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Abstract In this paper, fractional Hammerstein sys-
tem identification is considered, where the linear block
is of fractional order. The original discrete Hammer-
stein system is first converted to a fractional poly-
nomial nonlinear state-space model (PNLSS), which
allows a better parameterization of the model. An
output-error identification approach is developed based
on the robust Levenberg–Marquardt algorithm, whose
nevralgic point is the calculation of parametric sen-
sitivity functions. These last are developed as a mul-
tivariable fractional PNLSS model which effectively
reduces the computational effort. Various simulations
are used to test the method’s efficiency and its statisti-
cal performance is analyzed usingMonte Carlo simula-
tion. Finally, the method is evaluated through a heating
experimental benchmark. The obtained results show
good agreement with the real system outputs.
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1 Introduction

Fractional calculus has gained an increasing interest
over the last decades andhas becomeapowerful tool for
the compactmodeling of real dynamical processeswith
hereditary characteristics. The latter are encountered in
diffusive phenomena, biological processes, electrical
systems, etc. . . [1–3].

The identification of fractional order systems has
been an active research area and most of the stud-
ies have focused on the linear case [4–9]. However,
major real-world systems are more or less nonlinear
in nature and their modeling and identification is still
an open research topic due to their structure diver-
sity [10–12]. Within the class of nonlinear models,
the block-oriented structures have gained wide recog-
nition by the system identification community since
they allow the description of a wide spectrum of real
nonlinear processes [13–15]. Typically, these models
are built by joining linear dynamic subsystems with
static nonlinear blocks in various forms of intercon-
nection (Hammerstein, Wiener, Hammerstein–Wiener,
etc. . .).

The Hammerstein model consists of a static non-
linear part followed by a linear block [16], where this
situation may represent a linear system in presence of
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a nonlinear actuator or other nonlinear effects [17].
Among its applications, we can cite pH neutraliza-
tion systems [14], biological processes [15] and heat
exchangers [18], etc... This study addresses the iden-
tification of fractional nonlinear Hammerstein system,
where its linear subsystem is of fractional order.

Different methods have been proposed in the litera-
ture for the identification of the block structured clas-
sical integer order systems [19–22], and only a few
papers have considered the fractional order case [23–
29]. However, in the previous studies, fractional orders
were often assumed to be set a priori and only para-
metric estimation was performed. Other studies were
limited to the particular case of commensurate order
systems where the fractional orders are multiple of the
same value.

In [25], the parametric identification of a Hammer-
stein system described by a fractional recurrence equa-
tion is performed based on an iterative method, while
in [26], Levenberg–Marquardt (L–M) algorithm is used
to estimate the Hammerstein system parameters where
the linear part is a fractional transfer function; and frac-
tional orders are assumed to be known. The subspace
identification method based on instrumental variables
is reported in [24], and an iterative linear optimization
algorithm, with a Lyapunov method is used in [23].
However, both studies consider the commensurate case
only.

The main contribution of this paper is the identifi-
cation of a fractional Hammerstein nonlinear system
where its parameters as well as its fractional orders
are estimated. Besides, the general non-commensurate
order case, where the orders are totally independent is
addressed. TheHammerstein linear part is described by
a fractional state-spacemodel and the system is primar-
ily converted to the polynomial nonlinear state-space
(PNLSS) model. This prevents the presence of the cou-
pled cross products of the linear part and nonlinear part
parameters that occur in input/output (I/O) models.

In this way, the optimization problem has a better
conditioning and the computational effort is reduced.

The PNLSS model identification is based on a non-
linear optimization method, in occurrence Levenberg–
Marquardt (L–M) algorithm that combines the gradient
descent and theGauss–Newtonmethods. It requires the
calculation of crucial sensitivity functions which may
be laborious and sometimes complex depending on the
chosen model. For this purpose, a novel multivariable
fractional PNLSS model is developed for the imple-

mentation of parametric sensitivity functions, hence the
reduction of the computational load of the method.

Numerical simulations are used to test the effec-
tiveness of the approach and the estimator statistical
properties are analyzed using Monte Carlo simulation.
Finally, the method’s performance is validated on a
heating benchmark.

The remainder of this paper is as follows: in Sect. 2,
some preliminary notions on fractional calculus are
recalled. Section3 presents the fractional Hammerstein
model based on the PNLSS description. Section4 for-
mulates the identification method where the calcula-
tion of parametric sensitivity functions is developed.
The simulation results of academic examples and the
experimental heatingbenchmark are reported inSect. 5,
and finally, the main conclusions along with some per-
spectives are outlined in Sect 6.

