,

D21 = q3a2, D23 = 2q3, D24 = 0,

D25 = 2q(qa2 + 1),

D22 = q2(Ω + 1)κ2 + [2(qa2 + 1) − q3Ω

− q3 + q]κ − q[2(qa2 + 1) − q2a2],
D31 = −i[a2(qa2 + 1)κ + qa2(qa2 + 1)],
D32 = −i[a2(qa2 + 1)κ − qa2(qa2 + 1)],
D33 = iqκ, D34 = iqa2(qa2 + 1),

D35 = −iqa2(qa2 + 1),

D41 = qa2κ + q(2qa2 + 1), D42 = q2a2, D43 = 0,

D44 = −(qa2 + 1)κ − q(qa2 + 1), D45 = 0,

D51 = q2a2, D52 = −qa2κ+q(2qa2+1), D53 = 0,

D54 = 0, D55 = (qa2 + 1)κ − q(qa2 + 1).

Solving det(D) = 0, we obtain the MI growth rate

G = κ |Im{Ω}|

= κ
√−a2q3(qa2 + 2) − κ2

(q2 − κ2)2q2∣∣∣(2qa2 + q + 2)κ2 − (6a2q + q + 6)q2
∣∣∣ .

(5)

At this point, it can be immediately found that the
MI exists if and only if

|κ| <

√
−q(qa2 + 2)|q||a| (6)

is satisfied. Further, turning to the baseband MI theory
[48], the limit of κ = 0 requires that−q(qa2+2) > 0,
viz.

− 2

a2
< q < 0, (7)

which is just the parameter condition for the existence
of rogue waves and is shown in Fig. 1a. We further plot
the MI map which is defined by ln(G), see Fig. 1b. It is
clearly seen that there is a stability region (the dashed
red line) in the MI map where the corresponding MI
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Fig. 1 a Rogue wave
existence condition on the
(a, q) plane given by
Eq. (7); b MI map of ln(G)

on the (κ, q) plane given by
Eq. (5) for a = 1

growth rate is equal to zero. In the rest of this paper,
we will show that, for the deformed FL equation, the
state transitions between rogue waves and solitons just
arise from the attenuation of the MI growth rate in the
zero-frequency perturbation region, while for the stan-
dard FL equation, this kind of state transitions cannot
happen.

3 Rogue waves

In this section, we apply the DT method to derive the
rogue wave solutions for Eq. (3). To this end, we first
present the Lax pair of Eq. (3)

Φx = UΦ, (8a)

Φt = VΦ, (8b)

where

U = − i

ζ 2 σ3 + 1

ζ
U0x ,

V = i

4
ζ 4σ3 − 1

2
iζ 3U0σ3 − i

4
ζ 2(σ3 − 2U 2

0 σ3)

+ 1

2
ζ(iσ3U0 + 2Ũ0) + i

2
(2g + |u|2 + 2)I

+ 1

ζ
U0x − i

ζ 2 σ3,

in which

σ3 =
(
1 0
0 −1

)
, U0 =

(
0 u

−u∗ 0

)
, Ũ0 =

(
0 w

−w∗ 0

)

and I is the 2 × 2 identity matrix. The compatibility
condition Ut − Vx + [U, V ] = 0 of Eqs. (8a) and (8b)
can immediately give rise to Eq. (3). Notice that the

matrices U (x, t; ζ ) and V (x, t; ζ ) obey the symmetry
relations

U (x, t;−ζ ) = σ3U (x, t; ζ )σ3,

V (x, t;−ζ ) = σ3V (x, t; ζ )σ3,

and

U †(x, t; ζ ) = −U (x, t; ζ ∗),
V †(x, t; ζ ) = −V (x, t; ζ ∗),

which indicate that

Φ(x, t;−ζ ) = σ3Φ(x, t; ζ )σ3,

Φ(x, t; ζ )Φ†(x, t; ζ ∗) = I.

