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Abstract Dynamic nonlinear equation is a kind of
important nonlinear systems, and many practical prob-
lems can be formulated as a dynamic nonlinear equa-
tion in mathematics to be solved. Inspired by the nega-
tive impact of additive noises on zeroing neural dynam-
ics (ZND) for dynamic nonlinear equation, a robust
nonlinear neural dynamics (RNND) is designed and
presented to achieve noise suppression and finite-time
convergence simultaneously. Compared to the exist-
ing ZND model only with finite-time convergence, the
proposed RNND model inherently possesses the extra
robustness property in front of additive noises, in addi-
tion to finite-time convergence. Furthermore, design
process, theoretical analysis, and numerical verifica-
tion of the proposed RNND model are supplied in
details. Both theoretical and numerical results validate
the better property of the proposed RNND model for
solving such a nonlinear equation in the presence of
external disturbances, as compared to the ZND model.
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1 Introduction

Nonlinear equations play an important role in various
application areas, especially in robotics, imageprocess-
ing, system identification, optimization, and nonlinear
control [1–6]. In addition, a lot of phenomena can be
explained via solving nonlinear equations, which are
usually difficult to be computed, especially analytically
[7–9]. In the past decades, various numerical methods
have been presented to find roots of nonlinear equations
effectively [10–14]. Newton iteration is one of themost
classic methods to solve nonlinear equations, and can
converge to the root quadratically [10]. In addition, a
great of researches have been devoted to the extensions
of Newton iteration method by using different tech-
niques for solving nonlinear equations, such as Ado-
mian decomposition, Taylor series, and so on [10–13].

On the other hand, as a parallel-processing tech-
nique, neural dynamics (ND) attract a great of atten-
tion in the fields of neural computing and nonlinear
dynamics [15–17]. In mathematics, neural dynamics
can described as an ordinary differential equation, start-
ing with one initial value and converging to the equilib-
rium state. It can also be regarded as a special kind of
neural networks including the situationwith one neuron
and can be implemented in hardware [18–20]. As com-
pared to the above-mentioned iterative algorithms, neu-
ral dynamics possesses excellent parallel-processing
and potential hardware implementation abilities [17],
In last decade, many ND models have been presented
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to solve nonlinear equations [21–24]. As a widely used
model, the gradient neural dynamics (GND) was also
developed to solve static nonlinear equations effec-
tively [21,22]. Due to the investigation to dynamic
nonlinear equations, it was found that the GND model
only solve static problems efficiently. When applied to
dynamic nonlinear equations, it would generate a lag-
ging error between the theoretical solution and the state
output [23,24].

To conquer this obstacle, in [23,24], a special class
of neural dynamics (called zeroing neural dynamics,
ZND) has been developed for computing dynamic non-
linear equations via introducing a novel designmethod.
It has been proved that the ZND model can achieve an
exponential convergence. That is, the state output of the
ZND model can converge to the theoretical solution
exponentially. After that, various different nonlinear
functions have been designed and applied to activate
the ZND model, and the corresponding convergence
speed can be further accelerated [15–17]. In particu-
lar, in [25], the sign-bi-power function is used to acti-
vate zeroing neural dynamics, and make such a model
even achievefinite-time convergence (calledfinite-time
ZND, FTZND). That is to say, the convergence speed of
the FTZND model makes a great breakthrough (from
infinite to finite time convergence). What is more, in
[26–31], such a sign-b-power function and its variant
have further been applied to nonlinear equations and
linear matrix equations solving.

