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Abstract Considering static radial eccentricity, a Jef-
fcott rotor model is established for the rotor system
of the permanent magnet synchronous motors in elec-
tric vehicles. The system conservative force, including
unbalanced magnetic pull, which results in nonlinear-
ity is analyzed, and center manifold theorem and Lya-
punov method are used to determine the stabilities of
multiple equilibrium points. This analysis shows that
static eccentricity spoils the symmetry of the equilib-
rium points, although they are distributed in the line
along the direction of the static eccentricity. This asym-
metry leads to the pitchfork bifurcation of equilib-
rium points to a generic bifurcation with a defect. This
analysis provides two stability conditions for the rotor
system. Furthermore, the effect of the asymmetry on
the dynamic characteristics that can induce backward
whirlingmotion coupled with forward whirlingmotion
is quite different from the case without static eccen-
tricity. These characteristics are investigated by multi-
scale method. As a result, the analytical solution of
the system at steady state is obtained. The frequency
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characteristics of the main resonance are analyzed, and
the stability of the solution is determined using Routh–
Hurwitz criterion and the geometric constraint of the
rotor whirling motion. The characteristics reveal that a
globally unstable frequency band appears due to the
geometric constraint. However, this frequency band
narrows and even vanishes with increases in damping
and electromagnetic stiffness and decreases in mass
imbalance, mechanical stiffness and static eccentric-
ity. The analysis by multi-scale method is based on the
assumption of the time invariance of the forward and
backward whirling amplitudes, which is validated by
the numerical method. The results of the two methods
agree well, which indicates that this assumption and
the analysis are reasonable.

Keywords Static eccentricity · Unbalanced magnetic
pull · Static characteristics · Frequency characteristics ·
Stability

1 Introduction

Permanentmagnet synchronousmotors (PMSMs) have
many advantages and have been broadly applied to
electric vehicles (EVs) and hybrid electric vehicles
(HEVs). However, the dynamics problems of PMSMs
in EVs and HEVs caused by rotor eccentricity have
seriously affectedmachine performance. The transmis-
sion systems of the vehicles are susceptible to excessive
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vibration and noise. Therefore, these problems should
be investigated for suppressing vibration and noise.

For the rotating electrical machines, the radial elec-
tromagnetic forces are balanced when the rotor is con-
centric with the stator. However, in a practical system,
rotor eccentricity appears for several reasons, such as
manufacturing error, assembly error and bearing wear
[1–3]. This results in unbalancedmagnetic pull (UMP),
which compels the rotor to deviate from the stator and
has the same direction that the eccentricity. Therefore,
UMP reveals a negative stiffness effect, which causes
problems of dynamics in the system. To date, investi-
gations of rotor eccentricity can be classified into three
areas: UMP, detection of rotor eccentricity, and vibra-
tion generation [4].

In the past several decades, many scholars have used
finite element method (FEM) and analytical method
for the calculation of UMP. The former [5–12] can
offer accurate solutions but cannot provide an insight
into the system parameters [2]. The analysis of the
dynamic characteristics of the rotor system requires the
analytical expression of UMP. Therefore, an extensive
approach was widely applied to the analytical calcu-
lation of UMP, which used the air-gap permeance to
modulate the magnetic motive force (MMF) to obtain
the air-gap flux density, which includes the eccentric-
ity information [13–15]. Then,UMPvaryingwith pole-
pair number can be analytically carried out byMaxwell
tensor method [14]. This calculation reveals that UMP
is a nonlinear function with respect to the eccentric-
ity between the stator and rotor. However, we cannot
recognize the type of rotor eccentricity according to
UMP.

In fact, there exist three types of rotor eccentric-
ity: dynamic eccentricity, static eccentricity and mixed
eccentricity [16,17]. The different types of rotor eccen-
tricity result in different patterns of system parame-
ters such as stator current, voltage and torque. Accord-
ing to these patterns, many scholars employed sig-
nal processing and mathematical algorithms to detect
rotor eccentricities [18–20]. Roux et al. [21] investi-
gated the experimental implementation and detection
of rotor eccentricities in PMSMs by measuring only
the stator current and voltage. Ebrahimi et al. [22–25]
addressed an index of noninvasive diagnosis according
to the sideband of the spectrum of the stator current,
torque and magnetic field analysis for the three types
of eccentricity in PMSMs. Akar et al. [26] proposed
a spectral analysis method to detect static eccentric-

ity fault for PMSMs and then considered the sideband
effects in the vicinity of the fundamental frequency as
the most important indicator of eccentricity. In refer-
ence [27], then they detected static eccentricity through
a probability distribution based on equal width dis-
cretization and a neural network model. Mirimani et
al. [28] used 3-D finite element analysis to study the
detection of static eccentricity for permanent magnet
machines, validated this numerical model by experi-
mental measurements, presented an appropriate crite-
rion for eccentricity detection by the back electromo-
tive force and developed an online method for static
eccentricity fault detection [29]. Hong et al. [30] pre-
sented a technique for automated monitoring of air-
gap eccentricity, which was to use the inverter for test-
ing of PMSMs at motor standstill. Da et al. [31] used
direct flux measurement to develop an index of multi-
fault detection in PMSMs that can determine the direc-
tion of static eccentricity. Karami et al. [32] employed
an analysis of the performance of a line start PMSM
with static eccentricity in steady state by FEM. Huang
et al. [33] calculated the static eccentricity of a dou-
ble rotor axial flux permanent magnet machine by an
analytical model whose results were verified via exper-
iment. Goktas et al. [34] addressed the discernment of
static eccentricity and broken magnet faults in PMSMs
through the stator phase current due to their strongly
similar fault patterns in the back electromotive force
and flux spectrum. Naderi et al. [35] studied the eccen-
tricity fault by the current/torque signature and recog-
nized the static and dynamic eccentricity faults by the
power spectral density of the vibration signal and sta-
tor current. Naderi [36] further addressed a torque rip-
ple analysis for four separate synchronous reluctance
machines under health and eccentricity fault condi-
tions considering slot opening and distributed winding
effects. Oumaamar et al. [37] presented an alternative
method based on the analysis of line neutral voltage for
static eccentricity detection. Most of these references
covered the detection of static eccentricity, which is
a vital consideration for the fault diagnosis of elec-
tric machines. However, these papers did not focus on
the dynamics mechanism caused by static eccentricity,
which can provide the dynamical criterion of the detec-
tion. In fact, static eccentricity can also be susceptible
to some dynamics problems such as excessive vibra-
tion and loss of stability, which are important consider-
ations for the dynamic system. These dynamic effects
can result in fault patterns that carry information about
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the type and degree of rotor eccentricity. Therefore, an
investigation of the dynamic characteristics should be
considered, which can provide insight to the eccentric-
ity fault diagnosis and accurate detection.