Therefore, the Darboux matrix [28–32] for the linear
spectral problem (8) is subordinated to the symmetry
relations

T (x, t;−ζ ) = σ3T (x, t; ζ )σ3,

T−1(x, t; ζ ) = T †(x, t; ζ ∗).

Here, † stands for the Hermite conjugation. We thus
can assume the Darboux matrix be of the form

T = I + A

ζ − ζ ∗
1

− σ3Aσ3

ζ + ζ ∗
1

and

T−1 = I + A†

ζ − ζ1
− σ3A†σ3

ζ + ζ1
,

where A is a 2× 2 matrix that needs to be determined.
Then, by lettingΦ1 = (ψ1, ϕ1) be a special solution of
the spectral problem (8) at ζ = ζ1, u = u[0], g = g[0],
w = w[0] and using the identities

T |ζ=ζ1Φ1 = 0, Φ
†
1T

−1|ζ=ζ ∗
1

= 0,
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one obtains

A =
⎛

⎜
⎝

1

α − β
0

0
1

α + β

⎞

⎟
⎠ Φ1Φ

†
1 ,

where

α = Φ
†
1σ3Φ1

ζ1 + ζ ∗
1

, β = Φ
†
1Φ1

ζ1 − ζ ∗
1

.

Further, the transformation for the complex field enve-
lope u can be given by

Tx + TU = U [1]T, U [1] = U [1](u[1], g[1], w[1]),
that is,

u[1] = u[0] + 2ψ1ϕ
∗
1/

(
Φ

†
1σ3Φ1

ζ1 + ζ ∗
1

− Φ
†
1Φ1

ζ1 − ζ ∗
1

)

. (9)

Moreover, since the new potential u[1] is obtained, one
can successively present the new perturbing functions
w[1] and g[1] through the differential and/or integral
calculations of u[1] in Eq. (3c) and (3b), namely

w[1] =
∫ (

i |u[1]|2u[1]x − u[1]
)
dx (10)

and

g[1] =
∫

i
(
u[1]xw[1]∗ − u[1]∗xw[1]) dx . (11)

After that, by taking account of the parameter con-
dition (7), we set a = 1, q = −1/3 and g0 = 1 in
the plane wave solutions (4). Then, by suitably choos-
ing the spectral parameter be ζ = ζ1 = −√

5 − i ,
we can obtain a special solution of the linear spectral
problem (8)

ψ1 = 2
√
2(

√
5x−20

√
5t−6+i x + 178i t − 3

√
5i)

(
√
5 + i)3

,

ϕ1 = 2
√
2i(−√

5x+20
√
5t−6−i x−178i t−3

√
5i)

(
√
5 + i)3

.

Substituting them into Eqs. (9)–(11) leads to the
explicit rogue wave solutions of Eq. (3)

u[1]r = −
[
1 + 12(106i t − 2i x − 9)

D1

]
e− i(x−41t)

3 ,

(12)

g[1]r = 1 − 216(2x2 − 1400t x − 29428t2 + 81)

F1
,

(13)

w[1]r = 2i
G1

D2
1

e− i(x−41t)
3 , (14)

where

D1 = 2x2 + 52t x + 11228t2 + 27 + 6i x + 276i t,

F1 = 4x4 + 208t x3 + 47616t2x2

+ 144x2 + 1167712t3x

+ 6120t x + 126067984t4 + 682488t2 + 729,

G1 = 4x4 + 208t x3 + 47616t2x2

+ 288x2 + 1167712t3x

+ 5112t x + 126067984t4 − 2491272t2 + 729

+ i(3024t x2 − 24x3 − 39888t2x − 1620x

+ 20479872t3 − 138672t).

Here, one can exactly check the validity of the above
solutions (12)–(14) by putting them into the original
equations.