2 Mathematical background on fractional calculus

Fractional calculus is a powerful tool applied in control
and in the modeling of many physical processes . It is
defined as the generalization of the differential operator
d

dt
to the fractional order differintegral operator t0Dt

α̃ ,

where α̃ is the non integer or fractional order and t0 is
the initial time.

Different definitions of this fractional order oper-
ator have been proposed in the literature [30–34]. In
this paper, the definition of Grünwald–Letnikov (GL)
which is useful when dealing with fractional discrete
systems, will be used [2,30]. It is given as follows:

Δα̃ f (kh) = 1

hα

k∑

j=0

(−1) j
(

α̃

j

)
f ((k − j)h) (1)

where Δα̃ denotes the fractional order difference oper-
ator, f (kh) is a discrete function, h is the sampling
interval which is assumed to be equal to 1 and k is the
number of samples.(

α̃
j

)
is the binomial term given by the following rela-

tion

(
α̃

j

)
=

{
1 for j = 0

α̃(α̃−1)...(α̃− j+1)
j ! for j > 0

(2)
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A fractional order linear system can be represented as
in the integer case, based on different models such as
the differential equation, the transfer function, and the
state-space model.

The discrete fractional order state-space model is
described by two equations:

Δαx(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(3)

where x(k) ∈ R
n is the state vector, u(k) and y(k)

∈ R are, respectively, the input and the output of the
system; A ∈ R

n×n , B ∈ R
n×1, C ∈ R

1×n and D ∈ R
1

are the system matrices.

Δαx = [Δα1x1 Δα2x2 · · · Δαn xn]T ∈ R
n (4)

is the fractional state variables vector; for the non-
commensurate systems the fractional order vector α

components are different with α:

α = [α1 α2 · · · αn]
In the particular case of commensurate order sys-

tems, fractional orders are multiple of the same value
α̃ and the state variables are differentiated to the order
α̃ with:

α̃ = α1 = α2 = · · · = αn

and

Δα̃x(k + 1) = Δα̃[x1(k + 1) · · · xn(k + 1)]T (5)

The simulation of the fractional model (3) based on the
GL difference can be performed using the following
Equations [35]:

Δαx(k + 1) = Ax(k) + Bu(k)
x(k + 1) = Δαx(k + 1)

−
k+1∑
j=1

(−1) j
(
α
j

)
x(k + 1 − j)

y(k) = Cx(k) + Du(k)

(6)

Equation (6) is rewritten as

Δαx(k + 1) = Ax(k) + Bu(k)

x(k + 1) = Δαx(k + 1) −
k+1∑
j=1

β( j)x(k + 1 − j)

y(k) = Cx(k) + Du(k)

(7)

where

β( j) = diagonal [βi ( j)] for i = 1, 2, · · · , n (8)

Fig. 1 Hammerstein system

βi ( j) = (−1) j
(

αi

j

)
, (9)

and the recurrence equation is:

βi (0) = 1

βi ( j) = βi ( j − 1)
( j − 1)(αi − 1)

j
for

j = 1, . . . , k (10)

The above procedure will be used for the simula-
tion of the nonlinear fractional system presented in this
paper.

3 Problem setting

Consider a fractional SISOHammerstein systemshown
in Fig. 1, which consists of a static nonlinear block fol-
lowed by a fractional linear block.

An output-error framework is considered, where the
linear part is describedby a fractional state-spacemodel
and a controllable form is assumed:

Δαx(k + 1) = A0x(k) + B0ũ(k)
ỹ(k) = C0x(k) + D0ũ(k)

(11)

where x(k) ∈ R
n , ũ(k), and ỹ(k) are, respectively, the

state vector, the system input, and the noise-free output
of the linear part, ũ(k) is an internal variable and the
nonlinear part output.