UMPcaused by rotor eccentricity exhibits a negative
stiffness effect and nonlinearity, which play a key role
in dynamic behaviors. Cylindrical and conical whirls
induced bymass imbalance and external forces result in
rotor eccentricity and hence UMP compelling the rotor
to furthermove toward the stator and thendistort the air-
gap distribution [2]. This is a typical electromechanical
coupling system [38] in which dynamic behaviors have
been investigated in many papers. Pennacchi et al. [1]
presented a vibration analysis for a generator consid-
ering the external exciting forces, including the mass
imbalance of the rotor and the effect of UMP. He et al.
[39] built up the finite element and boundary element
models of amotor considering static eccentricity to pre-
dict the modal parameters, the dynamic vibrations, and
the sound pressures. Shin et al. [40] employed the finite
element analysis method to estimate the vibration char-
acteristics of PMSMs. Xu et al. [41] took advantage of
FEM to predict the vibration influenced by UMP. The
results show that static eccentricity will lead to an off-
set in the axis center and give rise to the nonlinearity of
the dynamic response. FEM can obtain accurate results
but cannot provide insight into the dynamics mech-
anism of the rotor system. Kim et al. [38] analyzed
the transient whirl response of a rotor system consider-
ing mass imbalance by a finite element-transfer matrix,
and the computational efficiency is higher than that of
FEM. This investigation shows that UMP reduces the
system stiffness, which leads to more serious vibration
compared with that of purely mechanical origins. The
negative stiffness effect of UMP causes the stability
problem, which has attracted the attention of schol-
ars. Calleecharan et al. [16] applied the Jeffcott rotor
model to the generator, performed a vibration analysis
and noted the static eccentricity resulting in a decrease
in the stability and even a loss of stability. Wu et al.
[42] developed a four degrees of freedom rotor model
considering the gyroscopic effect and investigated the
dynamic behavior and stability of the generator. Lund-
ström et al. [43] analyzed the dynamic response of
the generator considering the shape deviations of the
rotor and investigated the attraction basins for contact
between the rotor and stator. Xiang et al. [44] inves-
tigated multiple equilibrium points and their stabili-
ties by Lyapunov direct method and analyzed the free

vibration and frequency characteristics of the rotor of
the PMSMs used in EVs. This study discovered the
coupling mechanism of the modulation effect of radial
displacement components. However, the influence of
static eccentricity was neglected in references [42–44].
Xu et al. [45] focused on the nonlinear vibration of a
rotor with static and dynamic eccentricities. The vibra-
tion characteristicswere discussed in detail for compar-
ison. However, the analyses were performed by numer-
ical method.

As mentioned above, the investigations of static
eccentricity were mainly restricted to detection and
diagnosis. In addition, a portion of the papers focusing
on the rotor dynamics of electric machines neglected
the static eccentricity, and the others considered it
to study the vibration characteristics, usually pay-
ing attention to the dynamic response by numerical
method. However, this method cannot offer insight into
the vibration influenced by UMP. Furthermore, most of
the electrical machines studied in these papers have a
narrow speed range. However, the speed of PMSMs in
HEVs and EVs varies with external loads in a large
range. Due to static eccentricity, the complexity of
dynamic behaviors further increases. The excitations
deriving from road roughness and the internal com-
bustion engine will impact on the rotor. These external
loads with a wide frequency band may lead to the res-
onance of the rotor system, which decreases the per-
formance of the rotor system. Therefore, the vibration
characteristics of the PMSMs caused by static eccen-
tricity and UMP should be scrutinized by an analytical
method.

This paper focuses on the asymmetric effect of non-
linear vibration of the rotor system of PMSMs in HEVs
and EVs caused by static eccentricity. In Sect. 2, the
UMP model is selected, and the Jeffcott rotor model is
applied to the rotor system. In Sect. 3, the influences
of static eccentricity and UMP on the static character-
istics of the rotor system are investigated, and stability
analysis is performed. The corresponding bifurcation
diagrams are plotted. In Sect. 4, the steady-state analyt-
ical solution and frequency characteristics of the main
resonance are studied by multi-scale method. The sta-
bility of the solution is analyzed by Routh–Hurwitz cri-
terion and the geometric constraint. The influences of
the systemparameters, such as the stiffness ratio, damp-
ing ratio, mass eccentricity ratio and static eccentric-
ity ratio, on the frequency characteristics are analyzed.
The results of the multi-scale method are validated by
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a numerical method. Conclusions are summarized in
Sect. 5.

2 Mathematical model

In this paper, the following assumptions are adopted:

(a) The rotor is mounted at the midspan of the two
bearings supporting the rotor shaft, and the air gap
is identical along the axial direction.

(b) The vibration of the stator is neglected.
(c) The mass eccentricity and static radial eccentricity

of the rotor exist.

2.1 UMP model

In this paper, we adopt the model of UMP in reference
[14]. Furthermore, the pole-pair number in the PMSMs
of HEVs and EVs is usually more than 3, and the UMP
expression is

fu = RLπF2
m

4μ0
(2Λ0Λ1 + Λ1Λ2 + Λ2Λ3) (1)

where μ0 is the air permeability, R is the rotor core
outer radius, L is the rotor core length,Λn is the coeffi-
cient of the Fourier series of air-gap permeance and Fm
is the fundamental MMF amplitude.Λn and Fm can be
determined by the following formulae:

Λn =
⎧
⎨

⎩

μ0
δ0

1√
1−ε2

n = 0
2μ0
δ0

1√
1−ε2

(
1−√

1−ε2

ε

)n
n = 1, 2 . . .

(2)

where δ0 is the average air-gap length, the non-
dimensional eccentricity ε = r/δ0 is also called
non-dimensional radial displacement, and r is the
eccentricity of the stator and rotor.

Fm =
√

F2
rm + F2

sm − 2FrmFsm sin ϕ0 (3)

where Frm is the fundamental MMF amplitude of the
rotor, Fsm is the fundamental MMF amplitude of the
three-phase winding and ϕ0 is the inner power factor
angle.

2.2 Dynamic model

According to the above assumptions, an arbitrary cross
section can reflect the eccentricity of the stator and

x

yx'

y'

O

Stator

Rotor

γ

O' O''
θs

es

C
e

(a)

x

y

O'

O

O''
esγ

fu

fk

γ-π

O1

θs

(b)

Fig. 1 Scheme of eccentricity between stator and rotor

rotor. For simplicity, we select the cross section at the
middle of the span, as shown in Fig. 1a. The stator
center O is fixed. Due to assembly error, the center-
line of the rotor is not aligned with that of the stator.
The rotor centerline deviates from but is parallel with
the stator centerline. This deviation is the static radial
eccentricity, which can be depicted by the stationary
vector OO′′ with amplitude es and direction angle θs.
Due to the mass eccentricity, the rotor center escapes
from the point O ′′ when the rotor spins. Therefore,
Ox′y′ is a rotating coordinate system that has the same
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origin that the inertial coordinate systemOxy. At a gen-
eral time instant t , the rotor center O ′ is shown in Fig. 1.
The point C is the mass center of the rotor, and O ′C
is the mass eccentric distance of which the length is
denoted by e. The radial eccentricity of the rotor cen-
ter isOO′, whereas the deformation of the rotor shaft is
O ′′O ′. Therefore, UMP always acts along the direction
from the stator center O to the rotor center O ′, while
the restoring force of the rotor shaft points to the point
O ′′ from the rotor center O ′. The restoring force and
UMP are generally not in the same direction.

The vibration system of the rotor is simplified to a
Jeffcott rotor, and the corresponding motion equation
can be written as:
{
mẍ + cẋ + k(x − x0) − fu cos γ = meω2 cosωt

m ÿ + cẏ + k(y − y0) − fu sin γ = meω2 sinωt

(4)

wherem is the rotor mass, c is the damping coefficient,
x0 and y0 are, respectively, the components of static
eccentricity in the x- and y-directions, γ is the direction
angle of UMP, ω is the rotor angular speed, and k is the
mechanical stiffness of the rotor shaft. According to
Fig. 1, x0 = es cos θs, y0 = es sin θs.

