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Abstract We investigate the nonlinear dynamic
response of a device made of two electrically cou-
pled cantilever microbeams. The vibrations of the
microbeams triggered by the electric actuation lead
to the redistribution of the air flow in the gap sepa-
rating them and induce a damping effect, known as
the squeeze-film damping. This nonlinear dissipation
mechanism is prominent when encapsulating and oper-
ating the microstructure under high gas pressure. We
present different modeling approaches to analyze the
impact of the squeeze-film damping on the dynamic
behavior of the microsystem. We first develop a non-
linear multi-physics model of the device by coupling
Euler–Bernoulli beam equations with the nonlinear
Reynolds equation and use the Galerkin decomposi-
tion and differential quadraturemethod to discretize the
structural and fluidic domains, respectively. We con-
sider also another modeling approach based on approx-
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imating the squeeze-film damping force by a nonlinear
analytical expression. This approach is widely used in
the literature and referred to as partially coupled model
in this paper. We conduct a comparative study of the
nonlinear dynamic responses obtained from the two
models under different operating conditions in terms
of electric actuation and applied pressure. The simu-
lated frequency and force-response curves show the
limitations of the partially coupled model to capture
properly the microsystem dynamics, especially when
approaching the onset of the pull-in instability and
exciting the microsystem with an AC voltage near res-
onance. As such, we propose a correction factor to the
partially coupled model which is much less computa-
tionally demanding to obtain good match with the fully
coupled model. The selection of the correction factor
depends on the thickness ratio, the ambient pressure,
and the excitation frequency. The influence of the ambi-
ent pressure and the thickness ratio between the two
microbeamswere also examined.Weobserve that oper-
ating the microsystem at a reduced ambient pressure or
when reducing one of the microbeams’ thickness can
lead to a premature instability of the dynamic solution
which reduces themaximum amplitude of the vibrating
microbeams. This feature can be exploited for switch-
ing applications but it constitutes an undesirable effect
for resonators.

Keywords Electric coupling · Squeeze-film damping ·
Nonlinear modeling · Dynamic pull-in
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1 Introduction

There is an emerging implementation of electrically
actuated vibrating beams in several micro-electro-
mechanical systems (MEMS) applications including
sensing [1–4], switching [5–8], signal filtering [9–11],
and logic operations [12,13]. These miniature devices
have demonstrated numerous advantages when com-
pared to their conventional counterparts. These advan-
tages include low power consumption, easy integra-
tion with electronic circuits, and capability to oper-
ate in harsh environments. The performance of these
microsystems can be assessed at early stages of design
by gaining a good understanding of their governing
dynamics and exploiting specific physical aspects. The
use of computational models with the capability to cap-
ture the inherent dynamic features provides guidance
to investigate novel designs and operating principles
of MEMS devices and enhance their functionality and
lifetime. Several research studies have developedmath-
ematical models of electrically actuated microbeams
with different levels of fidelity in terms of the capability
to embody the associated physical phenomena and to
obtain relevant response characteristics and complex-
ity in terms of the numerical implementation and the
needed computational resources and simulation time.
Indeed, these models have been used to assess the sen-
sitivity and resolution of the MEMS device and predict
the level of electrical actuation leading to the failure
in the operation due to the undesired collapse of the
microstructure resulting from the pull-in instability.

The squeeze-film damping (SQFD) is an inherent
dissipation mechanism that takes place due to the inter-
actions between the vibrations of a flexible microstruc-
ture and the flow of the surrounding fluid [14]. This
is induced by the pressure variations underneath the
microstructure. The effect of SQFD on the dynamic
behavior depends mainly on the operating pressure,
the initial gap distance separating the microstructure
and electrode, and the geometry of the microstruc-
ture. The operating pressure can be controlled by
the way the microsystem is encapsulated. Different
modeling approaches and numerical implementations
have been reported in the literature to account for the
squeeze-film damping effect [5,15–19]. Among the
recent research studies, Ben Sassi et al. [5] formu-
lated amulti-physicsmodel of a capacitivemicroswitch
made of a doubly clamped microbeam by coupling
the nonlinear Euler–Bernoulli beam theory with the

Reynolds equation to simulate the pressure distribu-
tion. They used a combination of the Galerkin dis-
cretization approach and the differential quadrature
method to integrate the fully coupled fluid–structure
equations. The developed model was verified exper-
imentally and then used to examine the impact of
different actuation waveforms on the performance of
the microswitch. The square waveform was identified
as the most efficient and reliable in terms of voltage
requirement, switching time, and sensitivity tomechan-
ical and electrical noise. Ouakad et al. [18] devel-
oped a coupled fluid–structure system to investigate the
influence of the squeeze-film damping on the dynamic
behavior of curved microbeams with concave and con-
vex geometries under harmonic excitation. This model
is obtained by combining nonlinear Euler–Bernoulli
beam equations and Burgdorfer’s model for the sur-
rounding fluid. They found that SQFD has significant
effect on the nonlinear dynamic response and snap-
through values of the curved down microbeams (con-
vex geometry). On the other hand, its effect was less
prominent when using curved up microbeams (con-
cave geometry). Several studies showed that SQFD
can be utilized to suppress the shock response and
then enhance the reliability of MEMS devices when
exposed to shock loading or sudden change in the
acceleration. Ahmed et al. [15] conducted an inves-
tigation on the dynamic response of electrostatically
coupled microcantilever beams under the combined
effect of squeeze-film damping and mechanical shock.
The squeeze-film damping is incorporated using a non-
linear analytical expression of the microbeams deflec-
tion. They found that dual beam microsystems cou-
pled via electric actuation have potential to withstand
more to mechanical shock in comparison with the
single beam microsystem actuated by a fixed elec-
trode. The SQFD is observed to enable stronger pro-
tection of the microsystem in terms of resistance to
mechanical shock. This has been also demonstrated
by Yagubizade and Younis [16] who investigated the
impact of SQFD on the shock response of clamped–
clamped microbeams without electric actuation. They
solved simultaneously the Reynolds pressure equa-
tion and nonlinear Euler–Bernoulli equation using the
Galerkin decomposition approach and the finite differ-
ence method for the space discretization of the beams
displacements and the air pressure, respectively.

