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Abstract Flexural vibrations of a fluid-conveying
pipe are investigated theoretically, with special consid-
eration to the spatial shift in vibration phase caused by
fluidflowandvarious imperfections.The latter includes
small nonuniformity or asymmetry in stiffness, mass,
or damping, and weak stiffness and damping nonlin-
earity. Besides contributing general understanding of
wave propagation in elastic media with gyroscopic
forces, this is relevant for the design, control, and trou-
bleshooting of phase shift measuring devices like Cori-
olismassflowmeters.Amultiple time-scalingperturba-
tion analysis is employedwith a simplemodel of afluid-
conveying pipe with relevant imperfections, resulting
in simple analytical expressions for the prediction of
phase shift. For applications likeCoriolis flowmetering,
this allows for readily examining effects of a variety of
relevant features, like small sensors and actuators, pro-
duction inaccuracies, mounting conditions, wear, con-
tamination, and corrosion. To second order of accu-
racy, only mass flow and asymmetrically distributed
damping are predicted to introduce spatial phase shift,
while nonuniformly distributed linear mass and stiff-
ness, symmetrically distributed linear damping, and
uniformly nonlinear stiffness and damping are all neg-
ligible in comparison. The analytical predictions are
illustrated by examples and validated with excellent
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agreement against numerical analysis for realisticmag-
nitudes of parameters.
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1 Introduction

The phase shift in oscillation between two points of a
vibrating elastic beam or pipe is important for some
applications. For a linear beam with mass- or stiffness-
proportional damping, standing waves can exist, with
all points vibrating in either phase or antiphase. How-
ever, several factors can introduce nontrivial spatial
phase dependencies, and thus nonstanding, traveling
waves. Nonproportional damping is one such factor.
Fluid flow is another, as utilized in Coriolis flowme-
ters, where the phase change between two points at
a vibrated pipe is measured and related to mass flow
through the pipe. Ideally, for such a flowmeter, the
phase shift depends only on mass flow. But many other
factors could potentially be a source of phase shift, and
thus mistaken for mass flow. This work seeks to clar-
ify how typical linear and nonlinear mechanical effects
can possibly lead to phase shifts for a vibrating pipe
with fluid flow.

In [1], a systematic perturbation approach was pre-
sented for deriving analytical expressions that relate
phase shift to parameters characterizing vibrating pipes
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conveying fluid flow and possible small imperfections.
Here we simplify the procedure and includemore types
of imperfections, in particular, axially nonuniform dis-
tribution of mass, stiffness, and damping, and non-
linear stiffness and damping. The result is a simple
approximate analytical prediction [Eq. (52)], accurate
to second order in the small parameter characteriz-
ing imperfection magnitude, for calculating how phase
shift depends on the imperfections considered. The
expression is validated against numerical simulation
for some relevant and illustrative cases, and against
some existing reported experimental results.

Aspects of vibrations and stability offluid-conveying
pipes have been investigated for a long time [2–8],
apparently with the first reported derivations of the cor-
rect equations of motion and analysis reported by F.-
J. Bourriêres in 1939 [4]. Some of these works were
motivated by Coriolis flowmetering applications, pro-
viding valuable insights into how mass flow and also
certain imperfections influencephase shift, see, e.g., the
overviews [9–11]. Several studies derive analytical or
semi-analytical predictions for phase shifts in the con-
text relevant here. Typically, the analytical expressions
are for the ideal case [12], or require numerical solution
of an eigenvalue problem [13,14], or the results are not
validated against numerical simulation or experimen-
tally. Raszillier and Durst [12] used a perturbation-like
approach to derive analytical expressions for the phase
shift for fluid-conveying pipes, but did not consider
imperfections other than mass flow. Effects of imper-
fect supports on phase shift were considered in [1],
using perturbation analysis in a manner similar to what
is used in the presentwork. Effects ofmechanical vibra-
tions on measurement accuracy have been considered
[15], as the effects of pulsating flow speed [16–19],
sensor and actuator mass [10], temperature [10,20],
and multi-phase flow [21]. Kutin and Bajsic [22,23]
employed Taylor-expanded (in fluid velocity) Galerkin
solutions to calculate analytical predictions for Corio-
lis flowmeter stability boundaries, and for phase shifts
in the ideal and some nonideal cases (nonlinear flow,
axial force, and added mass).

The effect of structural nonlinearity on phase shift
for pipes with fluid flow seems not to have received
much attention in the literature. This may be partly due
to the theoretical difficulties that come with nonlin-
earity, and partly due to unawareness of the potential
practical importance. One might think the very small
displacement amplitudes typical in Coriolis flowmeter-

ingwould imply that nonlinearity can safely be ignored.
However, some of the strongest sources of nonlinearity
in real structures can become significant even at very
small displacement amplitude. This concerns, e.g., the
stiffness nonlinearity associated withmidplane stretch-
ing (relevant for pipes with fixed ends) or mechani-
cal clearance (pipe rattling against rigid obstacle), and
also with certain types of nonlinear damping (e.g.,
dry friction at pipe clamps or connections). Also, it
is well known that even weak nonlinearity can have a
strong effect on vibration response, to an extent where
linear theory does not even qualitatively capture the
response correctly, as, e.g., with nonlinear modal inter-
action [24–26], when one vibration mode is resonantly
excited (as with Coriolis flowmetering), and the natu-
ral frequency of this mode is related by a specific ratio
of small integers to the natural frequency of another
mode. Thus, consideration of nonlinearity is relevant.

Stiffness nonlinearity frommidplane stretching was
considered with Coriolis flowmetering in [27], how-
ever without considering the effect on phase shift (but
only the additional frequency components). The same
study also considers nonlinear damping, though only
in an unphysical form proportional to squared velocity
(i.e., without multiplying with the sign of the veloc-
ity like with physically meaningful “quadratic damp-
ing”), and without considering phase shift effects. In
the present work, we consider the effect on phase shift
of quadratic-cubic nonlinear stiffness (generically rep-
resentative as the dominating nonlinear terms for most
smooth stiffness nonlinearities), and general velocity-
dependent nonlinear damping.

Recently [28] investigated several aspects of nonlin-
ear vibrations and stability for amathematical model of
a curved micro-Coriolis flowmeter, taking into account
geometrical nonlinearity in the form of cubic stiff-
ness terms. Using Galerkin discretization in terms of
mode shapes for fixed boundaries, the spatial phase
shift was calculated numerically for a specific exam-
ple, along with system natural frequencies and flow
stability thresholds. For the numerical example, a lin-
ear dependency between phase shift and mass flowwas
observed, even in the presence of nonlinear stiffness.
The present work puts more general theoretical support
to this specific observation.

Below we present and exemplify a systematic
approach for calculating simple approximate analyti-
cal expression for spatial phase shifts of pipe vibra-
tions, caused by fluid flow and various small linear
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and nonlinear imperfections, using a greatly simplified
generic model of real flowmeters. The mathematical
model for transverse vibrations of the pipe takes the
form of a nonlinear partial integro-differential equation
of motion, with nonconstant coefficients and external
time-harmonic excitation. Spatial discretization into a
finite set of approximating ordinary nonlinear differ-
ential equations is obtained using Galerkin expansion
in terms of “perfect-pipe” mode shapes. The resulting
set of ordinary nonlinear differential equations is then
solved usingmultiple scales perturbation analysis, con-
sidering all imperfections as small perturbations to the
perfect pipe. For the main case of practical interest in
Coriolis flowmetering, i.e., sharply resonant excitation
of the lowest mode, using just the two lowest vibra-
tion modes proves sufficient for reliably predicting fre-
quency response as well as phase shift for the pipe:
The lowest mode is directly excited, and thus strongly
present, while the second mode is indirectly and much
more weakly excited by weak Coriolis forces from the
flowing fluid and possibly other imperfections; as is
confirmed by numerical simulation, all higher modes
affect the response at a level several orders of magni-
tude lower.

The modeling and solution procedure employed is
similar to what was used in [1,29], except that in the
present work more and other kinds of imperfections
are considered, and that the analysis is further sim-
plified as compared to [1]: The perturbation analysis
was there applied directly to the partial differential
equation of motion, whereafter Galerkin expansion is
employed, while in the present work Galerkin expan-
sion is employed first, as in also [10].

The simple model and approximate analysis is tar-
geted toward the study of general effects, which may
carry over to real flowmeters, not toward specific
flowmeter design. For example, the conclusion, for the
simple model, that “only the spatially asymmetric part
of distributed damping contributes to measured phase
shift”maywell carry over to real flowmeters of compli-
cated geometry; at least the simple model allows such
a hypothesis to be suggested, which is testable experi-
mentally or with detailed numerical simulation for spe-
cific, real flowmeters.

All of the simplifying assumptions made in this
study hold approximately for applications such asCori-
olis flowmetering under typical operating conditions.
Many real industrial flowmeters have two curved mea-
surement pipes, and so the straight single-pipe model

employed here may appear somewhat academic. This
is by intention, since the simplified geometry allows
for simple, transparent analytical expressions for the
quantities of primary interest. These allow for deduc-
ing conclusions on various effects of interest,which can
then be used for posing hypotheses for real flowmeters,
to be tested experimentally or by detailed numerical
simulation of coupled fluid-structure interaction mod-
els [17,30–35].

Section 2 defines the system and the “perfect” and
“imperfect” (i.e., nonuniform and nonlinear) pipe, and
sets up and discusses the fundamental equation of
motion. Section 3 derives and interprets the primary
resonant response mostly relevant for applications,
based on a multiple scales perturbation analysis of
an approximating set of equations of motion for the
nonlinear and nonuniform pipe. Based on the approx-
imate response calculation, Sect. 4 derives rather sim-
ple analytical expressions for predicting spatial phase
shift in pipe vibrations in dependency of the parame-
ters describing pipe imperfection, and discusses impli-
cations in terms of sources of measurement errors
for Coriolis flowmeter applications. Section 5 vali-
dates the simplified analytical predictions of phase
shift effects, by comparing against results of numeri-
cal simulation of the underlying full (i.e., unapprox-
imated) system for cases corresponding to, respec-
tively, nonuniform linear damping, mass, and stiff-
ness, and nonlinear damping and stiffness. Finally,
Sect. 6 concludes on how the considered imperfec-
tions, besides fluid flow, affect spatial shifts in vibration
phase.

2 Mathematical model

2.1 The system

Figure 1a shows an infinitesimal element of the elastic
beam in Fig. 1b,c, modeling a single, straight Coriolis
flowmeter pipe. At time t̃ and longitudinal coordinate
x̃ , the transverse and longitudinal deformation of the
pipe axis is ũ and w̃, respectively. The pipe element
is affected by reaction forces � from the fluid, and
transverse external forces P̃(x̃, t̃), e.g., from flowme-
ter actuators; in particular, we consider time-harmonic
pipe actuation at x̃ = x̃ p having frequency �̃ and
force amplitude p̃. The fluid is assumed to have con-
stant mass m f per unit pipe length, and to (plug-) flow
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(a) (b)

(c)

Fig. 1 a Infinitesimal pipe element of a b hinged or c clamped pre-tensioned or -compressed pipe

through the pipe at a speed ṽ which is everywhere the
same inside the pipe, and changing only negligibly dur-
ing each pipe vibration cycle. (In [18] effects of pul-
sating flow speed ṽ = ṽ(t̃) are analyzed similarly as
below.)

The pipe is either hinged or clamped at both
ends, cf. Fig. 1b,c. The supports can be axially
fixed, introducing midplane stretching and thus a
nonlinear coupling between axial forces and trans-
verse deformation, as could be significant with a
straight or slightly curved flowmeter pipe in a stiff
frame. The pipe has undeformed length l, with its
end pre-tensioned or -compressed axially a distance
ηl, |η| � 1, within axially fixed supports, where
η is positive for tension and negative for compres-
sion. Hinged supports are included for their conve-
nience (due to the simple linear mode shapes for a
uniform pipe) in illustrating and interpreting analyt-
ical results, whereas clamped supports may be more
realistic for applications. The equation of motion is
solved for both types of boundary conditions, and other
types of boundary conditions could be analyzed simi-
larly ( [1,36] investigate effects of imperfect boundary
conditions).