Letω0 = √
k/m and τ = ω0t . The non-dimensional

form of Eq. (4) is
⎧
⎪⎨

⎪⎩

ε′′
x + 2ξε′

x + εx − f̄u(ε)
εx

ε
= βω̄2 cos ω̄τ + βsx

ε′′
y + 2ξε′

y + εy − f̄u(ε)
εy

ε
= βω̄2 sin ω̄τ + βsy

(5)

where ξ = c
2
√
km

is the damping ratio, β = e
δ0

is the mass eccentricity ratio, βs = es
δ0

is the static
eccentricity ratio (non-dimensional static eccentricity),
ω̄ = ω

ω0
is the frequency ratio, f̄u(ε) = fu(ε)

kδ0
is the

non-dimensional UMP, εx = x/δ0 and εy = y/δ0 are
the non-dimensional radial displacement components
in the x- and y- directions, respectively, βsx = βs cos θs
and βsy = βs sin θs are the non-dimensional static
eccentricity components in the x- and y- directions,
respectively, and (·)′ represents the differentiation with
respect to the non-dimensional time τ . It can be seen
that the first and second terms on the right side in Eq. (5)
are the external excitations caused by the mass imbal-
ance and static eccentricity, respectively.

The complex form of Eq. (5) is

z′′ + 2ξ z′ + z − f̄u(ε)
z

|z| = βω̄2eiω̄τ + zs (6)

where z = εx + iεy is the non-dimensional radial
displacement in complex form, zs = βseiθs is the
non-dimensional static eccentricity in complex form,
and i is the imaginary unit.

3 Static characteristics analysis considering static
eccentricity

3.1 Characteristics of system conservative force

For the static characteristics of the rotor system, the
angular speed is zero, that is, ω̄ = 0, yielding

z′′ + 2ξ z′ + z − f̄u(ε)
z

|z| = zs (7)

As shown in Fig. 1, the non-dimensional form of the
radial displacement OO′ can be expressed as z = εeiγ .
In Fig. 1b, the vector OO1 with amplitude ε and direc-
tion angle (γ –π) has the non-dimensional form z =
εei(γ−π). For simplicity, OO1 can be considered as a
vector with direction angle γ . Thus, the corresponding
amplitude is -ε of which the sign denotes the opposite
directionwith respect toOO′. In this section,we specify
that the amplitude of the relative radial displacement is
permitted to be negative except for a special situation.

According to Eq. (6), for an arbitrary relative radial
displacement, the non-dimensional system conserva-
tive force is:

f̄ (z) = z − zs − f̄u(ε)
z

|z| (8)

It can be seen that f (z) is a vector function. Eq.
(8) determines a steady planar vector field as shown in
Fig. 2. The color and the streamline depict the mag-
nitude and the direction of the force, respectively. For
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Fig. 2 Vector field of system conservative force
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an arbitrary point in this vector field, the correspond-
ing conservative force acts along the tangential direc-
tion of the streamline across the point. For simplicity,
we decompose the conservative force into two com-
ponents in the radial and tangential directions of the
stator. The two non-dimensional components denoted
by f r(ε) and f t(ε), respectively, are
{

f̄r(ε) = ε − f̄u(ε) − βs cos θdi = ε − f̄u(ε) − εr

f̄t(ε) = βs sin θdi = εt
(9)

where θdi = γ − θs is the angle from the direction
of the static eccentricity (OO′′) to that of UMP (OO′),
and εr = βs cos θdi and εt = βs sin θdi are the non-
dimensional additional forces in the radial and tangen-
tial directions of the stator caused by the static eccen-
tricity, respectively. In addition to the static eccentric-
ity, the two additional forces also depend on the angle
θdi, which varies in the range of [−π, π] according to
Fig. 1.

The radial stiffness and the tangential stiffness
denoted by kr(ε) and kt(ε) , respectively, are
{
k̄r(ε) = k̄ − k̄u(ε) = 1 − k̄u(ε)

k̄t(ε) = 0
(10)

where k̄ = 1 is the non-dimensional mechanical stiff-
ness and k̄u(ε) is the non-dimensional electromagnetic
stiffness of UMP.

k̄u(ε) = d f̄u(ε)

dε
= ku(ε)

k
(11)

where ku(ε) = d fu(ε)
dr is the dimensional electromag-

netic stiffness. At ε = 0, ku(ε) attains the minimum
value, and thus, kr(ε) attains the maximum value. Let
ε = 0 which then yields
⎧
⎨

⎩

α = k̄u (0) = ku(0)

k
k̄r0 = k̄r(0) = 1 − α

(12)

where, ku(0) =
(
d fu(ε)
dr

)

r=0
= 1

2
μ0RLπF2

m
δ30

. The

parameter α that represents the non-dimensional elec-
tromagnetic stiffness at ε = 0 can be called the stiffness
ratio according to the first formula in Eq. (12). Physi-
cally, the parameterα is the ratio of the electromagnetic
stiffness at ε = 0 to the mechanical stiffness, which
gives a comparison of the two stiffnesses. α = 1 is a
critical value that represents that the electromagnetic
stiffness at ε = 0 is equal to the mechanical stiffness.
α < 1 represents that the electromagnetic stiffness at

(a)

(b)

Fig. 3 Force and stiffness characteristics

ε = 0 is less than the mechanical stiffness, and vice
versa for α > 1. According to the Taylor formula, we
expand f u(ε) as a polynomial at ε = 0, and keep the
first three order terms, yielding

f̄u(ε) ≈ αε + 3α

2
ε3 (13)

From Eq. (1), UMP is an odd function, and thus,
the corresponding electromagnetic stiffness is an even
function. UMP and its stiffness varying with α are
shown in Fig. 3. Furthermore, UMP and its electromag-
netic stiffness provide larger slopes as the magnitude
of the radial displacement increases.

It can be seen that the system stiffness is indepen-
dent of the static eccentricity that plays a significant
role in the conservative force from Eqs. (9) and (10).
The radial force f r(ε) influenced by the static eccen-
tricity varies with the radial displacement as shown in
Fig. 4. This discussionwill be performed in the range of
the angle fromOO′′ (static eccentricity) to the lineOO′,
i.e., θdi ∈ [0,π] due to the symmetry of the additional
radial force εr with respect to the static eccentricity
OO′′ according to Fig. 1 and Eq. (9). When the angle
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Fig. 4 Radial component of system conservative force

θdi is 0, the tangential force f̄t that is the additional
tangential force εt vanishes, and therefore, the system
conservative force is identical to the radial force f̄r,
and the additional radial force εr reaches the maximum
value. Thus, the rotor center O ′ is located in the line
OO′′, and the action line of UMP coincides with that of
the restoring force. However, when θdi isπ/2, the addi-
tional tangential force εt reaches the maximum value,
and the additional radial force εr is 0.

According to the above analysis, the equilibrium
point of the system should be in the line OO′′, i.e.,
γ = θs. For the simplicity of the analysis of the equi-
librium point, we only discuss the conservative force
along the direction of the line OO′′. In this direction,
the system conservative force is

f̄ (ε) = ε − βs − f̄u(ε) = f̄k(ε) − f̄u(ε) (14)

where f k(ε) = ε−βs is the non-dimensional restoring
force along the direction of the line OO′′.