It should be noted that the design process of the
above-mentioned ZND model for dynamic nonlinear
equation is under ideal conditions and external addi-
tive noises are not considered. Simply put, the ZND
model does not consider the negative effects of external
disturbances on the solution accuracy of dynamic non-
linear equation in the previous work. Thus, the ZND
model may have no inherently noise-tolerant prop-
erty. Actually, external disturbances are unavoidable
in practical applications. This happens all the time dur-
ing the hardware implementation of neural dynamics.
For better implementation of zeroing neural dynam-
ics, the denoising property of the ZND model should
be taken into account when applied to solving com-
plex tasks. Based on these consideration, a robust non-
linear neural dynamics (RNND) is designed and pro-
posed to solve dynamic nonlinear equation in front of
external disturbances. In contrast to the ZND model,
the presented RNND model simultaneously have the

inherently noise tolerance and finite-time speedup fea-
tures. Moreover, theses conclusions are supported by
the rigorous theoretical analysis and numerical results.
Besides, for demonstrating the superiority of RNND
in the presence of external disturbances, the main fea-
tures of the above-mentioned GND, ZND and FTZND
models are comparatively summarized in Table 1 [21–
24,26,27]. According to the comparison results shown
in the table, it follows that RNND has the best per-
formance under the same conditions. In particular, in
[32–34], the ZND model was applied to motion plan-
ning and control of real systems, and it was proved
to be effective in the presence of no noises. However,
they do not discuss the influence of various noises to
the ZND model. This work extends the ZND model to
further address this problem by adopting a novel design
mechanism.

The rest of the current work is consist of four sec-
tions. As a basis for the research, in Sect. 2, the prob-
lem formulation is first given, and the corresponding
ZNDmodel is presented for comparative purposes. The
design process and theoretical analysis of the RNND
model for dynamic nonlinear equation are supplied in
Sect. 3. Numerical verifications are presented in Sect. 4
to show the superiority of the RNND model in front of
external disturbances. The conclusion part is presented
in Sect. 5. Besides, at the end of this section, the key
innovations of the current work can be generalized as
below.

1. A robust nonlinear neural dynamics (RNND) is
designed and proposed for modifying the exist-
ing zeroing neural dynamics (ZND) for dynamic
nonlinear equation that does not own inherent
noise tolerance and finite-time convergence per-
formance at the same time. The proposed RNND
model fills this gap to address this problem in a
unified framework.

2. Theoretical analysis of the RNND model is pro-
vided in detail to guarantee the excellent perfor-
mance. In addition, the upper bound of finite-time
convergence for the RNND model is theoretically
computed.

3. In front of different external noises, various com-
puter simulations are conducted to show the
advantages of the RNND model, as compared to
the ZND model.
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Table 1 Features and distinctions of the proposed RNND model from GND [21,22], ZND [23,24] and FTZND models [26,27] for
nonlinear equation solving

# Item GND ZND FTZND RNND

1 Solution objects Static Dynamic Dynamic Dynamic

2 Residual errors Nonzero Nonzero Zero Zero

3 Noise tolerance No No No Yes

4 Finite time No No Yes Yes

2 Problem formulation and preliminaries

In this part, let us consider the dynamic nonlinear equa-
tion as below [17,26,27]:

h(x(t), t) = 0, (1)

where t denotes time, x(t) denotes dynamic state vari-
able, and h(·) denotes a smooth nonlinear function.Due
to nonlinearity, dynamic nonlinear, Eq. (1) may have
no solution. Therefore, we only consider the existence
of at least one theoretical solution of (1) in the current
work. The main aim of the current work is to design
a robust nonlinear neural dynamics (RNND) to find a
solution x(t) in the presence of external disturbances,
which converges to one of theoretical solutions of (1)
within finite time.

Before proposing the RNND model, let us review
the design process of zeroing neural dynamics (ZND),
which was widely established to solve nonlinear equa-
tion [21–24]. Note that the motivation of this work is
inspired by the negative impact of additive noises on
zeroing neural dynamics. As a comparative object, it
is necessary to show the simple design process for the
completeness of this work, which can be divided the
following three steps.

1. According to the definition of dynamic nonlin-
ear equation in (1), an error function is first con-
structed as e(t) = h(x(t), t). Obviously, if e(t)
equals to 0, the corresponding variable x(t) is
exactly the solution we want to find.