Imperfections considered in this study include slight
axial variations in pipe mass per unit length m p(x̃) =
mp0 + �mp(x̃), in bending stiffness E I (x̃) = E I0 +
�E I (x̃), and in axial stiffness E A(x̃) = E A0 +
�E A(x̃), where here subscript zero indicates the con-
stant part of each property (e.g., its mean value over
x̃ ∈ [0, l] , or a value typical for most of the pipe

length), and � denotes property variation. The con-
stant or uniform part of the mass per unit fluid-filled
pipe is m0 = mp0 + m f . Also, there can be weak
distributed transverse and rotational linear viscous
damping with coefficients c̃u(x̃)and c̃θ (x̃), and linear
external stiffness (additional to pipe bending stiffness)
k̃u(x̃)and k̃θ (x̃). All these functions of x̃ can be dis-
continuous, allowing for examining effects of, e.g.,
mounted sensors and actuators, production inaccura-
cies, mounting conditions, and wear, contamination,
and corrosion. The addition of small and uniformly
distributed generalized damping β f̃ (dũ/dt̃) allows
for examining effects of nonlinear velocity-dependent
dissipation, e.g., quadratic damping; the function f̃
is assumed to be essentially nonlinear (i.e., vanish-
ing along with its first derivative at u̇ = 0), and
must be continuous in u̇ for the relevant range of
velocities.

2.2 Equation of motion

The equation of motion governing finitely small trans-
verse pipe vibrations ũ(x̃, t̃) can be derived using New-
ton’s second law or Hamilton’s principle, see, e.g.,
[5,12,37] for details. The result can be written in the
following nondimensional form, which is an extension
of what can be found in [1,18,23,37]:

ü + u′′′′ + ε
[
�m(x)ü + (

�e(x)u′′) ′′

+α(2vu̇′ + v2u′′) − μ2
(
η + 1

2

∫ 1
0

(
u′(ξ, t)

)2 dξ
)
u′′
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+ γ u2 + Lku + Lcu̇ + β f (u̇)
]

= εpδ(x − xp) cos(�t), (1)

where u = u(x, t) is the transverse deflection at time
t , x ∈ [0, 1] is the axial coordinate, δ(x) is Dirac’s
delta function, Lk and Lc are linear spatial differential
operators describing additional/external linear stiffness
and distributed linear damping, respectively:

Lk = ku(x) − d

dx

(
kθ (x)

d

dx

)
,

Lc = cu(x) − d

dx

(
cθ (x)

d

dx

)
, (2)

the boundary conditions for hinged supports are:

u(0, t) = u(1, t) = u′′(0, t) = u′′(1, t) = 0, (3)

while for clamped supports:

u(0, t) = u(1, t) = u′(0, t) = u′(1, t) = 0, (4)

and all parameters, variables, and functions are nondi-
mensional:

x = x̃

l
, u = ũ

l
, t = ω̃0 t̃, v = ṽ

lω̃0
,

p = p̃

m0l2ω̃2
0

, � = �̃

ω̃0
,

α = m f

m0
, �m(x) = �mp(lx)

m0
,

�e(x) = �E I (lx)

E I0
,

μ = l√
E I0/E Am

, γ = γ̃ l

m0lω̃2
0

,

ku(x) = k̃u(lx)

m0ω̃
2
0

, kθ (x) = k̃θ (lx)

m0l2ω̃2
0

,

cu(x) = c̃u(lx)

m0ω̃0
, cθ (x) = c̃θ (lx)

m0l2ω̃0
,

f (u̇) = f̃ (ω0lu̇)

m0lω̃2
0

. (5)

In (1)–(5) dots and primes denote differentiation
w.r.t. to t and x , respectively, ε is a “bookkeeping”
parameter marking terms of smaller order of mag-
nitude, subscripts p, f , u, θ denote “pipe,” “fluid,”
“transverse,” “rotational,” respectively, and 1/E Am =
1
l

∫ l
0 (E A(x̃))−1dx̃ is the mean axial pipe flexibility.

Time t is nondimensionalized by the characteristic fre-
quency ω̃0 = √

E I0/m0l4, the axial coordinate x and
transverse deflection u by the pipe length l, and flow
speed v by the characteristic wave speed ω̃0l.

Equation (1) is a time harmonically excited partial
differential equation of motion, nonlinear (for nonzero
μ, γ , or β), and with spatially nonconstant coefficients
(for nonconstant �m, �e, Lk , or Lc).

2.3 Physical meaning of nondimensional parameters
and terms

The external pipe actuation is described by the normal-
ized amplitude p and frequency � of a time-harmonic
force at x = xp ∈]0, 1[. The function �e(x) describes
the normalized nonuniformity in pipe bending stiff-
ness, i.e., the relative deviation along the axis from
the constant part of the bending stiffness. Any phys-
ically conceivable variation�e(x) can be chosen, even
discontinuous (as with abrupt changes in cross section
or material, and along with suitable interface condi-
tions of deflection and slope continuity), as long as its
magnitude is small compared to unity. Similarly, the
function �m(x) describes the nonuniformity in distri-
bution of (fluid empty) pipe mass, normalized by the
constant part m0 of the mass of the fluid-filled pipe;
the same value is used to normalize the fluid mass α

per unit length, so that α ∈ [0, 1[, with α → 0 for
a light gas, while α → 1 for a very heavy fluid or
light pipe. A nonuniform pipe can have any variation
�m(x), even discontinuous (as with abrupt changes in
cross section or material) or singular (as with added
point masses), provided �m is small in regular inter-
vals, and integrates over x at any singularity to a small
value (e.g., a point mass should be small compared to
the total fluid-filled pipe mass).

Nonlinear midplane stretching is expressed by the
parameter μ > 0. The denominator in the definition of
μ equals the pipe (mean or effective) radius of gyration
r0 = √

I0/Am, and thusμ = l/r0 is the pipe’s slender-
ness ratio; the Bernoulli–Euler assumptions employed
for (1) holds for “slender pipes,” e.g., μλ̃/ l > 200
where λ̃ is the wavelength of the highest active vibra-
tion mode. More slender pipes have larger values of μ,
implying that relatively more of the transverse stiffness
comes from midplane stretching and pre-tension, and
less from bending stiffness.

Linear translational and rotational stiffness and
damping is described by the operators Lk and Lc,
respectively. They are defined in terms of functions
ku,θ (x) and cu,θ (x), describing the axial distribution of,
respectively, stiffness (additional to the pipe bending
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stiffness) and viscous damping per unit length. These
distributions can be nonuniform and even discontinu-
ous, or possess singularities, but should be small com-
pared to unity in x−integratedmagnitude. For example,
ku(x) = ku0 + ku1δ(x − xku), |ku0,1| � 1, models a
particular distributed transverse stiffness, the first term
describing the uniformpart, and the second a transverse
spring localized x = xku .

The first two terms in (1) represent, respectively, the
uniform transverse inertia of the pipe and fluid, and
the uniform bending stiffness of the pipe. All remain-
ing terms are small, as indicated by the factor ε. The
first and second term within the bracket represents,
respectively, corrections to transverse inertia and stiff-
ness associated with nonuniformity in pipe mass and
bending stiffness distribution. Inertial fluid forces are
represented by a Coriolis acceleration term 2αvu̇′, aris-
ing due to pipe segments rotating at angular velocity u̇′,
and a centripetal acceleration term αv2u′′, accounting
for the fluid with speed v following a path with instan-
taneous curvature radius ≈ 1/u′′; similar terms occur
in many pipe-flow studies (e.g., [1,5,10,12]). Initial
pipe stretching and axially fixed supports introduce the
two terms multiplied by μ2: The first one, μ2η, is the
axial tension force required to initially stretch the pipe,
while the second one, with μ2 multiplying a nonlinear
integrand, represents the additional axial force needed
to stretch the pipe between immovable supports, at a
given transverse pipe deformation u.

The nonlinear term γ u2 represents asymmetric
(w.r.t. u = 0) stiffness, i.e., an elastic restoring force
acting in the same direction regardless of the sign of the
deformation; it could arise, e.g., from initial pipe curva-
ture, or bias effects from pipe actuator magnetic coils,
or from an opening and closing crack. Generalized
velocity-dependent and uniformly distributed damping
is included by the term β f (u̇), where f is an arbitrary
nonlinear function and β a magnitude parameter.

The two stiffness type nonlinearities included are
those supposed to be most influential for real Coriolis
flowmeters. In the general case stiffness nonlinearities
could arise from other sources, e.g., from a nonlinear
curvature measure at large deflection slopes. However,
Coriolis flowmeters are typically restrained at both pipe
ends so as to prevent large curvatures; thus, nonlin-
earity from midplane stretching limits the response so
strongly that curvature nonlinearity remains insignifi-
cant in comparison. Furthermore, in the analysis to fol-
low the nonlinear terms in the reduced system takes the

form of just quadratic and cubical polynomial terms,
thus rendering the analysis results applicable for any
kind of nonlinearity that results in such terms, includ-
ing, e.g., curvature nonlinearity.

The smallness parameter ε has no physical interpre-
tation, but serves the purpose of magnitude bookkeep-
ing through the different stages of analysis, explicitly
quantifying the assumed order of magnitude of terms.
In the final application of analysis results we just sub-
stitute for an ε-marked quantity (e.g., εμ2) its specific
value (μ2), being reminded that for the results to be
accurate the term with this parameter should be small
compared to other terms in the equation. Note that an
ε in front of a parameter not necessarily indicates this
parameter is small compared to unity, but that the entire
term is small compared to other terms in the same equa-
tion. For example, the term in (1) with μ2 is multi-
plied by ε and is thus assumed small, even if μ itself
is assumed to exceed 200 (for a slender pipe). In this
case the term is assumed small anyway, meaning that
the total pipe stiffness is dominated by another term
(here the bending stiffness u′′′′); in realistic examples
this turns out as a large value of μ2 multiplying a very
small integral with (u′)2, resulting in a small number.

2.4 Physical assumptions detailed

All system parameters are constant in time, or slowly
varying so that any parameter P changes only insignif-
icantly during a period 2π/� of excitation, i.e.,∣∣Ṗ/P

∣∣ 2π/� � 1.
Transverse deflections in the plane of the excita-

tion force are the dominating motions, with deflec-
tion slopes during vibrations being small, (∂ ũ/∂ x̃)2 =
(u′)2 � 1, and the axial inertia small enough to be
ignored. The pipe can be considered a slender beam
structure (μλ̃/ l > 200, where λ̃ is the shortest active
vibration wavelength), so that shear deformations and
rotary inertia can be ignored and Bernoulli–Euler beam
theory employed. The pipe has only small axial varia-
tions in cross section, (integrated) density, and bending
stiffness, and uniformly smallmidplane stretching. The
transverse pipe stiffness is dominated by bending stiff-
ness, with changes in transverse stiffness provided by
pre-tension being small in comparison.

Longitudinal deformations w = w̃/ l satisfy the
boundary conditions w(0, t) = w(1, t) − η = 0, and
are second in order as compared to transverse deflec-

123



Perturbation-based prediction of vibration phase shift along fluid-conveying pipes 179

tions, w = O(u2). Also, Hooke’s law and a Cauchy
measure of strain can be usedwhen deriving an approx-
imate expression for the effect of midplane stretching
[24,26].

The damping terms with coefficients cu and cθ are
small, as are the termswith coefficients ku and kθ defin-
ing additional nonuniform stiffness, the asymmetric
stiffness γ , the uniform generalized damping β f (u̇),
and the external forcing amplitude p. The system is
driven at resonance, but is not internally resonant; in
particular, the linear natural frequencies for the two
lowest vibration modes are not close to being in ratio
two or three.

Fluid flows inside the pipe from x = 0 toward x = 1
with a flat (”plug flow”) velocity profile defined by a
single constant velocity parameter v, and is assumed
to be incompressible (measurement effects of nonflat
profiles and flow compressibility were considered in
[38,39]); this is justified when the local flow speed |v|
is everywhere much smaller than the local speed of
transverse elastic waves in the pipe material [40], and
implies (vm f )

′ = 0 so that v′ = 0, and 0 < v �
1. Together with the assumption of small or no pipe
pre-compression, this implies u = 0 is the only stable
equilibrium for the un-actuated pipe (p = 0), and that
axial loads are well below buckling values.

Consideration to gravity of a pipe hanging vertically
in gravity would lead to additional terms in the equa-
tion of motion (see, e.g., [4]); one can show that this
corresponds to letting kθ (x) = g̃2(1 − x) in the linear
stiffness operator Lk in (2), where g̃ = √

g/ l/ω̃0 is a
nondimensional measure of gravity g. This parameter
can be interpreted as the ratio of two natural frequen-
cies:

√
g/ l, describing the order of magnitude of the

frequency of rigid body pendulum-like oscillations of
a fluid-filled pipe freely hanging in gravity, and ω̃0,

describing the order of magnitude of structural bending
vibrations of the pipe. For the applications of interest
here this ratio is naturally very small, and gravity is
thus ignored in comparison with other forces present.

