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Abstract Thework is primarily devoted to the peridy-
namic model elaborated for a solid bodymade of shape
memory alloys (SMAs). The superelasticity effect is
taken into consideration as well as its practical appli-
cations. Hence, the numerical simulations, making use
of the phenomena of superelasticity, are carried out for
the model of an SMA wire to investigate mechanical
energy dissipation. The nonlocal peridynamic model
of an SMA component is derived based on the the-
ory proposed by Lagoudas—introduced to describe the
phenomenon of solid phase transitions that occur in
SMA. The results of the conducted experimental work
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are applied by the authors to validate the elaborated
model.Moreover, an alternative verification of the peri-
dynamicmodel is also performedusing other numerical
tool—the finite element code based on the analytical
approach for modeling SMA, developed by Auricchio.
The hysteretic character of the stress–strain relation-
ship for the modeled SMA component, which under-
goes the superelasticity effect, is shown using quasi-
static peridynamic simulations. Finally, the capabil-
ity of energy dissipation when cyclic loading for the
elaborated nonlocal model is investigated via dynamic
simulations. The numerical results obtained for the
studied case are discussed to show the applicability
of the presented modeling approach in the field of
structural dynamics. A particular focus is placed on
the available structural stiffness control functionality
in mechanical systems equipped with SMA and effi-
ciency of energy dissipation in SMA-based dampers,
which may be effectively applied to suppress mechan-
ical vibrations. Both mentioned application areas for
SMA are of the authors’ special concern in the design-
ing process of the nonlinear supporting structure in gas
foil bearings, which is also discussed in the final part
of the paper to highlight the practical aspects of the
conducted research.

Keywords Nonlocal model · Peridynamics · Shape
memory alloy · Superelasticity · Structural dynamics ·
Gas foil bearing
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1 Introduction

Nonlocal modeling applied to both analytical prob-
lem formulations in mechanics and numerical appli-
cations within the frame of computational mechanics
has been successfully used for many decades. The idea
of nonlocality was first employed in the sixties of the
previous century to describe and understand the mate-
rial behavior observed during experiments. The break-
through works of Kröner, Kunin, Eringen and Ede-
len [1–3] showed realistic links between experimental
outcomes and the nonlocality proposed to be consid-
ered when modeling internal interactions found in the
investigated materials. In other words, nonlocality has
arisen as a sort of remedy for the identified deficien-
cies of modeling methods. This fact is also of partic-
ular importance in dynamics since nonlocal modeling
enables efficient control of the dispersion properties of
the modeled medium [4].

Classically, continuum mechanics refers to locally
formulated governing equations. This means that only
local relationships between strains and stresses are
taken into account when dealing with a solid body.
Despite undeniable popularity of local elasticity, this
approach, however, exhibits several drawbacks. As
already referred to, it is basically incapable of com-
pletely describing and, therefore, predicting a real
behavior of a deformable material. This applies espe-
cially when considering various physical phenomena
revealing themselves at consecutive geometric scales
(lengthscales). In this case, various material proper-
ties should be defined at these lengthscales as well,
which is not allowed in a local formulation explicitly.
However, the unique formulation of a nonlocal elas-
ticity leads to the demanded capability of introducing
the required specific lengthscales referring to the range
of nonlocal interactions within the modeled body [5].
In fact, both micro- and macrostructure characteristics
may contribute in the resultant nonlocal model [6–8].

The most known phenomena that require nonlo-
cal elasticity, to allow for more physical description,
are wave dispersion and shear bands observed during
stretching [3,8,9]. Other examples explaining the need
of nonlocality are provided in [10]. As reported in the
cited works, the observed lack of convergence between
experiments and theories may be effectively addressed
via nonlocal interactions introduced in amodeled body.
As far as dynamics is of concern, the use of nonlocal
approaches enables more accurate simulations of the

phenomenon of wave propagation. Nonlocal elastic-
ity leads to lower requirements for model mesh den-
sity with its spatial domain discretization. On the one
hand, it helps to mitigate numerical dispersion, which
emerges for crude meshes [11–15]. This behavior is
observedwhen the distances between nodes in a numer-
icalmodel are comparablewith thewavelengths.More-
over, nonlocal elasticity, via long-range interactions,
introduces the means for relatively easy formulation
of arbitrary shapes for physical dispersion relation-
ships [14,16].

Up to now, nonlocal elasticity has been widely used
for various physical domains, materials and research
fields. First, various types of geometric discontinu-
ities (e.g., cracks), that, in general, stand for chal-
lenging modeling issues for the classically formulated
local elasticity—due to gradient-based equations—can
be effectively addressed by nonlocal approaches. It
should be noted that various types of geometric discon-
tinuities, including those ones originating from mate-
rial nonlinearities and boundary conditions, may result
in ambiguity regarding calculations of derivatives.
Nonlocality allows for introduction of integral-based
expressions that help to reduce or even eliminate the
above-mentioned inconvenience. Moreover, via non-
locality, more physical behavior of the models may
be assured for growing cracks [17–19]. In fact, more
spontaneous crack’s growth is achievable for numeri-
cal simulations [20]. The other applications of nonlo-
cality deal with vibro-acoustic interaction [21], model
upscaling [22], regularization of boundary value prob-
lems [23], impact loading [24], viscoplasticity [25],
thermal diffusion [26], thermoelasticity, including both
the earliest and recent papers [27–30] and piezoelec-
tricity [31,32]. The theory of generalized continua pro-
posed for granular media, which is valid at various
geometric scales, makes use of nonlocally formulated
material properties [33]. Moreover, nonlocal elasticity
has been successfully applied to model graphene [34,
35] and shape memory alloys (SMAs) [36–38].

The only two disadvantages of nonlocal modeling
tools, that are worth to be mentioned, are the com-
putational costs required and parameters identification
for nonlocal models. Indeed, more reliable material
description may need both greater number of inter-
actions between pieces of a modeled body and more
complicatedmaterialmodelswith the coefficients defy-
ing long-range interactions. The former issue refers to
more populated global systemmatrices that needhigher
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computational effort for their processing. The latter, in
turn, results in more demanding and comprehensive
experiments to be performed for material data identi-
fication. Nowadays, the use of parallel computing in
GPU may help to solve the problems partially. How-
ever, it should be noted that, whenever required and fea-
sible, the coupling between local and nonlocal models
may be performed to take advantages of both modeling
approaches [39].

Due to the well-recognized advantages of the com-
putational techniques based on nonlocal elasticity, the
authors of the present paper have attempted to apply
one of these theories, namely peridynamics, for mod-
eling the phenomenon of superelasticity in SMA. Hav-
ing introduced the theoretical part of the work, the
numerical outcomes obtained for the elaborated one-
dimensional (1-D)model of an SMAwire are presented
giving an exemplary practical application of the devel-
oped approach in the field of structural dynamics.

In detail, the following sections contribute to the
paper. After presenting introductory Sect. 1, which is
devoted to the applications of nonlocal approaches in
computational mechanics, the next three sections pro-
vide the fundamentals regardingperidynamics (Sect. 2),
SMA (Sect. 3) and the analytical description pro-
posed by Lagoudas to model superelasticity in SMA
(Sect. 4). Complementarily, other selected knownmod-
eling techniques used for SMA are also shortly dis-
cussed by the authors. A peridynamic model proposed
by the authors of the present work to simulate the phe-
nomenon of superelasticity in SMA is described in
Sect. 5. Next, in Sect. 6, the results of experiments
conducted for an SMA sample are presented to vali-
date the elaborated peridynamic model. Moreover, an
additional verification of the peridynamic model is
also addressed using an alternative numerical tool—
the finite element (FE) code based on the analytical
approach for modeling SMA provided by Auricchio.
Section 7 presents and discusses the results of the
numerical simulations performed for the peridynamic
model of a damper made of an SMAwire. Based on the
obtained results, practical aspects of the theoretical part
of the work are also discussed in Sect. 7, including the
issues of structural stiffness control functionality avail-
able in mechanical systems equipped with SMA and
efficiency of energy dissipation in SMA-based dampers
applied for reduction in mechanical vibrations. A spe-
cial authors’ attention is paid on the capability of effi-
cient change of the properties of nonlinear support-

ing structure in gas foil bearings (GFBs), which may
be achieved via superelasticity phenomenon, applying
the proposed nonlocal modeling tools. The last Sect. 8
summarizes the paper and draws final conclusions.