2. To force such an error function decrease to 0, the
design mechanism for e(t) is defined as

de(t)

dt
= −δϕ(e(t)) (2)

where δ represents the scaling factor and ϕ(·)
denotes a nonlinear function. It has been proved

that the above design mechanism can make e(t)
converge to zero exponentially provided that ϕ(·)
is a monotonously increased odd function.

3. Based on the above two steps, we can obtain the
expanding first-order differential equation by sub-
stituting e(t) = h(x(t), t) into (2):

∂h

∂x

dx

dt
+ ∂h

∂t
= −δϕ

(
h
(
x(t), t

))
,

which gives rise to the following zeroing neural
dynamics (ZND) for solving dynamic nonlinear
Eq. (1):

∂h

∂x
ẋ(t) = −δϕ

(
h
(
x(t), t

)) − ∂h

∂t
, (3)

where x(t) represents the neural state of zeroing
neural dynamics.

Note that ZNDmodel (3) is proved to have an exponen-
tial convergence [23,24]. Specifically, ZND model (3)
can converge to one of theoretical solutions of dynamic
nonlinear equations provided that ϕ(·) is a monotoni-
cally increased odd function [23,24].

As mentioned before, there is no existing neu-
ral dynamics that simultaneously achieve the noise-
suppressing and finite-time convergence for solving
dynamic nonlinear equation. However, such two excel-
lent performances are always co-pursued in the neural-
dynamic field, since they are highly demanded in prac-
tical applications. In the ensuing section, we will pro-
pose a robust nonlinear neural dynamics to fill this gap,
and prove its finite-time convergence and noise-tolerant
property.

3 Robust nonlinear neural dynamics

In order to solve dynamic nonlinear equation and sat-
isfy the finite-time convergence and noise tolerance
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performance simultaneously, a robust nonlinear neu-
ral dynamics (RNND) is proposed in this section. The
design process and theoretical analysis of the proposed
RNND model are presented in details as below.

3.1 Design of RNND model

In this part, on the basis of design mechanism (2), we
present the following novel nonlinear mechanism for
e(t) [35,36]:

ė(t) = −δ1ϕ1(e(t))−δ2ϕ2

(
e(t) + δ1

∫ t

0
ϕ1(e(τ ))dτ

)
, (4)

where δ1 > 0 and δ2 > 0 denote the scaling factors;
and, ϕ1(·) and ϕ2(·) denote nonlinear activation func-
tions. Due to the introduction of the integral sign and
nonlinear activation functions, the novel design mech-
anism (4) can suppress additive noises and achieve
finite-time convergence. In addition, for such a design
mechanism, in the ensuing subsection, wewill prove its
inherently noise-tolerant and finite-time convergence
property in theory. Before that, based on the above
nonlinearly activated design mechanism, we first pro-
pose the robust nonlinear neural dynamics for solving
dynamic nonlinear equation. Specifically, by defining
e(t) = h(x(t), t), and extending design mechanism
(4), the robust nonlinear neural dynamics (RNND)
model is obtained as

∂h

∂x
ẋ(t) = −δ1ϕ1 (h (x(t), t)) − δ2ϕ2

(
h (x(t), t)

+δ1

∫ t

0
ϕ1(h (x(τ ), τ ))dτ

)
− ∂h

∂t
, (5)

where δ1 > 0, δ2 > 0, ϕ1(·) and ϕ2(·) are defined
as before. Since RNND model (5) is an equivalent
extension of design formula (4) by defining e(t) =
h(x(t), t), if design formula (4) is proven to be inher-
ently noise tolerant and finite-time convergent, RNND
model (5) will possess these superior property. In addi-
tion, for investigating the noise-suppressing property
of the RNND model (5), the noise-polluted RNND
model is directly presented by introducing external dis-
turbance η as follows:

∂h

∂x
ẋ(t) = − δ1ϕ1 (h (x(t), t)) − δ2ϕ2

(
h (x(t), t)

+ δ1

∫ t

0
ϕ1(h (x(τ ), τ ))dτ

)
− ∂h

∂t
+ η. (6)

Note that the RNND model (5) is an ideal model. The
inherently noise-tolerant property will be investigated
by using (6) to solve dynamic nonlinear equation.