The nonlinear part is assumed to be a polynomial
of order r [36] with unknown coefficients pi (i =
1, 2, · · · , r)

ũ(k) = f (u(k)) =
r∑

i=1

piu
i (k) (12)

The system overall output y(k) in presence of noise
v(k) is as follows:

y(k) = ỹ(k) + v(k) (13)
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Substituting Eq. (12) into Eq. (11), yields to the Ham-
merstein model equations:

Δαx(k + 1) = A0x(k) + B0

r∑

i=1

piu
i (k)

y(k) = C0x(k) + D0

r∑

i=1

piu
i (k) + v(k) (14)

Δαx(k + 1) = A0x(k) + B0 p1u(k)

+ B0

r∑
i=2

piui (k)

y(k) = C0x(k) + D0 p1u(k) + D0

r∑
i=2

piui (k)

+ v(k)

(15)

Without loss of generality, the coefficient p1 of the
nonlinear block polynomial can be normalized and set
equal to 1. The obtained model of Eq. (15) is a state-
space model containing nonlinear elements of polyno-
mial type; thus, the polynomial nonlinear state-space
model, defined for the integer case in [36], can be
extended for the fractional case. It is expressed as fol-
lows:

Δαx(k + 1) = Ax(k) + Bu(k) + Eη(k)

y(k) = Cx(k) + Du(k) + Fζ(k) (16)

where the regular linear part of this state-space model
is described by the matrices A, B,C, D; the matri-
ces E ∈ R

1×nη and F ∈ R
1×nζ contain the coeffi-

cients associated with the nonlinear terms. The vectors
ζ(k) and η(k) include the monomials u(k) and x(k) of
degree 2 up to r .

Let us derive the PNLSS model for the fractional
Hammerstein system: The link between Eq. (15) and
the PNLSS model of Eq. (16) is as follows

A = A0 B = B0 C = C0 D = D0 (17)

E = [p2B0 · · · pr B0] F = [p2D0 · · · pr D0] (18)

The vectors ζ(k) and η(k) in this Hammerstein case
are equal, and they contain the monomials in u(k) of
degree 2 up to r as follows:

ζ(k) = η(k) =
[
u2(k) u3(k) · · · ur (k)

]T
(19)

The PNLSS model for the fractional Hammerstein
system of Fig.1 is:

Δαx(k + 1) = Ax(k) + Bu(k) + Eη(k)

y(k) = Cx(k) + Du(k) + Fη(k) + v(k) (20)

The Hammerstein system has been transformed into
the nonlinear fractional PNLSS model whose matrices
explicitly provide the parameters of the original model.
Indeed, its matrices A, B,C, D are equal to the origi-
nal Hammerstein linear part matrices, while the matri-
ces E and F include the nonlinear part coefficients pi
with redundancy. The advantage of this system is that it
ensures a better parameterization of the model than the
original counterpart, since its two subsystems parame-
ters are explicitly separated.

As reported in the literature, the drawback in the
identification of nonlinear systems is the growing
number of parameters of transformed models (over-
parameterized model), and the occurrence of the cross
combined parameters of the nonlinear part and the lin-
ear one. In this study, the use of the PNLSS model
prevents the reported difficulties and ensures a better
conditioning of the nonlinear Hammerstein system.

The objective of this work is the identification of
the fractional Hammerstein system described by the
PNLSS model. For this purpose, a nonlinear optimiza-
tion approach based on Levenberg–Marquardt is devel-
oped in the next section.

4 Identification method

Consider theHammerstein fractional order systemwith
its linear part assumed to be completely observable and
controllable with matrices:

A0 =

⎡

⎢⎢⎢⎣

0 1 0 . . . 0
...

...

0 0 . . . 0 1
a1 a2 . . . an−1 an

⎤

⎥⎥⎥⎦ B0 =

⎡

⎢⎢⎢⎣

0
...

0
1

⎤

⎥⎥⎥⎦

C0 = [
c1 c2 . . . cn

]
D0 = [d]

(21)

and the fractional order vectorα = [α1 α2 · · · αn].
The nonlinear block equation is as follows:

ũ(k) =
r∑

i=1

piu
i (k) (22)
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The obtained fractional Hammerstein PNLSSmodel of
Eq. (20) exhibits the following matrices:

A = A0 B = B0 C = C0 D = D0

E =

⎡

⎢⎢⎢⎣

0 0 0 . . . 0
...

...

0 0 . . . 0 0
p2 p3 . . . pr−1 pr

⎤

⎥⎥⎥⎦

F = [p2D0 · · · pr D0]

(23)

Let θ represents the vector of parameters to be esti-
mated of length nθ .