2 Fundamentals of peridynamics

Peridynamics is a type of nonlocal modeling approach
proposed quite recently by Silling in 2000 [40]. It
assumes coexistence of the pieces in a modeled body
(named as particles in the theory of peridynamics),
which are linked via both local and nonlocal interac-
tions. In case of the so-called bond-based peridynam-
ics, the resultant force acting on an actual central parti-
cle (localized at the position x) is found based on inte-
gration of the contributing interaction forces f over the
specified region—the horizon H , as shown in Fig. 1.

The peridynamic governing equation takes the fol-
lowing general form with the spatial component con-
sisting of an integral expression

ρü (x, t) =
∫
H

f
(
u

(
x̂, t

) − u (x, t) , x̂ − x
)
dVx̂

+ b (x, t) (1)

With reference to graphical interpretation given in
Fig. 1, the following parameters are used in Eq. (1):
x, x̂—position vectors for central and neighboring par-
ticles, u (x, t), u

(
x̂, t

)
—displacement vectors for cen-

tral and neighboring particles, b (x, t)—external body
force volumetric density considered for the current
central particle, ρ—mass density of the central par-
ticle, dVx̂—fraction of the neighboring particle’s vol-

Fig. 1 Interactions in a nonlocal peridynamic model specified
within a horizon defined for an actual central particle
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ume which is covered by the horizon H and therefore
they are considered when calculations of the interac-
tion forces f . As already referenced, the function f
defines the pairwise interaction force determining the
force links between central and neighboring particles
observed within the horizon H .

For further explanation, it is convenient to introduce
the vectors ξ and η defying the relative particles’ posi-
tion and displacement, respectively, where:

ξ = x̂ − x (2)

η = u
(
x̂, t

) − u (x, t) (3)

By definition, the pairwise force f = f (ξ,η) can be
conditionally defined as follows [40,41]:

f (ξ,η) =
{

e (ξ,η) c (ξ) s (ξ,η) , if ‖ξ‖ ≤ δ

0, otherwise
(4)

where e—unit vector pointing the direction of the inter-
action force f , c—the so-called micromodulus func-
tion, which defines elastic properties of the modeled
material, s—strain, δ—radius of the horizon H . As
demanded, nonzero forces may appear only if the con-
dition ‖ξ‖ ≤ δ is satisfied, which means that the force
interactions localized within the horizon H are taken
into account merely.

A very specific and useful property of peridynamics
is its ability to direct use of macroscale, i.e., engineer-
ing, properties of the materials—applying the defini-
tion of the micromodulus function c—e.g., Young’s
moduli, irrespectively from the lengthscales consid-
ered. Hence, resultant material properties may be intro-
duced to carry out calculations for various geomet-
ric scales providing efficient tools for multiscale stud-
ies [22].

In case of a two-dimensional (2-D) model built with
a homogeneous and isotropic material, an exemplary
form of the definition formicromodulus function cmay
be as follows:

c = 6E

πδ3 (1 − ν) T
(5)

where the elastic properties of the material are: E—
Young’s modulus and ν—Poisson’s ratio. The param-
eter T declares the thickness of the model.

As shown, the integral-based formulation of govern-
ing equation used in peridynamics requires a number
of interactions to be taken into account over the defined

horizon. This fact inevitably leads to the increased com-
putational effort comparing to the locally formulated
approaches. However, the issue of peridynamic mod-
els’ convergence was already subject to studies. The
relationships between particles’ distances and horizon
diameters as well as their absolute values were already
proposed for variousmodeling cases [41]. Even though
natural consequence of an application of the peridy-
namic approach is the introduction nonlocal interac-
tions, a locally formulated solution of a given problem
may be easily found as well. A gradual decrease in the
horizon radius δ allows for the expected convergence.

Sinceperidynamicsmakes useof an integral descrip-
tion regarding spatial domain, it can relatively easily
solve the problems involving various types of geo-
metric discontinuities, e.g., fatigue cracks (consider-
ing the research field of damage modeling in general),
boundaries of grains, interconnection layers and inter-
faceswith considerable impedancemismatches.All the
above-mentioned cases, if improperly handled, may
cause significant numerical issues. The overview on
various applications of peridynamics may be found
in [19–21,35,42–44]. Hence, the present work should
be considered as the extension of the previous investi-
gations made on peridynamic capabilities, in which the
phenomenon of superelasticity in SMA is of particular
concern.

3 Fundamentals of SMA

SMA is one of the most popular and widely applied
groups of smart materials exhibiting extraordinary
physical properties. These properties result from the
thermomechanical phenomena observed for
phase transformations (phase transitions) in SMA.
SMA characterizes reversible transformations of their
crystal structures, i.e., they exhibit solid-state phase
changes at nanoscale, which specifically allow tomem-
orize arbitrarily given geometric shapes at macroscale
as well as withstand relatively high elastic defor-
mations [45]. The former capability of memorizing
either one or two geometric shapes originates from the
two-way martensitic phase transition, i.e., martensite–
austenite phase transition. The latter functionality of
SMA, in turn, reflects the phenomenon of superelastic-
ity (also known as pseudoelasticity).

In case of shape memory property, the applied ther-
mal activation—via either cooling or heating—leads
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Fig. 2 Contribution of austenite in an SMA sample for
temperature-activated reversible martensitic phase transition—
exemplary plot for hysteretic behavior

to forward and backward transitions of the martensitic
phase, respectively, as demanded. This phenomenon is
illustrated in Fig. 2, where the changing contribution of
austenite phase for varying temperatures is presented.
As shown, SMA is characterized by four specific tem-
peratures. These temperatures, i.e., As , A f , Ms and
M f , are the material properties being dependent on
the alloy’s ingredients used. They, respectively, stand
for the temperatures at which solid phases, austenite
and martensite, are generated via mutual transitions.
The indexes ‘s’ and ‘ f ’ denote begin and finish of the
respective transition, which means either forward or
backward martensitic phase transition. It must be men-
tioned that the four characteristic temperatures depend
on the applied mechanical stress. These dependencies
are not linear, which is particularly seen for the tem-
peratures As and A f for small stresses.

Activation of martensitic phase transitions leads
to the demanded rebuilding of the crystal structure,
which is required for changes in the geometric shapes
observable at macroscale. Depending on the capabili-
ties achieved via shape training procedures, SMA may
exhibit either the so-called one- or two-way memory
effects. These effects reflect the capabilities of remem-
bering either one or two different geometric shapes,
respectively.

It should be noted that martensitic phase transitions
are spontaneous and subject to hysteretic behavior. In
fact, the number of possible intermediate geometric
shapes achieved by evolving SMA sample is infinite,
even though the demanded, i.e., memorized, geome-
tries finally appear. Thermal loads lead to the specific,

Fig. 3 Exemplary course of solid phase transitions and shape
recovery in an SMA sample during temperature-activated one-
way memory effect

unrepeatable gradual changes of the crystal structure
while phase transitions occurs that may be considered
as random at macroscale.

For the sake of clarity, the phenomenon of one-way
memory effect is briefly described in the following.
Consecutive solid phase transitions are illustrated in
Fig. 3. As shown, the effect of memorizing a geo-
metric shape in SMA reflects the existence of the two
different types of crystal structures for the considered
austenite andmartensite solid phases. There coexist the
cubic crystal structure for austenite and the rhomboidal
one for martensite. Additionally, the rhomboidal struc-
ture may take two forms, namely either undeformed or
deformed one, depending on the external load applica-
tion history.

The one-way memory effect can be observed within
a repeatable cycle, which contains the following steps
(enumerated in Fig. 3): (1) mechanical deformation of
an SMA sample at constant temperature when rhom-
boidal crystal structures in martensite exhibit defor-
mation, (2) stress release while keeping the deformed
shape of SMA, (3) recovery of thememorized shape via
thermal load at zero stress when austenite phase gener-
ation is activated, (4) cooling down of an SMA sample
leading to the undeformed martensite phase present for
a memorized shape.