3.2 Analysis of RNND model

In this section, three theorems are given to show the
excellent speedup and noise-suppressing performance
of the robust nonlinear neural dynamics.

Theorem 1 RNND model (5) converges to one of the
theoretical solutions of dynamic nonlinear Eq. (1) as
long as ϕ1(·) and ϕ2(·) are monotonically increasing
odd functions.

Proof As mentioned in the above subsection, RNND
model (5) is a simple expansion of design formula (4)
by defining e(t) = h(x(t), t). If design formula (4) is
globally stable, RNND model (5) is also globally sta-
ble. Thus, we can equivalently analyze design formula
(4). To prove the stability of (4), let us introduce the
intermediate variable r(t), which is defined as

r(t) = e(t) + δ1

∫ t

0
ϕ1(e(τ ))dτ, (7)

and the time derivative of r(t) is solved:

ṙ(t) = ė(t) + δ1ϕ1(e(t)). (8)

Then, by merging (4), (7) and (8), the following result
is obtained as

ṙ(t) = −δ2ϕ2(r(t)). (9)

Thus, Lyapunov function candidate w(t) for (4) is
devised as [with e(0) and r(0) given]:

w(t) = 1

2
βe2(t) + 1

2
r2(t), (10)

where β > 0 and v0 = v(0) = βe2(0)/2 + r2(0)/2.
We easily have that w(t) is positive-definite. Now, let
us compute its time derivative, which is presented as
below:

dw(t)

dt
= βe(t)ė(t) + r(t)ṙ(t)

= βe(t)[ṙ(t) − δ1ϕ1(e(t))] − δ2r(t)ϕ2(r(t))
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= −βδ2e(t)ϕ2(r(t))

−βδ1e(t)ϕ1(e(t)) − δ2r(t)ϕ2(r(t)). (11)

If ẇ(t) ≤ 0 is obtained, the global stability of design
formula (4) is proven in the sense of Lyapunov stability
theory.

For monotone increasing odd activation function
ϕ2(·), we can use the mean-value theorem and obtain:

ϕ2(r(t))−ϕ2(0) = (r(t)−0)
∂ϕ2(r(ξ))

∂r
|r(ξ)∈R . (12)

Besides, we have ϕ2(0) = 0 and ∂ϕ2(r(t))/∂r > 0. As
seen from (12), it is concluded:

|ϕ2(r(t))| ≤ p0|r(t)|,
where p0 = max{∂ϕ2(r(t))/∂r} |r(t)∈R> 0. Thus, we
have

|e(t)ϕ2(r(t))| ≤ |e(t)| · |ϕ2(r(t))|
≤ p0|e(t)| · |r(t)|. (13)

Substituting (13) back into (11), we can obtain

ẇ(t) = −βδ2e(t)ϕ2(r(t)) − βδ1e(t)ϕ1(e(t)) − δ2r(t)ϕ2(r(t))

≤ βδ2|e(t)ϕ2(r(t))| − βδ1e(t)ϕ1(e(t)) − δ2r(t)ϕ2(r(t))

≤ βδ2 p0|e(t)| · |r(t)| − βδ1 p1e
2(t) − δ2 p2r

2(t)

= −β

(√
δ1 p1|e| − δ2 p0

2
√

δ1 p1
|r(t)|

)2

− β

(
δ2 p2
β

− δ22 p
2
0

4δ1 p1

)

r2(t), (14)

where p1 = min{∂ϕ1(e(t))/∂e} |e(t)∈R> 0 and p2 =
min{∂ϕ2(r(t))/∂r} |r(t)∈R> 0 computed in the similar
way. Thus, we have ẇ(t) ≤ 0 if the following condition
is met:

0 < β ≤ 4δ1 p1 p2
δ2 p20

. (15)

This fact guarantees the negative definiteness of ẇ(t).
Therefore, on account of Lyapunov theory, we prove
that nonlinear system (4) and the resultant RNND
model (5) are both globally stable. That is to say,RNND
model (5) converges to one of the theoretical solutions
of dynamic nonlinear Eq. (1) as long as ϕ1(·) and ϕ2(·)
are monotonically increasing odd functions. ��
Theorem 2 RNNDmodel (5) is finite-time convergent,
and the upper bound tf is estimated as

tf <
δ1 + δ2

δ1δ2(1 − ι)
|e(0)|1−ι,

as long as ϕ1(x) = ϕ2(x) = ψι(x) + ψ1/ι(x) with
ι ∈ (0, 1) and ψι(·) defined as

ψι(x) =
⎧
⎨

⎩

|x |ι, if x > 0,
0, if x = 0,
−|x |ι, if x < 0,

where e(0) = h(x(0), 0), and scaling factors δ1 and δ2
are defined as before.

Proof We have obtained ṙ(t) = −δ2ϕ2(r(t)) by defin-
ing r(t) = e(t) + δ1

∫ t
0 ϕ1(e(τ ))dτ . In particular, if

t = 0, we can obtain r(0) = e(0). For nonlinear system
ṙ(t) = −δ2ϕ2(r(t)), we select the Lyapunov function
candidate as q(t) = r2(t), and its time derivative is
computed as below:

q̇(t) = 2r(t)ṙ(t)

= −2δ2r(t)ϕ2(r(t))

= −2δ2
(
|r(t)|ι+1 + |r(t)| 1ι +1

)

≤ −2δ2|r(t)|ι+1

= −2δ2q
ι+1
2 (t).

With q(0) = |r(0)|2 = |e(0)|2 given, by computing

differential inequality q̇(t) � −2δ2q
ι+1
2 (t), we obtain:

q
1−ι
2 (t)

⎧
⎨

⎩

≤ |r(0)|1−ι − δ2t (1 − ι), if t ≤ |r(0)|1−ι

δ2(1−ι)
,

= 0, if t >
|r(0)|1−ι

δ2(1−ι)
.

This fact reveals that q(t) = 0 when t > |r(0)|1−ι/

δ2(1 − ι). Owing to q(t) = r2(t) and r(0) =
e(0), one can also have that r(t) = 0 after t >

|e(0)|1−ι/δ2(1 − ι). In other words, the upper bound
t1 for r(t) is computed as

t1 <
|e(0)|1−ι

δ2(1 − ι)
.

Thus, after the time period t1, it is easy to have r(t) = 0
and ṙ(t) = 0. Then, based on (8), we further have

ė(t) = −δ1ϕ1(e(t)). (16)

Obviously, this nonlinear system (16) is similar with
ṙ(t) = −δ2ϕ2(r(t)). Due to ϕ1(·) = ϕ2(·), from the
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above analysis, we directly compute the upper bound
t2 of nonlinear system (16) as below:

t2 <
|e(0)|1−ι

δ1(1 − ι)
.

In brief, based on the above discuss, it can be con-
cluded that RNNDmodel (5) is finite-time convergent,
and the upper bound tf = t1 + t2 is given as

tf <
δ1 + δ2

δ1δ2(1 − ι)
|e(0)|1−ι,

as long as ϕ1(x) = ϕ2(x) = ψι(x) + ψ1/ι(x). The
proof is thus completed. ��
Theorem 3 The noise-polluted RNND model (6) is
capable of converging to one of theoretical solutions
of (1) in front of unknown additive constant noise η as
long as ϕ1 and ϕ2 are monotonically increasing odd
functions.