θ = [ θ̃ α ] ∈ R
nθ

It includes the Hammerstein model coefficients in θ̃

and the fractional orders vector α with:

θ̃ = [a c d p]
a = [a1, · · · an], c = [c1, · · · cn],
p = [1, p2 · · · , pr ]. (24)

For the identification of these parameters, a non-
linear optimization algorithm, Levenberg–Marquardt
(L–M), is developed [37]; it is extensively used in non-
linear optimization and it ensures robust convergence.
It is based on the computation of the Gradient and the
Hessian, which are calculated using the parametric sen-
sitivity functions. Optimization is performed by mini-
mizing the objective function J (θ):

J (θ) = 1

K

K∑

k=1

ε2(k) where ε(k) = y(k) − ŷ(k)

(25)

ε(k) being the prediction error, ŷ(k) the corresponding
output estimate, and K the samples number. The vector
θ is updated using the following recursive rule:

θ(i+1) = θ(i) −
{[

J
′′ + λI

]−1
J

′
}

θ̂=θ(i)

J
′
θ = − 2

K

K∑

k=1

ε(k)

(
∂ ŷ(k)

∂θ

)
the Gradient

J
′′
θ = 2

K

K∑

k=1

(
∂ ŷ(k)

∂θ

) (
∂ ŷ(k)

∂θ

)T

the Hessian

σŷ(k)/θ = ∂ ŷ(k)

∂θ
the output sensitivity function

λ : a tuning parameter for the convergence (26)

The Gradient and the Hessian of the criterion J are
obtained by implementing the model output sensitivity
functions σŷ(k)/θ . They represent a major indicator of
the identification conditioning, and their computation
is detailed in what follows.

4.1 Implementation of sensitivity functions

Let us derive the parametric sensitivity functions
related to θ̃ by differentiating the fractional PNLSS
equations in (27) with respect to each component θ̃i .

Δαx(k + 1) = Ax(k) + Bu(k) + Eη(k)

y(k) = Cx(k) + Du(k) + Fζ(k) (27)

Δα

[
∂x(k + 1)

∂θ̃i

]
= ∂A

∂θ̃i
x(k) + A

∂x(k)

∂θ̃i
+ ∂B

∂θ̃i
u(k)

+ B
∂u(k)

∂θ̃i
+ E

∂η(k)

∂θ̃i
+ ∂E

∂θ̃i
η(k)

∂ ŷ(k)

∂θ̃i
= ∂C

∂θ̃i
x(k) + C

∂x(k)

∂θ̃i
+ ∂D

∂θ̃i
u(k)

+ D
∂u(k)

∂θ̃i
+ F

∂η(k)

∂θ̃i
+ ∂F

∂θ̃i
η(k)

i = 1, · · · , nθ̃ (28)

Note that
∂B

∂θ̃i
= 0,

∂u(k)

∂θ̃i
= 0 and

∂η(k)

∂θ̃i
= 0.

Equation (28) reduces to:

Δα
[
σx(k+1)/θ̃i

]
= Aσx(k)/θ̃i

+
[

∂A

∂θ̃i
0

] [
x(k)
u(k)

]

+ ∂E

∂θ̃i
η(k)

σŷ(k)/θ̃i
= Cσx(k)/θ̃i

+
[

∂C

∂θ̃i

∂D

∂θ̃i

] [
x(k)
u(k)

]

+ ∂F

∂θ̃i
η(k) i = 1, · · · , nθ̃ (29)

where σx(k)/θ̃i
= ∂x(k)

∂θ̃i
and σŷ(k)/θ̃i

= ∂ ŷ(k)
∂θ̃i

are, respec-

tively, the state sensitivity function and the output sen-
sitivity function with respect to θ̃i .

The overall sensitivity functions model is a frac-
tional state-space model which contains nonlinear ele-
ments in η(k), and hence it can be written under the
PNLSS form:

Δα
[
σx(k+1)/θ̃

]
= As σx(k)/θ̃ + Bsus(k) + Esηs(k)

σŷ(k)/θ̃ = Cs σx(k)/θ̃ + Dsus(k)
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+Fsηs(k) (30)

where us = [x u ]T, and ηs = η. The matrices
corresponding to the PNLSS model of Eq. (30) can be
derived from the sensitivity function calculation with
respect to each element θi in what follows:

• Sensitivity functions with respect to the vector a

It is denoted σŷ(k)/a and includes the coefficients:

σŷ(k)/a = [
σŷ(k)/a1 σŷ(k)/a2 · · · σŷ(k)/an

]T

Let us calculate these functions from Eq. (29):

Δα
[
σx(k+1)/ai

] = Aσx(k)/ai +
[

∂A

∂ai
0

] [
x(k)
u(k)

]

+ ∂E

∂ai
η(k)