According to Eqs. (13) and (14), UMP depends on
the stiffness ratio α, and the restoring force depends
on the static eccentricity ratio βs. However, their stiff-
nesses are independent of βs. In light of Eqs. (10), (12)
and the above analysis, for the case ofα > 1, the system
stiffness, of which zero points do not exist, is always
negative, and thus, the system undergoes the loss of sta-
bility. The system conservative force f̄ (ε) has only one
unstable zero point denoted by εs. α < 1 ensures that
the rotor system has a positive stiffness interval (−ε1,
ε1), of which the two endpoints are the zero points of
the system stiffness and hence the extreme points of
the force that are independent of the static eccentricity
ratio βs, as shown in Fig. 5a. The smaller the stiffness
ratio α is, the wider the interval. Assuming that βs = 0
(without static eccentricity), the system conservative
force f̄ (ε) has three zero points denoted by εs, εu1 and

(a)

(b)

Fig. 5 UMP, restoring force and system conservative force and
their stiffnesses versus radial displacement. a Stiffness versus
radial displacement (α < 1): the line k̄ = 1 denotes the non-
dimensional stiffness of the rotor shaft (mechanical stiffness); the
curve k̄u (blue curve) that passes through the point (0, α) repre-
sents the non-dimensional UMP stiffness (electromagnetic stiff-
ness); and the curve k̄u (red curve) that passes through the points
(0, 1 − α), (−ε1, 0) and (ε1, 0) denotes the non-dimensional
system stiffness, where ±ε1 are the zero points of the non-
dimensional system stiffness. b Force versus radial displacement
(α < 1,−βs1 < βs < βs1): the line f̄k, the curve f̄u (blue curve)
and the curve f̄ (red curve) denote the non-dimensional restoring
force, UMP and system conservative force, respectively. εs, εu1
and εu2 are the zero points of the non-dimensional system conser-
vative force. βs1 is the critical static eccentricity ratio. The lines
that pass through the points (0, βs1)or(0,−βs1) are tangential
to the curve f̄u and parallel to the line f̄k. ±ε1 are the extreme
points of the non-dimensional system conservative force.

εu2. Furthermore, εs = 0 and εu1 = −εu2 because f̄ (ε)
is an odd function for the case of βs = 0. Therefore, for
fixed βs = 0, α = 1 is a critical value. When the stiff-
ness ratio α increases and passes through 1, the number
of zero points of f̄ (ε) increases from 1 to 3. As shown
in Fig. 5b, for α < 1, when the static eccentricity ratio
βs increases from 0, the restoring force f k(ε) = ε−βs

oves down and the zero points εu1 and εu2 are no longer
symmetric with respect to εs. Moreover, εs �= 0. The
former two points are unstable, whereas the latter one is
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stable. As βs increases to βs1, the restoring force f k(ε)
is tangential to the UMP curve so that f̄ (ε1) = 0, and
the zero points εs and εu1, which coincide with the sys-
tem stiffness zero point ε1 together with εu2, are unsta-
ble. The number of zero points decreases to 2, i.e., ε1
and εu2. Therefore, the parameter βs1 is critical to this
number. With the increase in βs, βs > βs1 holds, and
the zero point ε1 disappears. The other zero point εu2 is
still unstable. For βs < 0, when βs = −βs1, εs and εu2
coincide with each other, and both are equal to−ε1. At
this time, both −ε1 and εu1 are unstable. The former
zero point disappears for βs < −βs1. According to this
analysis, we can yield

± βs1 = ±[ε1 − f̄u(ε1)] (15)

This parameter βs1 can be called the critical static
eccentricity ratio, and the critical dimensional static
eccentricities are

± es1 = ±βs1δ0 = ±[kr1 − fu(ε1)]/k (16)

where, r1 = ε1δ0. According to Eq. (16), es1 is equal to
the equivalent deformation produced by the extremum
of the system conservative force without static eccen-
tricity applying to the rotor shaft. Therefore, the anal-
ysis provides two stability conditions for a practical
system: α < 1 and |βs| < βs1, as shown in Fig. 5b.
The former is a stiffness condition that ensures that the
rotor system has a positive stiffness interval (−ε1, ε1),
of which the endpoints are independent of βs. Outside
the interval [−ε1, ε1], the system stiffness is negative
which leads to the contact of rotor and stator easily. The
latter is an eccentricity condition. Under the prerequi-
site of the first condition, the latter ensures that the rotor
system has at least one stable zero point (equilibrium
point).

3.2 Stability analysis and bifurcation

The zero points of the conservative force correspond
to the system equilibrium points. We can use Lya-
punov method to determine their stabilities easily for
the common equilibrium points. However, according
to the analysis in Sect. 3.1, the equilibrium points εs =
0 (βs = 0, α = 1), εs = εu1 = ε1 (βs = βs1, α < 1)
and εs = εu2 = −ε1 (βs = −βs1, α < 1) are the
critical cases, and the corresponding Jacobi matrices
all have zero eigenvalues, and the other eigenvalues
all have negative real parts. The stabilities of these
equilibrium points cannot be determined according to

this method. Therefore, the center manifold theorem
should be adopted. The analysis process for εs = εu1 =
ε1 (βs = βs1, α < 1) is given below.

For the case of εs = εu1 = ε1 (βs = βs1, α < 1), the
two equilibrium points coincide with the extreme point
of the conservative force ε1. To simplify the calculation,
we assume that the rotor center only whirls along the
direction of the static eccentricity (OO′′). Therefore,
Eq. (7) degrades into

ε′′ + 2ξε′ + ε − βs1 − f̄u(ε) = 0 (17)

To perform center manifold theorem, we select the
equilibrium point as a new origin and then apply the
translation transformation to Eq. (17). Thus, the corre-
sponding state equation is

y′ = G(y) (18)

where y =
[
y1
y2

]

, y′ =
[
y′
1
y′
2

]

, and G(y) =
[

y2
−2ξ y2 − (y1 + ε1) + f̄u(y1 + ε1) + βs1

]

.

The Taylor expansion of f̄u(y1 + ε1) is

f̄u(y1 + ε1) = ε1 − βs1 + y1 + δ2y
2
1

+δ3y
3
1 + δ4y

4
1 + · · · (19)

where, δi = d f̄ (i)
u (ε)

2dε(i)

∣
∣
∣
∣
ε=ε1

= d f̄ (i)
u (y1+ε1)

2dε(i)

∣
∣
∣
∣
y1=0

.Clearly,

δ2 > 0 holds due to the stiffness of UMP being a con-
vex function (Fig. 5b). The system determined by Eq.
(18) has only one equilibrium point at y1 = y2 = 0.
The Jacobi matrix at this equilibrium point is

J =
[
0 1
0 −2ξ

]

.

The eigenvalues and eigenvectors of the matrix are,
respectively,

λ1 = 0, p1 = [1, 0]T; λ2 = −2ξ, p2 = [1, λ2]T.