Proof It is easy to conclude that, by defining e(t) =
h(x(t), t), the noise-polluted RNND model (6) is
obtained from the following nonlinear system:

ė(t) = −δ1ϕ1(e(t))

− δ2ϕ2

(
e(t) + δ1

∫ t

0
ϕ1(e(τ ))dτ

)
+ η. (17)

Then, by defining r(t) = e(t) + δ1
∫ t
0 ϕ1(e(τ ))dτ , we

can obtain

ṙ(t) = −δ2ϕ2(r(t)) + η. (18)

Therefore, Lyapunov function candidate for nonlin-
ear system (17) is selected as

p(t) = 1

2
(δ2ϕ2(r(t)) − η)2 ,

which is obviously positive definite. Next, ṗ(t) is com-
puted as below:

dp(t)

dt
= (δ2ϕ2(r(t)) − η) δ2

∂ϕ2(r(t))

∂r
ṙ(t)

= −δ2
∂ϕ2(r(t))

∂r
(δ2ϕ2(r(t)) − η)2 . (19)

Since ϕ2 is a monotonically increasing function, we
know ∂ϕ2(r(t))/∂r > 0. Hence, ṗ(t) ≤ 0 (i.e., ṗ(t)
is of negative definiteness). Based on Lyapunov the-
ory, p(t) is capable of converging to 0. Here and
now, limt→∞ δ2ϕ2(r(t)) − η = 0, i.e, limt→∞ r(t) =

ϕ−1
2 (η/δ2). In other words, r(t) is finally convergent to

ϕ−1
2 (η/δ2) and limt→∞ ṙ(t) = −δ2ϕ2(r(t)) + η = 0.
Furthermore, according to ṙ(t) = ė(t) + δ1ϕ1(e(t))

and limt→∞ ṙ(t) = 0, we can use Lasalle’s invariant
set principle to analyze this problem [37,38]. In this
situation, ė(t) = ṙ(t) − δ1ϕ1(e(t)) reduces to

ė(t) = −δ1ϕ1(e(t)), (20)

which is exactly the previously mentioned design
formula (2). For this formula, we have proved that
limt→∞ e(t) = 0. Furthermore, if the sign-bi-power
function is used to activate (2), the error function will
converge to zero in a finite period.

From the above analysis, we know that the error
function e(t) produced by (6) is able to converge to 0
in front of unknown additive constant noise η. In other
words, the noise-polluted RNND model (6) is capable
of converging to one of theoretical solutions of (1) in
front of unknown additive constant noise η. ��

4 Numerical verification

In this section, to validate the advantages of RNND
model (5), zeroing neural dynamics (ZND) model (3)
is comparatively applied to dynamic nonlinear equa-
tion solving. Note that the sign-bi-power function with
ι = 0.5 is adopted to activate ZND model (3) and
RNND model (5). We consider the following dynamic
nonlinear equation:

h(x(t), t) = x2(t)−cos2(2t)−4 cos(2t)−4 = 0, (21)

which can be converted into h(x(t), t) = [x(t) −
cos(2t) − 2)][x(t) + cos(2t) + 2] = 0 via factor-
ization of polynomial. Thus, the dynamic theoreti-
cal solutions for this problem are easily derived as
x∗
1 (t) = cos(2t)+2 and x∗

2 (t) = − cos(2t)−2, which
can be used to check the solution accuracy of such two
neural dynamics. In this part, we mainly consider three
cases for RNND model (5) and (ZND) model (3) to
solve the above nonlinear equation. That is, such two
models are simulated in the presence of zero noise (i.e.,
the ideal condition), additive constant noises, and addi-
tive time-varying noises.