Figure 2 displays the standard rogue wave struc-
ture in the u component. It is seen that there are one
peak and two valleys around the center: The maximum
amplitude of the peak is 3 and is localized at (0, 0),
and the minimum amplitude of the two valleys is zero
and appears at (± 4.4325,± 0.0515). Figure 3 shows
the dark rogue wave structure in the real g component:
The minimum amplitude of the dark rogue wave is -23
and occurs at (0, 0), and themaximumamplitude of that
is 6.5390 and arrives at (± 2.6576,± 0.0597). In addi-
tion, the twisted roguewave pair (first reported in theSS
equation, see Ref. [43]) which consists of two standard
rogue waves distributing with antisymmetric shape is
exhibited in Fig. 4. The twisted roguewave pair has two
peaks and four zero-amplitude valleys, the maximum
of it is 6.4703 and is reached at (± 1.3365,± 0.0143),
and the coordinates of the four zero-amplitude points
read (± 2.9782,± 0.0940) and (± 1.6556,∓0.0238).
Furthermore, one can compute that as x → ∞, t → ∞,
|u[1]r| → 1, g[1]r → 1 and |w[1]r| → 2.
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Fig. 2 a, b Evolution and
density plots of the standard
rogue wave for |u[1]r| of
Eq. (12)

Fig. 3 a, b Evolution and
density plots of the dark
rogue wave for g[1]r of
Eq. (13)

Fig. 4 a, b Evolution and
density plots of the twisted
rogue wave pair for |w[1]r|
of Eq. (14)

4 State transitions

In this section, we return to the stability curve shown
in Fig. 1b which is given by

κ = ±|q|
√

(6a2 + 1)q + 6

(2a2 + 1)q + 2
(15)

when letting the MI growth rate tend to zero in the
perturbation frequency region |κ| <

√−q(qa2 + 2)
|q||a|. Then, by focusing our interest on the stability
curve in the limit κ → 0, we have

q = qs = − 6

6a2 + 1
. (16)
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Fig. 5 a Stability curve
given by Eq. (15) in the
perturbation frequency
region |κ| <√−q(qa2 + 2)|q||a| for
a = 1; b MI map of ln(G)

on the (κ, q) plane given by
Eq. (17) for a = 1

At this point, it is worthwhile to remark that, as q → qs,
the state transitions between rogue waves and solitons
can occur in the deformed FL equation. However, it
should be noted that the kind of state transitions cannot
happen in the standard FL equation, since for the plane
wave solution of Eq. (2)

u = a exp{i[qx + (q2 + qa2 + 2q + 1)/qt]},
we can also get the corresponding MI growth rate by
using the standard linear instability analysis method,
i.e.,

G = κ|Im{Ω}| = κ
√−a2q3(qa2 + 2) − κ2

|q(q2 − κ2)| , (17)

but, in this circumstance, we cannot obtain the stabil-
ity curve representation in the perturbation frequency
region |κ| <

√−q(qa2 + 2)|q||a| by letting the MI
growth rate tend to zero. Therefore, the key point of
q = qs cannot be solved in Eq. (17) that is related to
the standard FL equation.At this point, we canfind that,
although the parameter conditions for the existence of
rogue waves of the deformed FL equation and the stan-
dard FL equation are same, namely −2/a2 < q < 0,
the MI characteristics for these two equations are dif-
ferent and hence lead to much richer types of nonlin-
ear waves in the deformed FL equation. We display in
Fig. 5a the stability curve in the perturbation frequency
region |κ| <

√−q(qa2 + 2)|q||a| and in Fig. 5b the
MI map (17) that is related to the standard FL equation
for a = 1. It is calculated that the key point is q = qs =
−6/7 for a = 1, and moreover, it is obviously seen that
there is not a stability region in this MI map, hence jus-
tifying the impossibility of the state transitions between
rogue waves and solitons in the standard FL equation.