Ilyas et al. [20] have recently conducted an experi-
mental study to test the performance of a novel design
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of a resonator made of electrically coupled cantilever
microbeams operating near vacuum conditions. The
electric coupling led to expanded bandwidth near pri-
mary resonance and higher frequency shift. Therefore,
the authors concluded that such design can be more
suitable for sensing applications in comparison with
the classical systems made of a single beam and fixed
electrode. In the present work, we adopt the same con-
ceptual design as Ilyas et al. [20] and follow different
modeling approaches to analyze its dynamic response
while accounting for the impact of the squeeze-film
damping. Such effect is significant when encapsulat-
ing the microstructure under high gas pressure.We first
formulate a multi-physics model of the device by cou-
pling Euler–Bernoulli beam equations with the non-
linear Reynolds equation to simulate the pressure dis-
tribution of the air confined in the gap separating the
two microbeams. We consider also another modeling
approach, widely used in the literature, which is based
on approximating the squeeze-film damping force by a
nonlinear function of the variable gap distance. This is
referred to as partially coupled model. A comparison
of the nonlinear dynamic responses obtained from the
models under different operating conditions in terms
of electric actuation and applied pressure is presented.
The simulation results reveal the limitations of the par-
tial coupledmodel to capture properly themicrosystem
dynamics, especiallywhen approaching the onset of the
pull-in instability and exciting the harmonic load near
resonance. We show that applying a correction factor
to the partially coupled model which is much less com-
putationally demanding leads to a good match with the
fully coupled model. This correction factor is observed
to be dependentmainly on the thickness ratio, the ambi-
ent pressure, and the excitation frequency.

2 Microsystem description and model formulation

We consider a MEMS device consisting of two
microbeams of the same length l and width b, and dif-
ferent thicknesses h1 and h2 placed at a gap distance d,
as shown in Fig. 1. The dual beammicrosystem is elec-
trically coupled by applying a combination of DC and
AC voltages among the two movable microbeams. We
develop computational models of different fidelity lev-
els to simulate the dynamic behavior of themicrobeams
while accounting for the fringing field effect and the
squeeze-film damping. The latter is a nonlinear dissipa-

Fig. 1 Conceptual design of the electrically actuated
microbeams under squeeze-film damping effect

tion mechanism that results from the air flow between
the vibrating microbeams. The damping level can be
controlled via the operating pressure. The most com-
mon approach to model SQFD is based on Reynolds
equation which is derived from Navier–Stokes equa-
tions under a number of assumptions [14].

Following Euler–Bernoulli beam assumptions, the
equations of motion governing the transverse deflec-
tions wi of the electrically coupled microbeams are
given by [15,21]:

ρbh1(w1),t t + c(w1),t + E I1(w1),xxxx

= kε0bV (t)2

2(d − w1 + w2)2

(
1 + 0.65

b
(d − w1 + w2)

)

−
∫ b

0
Pdy (1)

ρbh2(w2),t t + c(w2),t + E I2(w2),xxxx

= − kε0bV (t)2

2(d − w1 + w2)2

(
1 + 0.65

b
(d − w1 + w2)

)

+
∫ b

0
Pdy (2)

where E denotes the Young’s modulus, c is the damp-

ing coefficient, Ii = bh3i
12 is the beam’s cross sec-

tional second moment of area, t is time, and x is
the position along the microbeam length. The sub-
scripts {1, 2} refer to microbeam 1 and 2. The param-
eter ε0 = 8.85 × 10−12 C2 N−1 m−2 is the permittiv-
ity of vacuum, and k is the dielectric coefficient of air

123



448 F. Najar et al.

between the twomovablemicrobeams.V (t) is the time-
varying voltage applied between the two microbeams.

The microbeams are subject to fixed and free end
boundary conditions expressed as:

At x = 0,

w1 = w2 = 0 and (w1),x = (w2),x = 0 (3)

At x = l,

(w1),xx = (w2),xx = 0 and (w1),xxx = (w2),xxx = 0

(4)

The air flow between the two flexible microbeams
is governed by the fully nonlinear 2D form of the
Reynolds equation given by [5]:

[
(d − w1 + w2)

3P P ,x

]
,x

+
[
(d − w1 + w2)

3P P ,y

]
,y

= 12μeff

[
(d − w1 + w2)P ,t − P((w1),t − (w2),t )

]

(5)

where P(x, y, t) = P(x, y, t) + pa represents the
absolute pressure between the two microbeams and pa
is the ambient air pressure.μeff is the effective viscosity
of air. Following Andrews and Harris model based on
experimental data fitting [5], the effective viscosity is
given by:

μeff = μ

1 + 6.8636K 0.9906
n

(6)

where μ is the dynamic viscosity of air at room tem-
perature and atmospheric pressure po = 101.325 kPa.
The Knudsen number Kn is expressed in terms of the
initial gap distance d and the mean free path λo at the
same conditions as:

Kn = λo po
pad

(7)

We set λo equal to 65 nm. We assume ambient pres-
sure at the free edges and zeroflux at the clamped edges.
The pressure field boundary conditions are expressed
then as:

P(x, 0, t) = P(x, b, t) = P(l, y, t) = pa

P ,x (0, y, t) = 0 (8)