All of the above assumptions hold approximately
for applications such as Coriolis flowmetering under
typical operating conditions. The major factor ignored
as compared to real industrial flowmeters is their more
complicated geometry. (Many have two curved pipes
rather than one straight.) This allows for simple analyt-
ical expressions giving direct insight into the various
effects under study, and may form the basis for posing
testable hypotheses for real flowmeters.

2.5 Pipe perfectness

For this study we define a perfect pipe as being
undamped, with axially uniform cross section, den-
sity, and linear bending stiffness, zero mass flow, and
no additional transverse stiffness (by pre-tension, mid-
plane stretching, or other). This implies that for a per-
fect pipe �m = αv = �e = μ = η = γ = Lk =
Lc = β = 0, so that in the left-hand side of (1) the
entire bracketed term vanishes. (Actually μ is not zero
for the perfect pipe, but the parenthesis it multiplies in
(1) is; letting μ = 0 has the same effect and is nota-
tionally more convenient.) Thus, an imperfect pipe is
considered and treated mathematically as a small per-
turbation of a perfect pipe, in that one or more of the
imperfection parameters or functions are nonzero, and
their corresponding term in (1) is nonzero, but small.

Next we employ perturbation analysis to calculate
the dynamic response of the imperfect pipe, aiming
at insight into how each imperfection affects Coriolis
flowmeter (model) performance.

3 Primary resonant response: analytical
prediction using perturbation analysis

3.1 Method

The equation of motion (1) with (2)–(4), describing the
continuous fluid-conveying pipe, is a nonlinear partial
differential equationwith homogeneous boundary con-
ditions. The following analysis method was suggested
in [1] for a similar problem, and used subsequently
also in [18,29]; here it will be employed in a slightly
simpler version, by introducing Galerkin expansion at
an earlier stage of analysis, like in [10]. A solution
u(x, t) is sought that is approximately valid under the
assumptions stated in Sect. 2.4, and which can be used
for setting up a simple analytical prediction for the dif-
ference �ψ in vibration phase measured between two
pipe points symmetrically situated about x = 1

2 . This
phase shift, or the corresponding time shift in veloc-
ity zero-crossing, is the quantity actually measured in
Coriolis flowmetering. For manufacturers it is impor-
tant to be able to predict how the measured phase shift
depends on factors other than mass flow, e.g., param-
eters describing nonuniformity, asymmetry, and other
imperfections.
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The aim is here at transparent analytical expressions,
allowing for direct insight into the effects of primary
physical parameters on amplitude, phase, and espe-
cially phase shift. Solutions of the equation of motion
are approximated by a Galerkin expansion in the first
(symmetric) and the second (antisymmetric) linear pipe
mode, which are those of primary importance for Cori-
olis flowmetering. Time-dependent modal amplitude
functions are then approximated using a systematic per-
turbation approach, and used to calculate correspond-
ing approximate analytical predictions for vibration
amplitudes and phase shift. Important results can be
inferred directly by inspecting the analytical expres-
sions. Their mathematical accuracy is tracked using
order symbols, and checked later (Sect. 5) by compar-
ing to results of direct numerical simulation of (1).

3.2 Galerkin discretization and approximation

With pipe imperfections assumed small, it is reason-
able to use mode shapes for the perfect pipe as expan-
sion functions. These are obtained by solving (1) in
its unperturbed form (ε = 0). Inserting a solution
u(x, t) = ϕ(x) sin(ωt + ψ) gives ϕ′′′′ = ω2ϕ, which
with boundary conditions (3) or (4) constitute a stan-
dard differential eigenvalue problem. Its solution gives
the natural frequencies [26] ω = ω j , j = 1, 2, . . . ,:

ω j = λ2j ,
{

λ j = jπ, (hingedpipe)
λ j ≈ {4.730, 7.853, 11.00, . . .} (clampedpipe),

(6)

and corresponding mode shapes:

ϕ j (x) =
{√

2 sin(λ j x), (hinged)

cosh(λ j x) − cos(λ j x) − cosh λ j−cos λ j
sinh λ j−sin λ j

(
sinh(λ j x) − sin(λ j x)

)
(clamped),

(7)

which are orthogonal on x ∈[0,1], and unit-normalized
so that
∫ 1

0
ϕiϕ jdx = ω−2

j

∫ 1

0
ϕiϕ

′′′′
jdx

= ω−2
j

∫ 1

0
ϕ′′
i ϕ′′

j dx = δi j , (8)

where δi j is the Kronecker delta. For the hinged–
hinged and clamped–clamped supports considered in
this study, the odd modes are symmetric w.r.t. x =

1
2 , while the even modes are antisymmetric, i.e.,
ϕ2 j−1(x) = ϕ2 j−1(1 − x) and ϕ2 j (x) = −ϕ2 j (1 − x)
for j = 1, 2, . . . .

As an N -term Galerkin expansion [41] for the solu-
tion to (1) in the presence of imperfections (ε �= 0), we
then take:

u(x, t) =
N∑

j=1

q j (t)ϕ j (x), (9)

approaching the exact solution as N → ∞,whereq j (t)
are the time-varying modal amplitudes to be deter-
mined. Inserting (9) into (1), multiplying by ϕi , and
integrating over the pipe length give a set of modal
equations of motion:

q̈i + ω2
i qi + ε

⎧
⎨

⎩

N∑

j=1

(
mi j q̈ j + ci j q̇ j + (ki j + ni j )q j

+α
(
v2Bi jq j + 2vCi j q̇ j

))

−μ2

(

η − 1
2

N∑

r,s=1
Brsqrqs

)
N∑

j=1

Bi jq j

+ γ

N∑

j,k=1

Hi jkq jqk+β

∫ 1

0
ϕi f

⎛

⎝
N∑

j=1

q̇ jϕ j

⎞

⎠ dx

⎫
⎬

⎭

= εp cos(�t)ϕi (xp), i = 1, 2, . . . , N . (10)

where the orthogonality properties (8) of the normal-
ized modes shapes (7) have been employed and con-
stants in uppercase define integrals depending only on
mode shapes:

Bi j =
∫ 1

0
ϕiϕ

′′
j dx = −

∫ 1

0
ϕ′
iϕ

′
jdx,

Ci j =
∫ 1

0
ϕiϕ

′
jdx, Hi jk =

∫ 1

0
ϕiϕ jϕkdx, (11)

constants in lowercase define mode shape integrals
weighted by imperfection functions:

mi j =
∫ 1

0
�m(x)ϕiϕ jdx,
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ni j =
∫ 1

0
ϕi

(
�e(x)ϕ′′

j

)′′
dx =

∫ 1

0
�e(x)ϕ′′

i ϕ′′
j dx,

ki j =
∫ 1

0
ϕi Lk[ϕ j ]dx =

∫ 1

0
ku(x)ϕiϕ jdx

+
∫ 1

0
kθ (x)ϕ

′
iϕ

′
jdx,

ci j =
∫ 1

0
ϕi Lc[ϕ j ]dx =

∫ 1

0
cu(x)ϕiϕ jdx

+
∫ 1

0
cθ (x)ϕ

′
iϕ

′
jdx, (12)

and for the hinged–hinged or clamped–clamped sup-
ports considered in this study:

Bi j = 0 for i + j odd, Ci j = 0

for i + j even,

Hi jk = 0 for i + j + k even. (13)

The pipe is assumed to be resonantly excited at the
fundamental symmetric mode ϕ1 by external actua-
tion at frequency � ≈ ω1; the fluid flow then induces
asymmetric (w.r.t. x = 1

2 )Coriolis forces, which excite
the second, antisymmetric pipe mode ϕ2, though still
(mainly) at the frequency ω1. The result is a traveling
elastic wave of transverse pipe motion, whose phase
shift along the pipe in Coriolis flowmeters is picked up
by motion sensors and used to estimate mass flow. The
main effect can thus be expected to be well estimated
by including just the first two terms of the Galerkin
expansion (9).

The corresponding pair of coupled ordinary differ-
ential equations governing the modal amplitudes q1(t)
and q2(t) is obtained by letting N = 2 in (10) and
rearranging into:

q̈i + ω2
i qi + ε

{
mi1q̈1 + mi2q̈2 + ĉi1q̇1

+ ĉi2q̇2 + Ki1q1 + Ki2q2

+ γ
(
Hi11q

2
1 + Hi22q

2
2 + 2Hi12q1q2

)

+ 1
2μ2

(
B2
i1q

3
1 + B2

i2q
3
2 + Bi1B22q1q22 + B11Bi2q21q2

)

+β

∫ 1

0
ϕi f (q̇1ϕ1 + q̇2ϕ2) dx}

= εp cos(�t)ϕi (xp), i = 1, 2, (14)

where new stiffness and damping parameters have been
introduced, respectively:

Ki j = ki j + ni j + (αv2 − μ2η)Bi j ,

ĉi j = ci j + 2αvCi j . (15)

Here the mass flow αv appears also in the damping-
like terms ĉ jk q̇k, but these are not purely dissipative:

Since in general Ci j �= C ji [cf. (11)], the correspond-
ing linear damping matrix with components ĉi j has
an antisymmetric part with components 1

2 (ĉi j − ĉ j i ),
corresponding to the gyroscopic forces [42] associated
with the Coriolis term 2αvu̇′ in (1); these forces are
conservative. (This holds only with identical bound-
ary conditions at the pipe ends; with, e.g., clamped-
free boundaries the matrix with components Ci j will
have also symmetric components, implying the Corio-
lis forces would be nonconservative. The effect of this
on vibration phase shifts could be of technical inter-
est for certain applications, though maybe less so for
Coriolis flowmetering.)

The two-mode approximation for transversemotions
u(x ,t) of the pipe is then given by (9) with N = 2,
ϕ1(x) and ϕ2(x) given by (7), and q1(t) and q2(t) by
the solutions to (14), to be calculated next.

3.3 Approximate solution using perturbation analysis

With ε � 1 perturbation analysis can be used to calcu-
late approximate solutions to (14). Using the method
of multiple scales [24,43,44], we seek a solution in the
form:

q1 = q10(T0, T1) + εq11(T0, T1) + O(ε2)

q2 = εq21(T0, T1) + O(ε2), (16)

where T0 = t, T1 = εt is the slow timescale, andO(εn)

denotes termsof order ofmagnitude εn and smaller. The
omission of an ε0-term in the expansion for q2 simpli-
fies the calculation, and is readily justified by a known
property of the solutions sought: In Coriolis flowmeter-
ing the fundamental mode ϕ1 is resonantly excited and
thus its amplitude q1 dominates the modal response;
the second mode ϕ2 is not resonantly excited, but acti-
vated only by the small nonidealities of the system (e.g.,
Coriolis forces from the flow), thus |q2| � |q1| , as is
reflected in (16).

Inserting (16) into the two equations in (14) and
balancing terms of like powers of ε, one obtains from
the ε0-terms an equation for the dominating amplitude
component q10 of the fundamentalmodal amplitude q1:

D2
0q10 + ω2

1q10 = 0, (17)

where D j
i ≡ ∂ j/∂T j

i . Similarly, the ε1-terms give for
j = 1 an equation for the small amplitude correction
q11 to the fundamental mode:

123



182 J. J. Thomsen, N. Fuglede

D2
0q11 + ω2

1q11 = −2D0D1q10 − m11D
2
0q10 − K11q10

−ĉ11D0q10 − 1
2μ2B2

11q
3
10

−γ H111q
2
10 − β

∫ 1

0
ϕ1 f (D0q10ϕ1) dx

+pϕ1(xp) cos(�T0), (18)

and for j = 2 an equation for the small amplitude q21
of the second mode:

D2
0q21 + ω2

2q21 = −m21D
2
0q10 − K21q10 − ĉ21D0q10

−β

∫ 1

0
ϕ2 f (D0q10ϕ1) dx

+pϕ2(xp) cos(�T0), (19)

where, according to (15):

K11 = k11 + n11 + (αv2 − μ2η)B11,

K21 = k21 + n21, ĉ11=c11, ĉ21 = c21+2αvC21,

(20)

and (13) has been employed in (18)–(20).
Equation (17) is a second-order linear partial differ-

ential equation with a solution:

q10 = A(T1)e
iω1T0 + c.c. (21)

where A(T1) is a complex-valued function of the slow
timescale only, i is the imaginary unit and c.c. here
and below denotes complex conjugates of all preceding
terms.

As appears from (21), the function q10 is 2π -
periodic in ω1T0, and so will be the argument to the
general damping function f in (18)–(19). Then, f is
also 2π -periodic in ω1T0, and can thus be Fourier-
expanded, with (21) substituted into the argument of f :

f
(
iω1Ae

iω1T0ϕ1 + c.c.
)

= 1
2 g0+

∞∑
n=1

gneinω1T0 + c.c.,

(22)

where gn is the n’th Fourier coefficient:

gn (A(T1), ϕ1(x)) = ω1

2π

∫ 2π/ω1

0

f
(
iω1Ae

iω1T0ϕ1 + c.c.
)
e−inω1T0dT0, n = 0, 1, . . . .