The second type of the unique phenomena experi-
mentally observed in SMA, i.e., superelasticity, isman-
ifested via significant elastic deformations, not present
in other metallic materials. Typically, allowable strains
in SMA are within the range 6–8%, which is approxi-
mately ten times greater than the values of the respec-
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tive quantities for steel, aluminum, titanium and cop-
per. Due to the attempted scope of the present work,
superelasticity is of the special authors’ concern, and it
is addressed in detail in the following Sect. 4.

The extraordinary physical characteristics of SMA
enable many practical applications. Both memory
effects and superelasticity are very attractive properties.
They have opened new perspectives for applications of
SMA in the structures exhibiting quite rigorous require-
ments regarding movable components, available space
and biocompatibility. Hence, SMA is used in such dis-
tant applications as medicine and aerospace [46].

The surprising fact is that there is still significant
deficiency of reliable models of SMA. This motivated
the authors of the present work to look for some alter-
native modeling methods, especially the ones based on
nonlocal elasticity, to allow for new capabilities when
reflecting the experimental results, as already refer-
enced in Sects. 1 and 2. Even though many papers
address SMAmodeling, there are still several unsolved
problems, which have appeared in experiments [47].
Some of the observed phenomena are not studied yet
sufficiently to allow for a reliable theoretical descrip-
tion. Providing with an example, it should be high-
lighted that the influence of boundary conditions on
the behavior of SMA and spontaneity of the marten-
sitic phase transition is still a missing part [48]. The
physics of SMA seems complex, which explains why
so many attempts have been made so far toward the
development of new reliable and accurate models [47].

4 Analytical description of superelasticity in SMA

The scope of the present study deals with modeling of
the phenomenon of superelasticity in SMA. Therefore,
more detailed characterization of this effect is provided
in the following. The analytical description of the prob-
lem constitutes the main part of this section, since it is
crucial to understand the fundamentals of the developed
peridynamic model.

As stated before, superelasticity reflects signifi-
cant elastic deformations present in SMA after exter-
nal stresses are applied. This phenomenon may be
observed at a constant temperature; however, the
austenite phase is required to bemaintained at the ambi-
ent temperature before any mechanical load is consid-
ered. This means that the temperature during experi-
ment should exceed the quantity A f , as shown in Fig. 4.

Fig. 4 Superelasticity effect in SMA—reversible solid phase
transitions observed at a constant temperature.Note that four aux-
iliary solid lines symbolically depict the relationships between
stress and characteristic temperatures. In fact, as already men-
tioned in Sect. 3, these relationships are monotonic but not linear

In the presence of gradually increasing mechanical
load, an SMA sample experiences solid phase tran-
sitions. This behavior results from the fact that all
four characteristic temperatures A (M) f (s) undergo a
monotonic growth when the applied stress increases,
which is symbolically visualized in Fig. 4 by aux-
iliary four parallel lines. In fact, a complete phase
changewithin the entire body of SMAmay be achieved
under the condition that sufficient level of the exter-
nally imposed stresses is assured. The increase in the
stresses induces spontaneous austenite to martensite
phase change. The superelasticity effect is reversible,
and the austenite phase is instantly recreated when
the loads are released. However, different stress–strain
paths are observed for the two phase transition direc-
tions, as visualized in Fig. 5. This dependency upon
the transition direction is represented by a hysteretic
behavior of SMA [49].

Two plateau regions appear in the stress–strain plot.
They represent the processes of gradual and sponta-
neous rebuilding crystal structures in SMA observed
during phase transitions in both directions. As a result,
when the contributing solid phases swap, the stresses
remain nearly constant, whereas the strains change dra-
matically. This unique behavior allows for building the
SMA-based structures exhibiting nearly constant reac-
tion force generation for relatively wide ranges of elas-
tic deflections. The most known practical applications
making use of both extraordinary strains allowed in
SMA and their functionality of constant force genera-
tion are stents, medical staples and dental braces [50].
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Fig. 5 Hysteretic character for the stress–strain paths observed
for superelasticity effect in SMA

Finally, the ability of effective energy dissipation,while
performing consecutive cycles within the hysteresis
loop, leads to the applications of superelasticity in
mechanical dampers [51,52].

When investigating the shape of the hysteresis plot
shown in Fig. 5, it should be highlighted that significant
strains allowed in SMAhave basically two sources. The
main reason for that is instantaneous creation of the
deformed variants of martensite phase, i.e., deformed
rhomboidal structure, while the stresses increase. The
minor reason originates from the fact that the Young’s
modulus for themartensite phase is less than the respec-
tive elastic quantity for austenite.

Having introduced the theory given by Lagoudas in
the work [53], the following analytical description for
superelasticity is provided as the required background
for the developed peridynamic model of SMA.

First, a definition for the total specific Gibbs free
energy (the total Gibbs free energy per unit mass) G
should be defined for a polycrystalline SMA. An SMA
sample is assumed to consist of a mixture of the two
contributingmartensite and austenite phases.Thequan-
tity G equals

G

(
¯̄σ, T, ξ,

¯̄
εt

)
= − 1

2ρ
Cijklσijσkl

− 1

ρ
σij

[
αij (T − T0) + ¯̄

εt
]

+ c

[
(T − T0) − T ln

(
T

T0

)]

− s0T + u0 + 1

ρ
f (ξ) (6)

The arguments of the parameter G are: ¯̄σ—second-
order Cauchy stress tensor, T—temperature, ξ—

martensitic volume fraction and εt—second-order
transformation strain tensor. The dimensionless param-
eter ξ ∈ [0, 1] defines the contribution of both solid
phases, where the value 0 refers to the structure entirely
made of austenite, and 1 declares the martensite phase
as the only existing one in amodel of SMA.An alterna-
tive symbolic description for the stress tensor ¯̄σ is intro-
duced in Eq. (6) using the quantities σij and σkl that fol-
low the Einstein summation notation. It is used when-
ever unambiguous definition for the tensor calculations
must be provided. The remaining parameters used in
Eq. (6) are: ρ—the mass density, Cijkl—fourth-order
elastic compliance tensor, αij—second-order thermal
expansion coefficient tensor, T0—reference (ambient)
temperature, c—specific heat, s0—specific entropy at
the reference state, u0—specific internal energy at the
reference state, f (ξ)—the transformation hardening
function. The function f (ξ) stands for elastic strain
energy related to the interactions present between var-
ious variants of martensitic phase and the surrounding
phase as well as the interactions observed within the
martensitic phase.

Since the phenomenon of superelasticity is of the
authors’ concern, Eq. (6) may be rewritten in the fol-
lowing form:

G

(
¯̄σ, T, ξ,

¯̄
εt

)
= − 1

2ρ
Cijklσijσkl

− 1

ρ
σij

¯̄
εt − s0T0 + u0 + 1

ρ
f (ξ)

(7)

where the temperature effects are neglected. It is
assumed in Eq. (7) that the case of isothermal phase
transitions is considered, i.e., when T = T0. In an ideal
case, phase transitions are activated by mechanical
loads only, and with reference, no influential tempera-
ture variation is observed. As experimentally proven by
the authors, formula (7) can be successfully used in ana-
lytical/numerical simulations for SMA as long as the
phase transitions’ speed is limited adequately to follow
the physical behavior of the tested SMA. More specifi-
cally, the experimentally identified limited scale of the
phenomenon of spontaneous phase changes, which is
found at the limited phase transitions’ speed, allows
for a reliable linear approximation of the stress–strain
path—as considered in Fig. 10 in Sect. 6, where model
validation is described. Moreover, the phenomenon of

123



1918 A. Martowicz et al.

spontaneous phase transitions is strictly related to the
variation of temperature field. Hence, the required con-
dition of isothermal phase transitions in Eq. (7) may
be verified either by direct temperature measurements
or, indirectly, analyzing the shape of the stress–strain
curve. The above-stated relation between the stress–
strain path and the temperature field was observed
using an infrared camera. It also, eventually, allowed
to identify the maximum speed for the extension test
performed for an SMA wire made of Nitinol, which
assures the required constraints regarding the scale of
the phenomenon of spontaneous phase changes. This
speed was found to be approximately 0.05mm/s. The
length of the used SMA wire equals 133mm. It means
that the allowed strain rate obtained for nearly isother-
mal phase transitions is about 0.00038 s−1. This con-
dition also assures sufficient thermal energy flow, i.e.,
its exchange with the surrounding area. This prevents
from other possible source of significant variation of
the temperature field that should be additionally taken
into account in Eq. (7) for more realistic modeling of
the stress–strain relationship. Even the experimentally
identified allowed value of the absolute extensions rate
is relatively small, i.e., of the order of tens of microm-
eters per second, it still allows for reliable transient
simulations to investigate the superelasticity effect in
SMA wires mounted in the supporting layers of GFB,
as long as a long-period steady-state operation of GFB
under a constant load is taken into account.