Assuming the microbeams of rectangular cross-
sectional geometry, the following parameters are intro-
duced to nondimensionlize equations (1)–(8):

x̂ = x

l
, ŷ = y

b
, ŵ1 = w1

d
, ŵ2 = w2

d
,

t̂ = t

τ
, P̂ = P

pa

τ =
√

ρbh1l4

E I1
, α1 = kε0bl4

2d3E I1
,

β = h21
h22

, μ = c1l4

E I1τ

δ = 0.65
d

b
, α2 = 12pal4

Eh31d
,

α3 = l2

b2
, σ = 12μeff l2

paτd2
(9)

Considering the defined dimensionless form and
dropping the hat, the governing equations of motion
and their associated boundary conditions can be rewrit-
ten as follows:

(w1),t t + μ(w1),t + (w1),xxxx (10)

= α1V (t)2
1 + δ(1 − w1 + w2)

(1 − w1 + w2)2
− α2

∫ 1

0
Pdy

(w2),t t + βμ(w2),t + (w2),xxxx

= −α1V (t)2
1 + δ(1−w1+w2)

(1−w1+w2)2
+ β3/2α2

∫ 1

0
Pdy

(11)

subject to

w1(0, t) = w2(0, t) = 0

(w1),x (0, t) = (w2),x (0, t) = 0

(w1),xx (1, t) = (w2),xx (1, t) = 0

(w1),xxx (1, t) = (w2),xxx (1, t) = 0 (12)

Concerning the nondimensional Reynolds equation
and associated boundary conditions, it can be expressed
as:

[
(1 − w1 + w2)

3(P + 1) P,x

]
,x

+ α3

[
(1 − w1 + w2)

3(P + 1) P,y

]
,y
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= σ
[
(1 − w1 + w2)P,t − (P + 1)((w1),t − (w2),t )

]

(13)

subject to

P(x, 0, t) = P(x, 1, t) = P(1, y, t) = pa

P ,x (0, y, t) = 0 (14)

3 Solution procedure and nonlinear reduced-order
Model

To examine the fully coupled dynamics of the elec-
trically coupled microbeams, we derive the reduced-
order model (ROM) using a combination of the
Galerkin decomposition and the differential quadrature
method (DQM). The deflections of the microbeams are
expanded as follows [15,21]:

w1(x, t) =
m∑
i=1

qi1(t)φ
i
1(x) (15)

w2(x, t) =
m∑
i=1

qi2(t)φ
i
2(x) (16)

where the spatial function φi
1,2(x) is the i th-linear nor-

malized undamped mode shape of a cantilever beam
and the time-varying functions qi1(t) and qi2(t) are the
corresponding modal coordinates of the microbeams.
m denotes the number of the retained modes. The
nondimensional form of the mode shapes is given by
[22]:

φi
j (x) = sin βi x − sinh βi x

− sin βi + sinh βi

cosβi + cosh βi
(cosβi x − cosh βi x)

j = 1, 2, . . . ,m (17)

where the βi are solution of the transcendental equa-
tion:

1 + cosβ cosh β = 0 (18)

Next, we substitute Eqs. (15) and (16) into Eqs. (10)
and (11),multiply the outcomeby the appropriatemode
shape φ

j
1,2, and integrate the resulting equations from

0 to 1 to obtain the following equations:

(q j
1 ),t t + μ(q j

1 ),t +
m∑
i=1

qi1

∫ 1

0
φ
j
1 (φ

i
1),xxxxdx

− α1V (t)2
∫ 1

0
φ
j
1

× 1 + δ
(
1 − ∑m

i=1 q
i
1φ

i
1 − qi2φ

i
2

)
(
1 − ∑m

i=1 q
i
1φ

i
1 − qi2φ

i
2

)2 dx

+ α2

∫ 1

0

∫ 1

0
φ
j
1 P(x, y)dxdy = 0 (19)

β(q j
2 ),t t + βμ(q j

2 ),t +
m∑
i=1

qi2

∫ 1

0
φ
j
2 (φ

i
2),xxxxdx

+ β3/2α1V (t)2
∫ 1

0
φ
j
2

× 1 + δ
(
1 − ∑m

i=1 q
i
1φ

i
1 − qi2φ

i
2

)
(
1 − ∑m

i=1 q
i
1φ

i
1 − qi2φ

i
2

)2 dx

− β3/2α2

∫ 1

0

∫ 1

0
φ
j
2 P(x, y)dxdy = 0

j = 1, . . . ,m (20)

Substituting Eqs. (15) and (16) into Eq. (13), we
obtain:

3

(
1 −

m∑
i=1

qi1φ
i
1 − qi2φ

i
2

)2 (
m∑
i=1

qi2(φ
i
2),x − qi1(φ

i
1),x

)

× (P + 1)P,x +
(
1 −

m∑
i=1

qi1φ
i
1 − qi2φ

i
2

)3

×
[
P2

,x + (P + 1)P,xx

]

+ α3

(
1 −

m∑
i=1

qi1φ
i
1 − qi2φ

i
2

)3 [
P2

,y + (P + 1)P,yy

]

− σ

(
1 −

m∑
i=1

qi1φ
i
1 − qi2φ

i
2

)
P,t

+ σ(P + 1)

(
m∑
i=1

(qi1),tφ
i
1 − (qi2),tφ

i
2

)
= 0 (21)

The Reynolds equation is discretized by applying
the DQM in the x and y directions. The basis of DQM
is to approximate the spatial derivative of the pressure
at each grid point with respect to the position variables
x or y by a weighted linear summation of the displace-
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ments at all grid points [2,3,5]. For example, for the
derivative with respect to the axial position, estimated
at grid point (xi , y j ), it is given by:

∂r P(x)

∂xr

∣∣∣∣
x=xi ,y=y j

=
n∑

k=1

A(r)
ik Pk j (22)

where Pkj = P(x j , yk).
The DQM grid points are defined using the nonuni-

form Chebyshev–Gauss–Lobatto (CGL) grid distribu-
tion scheme as:

xi = yi = 1

2

[
1 − cos

( i − 1

n − 1
π

)]
i = 1, . . . , n

and A(r)
i j is the coefficient of the r th-order derivative.