Case 1: Zero noise As mentioned before, ZND model
(3) is proved to be effective to solve dynamic nonlin-
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Fig. 1 Computing results generated by the ZND model (3)
beginning with 20 initial states x(0) ∈ [−4, 4] with δ = 5 in
the presence of no noise. a Neural state output trajectories and

theoretical solutions, where solid blue curves denote state output
x(t), and dash red curves denote theoretical solution x∗(t). bThe
residual error trajectories
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Fig. 2 Computing results generated by the RNND model (5)
beginning with 20 initial states x(0) ∈ [−4, 4] with δ1 = δ2 = 5
in the presence of no noise. a Neural state output trajectories and

theoretical solutions, where solid blue curves denote state output
x(t), and dash red curves denote theoretical solution x∗(t). bThe
residual error trajectories

ear equations in the ideal conditions (i.e., no noise). In
this case, we continue to verify this conclusion by solv-
ing dynamic nonlinear Eq. (21) in the presence of zero
noise. Beginning with 20 initial states x(0) ∈ [−4, 4],
the computing results of ZND model (3) for this issue
are plotted in Fig. 1. As obtained in Fig. 1a, as long as
x(0) is given, any of state variable trajectories x(t) is
capable of converging to one of the theoretical solu-
tions of dynamic nonlinear Eq. (21). Moreover, the
convergence speed is very fast. After about finite time

0.4 s, state variable trajectories have overlapped with
one of the theoretical solutions. Figure 1b plots the cor-
responding residual error trajectories, where the resid-
ual error is defined as |h(x(t), t)|. The results of Fig.
1b verify the conclusion of Fig. 1a. The corresponding
residual errors immediately drop to 0 after about finite
time 0.3 s. Below similar case, RNNDmodel (5) is used
to solve this dynamic nonlinear equation, and the com-
puting results are plotted in Fig. 2. Compared with the
results generated by ZNDmodel (3) and RNNDmodel
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Fig. 3 Computing results generated by the ZNDmodel (3) start-
ing from20 randomly generated initial states x(0) ∈ [−4, 4]with
δ = 5 in the presence of constant noise η = 1. aNeural state out-

put trajectories and theoretical solutions, where solid blue curves
denote state output x(t), and dash red curves denote theoretical
solution x∗(t). b The residual error trajectories

(5), the solving performance is almost no difference
between them. In other words, state variable trajecto-
ries x(t) of RNND model (5) are able to converge, and
the finite convergence time is also about 0.4 s. For fur-
ther verifying the theoretical analysis of RNND model
(5), in this situation, the maximum upper bound is cal-
culated according to the given maximum initial value
as follows:

tf <
δ1 + δ2

δ1δ2(1 − ι)
|e(0)|1−ι = 5 + 5

5 × 5(1 − 0.5)
|4|1−0.5 = 1.6.

Obviously, as shown in the numerical results plotted in
Fig. 1b, the convergence time of theRNNDmodel (5) is
within finite time 1 second, which is less than the above
maximum upper bound. Theorem 2 is thus verified by
the numerical results. In a word, both ZND model (3)
and RNNDmodel (5) are effective on solving dynamic
nonlinear equations.

Case 2: Constant noise As we know, external distur-
bances are unavoidable in practical applications. This
happens all the time during the hardware implementa-
tion of neural dynamics. In the previous work, the ZND
model does not consider the negative effects of exter-
nal disturbances on the solution accuracy of dynamic
nonlinear equation. Thus, the ZND model may have
no inherently noise-tolerant property. Now, let us first
study the influence of constant noises in this part. In
order to better show results, η = 1 is considered in
ZNDmodel (3) and RNNDmodel (5) to solve dynamic

