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Abstract Different regions in the human brain func-
tionally connect with each other forming a brain func-
tional network, and the time evolution of functional
connectivity between different brain regions exhibits
complex nonlinear dynamics. This study intends to
characterize the nonlinear properties of dynamic func-
tional connectivity and to explore how schizophre-
nia influences such nonlinear properties. The dynamic
functional connectivity is constructed by analyzing
resting-state functional magnetic resonance imaging
data, and its nonlinear properties are characterized by
sample entropy (SampEn), with larger SampEn val-
ues corresponding to more complexity. To identify the
influence of schizophrenia on SampEn, the difference
in SampEn between patients with schizophrenia and
healthy controls is analyzed at different levels of the
brain. It is shown that the patients exhibit significantly
higher SampEn at different levels of the brain, and such
phenomenon is mainly caused by a significantly higher
SampEn in the visual cortex of the patients. Further-
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more, it is also shown that SampEn of the visual cortex
is significantly and positively correlated with the ill-
ness duration or the symptom severity scores. Because
the visual cortex is implicated in the visual informa-
tion processing, these results can shed light on abnor-
mal visual functions of patientswith schizophrenia, and
also are consistent with the notion that the nonlinear-
ity underlies the irregularity in psychotic symptoms of
schizophrenia. This study extends the application of
nonlinear dynamics in brain sciences and suggests that
nonlinear properties are effective biomarkers in charac-
terizing the brain functional networks of patients with
brain diseases.

Keywords Sample entropy · Nonlinear dynamics ·
Dynamic functional connectivity · Brain functional
networks · Schizophrenia

1 Introduction

The human brain, a complex nonlinear system with
hierarchical levels, exhibits complex spatiotemporal
behaviors at different hierarchical levels when execut-
ing physiological functions or suffering from diseases.
Identifying nonlinear dynamics of the spatiotemporal
behaviors which dynamically evolve over time is an
important approach to understand the human brain.
In single neurons, many nonlinear behaviors, such as
typical chaos and bifurcations of neuronal firing pat-
terns, have been observed in biological experiments
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and analyzed in theoretical models [1–5]. In neuronal
networks, multiple spatiotemporal behaviors, such as
synchronizations and spiral waves, have been observed
in biological experiments and simulated in theoreti-
cal models [6–10]. For the human brain, blood oxy-
gen level-dependent (BOLD), electroencephalography
(EEG), magnetoencephalography (MEG), and electro-
corticogram (ECoG) signals of different brain areas can
be measured in biological or clinical experiments and
can be analyzed by the method of time series analysis
to characterize spatiotemporal dynamics of the human
brain. Because of the difficulty in modeling the human
brain and the lack of understanding about the nonlin-
ear dynamics of the human brain, theoretical models
describing nonlinear dynamics of the human brain have
been put little attention. In spite of this, the method of
nonlinear time series analysis has been used to analyze
the spatiotemporal behaviors of BOLD, EEG, MEG,
and ECoG signals [11–19], which may be useful for
modeling a brain showing nonlinear dynamics [20].

Since BOLD signals of the human brain can bemea-
sured at a spatial resolution of about 3mm3 (a voxel) by
functional magnetic resonance imaging (fMRI) tech-
nique, analyzing the dynamics of BOLD signals at dif-
ferent hierarchical levels, such as the voxel level and
the regional level, has been broadly used to under-
stand brain functions and brain diseases [21–23]. For
example, researchers have shown that some measures
obtained by analyzing the dynamics of BOLD signals,
such as the temporal correlation in BOLD signals of
different voxels or brain regions, can be used as objec-
tive indicators for characterizing brain conditions such
as schizophrenia [24], autism [25], major depressive
disorder [26], and attention deficit hyperactivity dis-
order [27]. Analyzing the dynamics of BOLD signals
of healthy individuals and patients with brain diseases
measured by resting-state and task-based fMRI as well
as introducing newmethods to analyze the dynamics of
BOLD signals is important issue in the study of BOLD
signals.