We define a transformation as

[y1, y2]T = [p1, p2][u, v]T = [u + v,−2ξv]T (20)

Substituting Eq. (20) into Eq. (18) yields
⎧
⎪⎪⎨

⎪⎪⎩

u′ = − 1

2ξ
[(u + v + ε1 − βs1) − f̄u(u + v + ε1)]

v′ = −2ξv + 1

2ξ
[(u + v + ε1 − βs1) − f̄u(u + v + ε1)]

(21)

Substituting Eq. (19) into Eq. (21), and combining
Eq. (20), yields
{
u′ = g(u, v)

v′ = −2ξv − g(u, v)
(22)
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where, g(u, v) = 1
2ξ [δ2(u+v)2 + δ3(u+v)3 + δ4(u+

v)4 + · · · ] is a nonlinear function excluding the linear
term. According to Eq. (22), we can obtain

g(0, 0) = 0,
∂g

∂u

∣
∣
∣
∣
u=0,v=0

= 0,

∂g

∂v

∣
∣
∣
∣
u=0,v=0

= 0 (23)

According to the center manifold theorem, there
exists a center manifold for Eq. (21), which can be
expressed as the function v = h(u), which then yields

h(0) = 0,
∂h

∂u

∣
∣
∣
∣
u=0

= 0 (24)

Substituting this function into Eq. (21), the equation
of the center manifold is carried out as below.
(
dh

du
+ 1

)

u′ + 2ξh = 0 (25)

Assume that the Taylor expansion of h has the fol-
lowing form:

h = au2 (26)

Substituting Eq. (26) into Eq. (25) and using Eqs.
(19) and (21) yields

a = − δ2

4ξ2
(27)

Thus, we can obtain the reduced system

u′ = δ2

2ξ

(

u − δ2

4ξ2
u2

)2

. (28)

Due to δ2 > 0, the equilibrium point u = 0 of the
reduced system in Eq. (28). is unstable. Therefore, the
equilibrium point of the original system in Eq. (18) is
unstable, and hence, the equilibrium point εs = εu1 =
ε1 according to center manifold theorem. For the equi-
librium points εs = εu2 = −ε1 (βs = −βs1, α < 1)
and εs = 0 (βs = 0, α = 1), a similar procedure can
also be performed by this method, and the results show
that both equilibriumpoints are unstable. As the param-
etersα andβs cross these critical values, the static bifur-
cation occurs as shown in Fig. 6.When the static eccen-
tricity ratio βs = 0 remains unchanged and the stiff-
ness ratio α passes through 1, a pitchfork bifurcation
occurs as shown in Fig. 6a.When the static eccentricity
increases from 0, the pitchfork bifurcation is destroyed,
and then a generic bifurcation with a defect occurs.
Therefore, βs is an unfolding parameter. For a com-
paratively large βs, the curve becomes single-valued.
Therefore, a pair of saddle-node bifurcations occurs as
βs varies (Fig. 6b).

(a)

(b)

Fig. 6 Bifurcation diagrams

4 Forced response influenced by static eccentricity

The static eccentricity spoils the symmetry of the sys-
tem conservative force and hence the equilibriumpoint.
Moreover, this asymmetry has a dynamic effect on the
rotor system. In this section, we will discuss this effect.
For the simplicity of the analysis, substituting Eq. (13)
into Eq. (6) yields

z′′ + 2ξ z′ + ω2
gz − εPz

2 z̄ = βω̄2eiω̄τ + zs (29)

where ωg = √
1 − α is the natural frequency of the

generating system of Eq. (6), and εP = 3α
2 is the non-

linear parameter. According to the static analysis in
Sect. 3, the stiffness ratio α is a small parameter and
hence εP for a practical system with adequate stability
margin.

4.1 Vibration characteristics without static
eccentricity

Considering the mass imbalance and neglecting the
static eccentricity, the frequency characteristics can be
obtained by using harmonic balance method.

123



2590 F. Liu et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ε2 − β2

)
ω̄4 +

[

4ξ2 − 2

(

1 − α − 3αε2

2

)]

ε2ω̄2

+
(

1 − α − 3αε2

2

)2

ε2 = 0

tan ϕ = −2ξω̄

1 − α − 3αε2

2 − ω̄2

(30)

According to the analysis of harmonic balance
method, only the fundamental harmonic component
exists in the system response. Therefore, the steady-
state periodic solution of Eq. (29) is

z = εei(ω̄τ+ϕ) (31)

Substituting Eq. (31) into Eq. (29) and using averaging
method, yields
⎧
⎪⎨

⎪⎩

ε′ = −2ξε − βω̄ sin ϕ

ϕ′ = 1 − α − 3αε2

2

ω̄
− βω̄ cosϕ

ε
− ω̄

(32)

For the steady state, we assume that both the ampli-
tude and phase are time-invariant, i.e., ε′ = 0 and
ϕ′ = 0 . Substituting these two equations into Eqs.
(32), (30) is obtained again, which denotes that this
assumption is reasonable.

4.2 Vibration characteristics considering static
eccentricity

In this section, we discuss the main resonance influ-
enced by static eccentricity. For a systemwithout static
eccentricity, we can conveniently use harmonic bal-
ance method due to the symmetry of the system. How-
ever, for a system with static eccentricity, it is difficult
to apply this method to such an asymmetric system.
Here, multi-scale method is employed to determine a
first-order approximation to the solution of Eq. (29) in
the form

z = z0(T0, T1) + εPz1(T0, T1) (33)

where, T0 = τ , T1 = εPτ . It follows that the derivatives
of a function have the following forms:
⎧
⎪⎪⎨

⎪⎪⎩

d

dτ
= D0 + εPD1

d2

dτ 2
= D2

0 + 2εPD0D1

(34)

where D0 = ∂
∂T0

and D1 = ∂
∂T1

.

4.2.1 Analytical solution

Considering that both the damping ratio ξ and the
amplitude of the dynamic excitation βω̄2eiω̄τ are small
and have an accuracy of O(εP), let
{

ξ = ξ1εP

β = β1εP
(35)

To investigate the main resonance, we introduce the
detuning parameter σ1, which quantitatively describes
the nearness of the excitation frequency ω̄ to the natural
frequency of the generating system ωg. Accordingly,
we can write

ω̄2 = ω2
g + σ1εP (36)

Substituting Eqs. (36) and (33) into Eq. (29) and then
using Eq. (36) to eliminate the parameter ωg yields

order ε0P:

D2
0z0 + ω̄2z0 = zs (37)

and order ε1P:

D2
0z1 + ω̄2z1 = −2D0D1z0 − 2ξ1D0z0

+β1ω̄
2eiω̄T0 + σ1z0 + z20 z̄0 (38)

We can determine the free vibration solution of Eq. (37)
in the form

z0F = A1(T1)e
iω̄T0 + A2(T1)e

−iω̄T0 (39)

where, A1(T1) and A2(T1) are the complex amplitudes
of the forward and backward whirling motions, respec-
tively. Both are functions with respect to the time scale
T1.