(23)

Inserting (21)–(22) into (18)–(19) then gives:

D2
0q11 + ω2

1q11 = −γ H111AĀ

−γ H111A
2ei2ω1T0 − 1

2μ
2B2

11A
3ei3ω1T0

+
[(

ω2
1m11 − K11 − iω1α11 − 3

2μ
2B2

11AĀ
)
A

−i2ω1D1A + 1
2 pϕ1(xp)eiσT1

]
eiω1T0

−β

∫ 1

0
ϕ1

(
1
2g0 +

∞∑
n=1

gneinω1T0

)
dx + c.c., (24)

and

D2
0q21 + ω2

2q21 =
[(

ω2
1m21 − K21 − iω1α21

)
A

+ 1
2 pϕ2(xp)eiσT1

]
eiω1T0

−β

∫ 1

0
ϕ2

(
1
2g0 +

∞∑
n=1

gneinω1T0

)
dx + c.c., (25)

where a detuning parameter σ has been introduced to
express the nearness to first-mode primary resonance,
i.e., the nearness of the excitation frequency � to the
fundamental natural frequency ω1 of the perfect pipe :

� = ω1 + εσ (⇒ �T0 = ω1T0 + σT1). (26)

The requirement for solutions q11 of (24) to be free of
secular terms is that the resonant excitation terms (pro-
portional to eiω1T0) vanish identically, i.e., the solvabil-
ity condition becomes:
(
ω2
1m11 − K11 − iω1ĉ11 − 3

2μ2B2
11AĀ

)
A − i2ω1D1A

+ 1
2 pϕ1(xp)e

iσT1 − β
∫ 1
0 ϕ1g1dx = 0. (27)

With this fulfilled, a particular solution of (24) is:

q11 = − 1

ω2
1

[(
γ H111

(
Ā + 1

3 Ae
i2ω1T0

)
A

+ 1
16μ2B2

11A
3ei3ω1T0

)

+β

(∫ 1

0
ϕ1

(
1
2 g0 +

∞∑
n=2

(1 − n2)−1gneinω1T0

)

dx

)]

+c.c. (28)

Similarly, for solutions q21 (25) to be free of secular
terms, excitation terms proportional to eiω2T0 should
vanish identically. Assuming ω2 is away from ω1 there
will be no such terms, unless the damping is nonlin-
ear (β �=0), and at the same time an internal reso-
nance exists between the lowest to natural frequencies
of the perfect pipe, i.e., ω2 ≈ nω1; this is the well-
known case of modal interaction [24,26], where non-
linearity and internal resonance combine to allow the
transfer of energy from a directly excited mode (here
ϕ1) to another mode (here ϕ2). Such near-integer rela-
tionships between the lowest natural frequencies could
cause anomalies in the functioning of Coriolis flowme-
ters, in the presence of nonlinearity, since the second
mode would be excited not only by the fluid flow. For
this present study we assume the pipe is designed so as
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to not possess internal resonance. A particular solution
to (25) is then:

q21 = 1

ω2
2 − ω2

1

[(
ω2
1m21 − K21 − iω1ĉ21

)
A

+ 1
2 pϕ2(xp)eiσT1

]
eiω1T0

− β

2ω2
2

∫ 1

0
ϕ2

(

g0 +
∞∑

n=1

2gneinω1T0

1 − (nω1/ω2)2

)

dx

+c.c., (29)

To determine the amplitude function A(T1) from (27)
we express it in polar form,

A(T1) = 1
2a(T1)eiφ(T1), (30)

where a and φ are real-valued functions to be deter-
mined. In terms of these, the Fourier coefficients (23)
can be written

gn = (κn − iξn)e
inφ, n = 0, 1, . . . , (31)

where

κn = κn(x, a)

= 1
2π

∫ 2π
0 f (−ω1aϕ1(x) sin Y ) cos(nY )dY,

ξn = ξn(x, a)

= 1
2π

∫ 2π
0 f (−ω1aϕ1(x) sin Y ) sin(nY )dY. (32)

One can show that, for any function f , (32) gives κn =
0 for odd n while ξn = 0 for even n. Also, with ϕ1(x)
being symmetric w.r.t. x = 1

2 , κn and ξn are symmetric
w.r.t. x as well. Finally, if f is antisymmetric w.r.t. its
argument, i.e., f (−u̇) = − f (u̇) (as, e.g.,with damping
functions of only odd-ordered powers of velocity), then
κn = 0 for all n, while if f is symmetric, f (−u̇) =
f (u̇), then ξn = 0 for all n.
Inserting this and (30) into the solvability condition

(27) gives, when multiplying by e−iφ and separating
real and imaginary parts, the autonomous modulation
equations:

a′ = − 1
2 ĉ11a + 1

2ω1

[
2β

∫ 1
0 ϕ1ξ1dx

+pϕ1(xp) sin(ψ)
]
, (33)

aψ ′ = σa + 1

2ω1

[(
ω2
1m11 − K11 − 3

8μ
2B2

11a
2
)
a

+pϕ1(xp) cos(ψ)
]
, (34)

where ( )′ ≡ d/dT1, and a new phase variable has
been introduced:

ψ(T1) = σT1 − φ(T1), (35)

Inserting (30) also into (21) gives, with (26), and back
substituting T0 = t and T1 = εt :

q10 = 1
2ae

i(ω1T0+φ) + c.c.

= a cos(ω1T0 + σT1 − ψ) = a cos(�t − ψ),

(36)

while inserting (30) into (28)–(29) with similar back
substitutions gives:

q11 = − 1

ω2
1

[ 1
2 γ H111

(
1 + 1

3 cos (2(�t − ψ))
)
a2

+ 1
64μ2B2

11a
3 cos (3(�t − ψ))

] − β

ω2
1

∫ 1

0
ϕ1

×
(

κ0 − 2
∞∑

n=2

κn cos (n(�t − ψ)) + ξn sin (n(�t − ψ))

n2 − 1

)

dx,

(37)

and:

q21 = 1

ω2
2 − ω2

1

[(
ω2
1m21 − K21

)
a cos(�t − ψ)

+ω1ĉ21a sin(�t − ψ) + pϕ2(xp) cos(�t)
]

− β

ω2
2

∫ 1

0
ϕ2

×
(

κ0 − 2
∞∑

n=1

κn cos (n(�t − ψ)) + ξn sin (n(�t − ψ))

(nω1/ω2)2 − 1

)

dx,

(38)

The two-mode approximate perturbation solution for
the transverse pipe vibrations u(x, t) is then obtained
from (9) with (16) and (36) inserted:

u(x, t) = a(t) cos (�t − ψ(t)) ϕ1(x)

+ε [q11(t)ϕ1(x) + q21(t)ϕ2(x)] + O(ε2),

(39)

where q11(t) and q21(t) are given by (37)–(38) and
the slowly varying amplitude a(t) and phase ψ(t) are
solutions to the modulation Eqs. (33)–(34).

For flowmeter applications we are, in particular,
interested in the stationary vibrations that remain when
transients caused by disturbances of any kind (e.g., a
change in flow speed or actuator force) have damped
away. The corresponding stationary solutions to (33)–
(34) are characterized by having constant amplitude
a(t) = â and phase ψ(t) = ψ̂, as determined by
letting a′ = ψ ′ = 0 in (33)–(34) and solving the
resulting algebraic pair of equations for â and ψ̂ . Elim-
inating ψ̂ from the two equations so obtained, and
inserting (26), gives the algebraic frequency response
equation, implicitly defining the relation between the
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stationary vibration amplitude â and the excitation
frequency �:
(
K11 − ω2

1m11 − 2ω1(� − ω1) + 3
8μ2B2

11â
2
)2

â2

+
(

ω1ĉ11â − 2β
∫ 1

0
ϕ1(x)ξ1(x, â)dx

)2

= p2ϕ2
1 (xp)

(40)

where the three groups of terms represent, respectively,
(dynamic) stiffness, dissipation, and forced excitation.
Dividing the first of the two aforementionedEqs. [(33)–
(34) with a′ = ψ ′ = 0] with the second gives the
corresponding stationary phase ψ̂ :

tan ψ̂ = ω1ĉ11â − 2β
∫ 1
0 ϕ1(x)ξ1(x, â)dx

(
K11 − ω2

1m11 − 2ω1(� − ω1) + 3
8μ2B2

11â
2
)
â

,

(41)

where the numerator represents energy dissipation and
the denominator dynamic stiffness (vanishing at reso-
nance).

The frequency response curve (�, â) can be
described by solving (40) for �, giving:

� = ω̂1 + 3μ2B2
11

16ω1
â2

± 1

2

√(
pϕ1(xp)

ω1â

)2

−
(
ĉ11 − 2β

ω1â

∫ 1

0
ϕ1(x)ξ1(x, â)dx

)2

,

(42)

where

ω̂1 = (
1 − 1

2m11
)
ω1 + K11

2ω1
(43)

is the linear (μ2 = 0or â2 � 1) natural frequency
ω̂1 of the pipe in the presence of nonuniform pipe
mass (m11 �= 0) and any factor causing K11 �= 0 (i.e.,
additional translational stiffness Lk , bending stiffness
nonuniformity�e, mass flowαv, or axial tensionμ2η).

The frequency response is qualitatively illustrated
in Fig. 2, for a case where the effect of stretching non-
linearity [second term in (42)] is sufficiently strong to
create a frequency “overhang” region where two sta-
ble vibration amplitudes â exist. The two first terms
of (42) define the backbone of the frequency response
(dash-dotted in Fig. 2), with the basic relationship
between frequency and amplitude for free oscillations
(undamped and unforced):

� = ω̂1 + 3μ2B2
11

16ω1
â2 for thebackbone

(p = ĉ11 = β = 0), (44)

which grows quadratically with vibration amplitude â
from the linear natural frequency ω̂1.

The maximum forced response amplitude â = â∗
occurs where the width of the resonance peak vanishes
(cf. Fig. 2). Equating to zero the radical in (42), and
using (15) and (13) to obtain ĉ11 = c11, this gives:

â∗ = 1

c11ω1

(
pϕ1(xp) + 2β

∫ 1

0
ϕ1(x)ξ1(x, â

∗)dx
)

.

(45)

The corresponding peak frequency� = ω̂∗
1 (see Fig. 2)

is obtained from (42) or (44) with â = â∗inserted:
ω̂∗
1 = ω̂1 + 3

16μ
2B2

11â
∗2/ω1. (46)

As appears from (45)–(46), the maximum amplitude
is independent on the midplane stretching nonlinearity
parameterμ, which affects only the frequency at which
the maximum amplitude occurs. As for the asymmetric
stiffness nonlinearity parameter γ , it appears to affect
neither the maximum amplitude or the frequency at
which this occurs. However, besides the linear damping
(c11), nonlinear damping (β �= 0) appears to affect the
maximum amplitude, and also makes (45) nonlinear in
â∗.

WithCoriolis flowmetering the pipe is automatically
(by a positive velocity-feedback loop corresponding to
negative damping) driven at the current resonance fre-
quency, i.e.,� = ω̂∗

1,which changes slightlywithmass
flowαv via its influence on K11, cf. (46), (43), and (15).
As for the pipe vibration amplitude at this frequency,
with stronger nonlinearity there is a theoretical risk that
the stationary vibrations settle at the lower-amplitude
stable branch of the frequency response, rather than at
the peak. This could be avoided by design changes that
alter the quantitiesμ, B11, andω1 in the second term on
the right-hand side of (46) and (42) sufficiently, that is:
so that for any �, Eq. (42) has at most a single solution
â.

3.4 Interpreting the general solution

Equation (39), with q11 and q21 given by (37)–(38),
shows that the pipe basically vibrates at amplitude a in
its driven fundamental mode ϕ1(x). On top of this are
small additional motions of order ε, in both the first and
the second vibration mode, accounting for the effects
of mass flow αv, for possible external excitation of the
second mode pϕ2(xp), and for the various nonunifor-
mities considered.
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Fig. 2 Nonlinear frequency
response according to (42):
Stationary pipe vibration
amplitude â of the
fundamental harmonic as a
function of excitation
frequency �. Stable (solid
line), unstable (dashed), and
free oscillation / backbone
response (dash-dotted)

The first-mode correction amplitude q11 in (39),
as given by (37), vanishes identically if nonlinearities
are ignorable (γ = μ2 = β = 0), and can have a
nonzero time average if γ H111 �= 0 (i.e., with asym-
metric stiffness, e.g., a pre-deformed pipe), or if κ0 �=
0 (i.e., with asymmetric generalized damping func-
tions f (−u̇) �= − f (u̇)). Nonlinearity from asymmet-
ric stiffness and midplane stretching (γ and μ2 terms)
creates response components oscillating at multiples of
the forcing frequency, as is typical for nonlinear sys-
tems. Such higher harmonics also arise with the β-term
in (37), originating from the Fourier expansion of the
generalized damping function.