σŷ(k)/ai = Cσx(k)/ai +
[

∂C

∂ai

∂D

∂ai

] [
x(k)
u(k)

]

+ ∂F

∂ai
η(k) i = 1, · · · , n (31)

with

∂A

∂ai
= I n×n

i

∂C

∂ai
= ∂D

∂ai
= ∂E

∂ai
= ∂F

∂ai
= 0 (32)

where Im×l
i is a zero matrix except for the element

(m, i) equal to one; Eq. (31) reduces to:

Δα
[
σx(k+1)/ai

] = Aσx(k)/ai + I n×n
i x(k)

σŷ(k)/ai = Cσx(k)/ai (33)

Similar to the computation of σŷ(k)/a , the output sensi-
tivity functions with respect to the components of the
vectors c, d, p are obtained as follows:

• Sensitivity functions with respect to the vector c

Δα
[
σx(k+1)/ci

] = Aσx(k)/ci σŷ(k)/ci = Cσx(k)/ci + I 1×n
i x(k)

i = 1, 2, · · · , n (34)

• Sensitivity with respect to d

Δα
[
σx(k+1)/d

] = A σx(k)/d

σŷ(k)/d = Cσx(k)/d + [1] u(k)

+[p2 · · · pr ] η(k) (35)

• Sensitivity functions with respect to the vector p

Δα
[
σx(k+1)/pi

] = Aσx(k)/pi + I n×(r−1)
i η(k)

σŷ(k)/pi = Cσx(k)/pi + d

I 1×r−1
i η(k) i = 2, 3, · · · , r (36)

Therefore, the matrices of the sensitivity functions
model of Eq. (30) can be computed using:

As = Diagonal block [A] ,
Cs = Diagonal block [C] ,

Bs =
[

∂A
∂θ̃

0
]
, Ds =

[
∂C
∂θ̃

∂D
∂θ̃

]
,

Es =
[

∂E
∂θ̃

]
, Fs =

[
∂F
∂θ̃

]
,

us(k) = [x(k) u(k)]T , ηs(k) = [u2(k) · · · ur (k)]T.

(37)

• Sensitivity functions with respect to the fractional
orders vector

The vector θ of parameters to be estimated includes the
fractional orders αi with: θ = [ θ̃ α1 α2 · · · αn ]

The sensitivity functions with respect to the frac-
tional orders vector α is calculated numerically [8].

The output Taylor series with respect to each com-
ponent αi (i = 1, 2, · · · , n) is applied as follows :

ŷ(k, αi + δαi ) − ŷ(k, αi ) ≈ δαi
∂ ŷ(k)

∂αi

= δαi σŷ(k)/αi i = 1, · · · , n

with δαi a small variation of αi . (38)

The overall sensitivity functions vectorσŷ(k)/θ of the
model is expressed as:

σŷ(k)/θ = [σŷ(k)/θ̃ σŷ(k)/α]T
Hence, we may use these parametric sensitivity func-
tions to calculate the Gradient J ′

θ and the Hessian J ′′
θ

which are expressed by the following equations:

J
′
θ = − 2

K

K∑

k=1

ε(k) (σŷ(k)/θ )

J
′′
θ = 2

K

K∑

k=1

(σŷ(k)/θ )(σŷ(k)/θ )
T (39)

They are used in the recurrence Eq. (26) to update the
parameters vector θ .

At each iteration, the identificationprocedure requires
the simulation of two fractional PNLSS models:
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Identification of fractional Hammerstein system 2619

• The estimated model based on the computation of
the estimated output vector ŷ(k) and the state vector
x̂(k).

• The sensitivity functions model necessary for the
Hessian and Gradient computation and the update
of the vector θ̂ .

The main steps for computing the parameter esti-
mation vectors θ̃ and the fractional order α in the L–M
iterative algorithm in (25)–(39) are listed in the follow-
ing:

1. Let i = 1, and set the initial values θ̃0, α0 and δα.
2. Compute the cost function J .
3. Compute the sensitivity functions with respect to θ̃

and α.
4. Compute the gradient and Hessian J

′
and J

′′
using

Eq. (39).
5. Update the parameter estimate θ(i) using the recur-

sive rule of Eq. (26).
6. Compute the quadratic function J .
7. If J (θ(i+1)) < J (θ(i)), decrease λ, otherwise

increase λ and set θ̂ = θ(i), J (θ̂) = J (θ i ) and
go to step 4.