The forced response of the systemof Eq. (37) caused
by the static eccentricity is

z0S = zs
ω̄2 = βseiθs

ω̄2 (40)

Therefore, the general solution of Eq. (37) is written
as:

z0 = z0F + z0S (41)

Substituting z0 into Eq. (38), then yields

D2
0z1 + ω̄2z1 = Eω̄e

iω̄T0 + E−ω̄e
−iω̄T0 + E2ω̄e

2iω̄T0

+E−2ω̄e
−2iω̄T0 + E3ω̄e

3iω̄T0

+E−3ω̄e
−3iω̄T0 + ES (42)
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where,

Eω̄ = −2iω̄(D1A1 + ξ1A1) + A1|A1|2
+2A1|A2|2 + 2A1 |z0S|2 + Ā2z

2
0S

+σ1A1 + β1ω̄
2,

E−ω̄ = 2iω̄(D1A2 + ξ1A2) + A2|A2|2
+2A2|A1|2 + 2A2 |z0S|2 + Ā1z

2
0S + σ1A2,

E2ω̄ = A2
1 z̄0S + 2A1 Ā2z0S,

E−2ω̄ = A2
2 z̄0S + 2 Ā1A2z0S, E3ω̄ = A2

1 Ā2,

E−3ω̄ = Ā1A
2
2,

and

ES = σ1z0S + 2z0S(|A1|2 + |A2|2)
+2A1A2 z̄0S + |z0S|2z0S.

Both Eω̄eiω̄T0 and E−ω̄e−iω̄T0 are secular terms that
should be avoided. Let
{
Eω̄ = 0

E−ω̄ = 0
(43)

After eliminating the secular terms, the right side of Eq.
(42) has five residual terms, E2ω̄e2iω̄T0 , E−2ω̄e−2iω̄T0 ,
E3ω̄e3iω̄T0 , E−3ω̄e−3iω̄T0 and ES. The responses of Eq.
(42) caused by these terms are listed as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2ω̄ = − E2ω̄

3ω̄2 e
2iω̄T0

z−2ω̄ = − E−2ω̄

3ω̄2 e−2iω̄T0

z3ω̄ = − E3ω̄

8ω̄2 e
3iω̄T0

z−3ω̄ = − E−3ω̄

8ω̄2 e−3iω̄T0

zES = ES

ω̄2

(44)

The solution of the first-order approximate equation in
Eq. (42) is

z1 = z2ω̄ + z−2ω̄ + z3ω̄ + z−3ω̄ + zES (45)

According to Eqs. (33), (41) and (45), the solution of
the rotor system can be written as:

z = z0F + z0S

+εP(z2ω̄ + z−2ω̄ + z3ω̄ + z−3ω̄ + zES) (46)

Compared with the case without static eccentricity, this
response includes not only the higher harmonic compo-
nents but also the backwardwhirlingmotion in addition
to the forward whirling motion. From Eqs. (42), (44)
and (46), we can observe the coupling of the forward
and backward whirling motions.

4.2.2 Frequency characteristics of the main resonance

According to Eq. (43), we can obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1A1 = −ξ1A1 − i

2ω̄
[A1|A1|2 + 2A1|A2|2 + 2A1|z0S|2

+ Ā2z
2
0S + σ1A1 + β1ω̄

2]
D1A2 = −ξ1A2 + i

2ω̄
[A2|A2|2 + 2A2|A1|2 + 2A2|z0S|2

+ Ā1z
2
0S + σ1A2]

(47)

According to Eqs. (34) and (39), the derivatives of A1

and A2 with respect to τ are listed as follows:
⎧
⎪⎨

⎪⎩

dA1

dτ
= εPD1A1

dA2

dτ
= εPD1A2

(48)

Let A1 = r1eiθ1 , A2 = r2eiθ2 , and z0S = r0eiθs , where
r0 = βs

ω̄2 . Substituting these expressions and Eq. (47)
into Eq. (48) and then separating the real and imaginary
parts yield
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ′
1 = εP

[

−ξ1r1 + r20r2
2ω̄

sin(2θ0 − θ1 − θ2)

− ω̄β1

2
sin θ1

]

r1θ
′
1 = − εP

2ω̄
[r31 + 2r1r

2
2 + 2r20r1

+ r20r2 cos(2θ0 − θ1 − θ2)

+ ω̄2β1 cos θ1 + σ1r1]

r ′
2 = εP

[

−ξ1r2 − r20r1
2ω̄

sin(2θ0 − θ1 − θ2)

]

r2θ
′
2 = εP

2ω̄
[r32 + 2r21r2 + 2r20r2

+ r20r1 cos(2θ0 − θ1 − θ2) + σ1r2]

(49)

From Eq. (49), it can be seen that the amplitudes
and phases are dependent on each other. For the steady
state, we only assume that r ′

1 = 0 and r ′
2 = 0. From

the third formula in Eq. (49), the phase (2θ0 − θ1 − θ2)
should be time-invariant and hence phase θ1 according
to the first formula in this equation yields

θ ′
1 = θ ′

2 = 0 (50)
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Unlike the case without static eccentricity, Eq. (50) is
derived by analysis rather than assumption, although
the phases are still time-invariant. Usually, in a single
degree of freedom system, we assume that both the
derivatives of the amplitude and phase with respect to
time are equal to 0 for the steady state. This assumption
can be further applied to the case without static eccen-
tricity in which there only exists the forward whirling
motion. However, for the case considering the static
eccentricity, the backward whirling motion appears,
and we only assume that the amplitudes of the two
whirling motions are time-invariant, whereas the varia-
tions of the phases are carried out based on this assump-
tion. As a result, Eq. (50) together with this assumption
is validated in Sect. 4.2.4.

Substituting Eq. (50) into Eq. (49), we can get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ξ1r1 + r20r2
2ω̄

sin(2θ0 − θ1 − θ2)

− ω̄β1

2
sin θ1 = 0

r31 + 2r1r
2
2 + 2r20r1 + r20r2 cos(2θ0 − θ1 − θ2)

+ ω̄2β1 cos θ1 + σ1r1 = 0

ξ1r2 + r20r1
2ω̄

sin(2θ0 − θ1 − θ2) = 0

r32 + 2r21r2 + 2r20r2 + r20r1 cos(2θ0 − θ1 − θ2)

+ σ1r2 = 0

(51)

Eliminating the trigonometric functions in Eq. (51), the
frequency characteristics are obtained:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
(r21 − r22 )2 − β2r21

]
ω̄4

+
[
4ξ2(r21 + r22 )2 + 2am(r21 − r22 )2

]
ω̄2

+ a2m(r21 − r22 )2 = 0

r22 ω̄4 + r22 (4ξ2 + 2bm)ω̄2 + r22b
2
m − r40r

2
1ε2P = 0

(52)

where, am = εP(r21 + r22 + 2r20 ) − ω2
g and bm =

εP(2r21 + r22 + 2r20 ) − ω2
g are the parameters defined

for simplicity. We can use Routh–Hurwitz criterion
to determine the stability of the solution. The Jacobi
matrix corresponding to Eq. (49) is written as

JM = [ai j ] i = 1, 2, 3, 4, j = 1, 2, 3, 4

where,

a11 = a22 = a33 = a44 = a42 = −ξ,

a12 = εPr1(2r20 + r21 + 2r22 + σ1)

2ω̄
, a13 = −ξr2

r1
,

a14 = εPr22 (2r20 + 2r21 + r22 + σ1)

2ω̄r1
,

a21 = −εP(2r20 + 3r21 + 2r22 + σ1)

2ω̄r1
,

a23 = εPr2(2r20 − 2r21 + r22 + σ1)

2ω̄r21
,

a24 = ξ

(
r2
r1

)2

, a31 = −a13,

a32 = −εPr2(2r20 + 2r21 + r22 + σ1)

2ω̄
,

a34 = a32, a41 = −εP(2r20 − 2r21 + r22 + σ1)

2ω̄r1
,

and

a43 = εP(2r20 + 2r21 + 3r22 + σ1)

2ω̄r2
.