In the study of BOLD signals, three typical hierar-
chical levels of the human brain are the voxel level,
the regional level, and the network level. These three
hierarchical levels are interrelated. Specifically, a brain
region is composed of many voxels, whereas a net-
work is composed of many brain regions. The dynam-
ics of BOLD signals at these three hierarchical levels
can be used to describe the dynamical evolution of the
human brain. For example, the temporal correlation in

resting-state fMRI BOLD signals of different voxels or
brain regions has been widely used to characterize the
functional connectivity between them [28], and vox-
els or brain regions with strong functional connectivity
among them have been considered to constitute a brain
functional network [29]. If a brain functional network is
changed in subjects with specific brain condition, brain
regions in this brain functional network are consid-
ered to be related to this brain condition. For example,
by analyzing functional connectivity between different
voxels or between different brain regions in subjects
with autism, Cheng et al. found an important system in
the middle temporal gyrus with decreased functional
connectivity, which is involved in social behavior, as
well as an important system in the precuneus with
decreased functional connectivity, which is involved
in spatial functions [30]. Schizophrenia is another spe-
cific brain condition, which is characterized by positive
symptoms such as hallucinations and delusions, and
negative symptoms such as social withdrawal and apa-
thy [31]. Functional connectivity analysis on resting-
state BOLD signals suggested that the abnormal prop-
erties of functional connectivity were important fea-
tures of schizophrenia [32–36]. For instance, Manoliu
et al. showed that the functional connectivity between
the default mode network and the central executive
network was increased in patients with schizophre-
nia, which was also related with hallucinations severity
[35].Whitfield-Gabrieli et al. showed that patients with
schizophrenia displayed abnormally high functional
connectivity within the default mode network, which
resulted in the disorganized thinking in schizophrenia
[36].

In most previous studies on functional connectivity,
only one correlation coefficient was obtained for the
BOLD signals of two brain regions, which is termed
as static functional connectivity. Recently, to iden-
tify the dynamics of BOLD signals more in depth,
researchers obtained a series of correlation coefficients
by the sliding-window correlation technique, which
was performed by evaluating correlation coefficient
between the BOLD signals of two brain regions within
a short time window, then sliding the window from the
beginning to the end of the BOLD signals [37]. The
time series of correlation coefficients, which is called
as dynamic functional connectivity, can characterize
the time-varying properties of functional connectivity
[37–44]. For example, by evaluating dynamic func-
tional connectivity between different brain regions,
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Allen et al. showed that some functional connections,
such as the functional connections between the lat-
eral parietal cortex and the cingulate cortex, were more
dynamic or flexible [37]. Furthermore, except for lin-
ear properties characterized by static or dynamic func-
tional connectivity, nonlinear properties of BOLD sig-
nals were identified in previous studies [12,14–16,18],
which is in line with the fact that the brain is a
complex nonlinear system. For instance, Wang et al.
used sample entropy (SampEn) to characterize non-
linear properties of resting-state BOLD signals col-
lected from a large cohort of healthy individuals, and
found that different brain regions show different Sam-
pEn values [14]. Sokunbi et al. calculated SampEn of
BOLD signals collected from patients with schizophre-
nia and healthy controls while performing the cyberball
social exclusion task, and found that patients exhib-
ited significantly higher SampEn than that of the con-
trols [16]. Therefore, dynamic functional connectiv-
ity analysis and nonlinear analysis are highly effective
methods for characterizing properties of the human
brain. In our recent study [45], nonlinear analysis of
dynamic functional connectivity is used to study prop-
erties of the brain functional networks. Specifically,
the relationship between SampEn of dynamic func-
tional connectivity and age was investigated. It was
shown that SampEn of the amygdala–cortical func-
tional connectivity was negatively correlated with age,
and such relationship disappeared in patients with
schizophrenia.

Considering that the influence of schizophrenia on
SampEnof dynamic functional connectivity at different
levels of the brain was not investigated in Ref. [45], the
present study intends to investigate whether SampEn of
dynamic functional connectivity is changed in patients
with schizophrenia and whether this change is related
to symptoms of schizophrenia. It is shown that the
patients with schizophrenia exhibit significantly higher
SampEn than the healthy controls at different levels of
the brain, and such phenomenon is mainly caused by
a significantly higher SampEn in the visual cortex of
the patients with schizophrenia. Furthermore, it is also
shown that SampEn of the visual cortex is significantly
and positively correlated with the illness duration or
the symptom severity scores. The results are helpful
for understanding the characteristics of schizophrenia,
extending the applications of nonlinear dynamics, and
strengthening the combination of nonlinear dynamics
and neuroscience.