These coefficients are given, here for the x-direction,
by the following recursive formulas:

A(1)
i j =

∏n
v=1;v �=i (xi − xv)

(xi − x j )
∏n

v=1;v �= j (x j − xv)

A(r)
i j = r

(
Ar−1
i i A1

i j − Ar−1
i j

(xi − x j )

)

A(r)
i i = −

n∑
v=1;v �=i

A(r)
iv

i, j = 1, 2, . . . , n (23)

As for the numerical computation of the integrals,
we use the Newton–Cotes coefficients [23], given by:

Bi =
∫ 1

0

n∏
j=1; j �=i

x − x j
xi − x j

dx i = 1, 2, . . . , n (24)

Applying DQM and Newton–Cotes to approximate
the integrals and spatial derivatives at the DQM grid
points, taking advantage of the symmetry with respect
to the y-axis, we obtain the full nonlinear reduced
model describing the motion of the microbeams as fol-
lows:

(q j
1 ),t t + μ(q j

1 ),t +
m∑
i=1

qi1

⎛
⎝

n∑
r,s=1

Br A
(4)
rs φ

j
1rφ

i
1s

⎞
⎠

− α1V (t)2
n∑

r=1

Brφ
j
1r

× 1 + δ
(
1 − ∑m

i=1 q
i
1φ

i
1r − qi2φ

i
2r

)
(
1 − ∑m

i=1 q
i
1φ

i
1r − qi2φ

i
2r

)2

+ α2

n∑
r,s=1

Br Bsφ
j
1r Prs = 0 (25)

β(q j
2 ),t t + βμ(q j

2 ),t +
m∑
i=1

qi2

⎛
⎝

n∑
r,s=1

Br A
(4)
rs φ

j
2rφ

i
2s

⎞
⎠

+ β3/2α1V (t)2
n∑

r=1

Brφ
j
2r

× 1 + δ
(
1 − ∑m

i=1 q
i
1φ

i
1r − qi2φ

i
2r

)
(
1 − ∑m

i=1 q
i
1φ

i
1r − qi2φ

i
2r

)2

− β3/2α2

n∑
r,s=1

Br Bsφ
j
2r Prs = 0

j = 1, . . . ,m (26)

where φ
j
1r = φi

1(xr ) and φ
j
2r = φi

2(xr ).

3

(
1 −

m∑
i=1

qi1φ
i
1r − qi2φ

i
2r

)2 [(
m∑
i=1

qi2(φ
i
2r ),x − qi1(φ

i
1r ),x

)

× (Prs + 1)
n∑

k=1

A(1)
rk Pks

]

+
(
1 −

m∑
i=1

qi1φ
i
1r − qi2φ

i
2r

)3 [ (
n∑

k=1

A(1)
rk Pks

)2

+ (Prs + 1)

(
n∑

k=1

A(2)
rk Pks

) ]

+ α3

(
1 −

m∑
i=1

qi1φ
i
1r − qi2φ

i
2r

)3

×
[(

n∑
k=1

A(1)
rk Prk

)2

+ (Prs + 1)

(
n∑

k=1

A(2)
sk Prk

) ]

− σ

(
1 −

m∑
i=1

qi1φ
i
1r − qi2φ

i
2r

)
Prs,t

+ σ(Prs + 1)

(
m∑
i=1

(qi1),tφ
i
1r − (qi2),tφ

i
2r

)
= 0

for r = 2, . . . , n − 1 and s = 2, . . . ,
n + 1

2
(27)

The pressure at the boundaries is determined by
using the boundary and symmetry conditions, that is:

P(xr , 0) = 0, P(1, ys) = 0
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n∑
k=1

A(1)
1k P(xk, ys) = 0 r, s = 1, . . . , n

P(xr , yn+1−s) = P(xr , ys)

r = 1, . . . , n and s = 1, . . . ,
n − 1

2
(28)

4 Convergence and validation of the proposed
solution

4.1 Convergence analysis

To verify the convergence behavior of the numerical
solution when varying the number of DQM points and
expansion modes, we evaluate the response of the dual
microbeam system when applying a DC voltage alone
(V (t) = VDC). We note that the DC voltage is set equal
to 70 V (near the onset of the pull-in instability). The
microsystem material and geometry properties consid-
ered in the subsequent numerical simulations are pre-
sented in Table 1.

We fix the number of DQM points and gradu-
ally increase the number of modes. Using a Runge–
Kutta fourth-order scheme for the time integration, the
transient variations of the microbeams displacements
obtained from the fully coupled reduced-order model
are depicted in Fig. 2. The simulation results revealed
that when selecting improperly the number of DQM
points, the numerical solution fails to converge as the
number ofmodes is increased. For instance,when using
9 DQM points, the numerical model does not pro-
duce the same steady-state solution when increasing
the number of modes up to four. Moreover, an increase
in the number ofmodes in the Galerkin discretization is
not accompanied by a convergence in the response, as
presented in Fig. 2a.On the other hand, setting the num-
ber ofDQMpoints equal to 13 and using only onemode
in theGalerkin discretization lead to an acceptable con-
vergence, as shown in Fig. 2c. As such, one needs to

Table 1 Geometric and material properties of the microbeams
under investigation

l (µm) b (µm) h1 (µm) h2 (µm)

100 25 3 1.5–15

d (µm) E (GPa) ρ (kg/m3)

2 184 2300

Fig. 2 Convergence analysis: transient variations of the
microbeams displacements when varying the number of DQM
points and number of expansion modes

first determine the appropriate number of DQM points
in order to achieve invariant simulation results when
increasing the number of modes. In the subsequent
study, the simulation results are obtained using one
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Fig. 3 Pressure distribution between the microbeams, obtained
for VDC = 70V and using 13 DQM points

mode in the Galerkin method and 13 DQM points for
space discretization.