All the material properties declared in Eq. (7) are
considered as the resultant quantities defined using the
fraction ξ . Hence, the properties of the two contributing
phases are used in the linear combinations to find the
following parameters

ρ = ρ (ξ) = ρA + ξ
(
ρM − ρA

)
= ρA + ξ�ρ (8)

Cijkl = Cijkl (ξ) = CA
ijkl + ξ

(
CM

ijkl − CA
ijkl

)

= CA
ijkl + ξ�Cijkl (9)

s0 = s0 (ξ) = s A0 + ξ
(
sM0 − s A0

)
= s A0 + ξ�s0

(10)

u0 = u0 (ξ) = uA
0 + ξ

(
uM
0 − uA

0

)
= uA

0 + ξ�u0

(11)

The austenite and martensite phases are denoted using
the indexes A and M, respectively. For a 1-D model of
an SMA rod undergoing uniaxial tension, Eq. (7) takes
the form

G
(
σ, T, ξ, εt

) = − 1

2ρ
Cσ 2 − 1

ρ
σεt

− s0T0 + u0 + 1

ρ
f (ξ) (12)

where the compliance tensor Cijkl becomes a scalar
C1111 = C defined using the inversions of the Young’s

moduli for both phases CA = (
E A

)−1
and CM =(

EM
)−1

, with their contributions calculated according
to the martensite percentage volume fraction

C = C (ξ) = CA+ξ
(
CM − CA

)
= CA+ξ�C (13)

The resultant strain equals

ε = Cσ + εt (14)

where εt is the transformation strain found based on
the formula

ε̇t = Λξ̇ (15)

The general form of the transformation tensor � is
depended upon both the phase transition direction,
identified by the sign of the strain rate ξ̇ , and the
stresses. However, for a 1-D model the tensor � may
be eventually assumed a scalar Λ being independent
from any of the above-mentioned quantities

Λ =
√
3

2
H for ξ̇ > 0 and ξ̇ < 0 (16)

The parameter Λ is formulated based on the SMA
material property—the maximum uniaxial transforma-
tion strain H . The conditions ξ̇ > 0 and ξ̇ < 0 mean
an increase and decrease in the amount of martensite
phase in the model, respectively. These conditions ade-
quately concern the cases when the stress σ grows and
decreases. It should be noted that, even though the two
independent cases are initially considered to condition-
ally define the value of Λ, namely ξ̇ > 0 and ξ̇ < 0,
as found in the applications of both the elaborated FE
and peridynamic codes, these cases effectively make
a reference to the two overlapping conditions ξ̇ ≥ 0
and ξ̇ ≤ 0. In fact, from a practical point of view, the
value of the strain rate ξ̇ never equals to zero during
simulations.

Next, the entropy of the model is assured to
either remain constant or increase after introduction
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of the second law of thermodynamics. The respective
Clausius–Planck inequality is defined

σ ε̇t − ρ
∂G

∂ξ
ξ̇ ≥ 0 (17)

After introduction of Eq. (15), Eq. (17) becomes(
σΛ − ρ

∂G

∂ξ

)
ξ̇ ≥ 0 (18)

Based on Eq. (12) and neglecting change of the mass
density ρ during phase transitions, there may be found
the partial derivative ∂G

∂ξ
required to be declared in

Eq. (18)

∂G

∂ξ
= − 1

2ρ

∂C (ξ)

∂ξ
σ 2 − 1

ρ
σ

∂εt (ξ)

∂ξ
− ∂s0 (ξ)

∂ξ
T0

+ ∂u0 (ξ)

∂ξ
+ 1

ρ

∂ f (ξ)

∂ξ
(19)

After introduction of Eqs. (10–11), (13) and (15) in
Eq. (19), one may obtain

−ρ
∂G

∂ξ
= 1

2
�Cσ 2+σΛ+ρ�s0T0−ρ�u0− ∂ f (ξ)

∂ξ

(20)

Then, substitution of the expression −ρ ∂G
∂ξ

in Eq. (18)
by Eq. (20) leads to

(
2σΛ + 1

2
�Cσ 2 + ρ�s0T0 − ρ�u0 − ∂ f (ξ)

∂ξ

)
ξ̇ ≥ 0

(21)

which constitutes the conditional expression

Πξ̇ ≥ 0 (22)

in terms of the thermodynamic force Π .
The remaining contributor to the thermodynamic

force Π—the transformation hardening function
f (ξ)—is found as follows [54]:

f (ξ) =
{ 1

2ρb
Mξ2 + (μ1 + μ2) ξ, ξ̇ > 0

1
2ρb

Aξ2 + (μ1 − μ2) ξ, ξ̇ < 0
(23)

which leads to the expression defying the partial deriva-
tive ∂ f (ξ)

∂ξ

∂ f (ξ)

∂ξ
=

{
ρbMξ + μ1 + μ2, ξ̇ > 0
ρbAξ + μ1 − μ2, ξ̇ < 0

(24)

The material properties bA, bM , μ1 and μ2 can be cal-
culated using the Kuhn–Tucker conditions

bA = −�s0
(
A f − As

)
(25)

bM = −�s0
(
Ms − M f

)
(26)

μ1 = 1

2
ρ�s0

(
Ms + A f

) − ρ�u0 (27)

μ2 = 1

4
ρ�s0

(
As − A f − M f + Ms

)
(28)

based on the characteristic phase transition tempera-
tures As , A f , Ms and M f , as previously explained in
Sect. 3.

After introduction of Eqs. (24–28) in Eq. (21), the
thermodynamic force Π can be found as

Π = 1

2
�Cσ 2 + ρ�s0T0 + Π1 (29)

where

Π1 =
{√

6Hσ + ρ�s0
(
Ms − M f

)
ξ − 1

4ρ�s0
(
3Ms + A f + As − M f

)
, ξ̇ > 0√

6Hσ + ρ�s0
(
A f − As

)
ξ − 1

4ρ�s0
(
Ms + 3A f − As + M f

)
, ξ̇ < 0

(30)

Finally, the transformation function Φ is calculated
according to the conditionally defined formula

Φ =
{

Π − Y, ξ̇ > 0 (austenite → martensite)
−Π − Y, ξ̇ < 0 (martensite → austenite)

(31)

which depends on both the thermodynamic force Π

and the parameter Y , used to define the critical value
of the quantity for internal dissipation of energy while
phase transition occurs

Y = 1

4
ρ�s0

(
Ms + M f − A f − As

)
(32)

Taking into account the value of the transformation
functionΦ as well as condition (22), the following two
cases are distinguished to specify the required change
of ξ :

• if the stress σ increases and if Φ(ξ̇ > 0) > 0,
then phase transition from austenite to martensite
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is identified and further growth of the fraction ξ is
necessary; note, ξ cannot take the values greater
than 1

• if the stress σ decreases and if Φ(ξ̇ < 0) > 0,
then phase transition from martensite to austenite
is identified and further reduction in the fraction ξ

is necessary; note, ξ cannot take the values less than
0

Based on verification, performed for the above-stated
conditions, which refer to the transformation function
Φ and the martensitic volume fraction ξ ∈ [0, 1],
static, quasi-static and dynamic simulations may be
carried out considering gradual increase or decrease in
the stress and the hysteretic character of the modeled
superelasticity effect. During simulations, the condi-
tion Φ ≤ 0 must be satisfied at any time, irrespectively
from the sign of ξ̇ , to assure that the Clausius–Planck
inequality (17) is fulfilled.

The above-introduced approach represents the phe-
nomenological modeling technique, specifically mak-
ing use of the free energy concept. As shown, it allows
for representation of both thermally and mechani-
cally induced phase transformations. Dedicated model
parameters, e.g., ξ and ξ̇ , assure effective control over
the percentage contribution of martensite and austenite
phases as well as the rate of the martensitic transforma-
tion. The idea of the use of additional internal variables
in the model of SMA is not a new one [55]; however,
it has been continuously widely applied for decades to
allow for convenient modeling kinetics of phase trans-
formations [53,56]. The authors of the present paper
take an advantage of both more physical interpretation
of the model behavior offered by the free-energy-based
approach and the relatively newly reported capabilities
of a nonlocal modeling via peridynamics.