The present study is structured as follows: The
experiments and methods are displayed in Sect. 2.
The difference in SampEn between the patients with
schizophrenia and the healthy controls, as well as
the relationship between SampEn and symptoms of
schizophrenia, is shown in Sect. 3. The conclusion and
discussion are described in Sect. 4.

2 Experiments and methods

2.1 Participants

BOLD signals included in the present study are taken
from a previous study about abnormal static functional
connectivity in patients with schizophrenia [33] and
are the same as that used in Ref. [45]. BOLD sig-
nals are collected from 69 patients with schizophrenia
and 62 healthy controls. Written informed consent is
acquired from each participant. All patients are iden-
tified by qualified psychiatrists according to criteria
in 4th edition of Diagnostic and Statistical Manual of
Mental Disorders (DSM-IV). All controls are assessed
by qualified psychiatrists as being free of schizophre-
nia and other brain disorders in accordance with crite-
ria in DSM-IV. The symptom severity of each patient
is evaluated by positive and negative syndrome scales
(PANSS).However, 5 patients cannot finish their evalu-
ation due to their poor health. Experimental procedures
are approved by National Taiwan University Hospital
institutional review boards.

2.2 Data acquisition and preprocessing

BOLD signals are extracted from whole-brain func-
tional images, which are acquired on a Siemens 3 Tesla
MRI scanner. The parameters are as follows: repeti-
tion time, 2000 ms; echo time, 24 ms; field of view,
256×256 mm2; matrix, 64×64; axial slices, 34; slice
thickness, 3 mm; flip angle, 90◦. During the image col-
lection, all participants are asked to rest while awake.
For each participant, a total of 180 whole-brain func-
tional images are acquired.

Preprocessing of functional images is conducted
by SPM software [46] and DPARSF software [47].
Details of the preprocessing are as follows: Firstly,
the first 10 images are deleted to decrease the nega-
tive influence of scanner’s stabilization on experimen-
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Fig. 1 Dynamic functional
connectivity estimated
using the sliding-window
approach. For each
participant, the BOLD
signal of each region of
interest is first calculated.
Dynamic functional
connectivity matrices are
then estimated using the
sliding-window approach.
Finally, dynamic functional
connectivity between each
pair of regions of interest is
obtained from the functional
connectivity matrices. FC:
functional connectivity

tal results. Secondly, the images are corrected for time
delays between different slices as well as rigid-body
head motion. Thirdly, the images are normalized to
the Montreal Neurological Institute template and are
resampled to 3 × 3 × 3 mm3. Fourthly, the images
are smoothed by a Gaussian kernel (full width at half
maximum = 8 mm). Fifthly, the BOLD signal of each
voxel is extracted from the images and then is band-
pass-filtered (0.01− 0.08 Hz) to decrease the negative
influence of low-frequency drift and high-frequency
physiological noise on experimental results. Finally,
covariates are regressed out from the BOLD signal of
each voxel, including six head-motion parameters, the
global, the white matter, and the cerebrospinal signals.

2.3 Method of estimating dynamic functional
connectivity: the sliding-window correlation
analysis

Thewhole brain is parceled out into 90 regions of inter-
est using the automated anatomical labeling atlas [48].
The full name of each region of interest can be found
in Table S1 of Ref. [45]. For each region of interest, the
BOLD signal is calculated by averaging BOLD sig-
nals of all voxels in the region of interest (Fig. 1). The
number of voxels in each of 90 regions of interest is