One can also conclude from Fig. 2 that adding the
squeeze-film effect leads to a dissipation in the motion
of the microbeams. For this reason, several authors
treating dynamic analysis of MEMS structure in the
literature, choose to represent this effect by a simple
linear viscous damping term in the equation of motion
[6,8,24]. In general, a logarithmic decrement formula
is applied to the transient response to estimate the cor-
responding quality factor of the device. This latter rep-
resents generally all sources of damping in the sys-
tem, especially when the transient response is obtained
experimentally [5,25]. In the following sections, it will
be shown that this representation is inaccurate. More-
over, even more advanced nonlinear damping models
cannot accurately represent the squeeze-film behavior,
especially near resonance.

The pressure distribution, when the displacement
is at its maximum position, is obtained for the same
appliedDCvoltage andusing 13DQMpoints, as shown
in Fig. 3. The pressure distribution is consistent with
those found in the literature for cantilever microbeams
[26].

4.2 Comparison with a partially coupled model

Considering microbeams with a length l significantly
larger than the width b and assuming small relative
displacements of the microbeams w1(x, t) − w2(x, t)
compared to the original gap width d, and small rel-
ative pressure change along the microbeam P(x, y, t)
in comparison with the ambient air pressure pa, the
squeeze-film damping force can be approximated by
[15]:

FSQFD = μeffb3

(d − w1 + w2)3

(∂w1

∂t
− ∂w2

∂t

)
(29)

Based on the above representation of the SQFD force,
the dimensionless governing equations of the electri-
cally coupled microbeams can be expressed as:

(w1),t t + μ(w1),t + (w1),xxxx

= α1V (t)2

(1 − w1 + w2)2

(
1 + δ(1 − w1 + w2)

)

− κ

(1 − w1 + w2)3

(
(w1),t − (w2),t

)
(30)

(w2),t t + βμ(w2),t + (w2),xxxx

= − α1V (t)2

(1 − w1 + w2)2

(
1 + δ(1 − w1 + w2)

)

+ β3/2κ

(1 − w1 + w2)3

(
(w1),t − (w2),t

)
(31)

where κ = 2
√
3μeffb2l2√
Eh2d3

.
Expanding the deflections in terms of the mode

shapes and following the same numerical approach as
described in the previous section, we obtain the follow-
ing reduced-order model:

(q j
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j = 1, . . . ,m (32)
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j = 1, . . . ,m (33)
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To investigate the predictive capability of the par-
tially coupledmodel,we simulate thedynamic response
of the dual beam system for different operating condi-
tions near the onset of the pull-in instability and com-
pare the results to those obtained using the fully cou-
pled model. We show in Fig. 4 the time response of
the dual beam system for different ambient pressures.
The thickness ratio h2/h1 is set equal to one (identical
microbeams). The applied DC voltages are selected in
the neighborhood of the pull-in. As expected, increas-
ing the ambient pressure is observed to shift the pull-
in voltage to higher values. Both models lead to the
same steady-state solution. The discrepancy between
the two models is only observed in the transient part.
This demonstrates the limitation of the partially cou-
pled model to capture the dynamics of the dual beam
system.

Next, we consider dissimilar microbeams in terms
of thickness by setting h2/h1 equal to 1.5 and show
in Fig. 5 a comparison between the time responses
obtained from the twomodelswhen varying the applied
DC voltage while approaching the pull-in instability.
The ambient pressure pa is kept constant and equal to
po = 101.325 kPa. Inspecting the plotted curves in
Fig. 5a, b, it is clear that the two models show differ-
ent transient responses and they both converge to the
same steady-state solution. However, when actuating
the dual beam system with a DC voltage equal to 92.6
V, the partially coupledmodel predicts a stable behavior
while pull-in instability occurs as per the fully coupled
model simulation, as depicted in Fig. 5c. This result
shows the possible erroneous predictions of the static
pull-in instability when asymmetric beams are consid-
ered and hence the limits of applicability of the SQFD
partially coupled model.

Next, we examine the impact of the thickness ratio
h2/h1 on the pull-in voltage, calculated using a tran-
sient approach and starting from a rest initial condition
[6]. We note that h1 is maintained fixed at 3µm and
the ambient pressure pa is set equal to po = 101.325
kPa. The obtained results from the two models are
shown in Fig. 6. As expected, increasing the thickness
ratio makes the microsystem stiffer and then results in
an increase in the pull-in voltage. This increase sat-
urates when reaching a thickness ratio of 3 and the
pull-in voltage of the dual beam system approaches
that of the single beam system (of thickness 3µm).
The simulation results show also that the partially cou-
pled model slightly overestimates the pull-in voltages

Fig. 4 Time response of the dual beamsystem for different ambi-
ent pressures. Results are obtained from the fully and partially
coupled models. The thickness ratio h2/h1 is set equal to one
(identical microbeams)
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Fig. 5 Time response of the dual beam system for different
applied DC voltages. Results are obtained from the fully and
partially coupled models. The thickness ratio h2/h1 is set equal
to 1.5 and pa = po = 101.325kPa

when compared to those obtained from the fully cou-
pled model. This overestimation is more pronounced at
higher thickness ratios, as shown in the plotted curves
in Fig. 6.