It should be, however, noted that the above-mentio-
ned comprehensive understanding of the state of the
simulated material—in terms of transformation kinet-
ics, energy flow and the entropy of the model—
requires relatively complicated mathematical descrip-
tion and therefore leads to implementation inconve-
niences. Alternatively, another group of phenomeno-
logical models can be used, which introduce approxi-
mate description for macroscopic material behavior.

In the work [57], the authors consider thermome-
chanical properties of themodeled SMA to simulate the
shape memory effect and superelasticity. The applied
phenomenological approach makes use of a polyno-

mial approximation to build an SMA model, success-
fully followed by its application to a biomechanical
system (a rod-type prosthesis of a human middle ear),
as reported in [58]. In the work [57], nonlinear prop-
erties of the modeled SMA material are addressed by
the analytical description based on a fifth-order poly-
nomial. Moreover, the authors of the referenced work
confirmed the reliability and usability of the devel-
oped first-order approximate SMA model dedicated
to operate at the arbitrarily selected frequency range,
close to the resonance conditions. The developedmodel
was verified using FE simulations. Another interest-
ing phenomenological approach is presented in [59].
The authors of the citedwork propose a straightforward
polynomial- based definition of the constitutive model
for SMA. The properties of a single and 2-degree-of-
freedom (DOF) oscillators are investigated with the
introduced SMA components, including bifurcation
diagrams. The presented modeling approach allows to
conveniently simulate the effects of shape memory and
superelasticity.

In the following, the theory of peridynamic model
for SMA is provided based on the previously presented
fundamentals in the introductory sections.

5 Peridynamic model for SMA

Making the reference to both the former authors’ mod-
eling approaches used for SMA [51,60,61] and the the-
ory of the superelasticity effect provided in Sect. 4, a
peridynamic model is introduced in the following.

Considering Eq. (1), the governing equation for a
1-D case of a continuum solid body (a rod) takes the
form [40]

ρü (x, t) =
∫
H

f
(
u

(
x̂, t

) − u (x, t) , x̂ − x
)
dVx̂

+ b (x, t) (33)

which may be transformed into a discrete form for the
i th DOF

ρüti =
∑N

j = −N
j �= 0

f
(
uti+ j − uti , (i + j) L

− i L) Vj + bi (34)

with the pairwise interaction force f

f
(
uti+ j − uti , j L

)
=

{
csi , if | j | L ≤ δ

0, otherwise
(35)

123



Nonlocal elasticity in shape memory alloys 1921

strain si

si = uti+ j − uti
| j | L (36)

and the volume Vj

Vj = βi, j AL (37)

uti , u
t
i+ j are the displacements at the time step indexed

by t , respectively, for the actual central i th particle and
the particle, which is located within the horizon H at
the j th relative position with respect to the i th particle.
The index j takes any discrete value pointing the parti-
cle’s location within the horizon of the radius δ = NL ,
where L equals the distance between particles. Note,
that in the following, the parameter L also becomes�x ,
i.e., �x = L , which is more readable in the context of
both stability and convergence studies. A denotes the
area of the cross section of the modeled rod. The factor
βi, j is introduced to correctly determine the value of the
volume for the neighboring particle Vj at the bound-
aries of the horizon, and it is determined conditionally

βi, j =
{
1, j �= N ∧ j �= −N
1
2 , j = N ∨ j = −N

(38)

Next, Eq. (34) evolves into the following form for the
i th particle, i.e., for the i th DOF

ρüti =
∑N

j = −N
j �= 0

c
uti+ j − uti

| j | βi, j A + bi (39)

It should be noted that Eq. (39) takes a general form
allowed to be used within the body of a modeled rod
excluding its two ends. In detail, if the horizon radius
δ exceeds the distance between the current i th particle
and the location of one of the rod’s ends, Eq. (39) should
undergo further modification to limit the number of
permitted values for the j index.

The micromodulus function c takes the following
fundamental, widely applied value for a 1-D case,
which stays constant within the horizon of a peridy-
namic model [41]

c = 2E A

δ2A
(40)

hence

ρüti =
∑N

j = −N
j �= 0

2E A

(NL)2

uti+ j − uti
| j | βi, j + bi (41)

When multiplying both sides of Eq. (41) by the volume
of the i th particle Vi

Vi = γi AL (42)

we may find

mi ü
t
i = 2

∑N

j = −N
j �= 0

βi, jγi
E A A

L

uti+ j − uti
| j | N 2 + Fi

(43)

or

mi ü
t
i = 2

∑N
j = −N
j �= 0

βi, jγi k
A
uti+ j − uti

| j | N 2 + Fi (44)

where kA is the classically formulated stiffness coeffi-
cient (similarly to a 1-D FE formulation) for an initial
austenite phase

kA = E AA

L
(45)

mi and Fi are the mass and external force considered
for the i th particle. Similarly to the parameter βi, j , the
auxiliary factor γi assures, in turn, the correct volume
for the current central particle Vi at the ends of the rod,
i.e., where i = 1 ∨ i = iM AX . Hence,

γi =
{
1, i �= 1 ∧ i �= iM AX
1
2 , i = 1 ∨ i = iM AX

(46)

For the sake of simplicity, the case of a uniform rod
made of SMA is considered in the work. Taking into
account Eq. (14), which defines the total strain in SMA,
as well as Eqs. (13), (15) and (16), one may obtain

ε =
(

1

E A
+ ξ

(
1

EM
− 1

E A

))
σ +

√
3

2
Hξ (47)
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and

ε =
((

1

EM
− 1

E A

)
σ +

√
3

2
H

)
ξ + σ

E A
(48)

After introduction of the two expressions, based on the
i th particle’s force and displacement Fi and ui , i.e.,
σ = Fi/A and ε = ui/L into Eq. (48), the following
relationship may be found

ui
L

=
((

1

EM
− 1

E A

)
Fi
A

+
√
3

2
H

)
ξi + Fi

E A A
(49)

which evolves to the form

kAui =
((

E A

EM
− 1

)
Fi +

√
3

2
HEAA

)
ξi + Fi (50)

and, then,

kAui = (
αE Fi + F∗

M

)
ξi + Fi (51)

αE and F∗
M are the auxiliary constant parameters

expressing the relationship between the Young’s mod-
uli for the two SMA phases and the resultant phase
transformation force

αE = E A

EM
− 1 (52)

F∗
M = √

3/2HEAA (53)

Next, Eq. (51) may be rewritten in the form

kAui = F∗
Mξi + (αEξi + 1) Fi (54)

and

k∗
i ui = F∗

i + Fi (55)

where the two equivalent resultant parameters are pro-
posed to be used in a peridynamic model, namely stiff-
ness coefficient k∗

i and the modified phase transforma-
tion force F∗

i

k∗
i = kA

αEξi + 1
(56)

F∗
i = F∗

M

αEξi + 1
ξi (57)

to follow the standard compacted expression for the
static problem description of the know general form
ku = F .

Finally, making the reference between Eqs. (55) and
(44), an alternative 1-D peridynamic model for SMA
is proposed to take the form

mi ü
t
i = 2

∑N

j = −N
j �= 0

(
βi, jγi

k A

αEξi + 1

uti+ j − uti
| j | N 2

)

+ F∗
M

αEξi + 1
ξi + Fi (58)

where mi , kA, αE , F∗
M are the constant parameters and

ξi is the control parameter considered for the i th particle
to declare the current contributions of the austenite and
martensite phases in the mentioned particle.

Application of the governing equation (58) allows
for solution of static, quasi-static and dynamic prob-
lems. In all cases, it is required to aggregate the system
of linear equationsmaking use of the parameters k∗

i and
F∗
i in the global stiffness matrix and the force vector,

respectively. A general flowchart for applications of the
proposed peridynamic model is shown in Fig. 6.