provided in Table 1, and the number ranges from 62
to 1510. Dynamic functional connectivity is estimated
using the sliding-window approach [37]. Specifically,
a rectangle windowwith a length of 40 s is constructed.
This window is applied to extract time series in steps
of 2 s, resulting in 150 time windows per participant.
For each time window, a Pearson correlation coeffi-
cient is used to assess functional connectivity between
each pair of regions of interest. Functional connectivity
matrices are thus obtained for each participant (Fig.1).
Dynamic functional connectivity between each pair
of regions of interest is then obtained from the func-
tional connectivity matrices (Fig.1). Throughout this
study, the window length is fixed at 40 s. This window
length is selected because previous studies showed that
window lengths ranging from 30 s to 60 s produced
robust results in data acquisitions [49], and changes of
functional connectivity were not sensitive to window
lengths ranging from 20 s to 40 s [50].

2.4 Method of calculating SampEn of a dynamic
functional connectivity time series

If a dynamic functional connectivity time series is
denoted by x = (x1, x2, . . . , xN )(N = 150), SampEn
of x can be calculated as follows [45].
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Table 1 The mean SampEn
of each region of interest
over all controls and over all
patients. The data are shown
in ascending order
according to p values of t
tests on SampEn of the two
groups. The number of
voxels in each region of
interest is also provided.
The full name of each region
of interest can be found in
Table S1 of Ref. [45]

Regions of interest SampEn of patients SampEn of controls p value Number of voxels