We investigate the change in the transient pull-
in voltage when varying the operating pressure pa
for different thickness ratios h2/h1. The results are

Fig. 6 Variations of the pull-in voltage with the thickness ratio
h2/h1. Results are obtained from the fully and partially coupled
models. The dashed line denotes the value of the pull-in voltage
of the single beamwith a thickness of 3µm.The ambient pressure
is set equal to po = 101.325kPa
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Fig. 7 Variations of the pull-in voltage with the operating pres-
sure pa for different thickness ratios h2/h1. Results are obtained
from the fully coupled model. The thickness h1 is kept constant
and equal to 3µm
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shown in Fig. 7 in terms of the percentage increase
with respect to the pull-in voltage obtained near
vacuum conditions. The most significant impact is
observed for smaller thickness ratio. The pull-in volt-
age increases by 8%when operating under atmospheric
pressure in comparison with its value obtained near
vacuum conditions (pressure is in the order of few
Pa).

5 Dynamic response of the system to a DC and AC
voltages

Taking advantage of the convergence analysis in Fig. 2,
we adopt the same number of mode shapes and DQM
grid points in the following dynamic analysis. We pro-
pose to plot the frequency-response and force-response
curves of the system and investigate the effects of the
ambient pressure and thickness ratio between the two
microbeams. Also, the proposed fully coupled model
is compared to the partially coupled one developed in
Sect. 4.

In this analysis, we assume that the applied voltage
follows a harmonic signal superimposed to a constant
voltage, that is:

V (t) = VDC + VAC cos(Ωt) (34)

where Ω is the nondimensional excitation frequency.
Thedynamic solution is obtainedby solvingEqs. (25),

(26), and (27) for the fully coupled problem, and
Eqs. (32) and (33) for the partially coupled problem. A
Runge–Kutta discretization technique is used to solve
the equations for stable steady-state solutions. In the
following, we represent the maximum displacement in
the steady-state regime of the difference between the
two displacement denoted by (w1 − w2)Max.

5.1 Influence of the ambient pressure on the
frequency- and force-response curves

The operating pressure can be controlled by theway the
microstructure is encapsulated, and then it can be con-
sidered as a design component. It can be selected based
on the MEMS application of interest. For instance,
SQFD can be exploited to enable stronger protection of
the MEMS device when exposed to mechanical shock
or sudden change in the acceleration [15,16]. In Fig. 8,

pa= 0.1po, σ =13.97
pa= 0.2po, σ =10.65
pa= 0.25po, σ =9.53
pa= 0.3po, σ =8.62
pa= 0.4po, σ =8.62
pa= 0.5po, σ =6.24
pa= po, σ =3.69
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Fig. 8 Frequency-response curves of the dual beam microsys-
tem for different ambient pressures. VDC = 50V, VAC = 10V,
d = 2µm, and h2/h1 = 1. The nondimensional parameter σ is

defined as 12μeff l2

paτd2

we present the frequency-response curves of the dual
beam system obtained from the fully coupled model
at different ambient pressures ranging from 0.1 po to
po. The DC and AC voltages are set equal to 50V
and 10V, respectively, and the thickness ratio h2/h1
is maintained equal to 1. We note that only the stable
solutions are shown in this figure.We find that near res-
onance the ambient pressure can affect significantly the
dynamic solution both quantitatively and qualitatively.
We observe the occurrence of open regions, where no
stable solution can be obtained, when operating under
a pressure equal or less than 0.2 po. These are known as
the pull-in band in the frequency-response curve [27].
Also, a clear softening effect is observedwhen the pres-
sure is low enough to let the amplitude of the solution
reach relatively high values. As known in the literature,
the softening effect is generally attributed to the nonlin-
earity of the electrostatic forcewhich is of the quadratic
type. We note that minor effect of the ambient pres-
sure on the dynamic response is observed when oper-
ating away from resonance. Further, an increase in the
ambient pressure is accompanied by a decrease in the
resonant amplitudes due to the increase in the overall
damping in the system. It shouldbementioned that pull-
in band constitutes an important dynamic aspect to be
detected in most MEMS actuators and sensors because
it should be avoided when stable periodic solutions
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Fully coupled, pa= 0.1po
Partially coupled, pa= 0.1po
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Fig. 9 Frequency-response curves of the dual beam microsys-
tem. Comparison between the fully coupled and the partially
coupled approaches. VDC = 50V, VAC = 10V, d = 2µm, and
h2/h1 = 1

are required, such as resonators. On the other hand,
dynamic solutions in the neighborhood of the pull-
in band have been employed to actuate microswitches
[5,25].

Next, we compare the frequency-response curves
obtained from the two computational models for dif-
ferent operating pressures. Again, the DC and AC volt-
ages are set equal to 50V and 10V, respectively, and
the thickness ratio h2/h1 is maintained equal to 1. The
obtained results are shown in Fig. 9. The partially cou-
pled model underestimates the dynamic solution of the
dual microbeam system, especially when approaching
resonance. Furthermore, the partially coupled model
does not capture the pull-in band predicted by the
fully coupled model when operating at a pressure of
0.1 po and shows instead a multi-solution region. This
constitutes a major qualitative change in the dynamic
response when compared to the fully coupled prob-
lem and reveals the limitations of the partially coupled
model to properly simulate the dynamics associated
with the dual beam system, especially when using it as
a microswitch which is intended to operate near reso-
nance. When the ambient pressure is set equal to the
atmospheric one, it can be concluded from the plotted
curves in Fig. 9 that the partially coupled model under-
estimates the resonant amplitudes due to inaccurate
modeling of the linear and nonlinear coupling terms
due to the squeeze-film damping. Indeed, a change in
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Fig. 10 Force-response curves of the dual beam microsystem
for different ambient pressures. VDC = 50V, Ω = 3, d = 2µm,
and h2/h1 = 1

the effective nonlinearity of the system can result in a
change in the nonlinear behavior of the system (soft-
ening or hardening) and its maximum amplitude.