The first step of calculations is performed to param-
eterize the model using geometric and material prop-
erties. Moreover, the initial and boundary conditions
are defined to introduce the data regarding both fixed
displacement areas and external loads. Finally, simu-
lation data referring to total simulation time, time step
(temporal discretization), distances between particles
(spatial discretization), range of the horizon and the
maximum error for the particle displacement are pro-
vided. During the second step, initial calculations are
conducted to determine auxiliary constants in a model:
masses, volumes, stiffness coefficients, resultant phase
transformation force as well as critical elongations for
the established bonds between particles. If required,
initial cracks are introduced into the model by break-
ing selected bonds.

Iterative part of the procedure deals with the cal-
culation of the particles’ displacements and velocities
via solving the matrix equation based on the updated
values of external loads. For an SMA model, the con-
ditions regarding the transformation function Φi ≤ 0
andmartensitic volume fraction ξi ∈ [0, 1] are checked
during each iteration. If required, the displacements are
repeatedly updated to assure that the above-mentioned
parameters are kept within the specified limits, which
guarantees proper hysteretic behavior ofmodeled SMA
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Fig. 6 Flowchart for
applications of the
elaborated peridynamic
model of SMA

sample.Moreover, a search for the bondswith exceeded
critical elongations is carried out in case of grow-
ing cracks. The final step (postprocessing) shows the
obtained results making use of both numerical and
graphical presentations.

To assess the property of the elaborated numerical
peridynamic model for SMA (58), the stability con-
dition is determined for explicit formulation, applying
von Neumann stability analysis. An exemplary repre-
sentative case of N = 2 is taken into account. The cen-
tral scheme for finite difference (FD) method is used
for time integration

üti = ut−1
i − 2uti + ut+1

i

�t2
(59)

For the case when i �= 1 ∧ i �= iM AX and excluding
the external force Fi , Eq. (58) becomes

mi
ut−1
i − 2uti + ut+1

i

�t2

= 2
∑N

j = −N
j �= 0

(
βi, j

k A

αEξi + 1

uti+ j − uti
| j | N 2

)

+ F∗
M

αEξi + 1
ξi (60)

mi
ut−1
i − 2uti + ut+1

i

�t2

= 2

(
k∗
i

16

(
uti−2 − uti

) + k∗
i

4

(
uti−1 − uti

)

+ k∗
i

4

(
uti+1 − uti

) + k∗
i

16

(
uti+2 − uti

)) + F∗
i

(61)

ut−1
i − 2uti + ut+1

i

= �t2k∗
i

mi

(
1

8
uti−2 + 1

2
uti−1 − 5

4
uti

+ 1

2
uti+1 + 1

8
uti+2

)
+ �t2

mi
F∗
i (62)

Hence, the equation for the numerical error takes the
form

εt−1
i − 2εti + εt+1

i = r1

(
1

8
εti−2 + 1

2
εti−1

− 5

4
εti + 1

2
εti+1 + 1

8
εti+2

)
+ r2 (63)

where the axillary parameters r1 and r2 equal

r1 = �t2

mi
k∗
i (64)

r2 = �t2

mi
F∗
i (65)

The considered error includes both the temporal and
spatial terms

ε
t+q
i+ j = exp (a (t + q) �t) exp (jκε (i + j)�x) (66)

where j = √−1 is the imaginary unit, a and κε are
constants. Consequently, Eq. (63) becomes
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exp (−a�t) + exp (a�t)

= 2 + r1

(
1

4
cos (2r) + cos (r) − 5

4

)

+ r2exp (−at�t) exp (−jir) (67)

where r = κε�x . For the most demanding case of ξi =
0, when the velocity for the longitudinal wave reaches
the maximum value cA = √

E A/ρ, for austenitic
phase, since E A > EM , the condition for numerical
stability becomes

∣∣∣∣1 + �t2

2�x2

(
cA

)2 (
1

4
cos (2r) + cos (r) − 5

4

)∣∣∣∣ ≤ 1

(68)

which finally allows to determine the constraint for the
time step

�t ≤ √
2
�x

cA
(69)

Condition (69) should be normally taken for proper
selection of �t for a numerical model in case of
explicit integration. It is especially requiredwhen high-
frequency excitations are applied and the wavelength
of the generated elastic wave is comparable with the
length of the model. It should be noted that this is,
however, not the case for the numerical model studied
in Sect. 7. Due to the low-frequency excitation (time
period equals 30 s to assure isothermal phase transi-
tion), small dimensions of the model (its length equals
4mm) and limited number of DOFs, i.e., 5, a signifi-
cantly higher value of the time step �t = 10ms was
arbitrarily selected with respect to the one specified by
Eq. (69), i.e., 0.38μs. It should be clearly stated that
the choice made for �t was valid for the considered
specific nearly quasi-static simulations carried out for
SMA.

Similarly, the convergence of Eq. (61) to the ana-
lytical case was confirmed. For an exemplary case of
ξi = 0, Eq. (61) becomes

mi
ut−1
i − 2uti + ut+1

i

�t2

= kA
(
1

8

(
uti−2 − uti

) + 1

2

(
uti−1 − uti

)

+ 1

2

(
uti+1 − uti

) + 1

8

(
uti+2 − uti

))
(70)

and then

mi
ut−1
i − 2uti + ut+1

i

�t2

= kA
(
1

8
uti−2 + 1

2
uti−1 − 5

4
uti + 1

2
uti+1 + 1

8
uti+2

)

(71)

After introduction of a standard wave solution

ut+q
i+ j = exp (j (ω (t + q)�t − κ (i + j) �x))

= exp (j (ωt�t − κi�x)) exp (j (ωq�t − κ j�x))

(72)

Eq. (71) becomes

mi

�t2
(exp (j (−ω�t)) − 2 + exp (j (ω�t)))

= kA
( 1

8 exp (j (2κ�x)) + 1
2 exp (j (κ�x)) − 5

4++ 1
2 exp (j (−κ�x)) + 1

8 exp (j (−2κ�x))

)

(73)

and then
mi

�t2
(2cos (ω�t) − 2)

= kA
(
1

4
cos (2κ�x) + cos (κ�x) − 5

4

)
(74)

After introduction of the two fundamental terms of
the Taylor series for the trigonometric components,
Eq. (74) takes the form

mi

�t2

(
2

(
1 − (ω�t)2

2

)
− 2

)

= kA
(
1

4

(
1 − (2κ�x)2

2

)
+ 1 − (κ�x)2

2
− 5

4

)

(75)

mi

�t2
(ω�t)2 = E AA

�x

(
(2κ�x)2

8
+ (κ�x)2

2

)
(76)

miω
2 = E AA

�x
(κ�x)2 (77)

ω2 = κ2 E
A

ρ
(78)

ω2 =
(
cA

)2
κ2 (79)

which, finally, stands for an analytical form of the dis-
persion relation for an isotropic, homogeneous mate-
rial.
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In the following Sect. 6, the results of experimen-
tal validation and numerical verification confirm the
applicability of the above-presented theory making use
of the stress–strain relationship obtained for the elabo-
rated peridynamic code for SMA.

6 Experimental validation and verification using
commercial FE code

As mentioned earlier, both experimental validation
and numerical verification were carried out to confirm
the demanded functionalities of the elaborated peri-
dynamic model of SMA. In the performed validation
experiments, an SMA wire made of Nitinol was used.
The length and the diameter of thewire are 133mm and
1mm, respectively. Figure 7 shows the test stand used
in experiments, equippedwith a fatigue testingmachine
Instron 8872 with the maximum load of 10kN. During
tensile tests, the stress–strain paths for the SMA sample
were registered.

The experimental tests were conducted at room
temperature 22 ◦C. Since, for the used SMA mate-
rial, the characteristic temperature A f equals 10 ◦C
(based on the manufacturer data), the condition regard-
ing the presence of austenite phase before application
of mechanical load was satisfied, which is required for
testing the superelasticity effect.

The undertaken tests consisted in the following con-
secutive phases: (step 1) an initial 5-s long pause, (step

2) gradual stretching of the SMA wire until the abso-
lute extension of 11mm is achieved with the stretch-
ing rate 0.05mm/s, (step 3) 30-s long pause, (step 4)
compression by 11mm with the stretching release rate
0.05mm/s.

For verification reason, the respective three-
dimensional (3-D) FEmodel of the SMAwire was cre-
ated to generate the stress–strain path using a commer-
cial software MSC.Software/Marc, which is shown in
Fig. 8. It consists of 101080 FEs.