The second-mode correction amplitude q21 in (39) is
given by (38). For a pipe which is perfect (cf. Sect. 2.5)
except for a nonzero mass flow (αv �=0), and (as with
flowmeters) is driven at a nodal point for the second
vibration mode (ϕ2(xp) = 0), the only nonzero term
is the one with ĉ21; for this case, by (15) and (12),
q21 = 2C21aαvω1(ω

2
2 − ω2

1)
−1 sin(�t − ψ), which

describes a second-mode component oscillating 90◦
out of phase with the primarily excited first mode, but
at the same frequency, with an amplitude proportional
to the mass flow αv; this is the design case for a Corio-
lis flowmeter. By (39) the resulting pipe motion u(x, t)
is then a traveling wave, i.e., the nodes of the vibra-
tion pattern move in time; this corresponds to a phase
shift in the zero-crossing times for two different points
located along the pipe, which can be measured and
related to themass flow.However, as appears from (38),
a nonzero value of β

∫ 1
0 ϕ2ξndx [i.e., nonlinear, asym-

metric damping, cf. (32)] can also produce a second-
mode oscillation at frequency � and 90◦ out of phase
with the driven mode, and thus traveling waves that

could be erroneously related to mass flow. The same
applies if c21 �= 0, as could occur with even linear
damping varying nonuniformly along the pipe axis; this
would lead to a change of ĉ21 which is unrelated tomass
flow [cf. (15)].

To investigate more closely the effects of pipe
nonuniformity and generalized nonlinear damping, we
next calculate predictions of the phase shift between
two specific points located along the pipe; this is what
is actuallymeasured inCoriolis flowmeter applications.

4 Phase shift with mid-pipe sharply resonant
excitation

4.1 Resonant response amplitude at measurement
locations

With Coriolis flowmeters, pipe motions are typically
measured by a pair of magnetic pickup coils situated
at x = x1 and x = x2 symmetrically an axial distance
�x from the pipe middle:

x1,2 = 1
2 ∓ �x, �x ∈]0; 1

2 [. (47)

The pickup signals are narrow-band filtered and ana-
lyzed to ensure the measured phase shift between x1
and x2 is only for vibrations at the excitation frequency
�. The pipe excitation is applied at xp = 1

2 , so that
ϕ2(xp) = 0, cf. (7), and is controlled by velocity feed-
back to be sharply resonant with the damped primary
resonance frequency, so that and � = ω̂∗

1 and â = â∗,
cf. Fig. 2 and (45)–(46). Under these conditions, and
according to (39) with (37)–(38), recalling that only
vibration components at frequency � pass the filter,
the pipe motions measured at x = xk become:
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u(xk, t) = â
[
A(xk) sin(�T0 − ψ̂)

+B(xk) cos(�T0 − ψ̂)
]

+ O(ε2)

= â
√
A(xk)2 + B(xk)2 cos (�T0

−ψ̂ + �(xk)
)

+ O(ε2), (48)

where

A(x) = ε
ω1ĉ21

ω2
2 − ω2

1

ϕ2(x),

B(x) = ϕ1(x) + ε
ω2
1m21 − K21

ω2
2 − ω2

1

ϕ2(x),

�(x) = arctan (A(x)/B(x)) , (49)

and where for A(x) a term 2β
∫ 1
0 ϕ2ξ1dx has canceled,

being the integral of a product of an antisymmetric
and a symmetric function, cf. (7) and the comment
below (32). To order ε the pipe response amplitude
û(xk) at pipe measurement point xk is then, by Taylor-
expanding the factor multiplying the dominating har-
monic term in (48) and inserting (49):

û(xk) = â

(

ϕ1(xk) + ε
ω2
1m21 − K21

ω2
2 − ω2

1

ϕ2(xk)

)

+ O(ε2)

(50)

4.2 Phase shift between measurement locations

Defining the phase shift between the measurement
points x1 and x2 as

�� = �(x1) − �(x2), (51)

and utilizing that [by (47) and (7)] ϕ1(x1) = ϕ1(x2)
and ϕ2(x1) = −ϕ2(x2), gives, upon Taylor-expanding
for small ε, and substituting (15) with (11) and (20)
with (11)–(12) for ĉ21:

�� = ε
2ω1ϕ2(x1)

(ω2
2 − ω2

1)ϕ1(x1)

(
2αv

∫ 1

0
ϕ2ϕ

′
1dx + c12

)

+O(ε3), (52)

where, by (12):

c12 =
∫ 1

0
cu(x)ϕ1ϕ2dx +

∫ 1

0
cθ (x)ϕ

′
1ϕ

′
2dx

= 1
2

∫ 1
0 (cu(x) − cu(1 − x)) ϕ1ϕ2dx

+ 1
2

∫ 1
0 (cθ (x) − cθ (1 − x)) ϕ′

1ϕ
′
2dx, (53)

where the last equality follows from splitting cu and cθ

into symmetric and antisymmetric parts and noting the

symmetry properties of the mode shapes (for hinged–
hinged or clamped–clamped pipes ϕ1ϕ2 and ϕ′

1ϕ
′
2 are

both antisymmetric on x ∈[0,1]).
The analytical prediction (52) for the phase shift is

accurate to order ε2 (the ε2-terms cancel identically);
it can readily be rearranged into a form more directly
useful for applications:

�� = ε (s1αv + ��0) + O(ε3) (54)

where s1 is the linear meter sensitivity, i.e., the factor of
proportionality between mass flow αv and phase shift
��:

s1 = 2�
∫ 1

0
ϕ2ϕ

′
1dx, � = 2ω1

ω2
2 − ω2

1

ϕ2(x1)

ϕ1(x1)
, (55)

and ��0 is the zero shift, i.e., the phase shift present
when there is no fluid flow (αv = 0):

��0 = c12�. (56)

Note again that ε only serves to bookmark the magni-
tude order of small terms; in actual numerical calcula-
tion it is set to unity. From (54)–(56) some conclusions
relevant for flowmetering applications readily follow:

To order ε2, the meter sensitivity s1 is predicted to:
grow with the nearness of the perfect-pipe natural

frequencies ω1 and ω2 for the two vibration modes
involved, in the same proportion as reported in other
studies [1,45],

be independent on the vibration amplitude â, and
be independent on all imperfections included in this

study, i.e., small (O(ε)) linear and nonlinear damp-
ing, mass and stiffness nonuniformity, and additional
transverse stiffness (by pre-tension, midplane stretch-
ing / symmetric stiffness nonlinearity, or asymmetric
nonlinearity).

Also, according to (56) a zero shift ��0 �= 0 may
result if c12 �= 0. According to (53) this generally
occurs if cu(x) �= cu(1− x) or cθ (x) �= cθ (1− x), i.e.,
if the damping distributions are not symmetric w.r.t.
x = 1

2onx ∈ [0, 1]. In practice zero phase shifts of
(also) this kind are routinely removed during the initial
flowmeter calibration.However, subsequent changes of
system damping under operation (e.g., due to temper-
ature, wear, lubrication, vibration level, or multi-phase
flow [21]) could lead to phase shifts that would erro-
neously be related to mass flow.

It is important to note that these conclusions only
hold under the assumptions that all imperfections con-
sidered are small. Thus, the rather general expressions
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(54)–(56) do not imply that the phase shift, the meter
sensitivity, and the zero shift are independent of all
imperfections considered in this study other than mass
flow and asymmetric damping. What can be inferred is
only that if the imperfections considered are of magni-
tude order O(ε), ε � 1, then the effect of asymmetric
damping on phase shift is of the same order of magni-
tude as the mass flow, i.e., O(ε), and introduces a zero
shift that could be mistaken for mass flow, while the
effect of all other imperfections considered is at least
two orders of magnitude, smaller, i.e., O(ε3). As for
imperfection in the form of added nonuniform mass,
a similarly very weak dependency on phase shift was
reported in [46].

Indeed the phase shift does depend on several of
the imperfections considered here, if just large enough.
Added mass, for example, changes the separation
between the two lowest natural frequencies and the
mode shapes, and thus affects meter sensitivity. This
is evident, e.g., from Fig. 4 in [10], showing a clear
effect of added mass on phase shift; however, in that
example the total mass amounts to up to 30 % of the
pipe mass, and thus is not a “small imperfection” in the
sense considered in the present paper (where the cor-
responding terms in the equation of motion should be
much smaller than the dominating terms). In [10] the
added mass is not assumed small, and thus the result-
ing analytical expressions are more accurate than (54)–
(56), but also significantly more complicated and less
readily interpretable. (See, e.g., [23] for a further dis-
cussion of added mass effects.)

4.3 Phase shift with hinged supports

The above conclusions are valid for both sets of bound-
ary conditions considered (hinged–hinged, clamped–
clamped), as long as the pickups are symmetrically
positioned lengthwise, and the excitation applied at the
pipe center, xp = 1

2 . For hinged supports (52) gives,
on inserting (6)–(7) and (47):

�� = ε 64
45π2 sin(π�x)

(
αv + 3

16c12
) + O(ε3), (57)

where, by (53):

c12 =
∫ 1

0
(cu(x) − cu(1 − x)) sin(πx) sin(2πx)dx

+2π2
∫ 1

0
(cθ (x) − cθ (1 − x)) cos(πx)

cos(2πx)dx . (58)

This is identical to what was found in [1] for the case
of ideally hinged supports [i.e., with κ1 = 0 in [1],
Eq. (42)–(43)]. According to (57) the maximum linear
meter sensitivity is obtained for �x → 1

2 , i.e., with
measurement pickups placed as close as possible to the
supports; however, in practice pickups are located so as
to obtain the strongest signal from the (weakly) flow-
excited second vibration mode, i.e., at the antinodes of
ϕ2, corresponding to �x = 1

4 for hinged supports.

5 Numerical validation of analytical predictions

The approximate analytical predictions of phase shift
(52) and (57) can be tested by comparing with numeri-
cal results obtained with a minimum of approximating
assumptions, using a Galerkin expansion with suffi-
ciently high number of modes to discretize (1). For the
linear problem (μ = γ = β = 0) numerical solu-
tions for the pipe motion can be calculated by inserting
the known solution form and solving the resulting set
of linear algebraic equations for the modal amplitudes;
phase shifts can then be calculated without analyzing
response time series. For the nonlinear problem, by
contrast, numerical simulation of the ordinary nonlin-
ear differential equations for the modal amplitudes is
required.

5.1 Main approximations and solution procedure

The partial differential Eq. (1) is discretized by the stan-
dard Galerkin expansion (9), using mode shapes (7) of
the corresponding unperturbed problem. The resulting
system of N coupled second-order nonlinear differen-
tial Eq. (10) can be written in the form:

Mq̈ + D(v)q̇ + K(v)q + g(q, q̇) = f cos(�t). (59)

where q = q(t) holds the modal amplitudes q j (t), j =
1, . . . , N , and the elements of the mass matrix M,
the damping and stiffness matrices D(v) and K(v)

(both fluid velocity dependent), the essentially non-
linear forcing vector g(q, q̇), and the modal forcing
amplitude vector f are:

Mi j = δi j + εmi j , Di j (v) = εĉi j ,

Ki j (v) = δi jω
2
j + εKi j ,

gi (q, q̇) = ε

⎡

⎣γ

N∑

j,k=1

Hi jkq j qk + 1
2μ2

N∑

r,s=1
Brsqr qs
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N∑

j=1

Bi j q j + β

∫ 1

0
ϕi f

⎛

⎝
N∑

j=1

q̇ jϕ j

⎞

⎠ dx

⎤

⎦ ,

fi = εpϕi (xp), i, j = 1, 2, . . . , N , (60)

where all system constants are already defined [cf. (5),
(6), (11), (12), (15)], and ε still serves only to book-
mark terms assumed to be small (in actual numerical
calculations ε =1).

For N = 2 this system reduces to the two-mode
approximation (14), which allowed the simple analyt-
ical approximate expression (52) for the phase shift
to be set up, though at the cost of reduced accuracy
due to excluding vibration modes higher than the sec-
ond. Using numerical simulation of (59)–(60) for suffi-
ciently high N allows the accuracy of (52) to be tested.