5 Simulation examples

This section investigates the estimation performance
of the developed approach. In the first part, two aca-
demic examples are considered: a commensurate case
and a non-commensurate one, and in the second part the
method efficiency is assessed on the basis of a heating
experimental data.

An important step in achieving a good model
identification requires the choice of the model struc-
ture describing the relationship between the system
input/output variables; choosing awrong structuremay
result in a poor parametric estimation.

In this study, this task is solved by the analysis of
criteria evolution for different structures. The best one
with the smallest criterion is chosen.

5.1 Numerical examples

The input u(k) is a persistent excitation sequence of
zero mean and unit variance, the disturbance v(k) is a
white noise sequence of zero mean and the data length
is K = 500.

The PNLSS model is constructed and the identifica-
tion is carried out in the absence of noise for different
orders of the linear part and nonlinear part.

Then, using the best structure, the identification is
performed with noisy data. The Monte Carlo simula-
tions were performed to test the estimated parameters
robustness to data noise, with 50 sets of noise realiza-
tions for different signals to noise ratios SNR = 34 dB
and SNR = 25 dB.
Example 1: Fractional commensurate case

The nonlinear system to be identified is a fractional
commensurate Hammerstein system, with its linear
part of order 3 (n = 3), and the fractional order
α̃ = 0.3.

Δα̃x(k + 1) = A0x(k) + B0ũ(k)

ỹ(k) = C0x(k) + D0u(k) (40)

with

A0 =
⎡

⎣
0 1 0
0 0 1

0.40 − 0.10 − 0.60

⎤

⎦ B0 =
⎡

⎣
0
0
1

⎤

⎦

C0 = [− 0.20,− 0.80,− 0.70
]
D0 = [0.10]

(41)

The nonlinearity is a third-order polynomial (r = 3):

ũ(k) = f (u(k)) = u(k)+0.75u2(k)+0.35u3(k) (42)

Hence, the goal is to estimate the model by following
parameters vector:

θ = [0.40 − 0.10 − 0.60 − 0.20

− 0.80 − 0.70

0.10 0.75 0.35 0.30] (43)

The input/output sets are generated, and the identifi-
cation is carried out in absence of noise, for different
orders n and r , for the best structure analysis.

Table1 lists the values of the quadratic function J ,
and the evolution of the criterion J for each structure
is illustrated in Fig. 2.

The best fit model structure (of the examined ones)
is obtained for the exact structure (n = 3, r = 3)
with J ≈ 1e−31.

For the chosen structure, Fig. 3 plots the simulation
results for the noise-free case, the error is null and the
estimated output overlaps with the data.
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Table 1 Structure test results of example 1

Structure n = 2 n = 3 n = 3 n = 5
r = 3 r = 2 r = 3 r = 7

J 0.670 0.433 7.4e−31 2.271
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Fig. 2 Evolution of the criteria versus the number of iterations
for example 1

In the presence of noisy measurements, a Monte
Carlo simulation is performed for 50 sets of computer
realizations for SNR = 34 dB and SNR = 25 dB. The
estimated parameters mean value and their variances
δ(%) are summarized in Table2, where the estimated
parameters mean value is recorded with a satisfactory
criterion accuracy (J ≈ 10−4 for SNR = 34 dB) and
(J ≈ 10−1 for SNR = 25 dB). Figures4 and 5 show,
respectively, the simulated versus the estimated out-
puts. We can concluded that the obtained models show
perfect adequacy with the data.

The statistical performance of the estimator is ana-
lyzed on aMonte Carlo simulation for different amount
of noise, and good efficiency of the optimization
method is obtained.

Example 2: Fractional non-commensurate example
TheHammerstein linear part is a non-commensurate

fractional state-space model of order n = 2, with the
fractional orders vector α = [0.4 0.6].

The linear part matrices are given below:

A0 =
[

0 1
− 0.37 − 0.58

]
B0 =

[
0
1

]

C0 = [− 0.10,− 0.20
]
D0 = [0.10]

(44)
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Fig. 3 Identification results for example 1 for the noise-free case

The nonlinearity is described by the following polyno-
mial of order r = 3:

ũ(k) = f (u(k)) = u(k) + 0.5u2(k) + 0.25u3(k)

The parameters vector to be estimated is as follows:

θ = [ − 0.37 − 0.58 − 0.10 − 0.20 0.10 0.50
0.25 0.40 0.60 ] (45)

In thefirst step, the choice of thebest structure is investi-
gated and the values of the cost function J for different
structures are evaluated. The most optimal structures
((n = 2, r = 2), (n = 2, r = 3), (n = 3, r = 2)), and
(n = 5, r = 9)) are displayed in Table3, and the best
criterion value is obtained for the exact structure orders
(n = 2, r = 3). The visual comparison of this task is
shown in Fig. 6 where rapid convergence of the crite-
rion J for the exact structure is obtained, compared to
the other examined structures.