At this time, we set a = 1, q = qs = −6/7 and
g0 = 1 in the plane wave solutions (4) and select a par-
ticular spectral parameter be ζ = ζ1 = −2

√
3/3 − i ,

and then,we can put forward the following special solu-
tion of the linear spectral problem (8)

ψ1 =
√
2(216

√
3x−470

√
3t−63+324i x−705i t−252

√
3i)

6(2
√
3 + 3i)3

,

ϕ1 =
√
2(−216

√
3x+470

√
3t−63−324i x+705i t−252

√
3i)

6(2
√
3 + 3i)3

.

Using Eqs. (9)–(11), we have the explicit soliton solu-
tions

u[1]s = −
[
1 + 252(470i t − 216i x − 147)

D2

]

e− 2i(27x−106t)
63 , (18)

g[1]s = 1

− 7056(186624x2−812160t x+883600t2−64827)

F2
,

(19)

w[1]s = i

6

G2

D2
2

e− 2i(27x−106t)
63 , (20)

where

D2 = 11664x2 − 50760t x

+55225t2 + 9261 + 13608i x

−29610i t,

F2 = 136048896x4 − 1184129280t x3

+3864866400t2x2

+401218272x2 − 5606442000t3x

−1746042480t x

+3049800625t4 + 1899629550t2

+85766121,
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Fig. 6 a, b Evolution and
density plots of the
anti-dark soliton for |u[1]s|
of Eq. (18)

Fig. 7 a, b Evolution and
density plots of the
W-shaped soliton for g[1]s
of Eq. (19)

G2 = 3049800625t4 − 5606442000t3x

+3864866400t2x2

−1184129280t x3 + 136048896x4

+8621395650t2

−7924346640t x + 1820913696x2

+3859475445

+i(2072226240t x2 − 317447424x3

−4509010800t2x

+4284805392x + 3270424500t3

−9323419140t).

The validity of solutions (18)–(20) can be straightly
tested by putting them into the deformed FL equation.

Figure 6 shows the anti-dark soliton in the u com-
ponent; the maximum amplitude of the hump is 3
and occurs at t = 108x/235. Figure 7 displays the
W-shaped soliton in the g component; the maximum
amplitude of the hump is 19/3 and appears at t =
108x/235, while the minimum amplitude of the two
valleys is −0.5342 and arrives at t = 108x/235 ±
21

√
147 + 21

√
721/940.Moreover, as shown inFig. 8,

the soliton can also exhibit the anti-dark structure in the
w component; the maximum amplitude of the hump is
7.5 and is reached at t = 108x/235. We calculate that,
as x → ∞, t → ∞, |u[1]s| → 1, g[1]s → 1 and
|w[1]s| → 1/6. At last, we conclude the results as fol-
lows:
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Fig. 8 a, b Evolution and
density plots of the
anti-dark soliton for |w[1]s|
of Eq. (20)

Model/component u g w

Deformed FL equation
Standard RW →
Anti-dark soliton

Dark RW →
W-shaped soliton

Twisted RW pair →
Anti-dark soliton

Standard FL equation Standard RW – –

5 Conclusion

In summary, we investigated a deformed FL equation
which contains two effective perturbing functions com-
pared with the standard FL equation. The standard lin-
ear instability analysis of the plane wave solutions was
performed. The baseband modulation instability as an
origin of rogue waves was then confirmed. Moreover,
the explicit rogue wave solutions were presented by
means of the DT method. It was shown that diverse
rogue wave structures such as the standard rogue wave,
dark rogue wave and twisted rogue wave pairs in three
different components of the deformed FL equation
were displayed. Further, the intriguing state transitions
between rogue waves and solitons were analytically
established by letting the MI growth rate tend to zero
in the zero-frequency perturbation region. The explicit
soliton solutions were obtained in choice of the spe-
cial parameter q = qs, and then, the anti-dark and W-
shaped solitons in their respective components were
exhibited. It is important to note that this kind of state
transitions cannot happen in the standard FL equation
that does not have the critical perturbing functions, and
hence demonstrates the nontriviality and significance
of this deformed FL equation. We anticipate that our
results may help to understand the complicated rogue

wave phenomena in oceanography, nonlinear optics
and so on.
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