5.1.1 Determining phase shift in the linear case

For the linear case γ = μ = β = 0, and thus
g = 0. Then, (59) can be solved exactly for q(t), and
the resulting phase shift is calculated in a straightfor-
ward manner, as described for a similar case in [1].
For this the pipe is assumed to be excited resonantly in
its fundamental symmetric mode. The resonance fre-
quency of this mode changes with fluid flow and other
imperfections considered; it can be calculated by let-
ting f = g = 0 in (59), inserting a time harmonic solu-
tion q(t) = ϕ∗eλ t , and solving the resulting algebraic
eigenvalue problem numerically for the fundamental
eigenvalue λ = λ1. Generally with underdamped sys-
tems, and even with nonzero flow speed v �= 0 or if D
is not proportional to K or M, the eigenvalues λ = λ j

come as complex conjugate pairs, with the imaginary
part Im(λ j ) = ω∗

j defining the j’th damped natural
frequency, and the real part defining the damping ratio
ζ j = −Re(λ j )/|λ| of mode j [47]. Thus, as the excita-
tion frequency for resonant excitation of the fundamen-
tal mode we take � = ω∗

1(≈ ω̂1 = ω̂∗
1 in the absence

of midplane stretching nonlinearity, μ = 0, cf. Fig. 2).
To solve (59) for the harmonically forced linear case

(f �= 0, g = 0), we insert a time-harmonic solution
form for the stationary part of the response:

q(t) = a sin(�t) + b cos(�t), (61)

and separate the in-phase (cos(�t)) and out-of-phase
(sin(�t)) terms to give:
[
K − �2M −�D

�D K − �2M

]{
a
b

}
=

{
0
f

}
, (62)

which can be solved for the vectors a and b to give the
corresponding q(t) by (61) for any excitation frequency
�, including the particular first-mode resonance fre-
quency ω∗

1 of interest here.
Substituting � = ω∗

1 into (61)–(62), and solving
(62) for the corresponding resonant values of a =
{a1 · · · aN }T and b = {b1 · · · bN }T , the value of q
resulting from (61) can be substituted into (9) to give,
upon rewriting from sine-cosine to amplitude-phase
form:

u(x, t) = C(x) sin
(
ω∗
1 t − �(x)

)
, (63)

where the amplitude C and the phase � generally vary
along the pipe axis x :

C(x) =

√√√
√√

⎛

⎝
N∑

j=1

a jϕ j (x)

⎞

⎠

2

+
⎛

⎝
N∑

j=1

b jϕ j (x)

⎞

⎠

2

,(64)

�(x) = − arctan

⎛

⎝
N∑

j=1

b jϕ j (x)/
N∑

j=1

a jϕ j (x)

⎞

⎠ , (65)

The phase shift�� between any two pipe points x1 and
x2 can then be calculated by inserting (65) into (51).
For two symmetrically situated points x1,2 = 1

2 ∓ �x
(cf. (47)) this gives:

�� = �( 12 − �x) − �( 12 + �x), (66)

the numerical result of which can then be compared to
the corresponding phase shift predicted by the simple
analytical approximations (52) or (57).

Equation (66) with (65) will be referred to as the
numerical solution, since it relies on numerical solu-
tion of the set of linear algebraic Eq. (62); it was calcu-
lated usingMATLAB. The convergence of numerically
calculated phase shifts �� with increased number of
included modes N was tested in each case reported
below, with final values of N chosen large enough to
ensure no significant changes in results by halving or
doubling N .

Thenumerical solution canbe expected to offer good
accuracy as N is increased, converging toward the exact
solution as N → ∞. It does not require imperfections
to be small, but, on the other hand, provides very lit-
tle insight into how imperfections affect phase shift.
Thus, the key role of numerical solution is here to test
the quality of the simple, more approximate analyti-
cal solutions. For parameter ranges where the analyti-
cal expressions can be validated, these are considered
much more useful than numerical solutions for practi-
cal innovation, design, and troubleshooting.

123



Perturbation-based prediction of vibration phase shift along fluid-conveying pipes 189

5.1.2 Determining phase shift and response amplitude
in the nonlinear case

For the nonlinear case at least one of (γ, β, μ2) is
nonzero, so that g �= 0 in (59)–(60). Then, this set
of nonlinear ODEs must be solved for q(t) for specific
parameters by numerical integration, with the excita-
tion frequency equal to the peak resonant frequency,
� = ω̂∗

1 (cf. Fig. 2), and the corresponding pipe defor-
mations u( 12 ± �x, t) calculated by (9). The proce-
dure follows [18] in first rewriting (59) into standard
(implicit) first-order form:

M̃ẏ = G(t, y), (67)

where y = y(t) = {
qT q̇T

}T ∈ R2N , and:

M̃ =
[
I 0
0 M

]
, G(t, y) =

[
0 I

−K −D

]
y

−
{

0
g(y)

}
+

{
0
f

}
cos(�t). (68)

with M, D, K, g, and f given by (60). Equation (67)
with (68) is solved for y = y(t) using a MATLAB
standard solver for stiff systems (ode23tb, and cross-
checking with other solvers), using odeset with the
Mass(-matrix) option, and initial conditions y(0) =
{
q(0)T q̇(0)T

}T
.

When during simulation a stationary state has set-
tled, the time shift �t between the instances of zero
velocity crossings of u at the two pipe points x1,2 =
1
2 ∓ �x can be determined numerically using (9), and
the corresponding phase shift �� = ��t is calcu-
lated. With numerical solutions that are time-sampled
uniformly at high enough frequency, and zero cross-
ings determined by linear interpolation between sam-
pled points, the time shift �t can be determined accu-
rately enough to reveal even the very small phase shifts
�� relevant for flowmeter applications.

5.1.3 Numerical issues with nonlinear response
simulation

a) Convergence tolerance A proper choice of MAT-
LAB’s absolute tolerance parameter (AbsTol) turned
out to be more than usually critical for acceptable
numerical solution accuracy: Whereas the choice of
the relative tolerance parameter (RelTol) is not criti-
cal, MATLAB’s default value of 10−6 for AbsTol in
most cases implies highly inaccurate numerical results

for the phase shift ��. This is because the phase shift
depends mostly on the nondimensional modal ampli-
tudes q1 and q2 of the first and second vibration mode
[cf. (9)], where for realistic flowmeter parameters q1 is
very small, e.g., O(10−6), and q2 may be an order of
magnitude smaller, and the higher modes yet smaller.
With MATLAB’s ODE solver considering all solution
components smaller than AbsTol effectively zero or
“unimportant,” AbsTol needs to be set small enough
that the smallest component relevant for the solution
(typically thatmeans the amplitude of the highestmode
included) will be determined to full accuracy, i.e., with
tolerance RelTol. (Or alternatively, the modal ampli-
tudes q j could be rescaled to be all of order unity.)
For all results presented below parameters were set
to (RelTol,AbsTol)= (10−8, 10−10), giving accept-
able accuracy and computation time.

b) Initial conditions In some cases choosing these
is not trivial, since with nonlinear systems the sta-
tionary state may depend on initial conditions. With
weak cubic nonlinearities and mono-frequency har-
monic excitation as assumed, the present system will
have at most two stable stationary states at the drive
frequency � = ω̂∗

1 (cf. Fig. 2). However, with a real
Coriolis flowmeter, feedback control will work so as
to keep the response close to the backbone of the fre-
quency response (dash-dotted in Fig. 2), since this gives
the relation between oscillation frequency and ampli-
tude for an undamped and unforced system, and this
is effectively what the feedback control does: deliv-
ers a small amount of energy at the natural frequency
corresponding to a given amplitude, which exactly bal-
ances the energy dissipated by damping, so that the sys-
tem is held at a constant frequency and amplitude. This
means that the solution for the feedback-controlled sys-
tem will be at (ω̂∗

1, â
∗) in Fig. 2, i.e., at the peak, and

not on the lower branch. Thus, we use, for the excita-
tion frequency �, the analytically predicted resonance
frequency ω̂∗

1 given by (46). But for cases with signifi-
cantly bent response peak (i.e.,with significant stiffness
nonlinearity), a numerical procedure was employed
corresponding to positive velocity feedback (i.e., neg-
ative damping), ensuring the solution to be at the top
of the response peak and not on the lower branch.

c) Achieving stationarity The inherently very low
damping in Coriolis flowmeter pipes implies simi-
larly long simulation times needed for transients to
decay and stationarity to settle. To indicate the time
scale, for a first-mode damping ratio ζ1 ≈ 0.01%
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(a typical value for Coriolis flowmeters, cf. Sect. 5.2
below) the number of oscillation cycles NR needed
to reach R = 99.9% of the stationary amplitude is
nR,1 ≈ − ln(1 − R)/(2πζ1) ≈ 11,000 cycles of first-
mode oscillations. To drastically cut down on the sim-
ulation time needed to attain stationarity, the already
known linear stationary solution (61), giving q(t0)
at some arbitrary time t0, was used as initial condi-
tions q(0) for the nonlinear system (67). To further cut
down on simulation time, these initial conditions were
multiplied by â∗/â(ω̂1), i.e., by the theoretically pre-
dicted ratio between nonlinear and linear base oscilla-
tion amplitude [cf. (42), (43), (45)]. By running a few
simulation instances at very long times corresponding
to at least nR,1 cycles, it was verified that stationarity
was actually reached.

d)Copingwith long computation timesWith, e.g.,
N = 16, modes the natural frequency of the highest
mode of the hinged–hinged pipe is 162 = 256 times
that of the fundamental mode, making the system com-
putationally stiff, and requiring fine time discretiza-
tion. When additionally the damping is extremely low,
requiring many oscillation cycles simulation to reach
stationarity (cf. preceding paragraph), and nonlinear-
ity is also involved, then computation time for a stan-
dard PC running MATLAB becomes of the order of
days to simulate a useful time series for just a single
set of parameter values. This problem is reduced dras-
tically when increasing the damping coefficient away
from the extremely low value encountered with real
Coriolis flowmeters. Therefore, for the nonlinear cases
reported below, the damping is artificially increased by
a factor 100, using a base value of cu0 = 0.2 (corre-
sponding to ζ1 = 1.0% and ζ2 = 0.25%, i.e., still very
weak damping), and at the same time increasing also
the forcing amplitude p by the same factor, so as to
maintain the same level of stationary vibration ampli-
tude (about 7 × 10−5; see below) in all cases. This
cuts down the time to reach stationarity during simu-
lation by about the same factor, while supposedly not
affecting the main conclusion drawn from the valida-
tion procedure. The latter is due to the way the artifi-
cial damping is introduced, as a simple increase in the
spatially uniform part of the system damping, which
is already known [1,20,48] not to affect the spatial
phase shift of interest here. (This damping affects only
the phase temporal shift between input forcing and out-
put response.) Furthermore, for some of the numerical
simulations with nonlinearity, the number of included

modes was reduced to N = 8, as indicated in the fig-
ure captions, checking for a few cases that doubling
the number of modes would not visibly change the
graphs displayed. Alternative ways to cut down sim-
ulation time could involve numerically more efficient
software, e.g., using Fortran coding, or replacing brute
force simulation with solvers searching for periodic
solutions (e.g., MATLAB’s BVP solver bvp5c).

e) Calculating stationary vibration amplitude
from time series data with weak harmonic distor-
tionWith numerical simulation the response amplitude
û1 at pipe measurement point x1 is calculated simply
as half the peak-to-peak amplitude in the stationary
time series u(x1, t), ignoring the very small content of
harmonic distortion. The value of û1 so computed can
be compared to the analytical prediction given by (50).
The distorting higher harmonics could be filtered away,
if significant; this is done anyway with a real Coriolis
flowmeter, where only the signal components at the
drive frequency � are further processed.

5.2 Validation cases

The simple first-order approximate analytical predic-
tion (57)–(58) for phase shifts of the hinged–hinged
beam is here validated against numerical solutions, at
the same time also illustrating the effect of the consid-
ered pipe imperfections on the phase shift. After defin-
ing baseline system parameter values, Sects. 5.2.2–
5.2.5 consider the effects of imperfections corre-
sponding to, respectively, nonuniform linear damping,
nonuniformmass and stiffness, nonlinear damping, and
nonlinear stiffness.