nonlinear Eq. (21), and other conditions (e.g., design
parameters δ and ε) remain unchanged. The comput-
ing results of such two models are shown in Figs. 3
and 4. According to Fig. 3a generated by ZND model
(3), we have the state variable trajectories x(t), starting
from x(0) ∈ [−4, 4], are no longer convergent to any of
the theoretical solutions of dynamic nonlinear Eq. (21).
There always exists someerrors between them.Further-
more, as observed in Fig. 3b, the corresponding resid-
ual errors are always oscillating around the value of
0.5, instead of converging to zero. These results sug-
gest that ZND model (3) cannot solve dynamic non-
linear Eq. (21) effectively in the presence of additive
constant noises with relatively large lagging error exis-
tence. In contrast, under the same conditions, the com-
puting results generated byRNNDmodel (5) are shown
in Fig. 4. As observed in Fig. 4a, even if in front of addi-
tive noise η = 1, the state variable trajectories x(t) of
RNNDmodel (5) are still convergent to one of the the-
oretical solutions of dynamic nonlinear Eq. (21). That
is to say, RNND model (5) has a denoising property
and is still effective in front of additive constant dis-
turbances. Now, let us show the convergence results
of the residual errors generated by RNND model (5),
which are shown in Fig. 4b. In contrast to the conver-
gence results of Fig. 2b, the finite convergence time
is almost the same. In other words, the convergence
speed of RNND model (5) is not affected by adding
a constant noise, and finite-time convergence is also
achieved. In addition, because the initial states are not
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Fig. 4 Computing results generated by the RNND model (5)
beginning with 20 initial states x(0) ∈ [−4, 4] with δ1 = δ2 = 5
in front of constant noise η = 1. a Neural state output trajec-

tories and theoretical solutions, where solid blue curves denote
state output x(t), and dash red curves denote theoretical solution
x∗(t). b The residual error trajectories
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Fig. 5 Residual error trajectories generated by different twomodels beginningwith 20 initial states x(0) ∈ [−4, 4]with δ1 = δ2 = δ = 5
in front of time-varying noise η = 0.8 sin(t). a By the ZND model (3). b By the RNND model (5)

changed, the maximum upper bound for RNND is the
same as the first condition. By comparison, the conclu-
sion of Theorem 2 is also validated. In a word, RNND
model (5) has an inherently robust property in front of
additive constant noises and simultaneously possesses
the finite-time convergence property,while ZNDmodel
(3) becomes invalid. The results illustrate the superior-
ity of RNND model (5) to ZND model (3).

Case 3: Time-varying noise In last case, let us con-
sider additive time-varying noises. Similar to Case 2,

only time-varying noiseη = 0.8 sin(t) is added inZND
model (3) and RNNDmodel (5) to solve dynamic non-
linear Eq. (21), and other conditions remain unchanged.
Due to the similarity of state variable trajectories, we
only plot convergence trajectories of the residual errors
produced by ZND model (3) and RNND model (5),
which are shown in Fig. 5. As observed in this figure, it
can be concluded that, in front of additive time-varying
noise η = 0.8 sin(t), the residual errors of ZND model
(3) do not converge to zero, but keep oscillating along
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the trend of the function 0.8 sin(t), while the residual
errors of RNND model (5) are still convergent to zero
with finite time. That is to say, even in front of additive
time-varying noise η = 0.8 sin(t), RNND model (5) is
still effective on solving dynamic nonlinear equation,
and simultaneously possesses the robustness and finite-
time convergence property. The results in this case also
verify the better performance of RNNDmodel (5) than
RNND model (5).

5 Conclusions

Inspired by the impact of additive noises on zero-
ing neural dynamics (ZND), in this work, a robust
nonlinear neural dynamics (RNND) model has been
designed to general dynamic nonlinear equation solv-
ing in the presence of external disturbances. Compared
with ZND, the RNND model simultaneously achieves
the superior robustness and finite-time convergence
ability. Furthermore, the excellent performance of the
RNNDmodel has been analyzed in details. The conver-
gence upper bound for RNND has also been calculated
by solving a differential inequality. Various different
simulations have demonstrated the effectiveness and
advantages of the RNNDmodel for nonlinear equation
in front of different external disturbances. It should be
mentioned that this is the first RNND model designed
for dynamic nonlinear equation, which fills the gap
existing in the field of zeroing neural dynamics either
with the finite-time convergence performance or with
the noise suppression property. The future work may
lie in the theoretical analysis of the robustness of the
RNND model in front of time-varying additive noises
and the application of the RNNDmodel to engineering
application problems.
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