The characteristic equation is

a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0 (53)

where ak = (−1)k tr [k](JM) and tr [k](JM) is kth-order
trace of matrix JM.

tr [k](JM) =
∑

1≤i1<i2<···<ik<4

∣
∣
∣
∣
∣
∣

ai1i1 · · · ai1ik
· · ·
aik i1 · · · aik ik

∣
∣
∣
∣
∣
∣

k = 0, 1, 2, 3, 4 (54)

Particularly, a0 = 1, a1 = −(a11+a22+a33+a44),
and a4 = det(JM). According to Routh–Hurwitz cri-
terion, the stable solution should satisfy the following
relationship:
{

ξ > 0, a2 > 0, a3 > 0, a4 > 0

a3(a1a2 − a3) − a21a4 > 0
(55)

In addition, due to the geometric constraint of the stator,
the amplitude of the rotor whirling motion is limited in
the range of 0 to the average air gap. |z| = 1 denotes
the contact of the rotor and stator. The stable solution
should satisfy the geometric constraint

|z| ≤ 1 (56)

The solution with the non-dimensional amplitude
larger than 1 cannot really occur; therefore, it can
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Fig. 7 Amplitude–frequency curve without static eccentricity

be included in the group of unstable solutions. As
shown in Figs. 7 and 8a, both upper branches are sta-
ble according to Routh–Hurwitz criterion. However,
in these branches, the solutions with amplitude |z| > 1
cannot be realized, so they are plottedwith dashed lines
that are shown in the curves of the forward whirling
motion and the backward whirling motion (Figs. 7, 8).
A similar situation can be observed in Figs. 9, 10, 11
and 12. Therefore, in this paper, the solutions with
amplitudes larger than 1 are plotted with dashed
lines.

Both Eqs. (55) and (56) form the stability condi-
tion. The former is obtained by Routh–Hurwitz crite-
rion, and it depends on the natural characteristics and
reflects the stability mechanism of the system, whereas
the latter provides the geometric constraint that limits
the region of the rotor whirl.

4.2.3 Comparison of the degenerate model and the
model by harmonic balance method

Neglecting the static eccentricity, i.e., r0 = 0, we can
obtain r2 = 0 from the third formula in Eq. (51)
when the rotor system is in steady state. Therefore,
at this time, the excitation that is only caused by mass
imbalance which includes a single frequency (angular
speed) leads to a synchronous whirlingmotion with the
same frequency as that of the excitation, the backward
whirling motion vanishes, and the degenerate form of
Eq. (52) is

(a)

(b)

(c)

Fig. 8 Amplitude–frequency curves of the forwardwhirling and
backward whirlingmotions. To clearly show the results, c locally
displays the curve of (b)

(r21 − β2)ω̄4 +
[

4ξ2 − 2

(

1 − α − 3α

2
r21

)]

r21 ω̄2

+
(

1 − α − 3α

2
r21

)2

r21 = 0 (57)

We can further derive the phase characteristics

tan θ1 = −2ξω̄

1 − α − 3αr21
2 − ω̄2

(58)
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(b)

(a)

Fig. 9 Influence of the damping ratio ξ on amplitude–frequency
characteristics

The results by multi-scale method coincide with those
by harmonic balance method in comparisons of Eqs.
(30) and (57)–(58). Therefore, the two methods have
consistency. However, multi-scale method can simply
address the common case of the combination of mass
imbalance and static eccentricity.

4.2.4 Results and discussion

For a given frequency ratio, the solution of Eq. (52) can
be obtained, and the amplitude–frequency characteris-
tics are shown in Figs. 7 and 8. As shown in Fig. 7,
the amplitude–frequency curve without static eccen-
tricity bends to the left, and hence, the system reveals
a soft type. From Eq. (30), the curve has the asymptote
ε = β as the frequency ratio ω̄ increases. This is the
so-called self-centering. The jump phenomenon occurs
when the frequency ratio slowly increases and passes
through ω̄A.

For the rotor systemwith static eccentricity, the char-
acteristics of forward whirling motion, as well as those

(a)

(b)

Fig. 10 Influence of the nonlinear parameter εP on amplitude–
frequency characteristics

of the case without static eccentricity, also exhibit a
softening type. However, a small branch grows from
the lower branch, as shown in Fig. 8a, while the self-
intersection phenomenon appears in the amplitude–
frequency curve of the backward whirling motion. In
general, this motion is weaker than that of the forward
whirling motion, as shown in Fig. 8b, c.

According to Eq. (55), the upper branch of the
amplitude–frequency curve of the forward whirling
motion is stable. However, the geometric constraint in
Eq. (56) results in the upper branch having one part
that cannot occur (Fig. 8a). When the frequency ratio
increases slowly and reaches ω̄A, the system is in a
critical state, and point A is a turning point. Any incre-
ment of the frequency ratio can lead to the jump phe-
nomenon; however, the response cannot spontaneously
jump frompoint A to point A′ due to the geometric con-
straint of the rotor system. At this time, contact of the
rotor and stator occurs, and thus, the system undergoes
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(a)

(b)

Fig. 11 Influence of the mass eccentricity ratio β on amplitude–
frequency characteristics

the loss of stability. Similarly, as the frequency ratio
decreases slowly and passes through ω̄B , the loss of
stability occurs. Therefore, in the frequency band (ω̄A,
ω̄B), the response cannot be realized and is globally
unstable.

Compared with the rotor system without static
eccentricity, the response of the system with static
eccentricity includes the backward whirling motion in
addition to the forward whirling motion. When the
parameters vary, the amplitude–frequency characteris-
tics change dramatically, which are more complex than
those of the systemwithout static eccentricity. Here, we
discuss the influences of four parameters, damping ratio
ξ , nonlinear parameter εP,mass eccentricity ratioβ and
static eccentricity ratio βs, on these characteristics.

(1) Damping ratio ξ

The amplitude–frequency characteristics vary with
the parameter ξ , as shown in Fig. 9. When the damp-
ing ratio increases, both amplitude–frequency curves

shorten, and the small branch growing from the lower
branch of the amplitude–frequency curve of the for-
wardwhirlingmotion shrinks and then vanishes (Fig. 9,
ξ = 0.01 and ξ = 0.1). At this time, the amplitude–
frequency curve of the forwardwhirlingmotion is simi-
lar to that of the casewithout static eccentricity (Fig. 7).
In this process, the globally unstable frequency band
narrows and finally disappears. For a comparatively
large damping ratio, even the amplitude–frequency
curves of the two whirling motions are single-valued,
and the solution becomes stable in the whole frequency
domain (Fig. 9, ξ = 0.1). However, the overlarge
damping causes harm to the isolation of the vibration.
In a practical system, appropriate damping is necessary
for both stability and vibration isolation.

(2) Nonlinear parameter εP (Stiffness ratioα = 2εP/3)

When the parameter εP increases, the system nonlin-
earity becomes stronger, and the bending deflection of
the amplitude–frequency curve of the forward whirling
motion increases (Fig. 10a) while that of the back-
ward whirling motion lengthens and moves toward
the left (Fig. 10b). The globally unstable frequency
band becomes narrower and then disappears (Fig. 10,
εP = 1/10 and εP = 1/20). Due to εP = 3α/2, the fre-
quency band narrows with the increase in the stiffness
ratio α. Both the large electromagnetic stiffness and the
smallmechanical stiffness can increaseα. However, the
stability margin becomes smaller simultaneously.