5.2.1 Baseline system parameters

The baseline parameters are for a perfect pipe, except
that uniform transverse damping is included in all
cases, i.e., �m(x) = �e(x) = cθ (x) = μ = η =
γ = β = 0 (cf. Sect. 2.5), but cu(x) �= 0. The effects
of imperfections are then considered separately. For
the uniform transverse damping cu(x) = cu0 = 0.002,
unless otherwise stated in figure captions; this implies
a quality factor Q1 = ω1/cu ≈ 5000 for the drive
mode, or a damping ratio of ζ1 = (2Q1)

−1 ≈ 0.010%
(and ζ2 = 0.0025%) corresponding to the value for a
particular industrial Coriolis flowmeter. For the mass
ratio we use α = 0.3, and consider a mass flow
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range αv ∈ [0, 0.1]; this roughly corresponds to a
specific industrial Coriolis flowmeter measuring water
flow from zero to full nominal flow rate. For opti-
mal flowmeter sensitivity the measurement sensors are
located at the antinodes of the second vibration mode,
i.e., x1 = 1

4 , x2 = 3
4 , �x = 1

4 , while input forcing is
provided at the antinode of the first mode, i.e., xp = 1

2 ,

with amplitude p = 10−6 (unless otherwise stated in
figure captions); this exemplifies, for the level of damp-
ing used, a flowmeter pipe vibrating at maximum nor-
malized resonant amplitude of the order 7×10−5, e.g.,
a 200-mm-long pipe vibrating at about 14µm ampli-
tude.

5.2.2 Effect of nonuniform linear damping

As an illustrative example, we consider the damping
distribution to be basically uniform, but with an addi-
tional nonuniformity localized at x = xc ∈ {xcu, xcθ },
i.e.,

cu(x) = cu0 + cu1δ(x − xcu), (69)

cθ (x) = cθ0 + cθ1δ(x − xcθ ), (70)

where cu0 and cθ0 are positive constants for uniform
transverse and rotational damping, respectively, and
cu1 and cθ1 the corresponding constants for a localized
change (positive or negative) in damping at x = xcu
and x = xcθ . The phase shift �� is then given by
(57), where c12 is calculated from (58) with (69)–(70)
to give:

c12 = 2cu1 sin(πxc) sin(2πxc)

+4π2cθ1 cos(πxc) cos(2πxc), (71)

which does not depend on the uniform damping con-
stants cu0 and cθ0. Thus to order ε2 the phase shift is
predicted to be unaffected by small (O(ε)) uniformly
distributed linear viscous damping. Also, transverse
damping localized at the nodes of the first or second
vibration mode (xc = 1

2 ) has no effect on the phase
shift [the cu1-term in (71) vanishes]; similarly, rota-
tional damping localized at the antinodes of the first
or second mode (xc ∈ { 1

4 ,
1
2 ,

3
4

}
) has no effect on the

phase shift (the cθ1-term vanishes).
Figure 3a shows the effect of localized (i.e., nonuni-

form) transverse damping cu1 [cf. (69)] on the phase
shift�� for varyingmassflowαv, with details as given
in the caption, andwith the uniform part of the damping
cu0 = 0.002 (cf. intro to Sect. 5.2). Solid lines represent

results obtained by the analytical approximation (57)
with (71); they agree very well with results of numeri-
cal solution (65)–(66) of the original model equations
(1)–(3), deviating less than 0.6 % even for the largest
nonuniformity, cu1 = ±0.2, which is two orders of
magnitude higher than the uniform part of the damping.
The number of modes used in the Galerkin expansion
(9) was N = 16, chosen so as to ensure convergence
of�� to typically six (in worst cases three) significant
digits. However, the results appear to be rather insensi-
tive to all N ≥ 2, reflecting the dominating influence of
the lowest twomodes. This also explains the high accu-
racy of the simple analytical prediction, which include
just these modes.

Figure 3b illustrates the effect of different levels of
pure uniform damping cu0 (with cu1 = 0) on the phase
shift ��. The values used for cu0 span four orders of
magnitudes, with corresponding damping ratios in the
range 0.01–10 %, i.e., from realistic to unrealistically
high, but in all caseswith good agreement between ana-
lytical predictions andnumerical solutions, and demon-
strating independency of the phase shift to uniformly
distributed linear viscous damping (all lines coinciding
and symbols overlaid).

As for rotational damping [cf. (70)], corresponding
graphs for the effects of the nonuniform part cθ1 and
the uniform part cθ0 are not given here, since they are
closely similar to Fig. 3a, b for transverse damping, that
is: The nonuniform part introduces zero shifts (i.e., the
lines translate upward with increasing nonuniformity),
the uniform part has no effect on phase shift (all lines
coinciding), and the agreement of the analytical predic-
tion (57) with (71) to numerical solutions is very good,
even up to unrealistically high values of the damping
constants.

Theprediction that asymmetrically distributeddamp-
ing introduces a zero shift,while symmetrically (includ-
ing uniformly) distributed damping has no significant
effect, agreeswith experimental findings involving arti-
ficially induced damping asymmetries [20,49].

5.2.3 Effect of nonuniform mass and stiffness

As an example of mass and stiffness nonuniformity,
we consider the following axial distribution of, respec-
tively, additional (fluid empty) pipe mass �m, addi-
tional bending stiffness�e, transverse stiffness ku , and
rotational stiffness kθ :

�m (x) = m1δ(x − xm),
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(a) (b)

Fig. 3 a Effect of localized (i.e., nonuniform) transverse damp-
ing cu1 [cf. (69)] on phase shift �� for varying mass flow
αv, as obtained by the analytical approximation (57) with (71)
(lines), and by the numerical solution (65)–(66) to (1)–(3) using
N = 16 modes (symbol markers). From bottom to top the
lines show �� for different levels of nonuniform damping

cu1 = {−0.2, −0.1, 0.0, 0.1, 0.2} at location xcu = 0.1,
with cu0 = 0.002 in all cases. b Effect of different levels
cu0 = 0.002 × {1, 10, 100, 1000} of pure uniform transverse
damping (cu1 = 0) on ��, again with lines (symbols) showing
results of numerical solution (analytical approximation)

�e (x) = e1δ(x − xe),

ku(x) = ku1δ(x − xku),

kθ (x) = kθ1δ(x − xkθ ), (72)

wherem1, e1, ku1, kθ1 represent concentrated added (or
removed)mass and stiffness at corresponding locations
x ∈ {xm, xe, xku, xkθ }.

Figure 4a–d displays the relation between phase
shift �� and mass flow αv for each of the four
nonuniformities separately, with solid lines represent-
ing the analytical approximation (57) with (71) and
(72), symbols marking numerical solutions (65)–(66)
of the original model Eqs. (1)–(3), and parameter val-
ues as given in the caption. Numerical solutions were
obtained using N =16 modes, but using, e.g., 160
modes provides no visible change to the graphs. For
each of the cases (a)–(d) the effect of nonuniformity is
shown for, respectively, a vanishing nonuniformity for
reference (zero coefficient, shown with circle symbols
for the numerical results), a small nonuniformity corre-
sponding to realistic cases and also to the assumptions
underlying the analytical approximations (coefficient
0.1, squares), and an unrealistically large nonunifor-
mity for which the assumptions underlying the analyt-
ical approximation fail substantially (coefficient 1.0,
diamonds; e.g.,m1 = 1.0 implies an added mass equal
to the total pipe mass, i.e., not “small” as assumed). As

for the analytical predictions, these predict the phase
shift not to depend on nonuniformities in mass or stiff-
ness; consequently the solid lines in each subfigure
all overlap, and in particular, there is no zero shift.
These features are confirmed by numerical simulation,
where the marker symbols for zero (circle) or small
(square) nonuniformity falls closely on the lines. Only
in the cases of unrealistically large nonuniformities
(diamonds) do the numerical results visibly differ from
the analytical approximations, though not very much
so.

Thus, under the assumed smallness in nonunifor-
mity, the equivalence of the simple analytical predic-
tion [(57) with (71)] to the results of detailed numerical
solution of a multi-mode expansion is confirmed. Also,
the prediction that even a nonuniformmass distribution
does not produce a zero shift agrees with experimen-
tal findings involving artificially added mass to a real
Coriolis flowmeter [20].

5.2.4 Effect of nonlinear (cubic) damping

Here we validate the analytical predictions for the case
of nonlinear cubic damping. All other imperfections
except linear damping and mass flow are ignored, i.e.,
�m = �e = η = γ = Lk = μ = 0, but β �=0 (the
coefficient of damping nonlinearity), αv �= 0 (mass
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Fig. 4 Phase shift �� for
varying mass flow αv, with
nonuniformity in a mass,
m1 = {0, 0.1, 1} ; b
bending stiffness,
e1 = {0, 0.1, 1} ; c
transverse stiffness,
ku1 = {0, 0.1, 1} ; d
rotational stiffness,
kθ1 = {0, 0.1, 1} , as
obtained by the analytical
approximation (57) with
(71) (lines), and by the
numerical solution
(65)–(66) to (1)–(3) using
N = 16 modes
({circle, square, diamond})for
{zero, small, large}nonuniformity).
All nonuniformities are
localized at x = 0.1, i.e.,
xm=xe = xku = xkθ = 0.1,
and damping is taken to be
linear and uniformly
viscous, i.e., (69)–(70) with
cu0 = 0.002 and
cu1 = cθ0 = cθ1 = 0

(a) (b)

(c) (d)

flow), and cu(x) = cu0 �= 0 (uniform linear damping,
giving Lc �= 0).

According to the simple analytical approximation
(57) with (71), the phase shift �� does not depend
on the coefficient β characterizing uniform nonlinear
damping; the influence, if any, is predicted to be O(ε3).
But the stationary vibration amplitude is predicted to
be affected. For cubic damping, f (u̇) = u̇3, we use
(45) to calculate the approximate resonant vibration
amplitude â∗, using first (32) to calculate ξ1(x, a) =
− 3

8 (ω1aϕ1(x))3, and inserting also (6)–(7) for hinged
pipe supports; this gives, for insertion into (45):

∫ 1

0
ϕ1(x)ξ1(x, â

∗)dx = − 9
16π6(â∗)3, for f (u̇) = u̇3.

(73)

When β �= 0, Eq. (45) with (73) is a depressed cubic in
â∗, which for all relevant physical parameters has only
a single real-valued solution [50]:

â∗ = 3
√
r1 + √

r2 + 3
√
r1 − √

r2, (74)

where

r1 = 4pϕ1(xp)

9βπ6 , r2 = r21 +
(
8c11ω1

27βπ6

)3

. (75)

For calculating frequency responses in terms of reso-
nant stationary pipe amplitude û(x1) at a sensor loca-
tion x1 as a function of excitation frequency �, we
use (50) with â determined (implicitly, in the nonlinear
case) by (42). In (42), by (73) and since C11 =0 (by
(13)) and ĉ11 = c11[by (13),(15)], the damping term
under the radical reduces to:

ĉ11 − 2β

ω1â

∫ 1

0
ϕ1(x)ξ1(x, â)dx

= c11 + 9
8π

4βâ2, for f (u̇) = u̇3. (76)

Thus (42) gives, by (43), (6), (7), (20), (12), (11)–(15),
and with no stiffness nonlinearity (μ = 0), uniformly
distributed mass, stiffness, and cross section (m11 =
k11 = n11 = 0):

� = ω1 − 1
2αv2 ± 1

2

√

2
(

p
ω1 â

)2 − (
c11 + 9

8π4βâ2
)2

, (77)
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which can be solved for â. Then, (50) gives, since
ϕ1(x1) = ϕ1(x2) =1 and m21 = K21 = 0:

û(x1) = û(x2) = â + O(ε2) (78)

To test the theoretical predictions, Fig. 5afirst shows the
phase shift �� for varying mass flow αv as obtained
by the analytical approximation (57) with (71) (lines),
and by the numerical solution (65)–(66) to (1)–(3)
using N = 8 modes (symbol markers). Three lines
are shown, corresponding to different levels of damp-
ing nonlinearity, β = {

0, 105, 106
} ; however, since

according to (57)�� is independent on β, the lines are
identical. Numerical simulation results (symbol mark-
ers) confirm this, agreeing very closely to the analytical
prediction.

To ensure this insensitivity to β is not just due to
parameters corresponding to a veryweak damping non-
linearity, the largest value 106 used for β in Fig. 5a
was chosen so as to correspond to a damping nonlin-
earity strong enough to substantially change the fre-
quency response near resonance. This is illustrated by
the example frequency response in Fig. 5b, showing
the resonant stationary pipe amplitude û(x1) as a func-
tion of excitation frequency� for the largest mass flow
αv = 0.1 of Fig. 5a, and β = 106, with the theoret-
ical prediction (78) [with â from (77)] in solid line.
Apparently, the nonlinear part of the damping is here
strong enough to reduce the peak resonant vibration
amplitude to about half the value for linear damping
only (dashed line). The circle mark shows the result
of numerical simulation [(9) with (59)–(60)], agreeing
closely with the theoretical prediction (78) with (74)
(maximum value on solid line).