The simulation results for the noise-free case and for
noisy data with SNR = 34 dB and SNR = 25 dB are
depicted, respectively, in Figs. 7, 8 and 9.

The mean and the variance of the parameter esti-
mates, and the criterion J values using Monte Carlo
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Table 2 Monte Carlo simulation results of example 1

SNR = 34 dB δ (%) Exact values

a1 0.400 1.3e−4 0.400

a2 − 0.100 2.2e−5 − 0.100

a3 − 0.600 2.6e−4 − 0.600

c1 − 0.200 4.5e−4 − 0.200

c2 − 0.800 2.1e−4 − 0.800

c3 − 0.700 1.8e−4 − 0.70

d 0.100 7.3e−4 0.100

p2 0.749 3.1e−4 0.750

p3 0.350 1.1e−5 0.350

α̃ 0.320 7.2e−1 0.300

J 1.5e−4 – –

SNR = 25 dB δ (%) Exact values

a1 0.397 5.1e−2 0.400

a2 − 0.105 1.4e−1 − 0.100

a3 − 0.586 9.3e−1 − 0.600

c1 − 0.206 5.5e−1 − 0.200

c2 − 0.792 1.3e−1 − 0.800

c3 − 0.709 2.4e−1 − 0.70

d 0.098 5.1e−1 0.100

p2 0.736 4.1e−1 0.750

p3 0.344 2.1e−2 0.350

α̃ 0.320 1.892 0.300

J 0.103 –

simulation for 50 runs of realizations are listed in
Table4.

We can see that both the estimated fractional orders
as well as the parameters are recovered in all cases,
and the obtained errors are very low (J = 2e−6 for
SNR = 34 dB, and J = 1e−3 for SNR = 25 dB).

For the noise-free case, the estimated output over-
laps with the simulated one and the prediction error is
null (ε ≈ 10−16). These results are illustrated in Fig. 7.

For noisy data, the results are depicted in Figs. 8 and
9. The estimated outputs correspond practically to the
simulated outputs and the prediction errors are very
low; ε ≈ 10−6 for SNR = 34 dB while ε ≈ 10−3 for
SNR = 25 dB.

The obtained results highlight the method’s effi-
ciency even in presence of noise. The numerical sim-
ulations show that the developed approach performs
quite well in terms of fractional Hammerstein model
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Fig. 4 Identification results for example 1 for SNR = 34 dB

Table 3 Structure test results of example 2

Structure n = 2 n = 2 n = 3 n = 7
r = 2 r = 3 r = 2 r = 9

J 0.132 1.2e−33 1.1e−07 7e−09

fit for both the commensurate case and the non-
commensurate one.

In the presence of noise, the statistical estimator effi-
ciency has been confirmed with Monte Carlo simula-
tions.

5.2 Heating system benchmark

In this section, an experimental heating system is
selected for testing the method’s performance. We
will use measurements data taken from the database
Daisy, which is a database for the system identification
[38]. The experimental heating system is described in
Fig. 10. The input u(k) is the voltage supplied to a 300-
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Fig. 5 Identification results for example 1 for SNR = 25 dB
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Fig. 6 Evolution of the criteria versus the number of iterations
for example 2

W halogen lamp which is connected through a D/A
board and a power amplifier is used to achieve the
computer control. The lamp suspended above a thin
metal plate allows its heating. The output corresponds
to the temperature of the metal plate measured by a
thermocouple mounted on the underside of the plate.
The input/output signals are represented in Fig. 11.

As known, the heating system is a diffusive phe-
nomenon that exhibits fractional nonlinear behavior;

Table 4 Monte Carlo simulation results of example 2

SNR = 34 dB δ (%) Exact values

a1 − 0.370 5.9e−6 − 0.370

a2 − 0.580 5.9e−5 − 0.580

c1 − 0.100 3.2e−5 − 0.100

c2 − 0.200 1.9e−5 − 0.200

d 0.100 3.6e−6 0.100

p2 0.500 3.1e−6 0.500

p3 0.250 5.7e−7 0.250

α1 0.435 1.137 0.400

α2 0.538 1.207 0.600

J 2.8e−6 – –

SNR = 25 dB δ (%) Exact values

a1 − 0.370 3.1e−3 − 0.370

a2 − 0.579 1.9e−2 − 0.580

c1 − 0.099 1.9e−2 − 0.100

c2 − 0.199 1.1e−2 − 0.200

d 0.100 1.5e−3 0.100

p2 0.502 1.8e−3 0.500

p3 0.252 5.8e−4 0.250

α1 0.419 2.952 0.400

α2 0.447 2.894 0.600

J 0.004 – –

thus, for the purpose of its model identification, the
above developed algorithm is applied to its data.