The force-response curves are generated similarly to
the previous case while taking the VAC voltage as con-
trol parameters and keeping the excitation frequency
fixed and equal to the nondimensional value Ω = 3.
In Fig. 10, the force-response curves are shown for dif-
ferent ambient pressures and a constant thickness ratio
h2/h1 = 1. The figure depicts a similar behavior to the
frequency-response curves where decreasing the ambi-
ent pressure tends to increase the maximum amplitude
for a given AC voltage. As expected, the stability of
the branches in Fig. 10 is improved as the damping
is increased through the ambient pressure adjustments.
One can remark that the range of travel of the maxi-
mum amplitude can be reduced to 0.4 when operating
under an ambient pressure of pa = 0.1po. These results
indicate the possible tuning of the operating pressure to
obtain the levelmicrobeamvibrations as per theMEMS
application of interest.

The force-response curves are also used to com-
pare the numerical predictions of the dynamic response
obtained from the fully and partially coupled mod-
eling approaches. In Fig. 11, the response of the
microbeams confirms that the partially coupled model
largely underestimates the maximum amplitude except
for very small AC voltages. The discrepancy between
the two models is more noticeable as the ambi-
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Fig. 11 Force-response curves of the microbeams. Comparison
between the fully coupled and the partially coupled approaches.
VDC = 50V, Ω = 3, d = 2µm, and h2/h1 = 1

ent pressure is increased and when actuating the
microsystem at higher AC voltages. In addition, the
dynamic solutions obtained from the partially cou-
pled approach lose stability when the fully coupled
model is used. This indicates a qualitative difference in
the dynamic behavior predicted from the two models
and demonstrate the necessity to use the fully coupled
approach.

5.2 Influence of the thickness ratio on the frequency-
and force-response curves

In this section, we investigate the influence of the thick-
ness ratio h2/h1 on the dynamic response of the dual
beam microsystem. The difference in the thickness of
the microbeams can be associated with deficiency in
the microfabrication or deliberately used, for sensing
applications for example, to create asymmetric behav-
ior of the device.We note that h1 is kept fixed at 3µm in
the subsequent simulations. Three values of the thick-
ness ratio h2/h1 are selected in Fig. 12 along with
their associated ambient pressure and applied voltages.
The simulation results show that reducing the thickness
ratio h2/h1 tends to increase the maximum amplitude
far from resonance. However, the obtained dynamic
solutions lose their stability when approaching reso-
nance as the thickness ratio is reduced. One can deduce
that a mismatch in the thickness of the two electri-

h2/h1 = 0.5, pa = 0.2po, VDC = 35V, VAC = 10V
h2/h1 = 0.5, pa = 0.5po, VDC = 35V, VAC = 10V
h2/h1 = 1.5, pa = 0.2po, VDC = 50V, VAC = 10V
h2/h1 = 1.5, pa = 0.5po, VDC = 50V, VAC = 10V
h2/h1 = 1, pa = 0.5po, VDC = 50V, VAC = 10V
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Fig. 12 Frequency-response curves of the dual beam microsys-
tem for different thickness ratios

cally coupled microbeams can affect significantly their
dynamic behavior both quantitatively and qualitatively.

The upper beam in Fig. 1 (Beam 1), for which the
thickness is fixed to 3µm, should have an unchanged
natural frequency if no coupling is taking into account.
However, as depicted in Fig. 12, when comparing
the frequency-response curves for h2/h1 = 1.5 and
h2/h1 = 1, there is a clear mismatch in the natural fre-
quency of the system associated with Beam 1 as man-
ifested by the shift in the peaks. This mismatch is not
only associated with the electrostatic force coupling as
the same voltages are applied. It is also related to the
squeeze film damping coupling. This mismatch indi-
cates again the importance of considering the coupled
problem approach because it directly affects not only
the nonlinear part of the solution but also its linear part.

We investigate further the results obtained in the
previous section concerning the observed quantitative
and qualitative differences between the partially cou-
pled and fully coupled approaches. We plot in Fig. 13
the frequency-response curves obtained from the two
models while varying the thickness ratio. The results
confirm the finding from the previous section concern-
ing the underestimation of the solution when the par-
tially coupled approach is employed. In addition, one
cannot ignore the similitude between the frequency-
response curves at h2/h1 = 1.5 in Fig. 13 when
pa = 0.2po. This can serve as a motivation to pro-
pose a correction to the partially coupled approach as a
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h2/h1 = 0.5, pa = 0.2po, VDC = 35V, VAC = 10V, Fully coupled
h2/h1 = 0.5, pa = 0.2po, VDC = 35V, VAC = 10V, Partially coupled
h2/h1 = 0.5, pa = 0.106po, VDC = 35V, VAC = 10V, Partially coupled
h2/h1 = 1.5, pa = 0.2po, VDC = 50V, VAC = 10V, Fully coupled
h2/h1 = 1.5, pa = 0.2po, VDC = 50V, VAC = 10V, Partially coupled
h2/h1 = 1.5, pa = 0.06po, VDC = 50V, VAC = 10V, Partially coupled
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Fig. 13 Frequency-response curves of the dual beam microsys-
tem for different thickness ratios and ambient pressures. Com-
parison between the fully coupled and the partially coupled
approaches