Next we illustrate themodal composition of the pipe
vibrations, i.e., the significance of different modes. In
Fig. 6 the top graph shows a simulation time series
for the stationary displacement responses u(x1, t) and
u(x2, t) at sensor measurement locations x1 and x2,
for parameters corresponding to the circle marker in
Fig. 5b. The two responses appear indistinguishable at
this scale, the phase shift between them being so small
(of order magnitude 10−2, cf. Fig. 5a), corresponding
to a time shift �t = ��/� ≈ 10−3). The lower
graphs show the first four modal amplitudes q1−4(t),
i.e., the lowest terms in the Galerkin expansion (9)
for u(x1,2, t). Apparently, q1 alone is indistinguish-
able from u(x1,2, t), reflecting the strong dominance
of the resonantly excited first mode. The modal ampli-
tude q2 of the second mode (mainly responsible for

the phase shift of interest) is two orders of magnitude
smaller than q1, and the third and fourth modes even
smaller (four orders of magnitude); for modes 5–16 the
modal amplitudes (not shown) are even smaller. This
explains why even a greatly reduced two-mode model,
as the one employed in Sects. 3–4 for deriving analyt-
ical response predictions, provides high accuracy and
good agreement with numerical simulation usingmany
modes.

Summing up this section, the analytical prediction
that uniformly distributed nonlinear damping does not
affect phase shift appears validated by numerical sim-
ulation, even for levels of nonlinearity strong enough
to significantly affect pipe vibration amplitude. Also,
even with a significant level of nonlinearity, analyt-
ical predictions based on just the two lowest linear
mode shapes show excellent agreement with numer-
ical simulation using many modes. Numerical simula-
tion was performed only for the case of cubic damp-
ing. However, this form of damping can be seen as
rather generic, representing the essence of many types
of real damping forces that are antisymmetric in rela-
tive velocity. This includes “quadratic” or “air” damp-
ing ( f (u̇) = u̇2sgn(u̇)), and generally any damping
law that is oddly symmetric in u̇ and can be Taylor-
expanded at u̇ = 0 for small u̇; the cubic term is then
the dominating nonlinearity.

5.2.5 Effect of nonlinear (cubic) stiffness

Next we validate the analytical predictions for the case
of cubic stiffness nonlinearity, as will be relevant, e.g.,
for applications with constrained axial motion, leading
to midplane stretching (μ �= 0, cf. definition of μ in
(5) and the discussion in Sect. 2.3, 2nd paragraph). All
other imperfections except linear damping and mass
flow are ignored, i.e., �m = �e = η = γ = Lk =
β = 0, but μ �= 0 (the coefficient for cubic stiffness
nonlinearity), αv �= 0 (mass flow), and cu(x) = cu0 �=
0 (uniform linear damping, giving Lc �= 0).

As for the case with nonlinear damping, according
to the simple analytical approximation (57) with (71),
the phase shift �� is predicted not to depend on the
nonlinear stiffness coefficient μ, while the stationary
vibration amplitudes will be affected.

Using again (45) with (6)–(7) (for hinged pipe sup-
ports) to calculate the approximate resonant vibration
amplitude â∗, one finds:
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(a) (b)

Fig. 5 a Effect of nonlinear (cubic) damping f (u̇) = u̇3 on
phase shift �� for varying mass flow αv, as obtained by the
analytical approximation (57)with (71) (lines), andby the numer-
ical solution (65)–(66) to (1)–(3) using N = 8 modes (symbol
markers). The lines show �� for different levels of damping
nonlinearity β = {

0, 105, 106
}
with cu0 = 0.2 and p = 10−4

in all cases. b Frequency response showing the resonant station-
ary pipe amplitude û(x1) as a function of excitation frequency
� when αv = 0.1. Solid line: analytical prediction (78) [with
â from (77)] for cubic damping (β = 106); dashed line: linear
damping (β = 0); circle marker: numerical simulation [(9) with
(59)–(60)]

Fig. 6 Stationary resonant
response for a case of
nonlinear damping, with
system parameters
corresponding to the circle
marker in Fig. 5b. Top:
displacement response
u(x1,t) and u(x2,t)
(difference too small to be
visible at this scale) at
measurement locations x1
and x2 computed by (9) with
N =8 modes; lower graphs:
modal amplitudes q j (t) for
the four lowest modes

â∗ =
√
2

π2
p
c11

. (79)

That is, by contrast to the above case of nonlinear cubic
damping, nonlinear cubic stiffness does not affect the
peak response amplitude. It only affects the frequency
of excitation where the peak amplitude is encountered,

i.e., it changes the backbone of the frequency response
curve.

For calculating frequency responseswe use the same
procedure as described in Sect. 5.2.4 for nonlinear
damping, i.e., û(x1) is computed from (50)with â deter-
mined by (42). This gives, instead of (77):
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� = ω1 − 1
2αv2 + 3

16μ
2ω1â2 ± 1

2

√

2
(

p
ω1â

)2 − c211,

(80)

which can be solved for â. Then, û(x1) is given by (50),
again with m21 = K21 = 0:

û(x1) = û(x2) = â + O(ε2) (81)

To test the theoretical predictions, Fig. 7a shows the
phase shift versus mass flow as obtained by the ana-
lytical approximation (57) with (71) (lines), and by the
numerical solution (65)–(66) to (1)–(3) using N = 8
modes (symbol markers). Three lines are shown, cor-
responding to different levels of stiffness nonlinearity,
μ = {0, 3000, 7000} ; however, since according to
(57) �� is independent on μ, the lines are identical
(and also identical to the lines in Fig. 5a). Numeri-
cal simulation results (symbol markers) agree closely
with the theoretical predictions, except for the largest
value of μ = 7000 where a small deviation is visible.
However, this value of μ is unrealistically large, and
chosen just to provoke at least some visibly detectable
change in phase shift. For the particular (rather typi-
cal) industrial flowmeter, whose parameter values pro-
vide numerical illustration for this work, the slender-
ness ratio μ is about 300. This means the highest value
forμ used with Fig. 7 is more than twenty times that of
the example flowmeter, and even the “medium” value
of μ = 3000, which still gives excellent agreement
between analytical results and numerical simulation,
is one order of magnitude larger than for the typical
flowmeter. Thus, for a real flowmeter, one can expect
uniformly distributed cubic nonlinearity (as from, e.g.,
midplane stretching) to have insignificant effect on
phase shift. A similar observation was reported in [28]
for a mathematical model of a curved micro-Coriolis
flowmeter, employing Galerkin-based numerical solu-
tions: For the specific numerical example reported, the
mass flow remains linearly related to phase shift, even
in the presence of cubic stiffness nonlinearity.

As for the case with nonlinear damping, though the
phase shift is not affected by uniformly distributed non-
linearity, the frequency response is affected. To illus-
trate this for the case of nonlinear stiffness, Fig. 7b
shows the resonant stationary pipe amplitude û(x1) as a
function of excitation frequency � for the largest mass
flow αv = 0.1 of Fig. 7a, and μ = 7000; the the-
oretical prediction (81) [with â from (80)] is shown
in solid line, with the corresponding linear response
(μ = 0) dashed. With such a large value of μ the reso-

nant response peak is significantly bent toward higher
frequencies, a well-known feature with hardening non-
linearity (μ > 0; e.g., [26]). The circle marker shows
the result of numerical simulation [(9) with (59)–(60)],
agreeing rather closely with the theoretical prediction
(79) (maximum value on solid line); for lower (more
realistic values ofμ) the peak is less bent, and the agree-
ment with numerical simulation even closer.

As for the contribution of various modes to the non-
linear resonant response, graphs of u(x1,2, t) and the
modal amplitudes q j (t) show features very similar as
for the case of nonlinear damping (cf. Fig. 6); they are
thus not shown here. Again the response is strongly
dominated by the first mode, with the modal ampli-
tude of the second mode being two orders of magni-
tude smaller, and that of the third and higher modes
four or more orders of magnitudes smaller. Again this
contributes to explaining why the reduced two-mode
model provides good agreement to numerical simula-
tion using many modes.

6 Conclusions

Amathematicalmodel of a resonantly excited vibrating
pipe with fluid flow was set up, including generic mod-
els of several imperfections relevant for applications,
in particular, in Coriolis flowmetering: small axial vari-
ations (possibly discontinuous) in pipe mass, bending
stiffness, and transverse and rotational linear viscous
damping and stiffness (additional to pipe bending stiff-
ness), axial pre-tension, nonlinear stiffness (quadratic-
cubic), and generalized velocity-dependent nonlinear
damping. The imperfections serve as simple theoreti-
cal models for many features of real flowmeters, such
asmounted sensors and actuators, production inaccura-
cies, mounting conditions (e.g., constrained pipe ends),
and wear, contamination, and corrosion.

Assuming imperfections to be small, a two-mode
approximation was employed, and perturbation analy-
sis used to calculate approximate analytical predictions
for the frequency response, and for the vibration phase
shift between two points along the pipe; the latter is the
primemeasured quantity in Coriolis flowmetering. The
analytical expression [Eq. (52)] for the phase shift is
very simple, though accurate to second order; it allows
direct insight into how parameters other thanmass flow
affects phase shift, and thus in Coriolis flowmetering
could be mistaken for mass flow. The following read-
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(a) (b)

Fig. 7 a Effect of nonlinear (cubic) stiffness on phase shift ��

for varying mass flow αv, as obtained by the analytical approx-
imation (57) with (71) (lines), and by the numerical solution
(65)–(66) to (1)–(3) using N = 8 modes (symbol markers).
The lines show �� for different levels of stiffness nonlinear-
ity μ = {0, 3000, 7000} with cu0 = 0.2 and p = 10−4 in

all cases. b Example frequency response showing the resonant
stationary pipe amplitude û(x1) as a function of excitation fre-
quency � when αv = 0.1. Solid line: analytical prediction (81)
with (80) for cubic stiffness (μ = 7000); dashed line: linear
stiffness (μ = 0); circle marker: numerical simulation [(9) with
(59)–(60)]

ily appears from inspecting the analytical prediction for
phase shift:

The meter sensitivity (ratio of phase shift to mass
flow) is predicted to a) grow with the nearness of the
natural frequencies of two lowest vibration modes, in
the same proportion as reported in other studies [1,45];
b) be independent on the vibration amplitude; and c) be
independent on all imperfections included in this study,
i.e., independent of small linear andnonlinear damping,
mass and stiffness nonuniformity, and additional trans-
verse stiffness (by pre-tension, midplane stretching /
symmetric stiffness nonlinearity, or asymmetric non-
linearity). Also, a zero phase shift (nonzero shift even
in the absence of mass flow) may result if the damping
distribution is not symmetric along the pipe axis, but
not with any of the other imperfections considered.

Themain assumption for calculating the simple ana-
lytical approximation for the phase shift is that the
imperfections considered are small, and that the vibra-
tion modes of importance are the first (which is reso-
nantly excited) and the second (which isweakly excited
by Coriolis forces associated with mass flow and cer-
tain imperfections), while the influence of all higher
modes is negligible in comparison. It then follows from
the analysis that if the imperfections considered are of
magnitude order O(ε), ε � 1, then the effect of asym-
metrically distributed damping on phase shift is of the

same order of magnitude as the mass flow, i.e., also
O(ε), and introduces a zero shift that could be mis-
taken for mass flow, while the effect of all other imper-
fections considered is at least two orders of magnitude,
smaller, i.e., O(ε3).

Validation of the analytical expression was per-
formedby comparing to results of numerical simulation
of the full equation of motion, using a Galerkin expan-
sion with many modes, and for parameter sets for var-
ious imperfections ranging from “small” (as assumed,
realistically) to “large” (orders ofmagnitude larger than
realistic). In all cases of “small” imperfections agree-
ment was excellent; only with “large” imperfections
deviations show up.

The numerically based validationwas performed for
a broad range of parameters for the imperfections con-
sidered. But naturally it is not possible to test every
imperfection considered thoroughly in a full parame-
ter space; for example, an endless variation of possible
relevant spatial distributions of even linear damping
exists, and the same for nonlinear damping. However,
for imperfections that could be of practical interest for
applications, the simple analytical approximations for
the phase shift [Eq. (52)] and the stationary vibration
amplitude [Eq. (50)] can be used to rather easily pre-
dict whether or not a given imperfections affects phase
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shift and how, possibly cross-checking with numerical
simulation or laboratory experiments.

The theoretical prediction that asymmetrically dis-
tributed damping affects phase shift, while a symmetric
damping distribution or small nonuniformity in mass
distribution has no significant effect, agreeswith earlier
reported experimental findings [20,49]. Also, the theo-
retical prediction that weak cubic stiffness type nonlin-
earity does not affect phase shift agrees with recently
reported numerical observations for a particular curved
micro-Coriolis flowmeter [28].However, the remaining
of the above-mentioned predictions of effects of vari-
ous imperfections should be considered theoretically
based hypotheses, awaiting experimental validation.
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