(3) Mass eccentricity ratio β

The responses of the two whirling motions increase
remarkably as the mass eccentricity ratio β increases.
For a comparatively small β (Fig. 11a, β = 0.001),
there is no globally unstable frequency band. However,
the frequency band begins to appear as β increases.
The larger the parameter β is, the wider the fre-
quency band. In the process of the increase in β, the
amplitude–frequency curve of the backward whirling
motion moves toward the left (Fig. 11b). Therefore,
a decrease in the mass imbalance, which is feasible,
can not only obtain a smooth and quiet operation of
the rotor system but also narrow the globally unstable
frequency band.

(4) Static eccentricity ratio βS

Static eccentricity spoils the cyclic symmetry of the
equilibrium point of the rotor system. The dynamic
characteristics as well as the static characteristics
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Fig. 12 Influence of the
static eccentricity ratio βs
on amplitude–frequency
characteristics

(a) (d)

(e)

(f)

(b)

(c)

exhibit complexity, such as the small branch pro-
duced in the amplitude–frequency curve of the for-
ward whirling motion. However, for a comparatively
small static eccentricity, this curve has no small branch
despite the nonlinear parameter and mass eccentricity
varying in large ranges, as shown in Figs. 10a and 11a.
When the static eccentricity ratio varies at a low level
(Fig. 12a, b), a slight increase in the response of the for-
ward whirling motion can be observed, and the curves
corresponding toβs = 0.01 andβs = 0.05 almost coin-
cide with each other (Fig. 12a). However, the curve of

the backward whirling motion lengthens dramatically
(Fig. 12b).

For a comparatively large static eccentricity ratio
(βs = 0.2, Fig. 12c, d and βs = 0.3, Fig. 12e, f),
not only the forward whirling motion but also the
backward whirling motion changes substantially. The
small branch in the curve of the backward whirling
motion as well as that of the forward whirling motion
begins to appear and grows further. The two curves
become more complex as the parameter βs increases.
The self-intersection phenomenon can also be observed
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in the amplitude–frequency curve of the forward
whirling motion. The order of magnitude of the back-
ward whirling motion increases significantly and even
matches that of the forward whirling motion. With the
increase in βs, the globally unstable frequency band
appears and becomes wider. Accordingly, a decrease
in the static eccentricity is another option that can nar-
row and even eliminate the globally unstable frequency
band. Furthermore, it can also reduce the vibration and
noise of the rotor system.

Next, the approximate analytical solution in Eq. (46)
obtained by multi-scale method is validated by numer-
ical simulation. Using Runge–Kutta method to solve
Eq. (5), the numerical solution is carried out and can be
comparedwith the analysis bymulti-scalemethod. The
comparisons of the calculations using various combi-
nations of the system parameters reveal that the results
obtained by the two methods agree well in the vicinity
of ωg (the natural frequency of the generating system).
Here, we select the parameters εP = 1/15, ξ = 0.1,
β = 0.1, βs = 0.1 and θs = π/4 to illustrate the
comparison of the analytical solution in Eq. (46) with
the numerical results, as shown in Figs. 13 and 14.
The orbits, amplitudes and initial phases of the two
motions are plotted in (a), (b) and (c) of the two fig-
ures, respectively. For the different detuning param-
eters, the orbits of the analytical solution by multi-
scale method are in good agreement with those by
the numerical method. From (b–c) of Figs. 13 and 14,
we can see that both the amplitudes and initial phases
are time-invariant when the rotor system is in steady
state. Note that the results coincide with not only the
assumption of the time-invariant amplitudes but also
the analysis result in Eq. (50). Compared with the for-
wardwhirlingmotion, the backwardwhirlingmotion is
comparatively weak, and the corresponding amplitude
curves almost coincide with each other in Figs. 13b
and 14b.

From the results, the orbits obtained by the analyt-
ical solution match well with those obtained by the
numerical simulation when the detuning parameter σ1
is close to 0, which means that the frequency ratio
is in the vicinity of ωg. As σ1 further deviates from
0, the error between the two results increases. More-
over, the error for lower frequency (σ1 < 0) is larger
than that for higher frequency (σ1 > 0), as shown in
Figs. 13a and 14a. From Eq. (40) obtained by multi-
scale method, the response caused by static eccen-
tricity is inversely proportional to ω̄2. Therefore, as

(a)

(b)

(c)

Fig. 13 Comparison of calculation results (σ1 ≥ 0)

the frequency ratio decreases, the response becomes
more substantial, which leads to deviations between the
orbits obtained by the analytical solution and numerical
solution. However, the shapes of the orbits obtained by
the two methods are similar to each other. This result
denotes that the direct component depends on the fre-
quency ratio, andmulti-scalemethod cannot predict the
response for the case when the frequency ratio is close
to 0. However, we can obtain a satisfying result in the
vicinity of ωg.
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(b)

(a)

(c)

Fig. 14 Comparison of calculation results (σ1 < 0)

5 Conclusions

This paper mainly focuses on the nonlinear character-
istics of the unbalanced rotor of PMSMs in EVs and
HEVs influenced by static eccentricity. Based on the
effect of static eccentricity on the conservative force,
the equilibrium points are carried out, and their sta-
bilities are determined. Then, the static bifurcation of
the rotor system is investigated. The frequency char-
acteristics are studied by multi-scale method and then

validated by a numerical method. The conclusions are
summarized as follows:

The static eccentricity spoils the symmetry of the
system equilibriumpoints and results in a generic bifur-
cation with a defect that provides two stability con-
ditions. One is the stiffness condition in which the
electromagnetic stiffness without the relative eccen-
tricity between the rotor and stator is less than the
mechanical stiffness; the other is the eccentricity con-
dition in which the static eccentricity of the system
is less than the equivalent deformation produced by
the extremum of the system conservative force without
static eccentricity applied to the rotor shaft. However,
this parameter has no influence on the system radial
stiffness.

For the rotor system in steady state, an assumption
of the time-invariant amplitudes of the forward and
backward whirling motions is adopted, whereas that
of the time-invariant phases is discarded. The analyses
of the frequency characteristics of the main resonance
by multi-scale method based on this assumption agree
well with the results of the numerical method. This
result shows that the assumption and the analysis are
reasonable.

The response of the rotor system with mass imbal-
ance without static eccentricity only includes the
component of forward whirling motion. However,
when static eccentricity is introduced, the backward
whirling motion is induced in addition to the for-
ward whirling motion. Furthermore, the two whirling
modes are coupled with each other due to the non-
linearity of UMP. The backward whirling motion is
comparatively weak. However, it is enhanced for com-
paratively large electromagnetic stiffness, large mass
imbalance, large static eccentricity, small mechani-
cal stiffness and small damping. In particular, some
complex branches are induced in the amplitude–
frequency curves of the two motions as static eccen-
tricity increases.

Due to the geometric constraint of the stator, the
amplitude of the rotor whirling motion is limited in the
range of 0 to the average air gap. This result leads to the
generation of a globally unstable frequency band. This
band narrows and even disappears with increases in
damping and electromagnetic stiffness and decreases in
mass imbalance, mechanical stiffness and static eccen-
tricity.
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