The FE modeling approach is employed since it is
a common and convenient verification tool. The same
experimental data were applied to validate both the FE
code and the elaborated peridynamic model of SMA
to assure the correct assessment of the convergence
between these two approaches during numerical ver-
ification.

The theory of superelasticity effect, which is imple-
mented in the used commercial FE code, was proposed
byAuricchio and is presented in detail in [62,63]. Even
though different mathematical formalisms are used by
Lagoudas and Auricchio in their theoretical works for
SMA—including constitutive equation and the defini-
tion for the characteristic points in the stress–strain
plots—the theory applied in the FE code is in line
with the analytical formulations used in the peridy-
namic model provided in Sect. 5. As shown below, the
results convergence was achieved for the superelastic-
ity effect, satisfying the condition of isothermal phase

Fig. 7 Fatigue testing machine Instron 8872 with mounted SMA wire used in the validation experiments for the FE and peridynamic
models
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Fig. 8 FE model of an SMA wire used for verification of the peridynamic model. The cross-sectional view is shown on the right

transition. In both modeling approaches, various elas-
tic moduli are separately considered for martensite and
austenite phases, and the martensite percentage vol-
ume fraction ξ is introduced as the control property to
assure hysteretic character of the stress–strain relation-
ships for SMA. Although different parameters are used
to declare the characteristic points in the stress–strain
curve, their conversion relationshipsmay be effectively
found via either verification or validation process.

Finally, the stress–strain curve for the tested peridy-
namic model of an SMA sample was generated using
the theory described in Sect. 5. The details of the peri-
dynamic model used for validation and verification are
described in the following. A generic 1-D peridynamic
model of a 4-mm-long piece of an SMA wire was cre-
ated to investigate the phenomenon of superelasticity.
More specifically, the model constitutes the structure
of a rod, exhibiting axial loads only. One of the model
ends is clamped, whereas the external axial force P is
attached at the opposite edge. The external excitation
may be static, quasi-static or dynamic, as demanded.
The model is shown in Fig. 9.

The tested model is built of 5 particles. Their cross-
sectional area A equals 1mm2. The distance between
particles and the horizon radius is, respectively, L =
1mm and δ = 2mm. An equivalent global stiffness

matrix K is aggregated for the model—making the
reference to the components of the derived governing
equation (58) to visualize the nonlocal elastic interac-
tions in the peridynamic model. The matrixK takes the
form

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5
16k

∗
1 − 1

4k
∗
1 − 1

16k
∗
1 0 0
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∗
2 − 1

2k
∗
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8k
∗
2 0

− 1
8k

∗
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2k
∗
3

5
4k

∗
3 − 1

2k
∗
3 − 1

8k
∗
3

0 − 1
8k

∗
4 − 1

2k
∗
4

7
8k

∗
4 − 1

4k
∗
4

0 0 − 1
16k

∗
5 − 1

4k
∗
5

5
16k

∗
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(80)

where the resultant stiffness coefficients k∗
i = k∗

i (ξi )

may be found according to formula (56). Similarly,
the force vector F for the modeled system is as
follows

F =

⎡
⎢⎢⎢⎢⎣

−P − F∗
2

P + F∗
2 − P − F∗

3
P + F∗

3 − P − F∗
4

P + F∗
4 − P − F∗

5
P + F∗

5

⎤
⎥⎥⎥⎥⎦ (81)
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Fig. 9 Tested 1-D
peridynamic model of an
SMA wire used for
numerical simulations of the
superelasticity phenomenon

Hence,

F =

⎡
⎢⎢⎢⎢⎣

−P − F∗
2

F∗
2 − F∗

3
F∗
3 − F∗

4
F∗
4 − F∗

5
P + F∗

5

⎤
⎥⎥⎥⎥⎦ (82)

where the resultant modified phase transformation
forces F∗

i = F∗
i (ξi ) are found according to formula

(57).
The global mass matrix M takes a standard diago-

nal form populated with the mass of the consecutive
particles mi

M = diag (m1, . . . ,m5) (83)

where

mi = ργi AL (84)

The coefficients γi are found using Eq. (46). After fixa-
tion of the first particle, the final form for the equivalent
matrix governing equation for the peridynamic model
becomes

M′ü + K′u = F′ (85)

with:

M′ = diag (m2,m3,m4,m5) (86)

K′ =

⎛
⎜⎜⎜⎜⎝
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F′ =

⎡
⎢⎢⎣
F∗
2 − F∗

3
F∗
3 − F∗

4
F∗
4 − F∗

5
P + F∗

5

⎤
⎥⎥⎦ (88)

ü = [
ü2 ü3 ü4 ü5

]T
(89)

u = [
u2 u3 u4 u5

]T
(90)

Figure 10 presents the comparison between the results
obtained using both experiments and numerical sim-
ulations for the elaborated peridynamic model after
its validation and verification. The stress–strain curve
for the peridynamic model, which is shown in Fig. 10,
is obtained using Eq. (85), excluding the acceleration
component M′ü to consider a quasi-static case.

The experimental validation procedure has con-
firmed the applicability of both the FE and peridy-
namic modeling for SMA components. The results
for the numerical simulations were generated using
the models parameterized based on the experimental
data. The identified Young’s moduli for the austen-
ite and martensite phases are E A = 66GPa and
EM = 48GPa. In case of the FE model, the four char-
acteristic stresses in the Auricchio model were found:
σ AS
f = 600MPa, σ SA

f = 630MPa, σ AS
s = 420MPa

and σ SA
s = 350MPa, as well as the uniaxial transfor-

mation strain εL = 0.075. Moreover, a standard value
of 0.3 was assumed for the Poisson ratios νA and νM .
Alternatively, for the peridynamic model—making the
reference to the Lagoudas model—the following prop-
erties were identified: the characteristic phase transi-
tion temperatures: As = 2 ◦C, Ms = −29 ◦C, M f =
−39 ◦C, and the factors ρ�s0 = −1.27MPa/K and
H = 5.24%. The temperature A f and the mass den-
sity ρ are assumed to be known and equal 10 ◦C and
6450 kg/m3, respectively. As visible in Fig. 10, the
used material properties assure correct shape of the
hysteretic stress–strain relationship for both numeri-
cal approaches. In addition, the relationship between
the axial force and total elongation found in the peri-
dynamic model of an SMAwire is presented in Fig. 11.

The identified amount of energy dissipated in the
modeled SMA wire—originating from the hysteretic
character of the superelasticity phenomenon—equals
0.103 J per single cycle of the simulated tension test.
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Fig. 10 Comparison
between the experimental
and simulation results
(quasi-static numerical
analysis) after validation
and verification procedure
carried out for the tested
peridynamic model. Two
validation experiments were
conducted taking into
account one and two cycles
for the hysteresis loop in the
stress–strain relationship.
The curves identified during
experiments exhibit
irregularities resulting from
spontaneous phase
changes—the issue is
discussed in Sect. 4

Fig. 11 Relationship
between the axial force and
total elongation in the
peridynamic model of an
SMA wire used to calculate
the amount of dissipated
energy per a single cycle of
the simulated tension test
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The quantity was calculated as the area covered by the
hysteresis loop shown in Fig. 11.

7 Numerical case study, application to GFB

The practical applicability of the proposed peridynamic
modeling is confirmed with numerical simulations car-
ried out for the model of a mechanical damper made of
a piece of an SMA wire. The studied case is of great
importance in the field of structural dynamics. More
specifically, the structures equipped with SMA may
offer the functionality of effective structural stiffness
control when installed in mechanical systems. More-
over, SMA dampers provide means for energy dissi-
pation; hence, they may help to reduce mechanical
vibrations. Based on the above-mentioned properties
of SMA components, a particular authors’ attention is
paid on the capability of efficient control of the charac-
teristics of a nonlinear supporting structure mounted in
GFB [64]. Figure 12 presents the scheme and the photo-
graph of a typical construction of GFB. The construc-
tion is compact. Basically, there are no moving parts
in GFB apart from the shaft; what makes this type of

journal bearings relatively reliable and robust [65,66].
The nonlinear supporting structure of aGFB consists of
the two types of metallic foils: top foil, which directly
covers the journal, and bump foil, which constitutes
an elastic-damping element. The bump foil is mounted
to continuously align the journal, air film and inner
surface of GFB. As shown in Fig. 12, there are sev-
eral options regarding installation of SMAwires on the
bearing foils to modify their properties and, therefore,
to help maintaining stable operation of GFB.