coefficient directly applied to the ambient pressure. In
Fig. 13, when h2/h1 = 1.5, the ambient pressure has
been decreased to pa = 0.06po for the partially cou-
pled approach to match the curve corresponding to the
responsewhen the fully coupled approach is usedwhile
setting the ambient pressure equal to pa = 0.2po. We
deduce that a correction factor of 0.3 can be used in this
case. Similarly, for the case h2/h1 = 0.5, a correction
factor of 0.53 has been used.We note that the correction
factor is identified by gradually varying its value and
comparing the dynamic solution of the partially cou-
pled ROM to that of the fully coupled ROM at a fixed
excitation frequency. The reported value of the correc-
tion factor is found to lead a good match between the
two ROMs over an extended frequency range as shown
in Fig. 13. Furthermore, the frequency response curves
depicted in Fig. 13 indicate the dependency of the cor-
rection factor on the thickness ratio of the dual beam
system. It turns out that this approach has been previ-
ously used by Yagubizade and Younis [16] to calibrate
a model, using a partially coupled approach, with finite
element results. They claimed that the correction factor
depends only on the ambient pressure. However, from
Fig. 13, one can conclude that, for the optimal case, this
correction factor depends on the excitation frequency as
well. Inspecting Fig. 13, a good match between the two
models is obtainedwhen applying the correction factor.
However, we observe at some excitation frequencies,

Ω=3.4, Fully coupled
Ω=3.4, Partially coupled
Ω=3.2, Fully coupled
Ω=3.2, Partially coupled
Ω=3.3, Fully coupled
Ω=3.3, Partially coupled
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Fig. 14 Variations of the dynamic response of the system with
the ambient pressure pa (represented as ratio of the atmospheric
pressure po) for different excitation frequencies. h2/h1 = 1.5,
VDC =50V, andVAC =10V.The horizontal dashed line indicates
the same amplitude of motion, and its intersection with the two
curves corresponding to the two ROMs enables the identification
of the correction factor.

the dynamic responses are completely different both
quantitatively and qualitatively. For instance, this dis-
crepancy is obtained for Ω = 3.25 when h2/h1 = 1.5
and Ω = 3.22 when h2/h1 = 0.5. The identifica-
tion of the correction factor can be obtained by for-
mulating an optimization problem with the objective
function to be minimized is the minimum of the differ-
ence between the amplitudes of the dynamic solutions
of the two ROMs over the full frequency range under
investigation. The intent of our study was to inspect the
existence of a correction factor that can improve the
predictive capability of the partially coupled ROM to
some extent as reported in a previously published work
based on single beam systemwithout electric actuation
[16].

Figure 14 shows the dynamic response of the sys-
tem under different ambient pressures pa (represented
as ratio of the atmospheric pressure po )while fixing
the excitation frequency. The correction factor can be
determined here by selecting a given amplitude of the
response and determine the ratio between the corre-
sponding two ambient pressures, for the fully coupled
and partially coupled ROM, when they generate the
same amplitude ofmotion. As depicted in Fig. 14, large
variations of the correction factor are observed for dif-
ferent excitation frequencies.
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Fig. 15 Force-response curves of the dual beam microsystem
for thickness ratios and ambient pressures

The force-response curves are plotted in Fig. 15 for
different thickness ratios and ambient pressures. We
note that the force-response curve is obtained by vary-
ing the amplitude of the AC voltage while keeping the
excitation frequency Ω constant and equal to 3. Con-
sidering lower thickness ratio tends to reduce the max-
imum applied AC voltage for stable solutions. In fact,
as this ratio is reduced, the stiffness of the microstruc-
ture is also reduced. As such, the balance between the
electrostatic force and the restoring force of the device,
which controls the occurrence of pull-in, is more vul-
nerable. If large strokes are needed for a specificMEMS
application, only one of the beams’ thicknesses can be
increased in order to increase the stiffness of the whole
device.As shown in Fig. 15, very large stable amplitude
is obtained in the case of h2/h1 = 1.5 with relatively
small AC voltage.

6 Conclusions

The nonlinear dynamic response of two coupled can-
tilever microbeams was investigated in this study. The
coupling is maintained by the nonlinear electrostatic
force applied between the twomicrobeams and the non-
linear squeeze-film damping effect due to air motions
following the volume variation of the space filling the
electrostatic gap. The initial air pressure, in which
the device operates, was observed to affect signifi-
cantly its dynamic response. In addition to the struc-

tural modeling of the cantilever microbeams follow-
ing Euler–Bernoulli theory, we proposed the use of
two modeling approaches to analyze the impact of the
squeeze-film damping. First, we developed a nonlin-
ear multi-physical model of the device by coupling
beam equations with the nonlinear Reynolds equa-
tion and employed the Galerkin decomposition and
differential quadrature method to discretize the struc-
tural and fluidic domains, respectively. We considered
also another modeling approach based on approximat-
ing the squeeze-film damping force by a nonlinear
analytical expression. This approach has been widely
used in the literature and referred to as partially cou-
pled model in this study. A comparative study of the
nonlinear dynamic responses obtained from the two
modeling approaches under different operating condi-
tions in terms of electric actuation and applied pressure
was conducted. Quantitative and qualitative discrepan-
cies were observed, especially when operating at high
AC voltage or near resonance. Frequency- and force-
response curves were generated to show the limita-
tions of the partially coupled model to capture properly
the microsystem dynamics, especially when approach-
ing the onset of the pull-in instability and exciting the
microsystem with an AC voltage near resonance.

Taking advantage of the developed fully coupled
model, the influence of the ambient pressure and the
thickness ratio between the two microbeams were
investigated in details using the nonlinear dynamic
response obtained by time integration of the coupled
nonlinear equations. It was found that operating the
microsystem at a reduced ambient pressure or when
one of themicrobeams’ thickness is reduced can lead to
a premature instability of the dynamic solution which
reduces the maximum amplitude of the device. This
feature can be seen as advantage for switching appli-
cations of the device, but it constitutes an undesirable
effect to resonators.
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