The crucial step of the model structure selection is
first tackled and different orders (n and r ) of the Ham-
merstein linear part and nonlinear ones are tried out.

The quality of the best model structure is measured
in terms of the root-mean-square error (RMSE) and the
relative error (RE):

RMSE = 1

K

√√√√
K∑

k=1

ε2(k) (46)

RE =
√√√√

∑K
k=1 ε2(k)

∑K
k=1 y

2(k)
(47)

The results are listed in Table5, while Fig. 12 shows the
curves of the RMSE versus the number of iterations for
each of the tested structures.

The best model structure appears to be the one with
the following orders: n = 3 and r = 5.
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(a)

(b)

Fig. 7 Noise-free identification results of example 2

The estimated model of the heating system is a
fractional commensurate Hammerstein PNLSS model,
where the fractional order α̃ equals to 0.9; the linear
part is given by the following matrices A0, C0, D0:

A0 =
⎡

⎣
0 1 0
0 0 1

0.725 0.353 − 0.118

⎤

⎦ , B0 =
⎡

⎣
0
0
1

⎤

⎦

C0 = [
0.171 − 0.117 0.018

]
, D0 = [−8e−4].

(48)

The nonlinear part is a fifth-order polynomial formu-
lated as follows:

ũ(k) = u(k) + 1.84u2(k) + 1.76u3(k)

− 0.20u4(k) + 30.83u5(k) (49)

For the parametric model estimation, the compar-
ison of the real output with the estimated one of the
selected structure (n = 3, r = 5) is depicted in Fig. 13
and the corresponding prediction error is shown in
Fig. 14. The simulation results show a good agree-
ment between both the estimated output model and the

(b)

(a)

Fig. 8 Identification results for example 2 for SNR = 34 dB

Table 5 Structure test of the heating system

Structure n = 3 n = 5 n = 3
r = 4 r = 2 r = 5

RMSE 0.364 0.567 0.198

RE 0.075 0.082 0.043

real experimental system outputs and the parameters
were estimated with relatively less errors than the ones
reported in the literature [23] with the values of the
RMSE = 0.198 and RE = 0.043.

6 Conclusion

In this paper, a novel approach for the identification of
nonlinear Hammerstein systems whose dynamics have
a fractional order behavior is presented.

To avoid the difficulty of the coupling terms between
the linear and the nonlinear subsystems in Hammer-
stein model identification, the original nonlinear sys-
tem is converted to the fractional PNLSS structure,
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Fig. 9 Identification results for example 2 for SNR = 25 dB
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Fig. 10 Experimental heating system

which is suitable for taking into account the nonlinear
terms.

It has the advantage of being a flexible model that
presents better conditioning compared to the original
counterpart model since its two subsystems parameters
are explicitly separated.

Levenberg–Marquardt algorithm is used to estimate
both the linear and nonlinear parts as well as the frac-
tional orders of the fractional Hammerstein system.
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Fig. 11 System input and output
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Fig. 12 RMSE versus number of iterations of the benchmark
Example

This algorithm presents the drawback of the nevral-
gic computation of parametric sensitivity functions as
being time-consuming. This difficulty is solved with
their representation as a new fractional PNLSS model.
In this way, the computational burden is reduced con-
siderably and the efficiency of the identification algo-
rithm is increased.
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Fig. 13 Estimated output and data of the heating benchmark
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Fig. 14 Prediction error of the heating System

Various examples illustrate the effectiveness of the
proposed approach which gives consistent estimates
and fits quite well the fractional Hammerstein model
for both the commensurate and the non-commensurate
system academic examples. The statistical efficiency
of the optimization method has been confirmed with
Monte Carlo simulations.

Furthermore, the validity of the developed method
is verified through its application to an experimental
heating systemdata,where a goodmodel fit is achieved.

Further research will focus on the identification of
other block-oriented structure combinations.
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