Below, the elaborated nonlocal peridynamic mod-
eling tool is adapted to make a suggestion regarding
SMA material, which may be applied to suppress low-
frequency and low-amplitude vibrations of the shaft
mounted in GFB, via reduction in its transverse dis-
placement drift and low-frequency fluctuations. The
analyzed construction of GFB is considered to be mod-
eled properly as long as its long-period steady-state
operation is taken into account, under a constant load.
This condition results from the limit of the present ver-
sion of the elaborated peridynamic model, as already
mentioned in Sect. 4. When satisfied, it allows to main-
tain isothermal character of the simulated phase tran-
sitions, which is the case, if the externally induced

Fig. 12 Scheme of the structure and a photograph of a typi-
cal radial GFB. The magnified part of GFB shows the proposed
localizations for mounting the SMAwires on both top and bump
foils. With a standard operation of GFB, the SMA wires are

stretched and compressed. Hence, they exhibit the phenomenon
of superelasticity that allows to control the properties of the GFB
structure

123



1930 A. Martowicz et al.

Table 1 Material properties proposed for the examined SMA
damper

Parameter Value

EM 60GPa

E A 90GPa

Ms −10 ◦C
M f −15 ◦C
As 5 ◦C
A f 10 ◦C
ρ�s0 −0.1MPa/K

H 3.5%

T0 22 ◦C
ρ 6450 kg/m3

strain rate does not exceed the experimentally specified
approximate value 0.00038 s−1. Further development
of the peridynamic model extending its functionality is
the subject of future work.

To simulate the phenomenon of energy dissipation,
similarly to the case presented in Sect. 6, a peridynamic
model of an SMA wire is built using 5 particles. The
following values of the selected geometric properties
apply: cross-sectional area A = 0.1mm2, the distance
between particles L = 1mm and the horizon radius
δ = 2mm. Table 1 summarizes the material properties
of the modeled SMA, which are proposed to param-
eterize the peridynamic model. Figure 13 shows both
the stress–strain and force–elongation curves obtained
for the considered material.

To observe energy dissipation in the modeled struc-
ture during isothermal phase transition, the arbitrary
course of the external low-frequency force P is chosen,
as shown in Fig. 14. Explicit time integration procedure
is used to solve dynamic problems. The central scheme
for FDmethod (59) for temporal derivatives is applied.

Hence, the particle displacements for the time step
indexed by (t + 1) are found based on Eq. (85), using
the formula

ut+1 = �t2
(
M′)−1

(
F′t − K′tut

)
+ 2ut − ut−1 (91)

Since the components F′t and K′t depend upon the
fractions ξi , each temporal step is performed as an iter-
ative procedure to assure that the conditions referring
to the transformation function Φi ≤ 0 and martensitic
volume fraction ξi ∈ [0, 1] are satisfied.

The results of peridynamic calculations are visu-
alized in Figs. 14, 15 and 16. The generated curves
consecutively present: the temporal plots for model
elongation, stress and strain, as well as the hysteresis
in the stress–strain and force–elongation coordinates.
Figure 15 presents the plot of the strain rate to make
the reference to its maximum allowed value, which is
0.00038 s−1, as determined in Sect. 4.

The elaborated peridynamicmodel allowed to inves-
tigate the superelasticity phenomenon in case of low-
frequency and low-amplitude external force excitation
in an SMA wire. Thanks to the performed change
of the mechanical properties for the modeled SMA
component—dealing with the resultant stiffness at
most—control of the properties of the GFB structure is
considered to be feasible.

Although a tiny amount of the dissipated energy
0.16μJ was identified in the modeled SMA wire for
a single cycle of the hysteresis loop, the mentioned
energy dissipation is expected to dramatically increase,
in case whenmany pieces of SMAwires are spread cir-
cumferentially in the foils (as their structural parts) to
control the behavior of GFB. The described applica-
tion of SMA wires mounted in the structure of GFB is
considered as a complementary passive solution with
respect to the active methods applied to control the
operational properties [67]. The choice made on both
the SMAdiameter and its initial tensionmay lead to the
specific ranges of the reaction forces in GFB, at which
the desired deformation of the order of micrometers
and allowed energy dissipation may be achieved in the
supporting structure.

The functionality of the investigated peridynamic
model allows for simulation sub-loops within the hys-
teresis curve defying the material stress–strain rela-
tionship. It should be noted that the received results
are in line with the recently reported outcomes, e.g.,
in [68]. In the referenced work, various shapes of inter-
nal sub-loops are found for incomplete processes of
phase transformations. The idealized conditional piece-
wise description is used to model the hysteresis effect
which is observed under various external excitation,
making use of numerical simulations.

The proposed peridynamic model of SMA is elab-
orated to address geometric discontinuities regarding
the structural parts of the modeled GFB, which is in
general an issue for other numerical approaches. More-
over, a nonlocal problem formulation used in peridy-
namics allows to properly model physical dispersion
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Fig. 13 Stress–strain and
force–elongation
relationships for the tested
SMA material, which is
used as a damper to perform
mechanical energy
dissipation

Fig. 14 Temporal plots of
the external force applied
during simulated tension
and the identified model
elongation
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Fig. 15 Temporal plots of
stress, strain and strain rate
for the peridynamic model
of SMA. The plot of the
strain rate is bounded by the
allowed limits for
isothermal phase transition,
which is ±0.038% s−1

Fig. 16 Hysteretic response
of the SMA model for the
applied sinusoidal force

of the propagating waves, especially in case of lim-
ited number of DOFs in the spatial domain being dis-
cretized [14]. Finally, even though the planned elab-
oration of the peridynamic approach will allow to go

beyond the limit of isothermal phase transitions, the
preliminary results of the simulations carried out for
GFB’s component are valuable due to the rigorous
requirement regarding the temperature gradient inGFB
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that must be kept within specific limits of the order of
several ◦C only [69].

8 Summary and final conclusions

The paper is devoted to the theory and applications for
the proposed peridynamic model of SMA. The prelim-
inary study deals with 1-D modeling and isothermal
phase transitions, which is of the authors’ concern in
the practical case study on the properties of nonlinear
supporting structure in GFB. Themechanism of energy
dissipation was studied via dynamic simulations. The
model of an SMA wire exhibited the phenomenon of
superelasticity, as demanded.

SMAundergoes unique phase transitions in the pres-
ence of mechanical and thermal loads. Hence, many
practical applications of the phenomena observed in
SMA are known, including the critical ones as in case
of stents used in medicine. In contrast, there exist
still significant deficiencies regarding understanding
the physics of SMA as well as the theoretical descrip-
tions of the observed effects. This inconveniencesmoti-
vated the authors to propose a peridynamic model for
SMA. The obtained results should be considered as a
step toward more realistic modeling for SMA.

As reported in the paper, the two approaches were
successfully used to develop the experimentally val-
idated models of SMA. Namely, the Lagoudas and
Auricchio theoretical contributions were employed to
both build the peridynamicmodel and performverifica-
tion procedure. The elaborated peridynamic model of
SMA was validated using the experimental data. The
convergence regarding the hysteretic character of the
stress–strain curves was achieved after parameteriza-
tion of the model using the experimentally identified
material properties. The considered conditions regard-
ing theClausius–Planck inequality led to the demanded
nonlinear material behavior. As shown in the work, the
superelasticity effectwas properlymodeledmaking use
of the SMAmodel. The volumetric contributions of the
martensite and austenite phases correctly follow the
externally induced stress in the material.

The authors made an attempt of peridynamics appli-
cation to SMA due to very specific properties of this
modeling tool. The inherent nonlocality allows for
more arbitrariness with respect to the properties of the
modeled body, especially in terms of physical disper-
sion. Moreover, an integral-based problem formulation

means that model discontinuities (material, geometric
nonlinearities) may be relatively easily handled. The
authors are aware of the existing deficiencies of the
proposed modeling approach; therefore, future devel-
opment of the peridynamic SMA model is scheduled
to introduce all thermal-based components in the gov-
erning equation.
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