ROL.R 0.5354 ± 0.0458 0.5048 ± 0.0359 0.0009∗ 399

MOG.L 0.5263 ± 0.0380 0.5037 ± 0.0433 0.0014∗ 959

MOG.R 0.5351 ± 0.0387 0.5094 ± 0.0399 0.0024∗ 595

IOG.R 0.5352 ± 0.0420 0.5110 ± 0.0379 0.0033∗ 314

SOG.L 0.5242 ± 0.0424 0.5060 ± 0.0349 0.0057∗ 396

PAL.R 0.5381 ± 0.0381 0.5183 ± 0.0404 0.0062 76

PCG.R 0.5361 ± 0.0384 0.5167 ± 0.0443 0.0072 87

SFGdor.L 0.5307 ± 0.0399 0.5096 ± 0.0398 0.0076 1076

SPG.R 0.5286 ± 0.0442 0.5065 ± 0.0389 0.0081 647

PAL.L 0.5390 ± 0.0436 0.5206 ± 0.0424 0.0131 81

IOG.L 0.5229 ± 0.0367 0.5057 ± 0.0395 0.0204 268

SOG.R 0.5292 ± 0.0448 0.5065 ± 0.0360 0.0206 428

INS.L 0.5308 ± 0.0465 0.5154 ± 0.0379 0.0232 566

ACG.R 0.5250 ± 0.0464 0.5049 ± 0.0391 0.0239 397

PoCG.R 0.5237 ± 0.0457 0.5037 ± 0.0418 0.0270 1138

STG.L 0.5283 ± 0.0417 0.5099 ± 0.0368 0.0270 672

IFGtriang.L 0.5241 ± 0.0366 0.5116 ± 0.0417 0.0461 726

OLF.R 0.5427 ± 0.0466 0.5246 ± 0.0483 0.0507 81

ROL.L 0.5253 ± 0.0462 0.5091 ± 0.0431 0.0515 302

ACG.L 0.5247 ± 0.0443 0.5078 ± 0.0394 0.0529 426

PoCG.L 0.5198 ± 0.0480 0.5029 ± 0.0404 0.0554 1159

IPL.L 0.5257 ± 0.0397 0.5104 ± 0.0406 0.0576 696

FFG.R 0.5270 ± 0.0412 0.5121 ± 0.0396 0.0592 760

LING.L 0.5180 ± 0.0496 0.5015 ± 0.0349 0.0597 660

THA.L 0.5444 ± 0.0469 0.5284 ± 0.0488 0.0664 313

PUT.R 0.5309 ± 0.0428 0.5165 ± 0.0404 0.0693 322

HIP.L 0.5383 ± 0.0497 0.5265 ± 0.0417 0.0707 273

HES.R 0.5345 ± 0.0357 0.5202 ± 0.0381 0.0771 73

PreCG.R 0.5272 ± 0.0392 0.5104 ± 0.0431 0.0898 1002

ANG.L 0.5185 ± 0.0361 0.5049 ± 0.0400 0.0917 342

PCUN.R 0.5241 ± 0.0429 0.5119 ± 0.0418 0.0919 935

LING.R 0.5155 ± 0.0392 0.5013 ± 0.0380 0.0944 678

CAL.R 0.5152 ± 0.0434 0.4992 ± 0.0378 0.0947 542

ITG.L 0.5326 ± 0.0443 0.5213 ± 0.0363 0.1030 941

ANG.R 0.5191 ± 0.0352 0.5085 ± 0.0340 0.1045 496

SFGdor.R 0.5176 ± 0.0462 0.5043 ± 0.0363 0.1114 1159

HES.L 0.5376 ± 0.0474 0.5194 ± 0.0446 0.1119 72

MFG.R 0.5138 ± 0.0456 0.5015 ± 0.0388 0.1510 1510

PUT.L 0.5295 ± 0.0401 0.5194 ± 0.0368 0.1569 306

CAL.L 0.5184 ± 0.0436 0.5073 ± 0.0355 0.1603 648

INS.R 0.5233 ± 0.0428 0.5150 ± 0.0380 0.1651 539

IFGoperc.L 0.5279 ± 0.0296 0.5176 ± 0.0399 0.1656 326

AMYG.L 0.5429 ± 0.0387 0.5355 ± 0.0487 0.1663 62

TPOsup.L 0.5469 ± 0.0319 0.5378 ± 0.0472 0.1711 382
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Table 1 continued Regions of interest SampEn of patients SampEn of controls p value Number of voxels

STG.R 0.5256 ± 0.0387 0.5176 ± 0.0347 0.1744 963

ORBmid.R 0.5290 ± 0.0395 0.5167 ± 0.0462 0.2037 294

ORBmid.L 0.5256 ± 0.0405 0.5164 ± 0.0364 0.2114 270

SMA.R 0.5195 ± 0.0438 0.5065 ± 0.0421 0.2271 666

PCL.R 0.5302 ± 0.0388 0.5248 ± 0.0420 0.2395 227

PCUN.L 0.5176 ± 0.0431 0.5119 ± 0.0391 0.2398 1079

ORBsupmed.L 0.5298 ± 0.0439 0.5209 ± 0.0384 0.2532 225

ITG.R 0.5330 ± 0.0358 0.5258 ± 0.0369 0.2555 1072

CUN.R 0.5217 ± 0.0410 0.5136 ± 0.0391 0.2598 434

HIP.R 0.5440 ± 0.0432 0.5383 ± 0.0469 0.2693 288

ORBinf.R 0.5276 ± 0.0413 0.5165 ± 0.0458 0.2850 505

REC.R 0.5410 ± 0.0472 0.5370 ± 0.0438 0.2893 218

PreCG.L 0.5280 ± 0.0394 0.5165 ± 0.0407 0.2964 1028

THA.R 0.5400 ± 0.0422 0.5297 ± 0.0445 0.3079 307

MFG.L 0.5180 ± 0.0413 0.5072 ± 0.0476 0.3132 1448

SMG.R 0.5134 ± 0.0288 0.5073 ± 0.0370 0.3152 550

CUN.L 0.5251 ± 0.0400 0.5176 ± 0.0365 0.3286 449

FFG.L 0.5198 ± 0.0386 0.5147 ± 0.0523 0.3550 687

PCL.L 0.5232 ± 0.0452 0.5186 ± 0.0417 0.3705 422

SFGmed.R 0.5185 ± 0.0393 0.5096 ± 0.0399 0.4227 641

ORBsup.L 0.5345 ± 0.0452 0.5269 ± 0.0502 0.4392 292

CAU.L 0.5398 ± 0.0401 0.5403 ± 0.0511 0.4441 278

TPOmid.L 0.5418 ± 0.0462 0.5350 ± 0.0422 0.4518 222

DCG.L 0.5239 ± 0.0378 0.5103 ± 0.0434 0.4608 619

SPG.L 0.5192 ± 0.0416 0.5145 ± 0.0395 0.4945 631

SMA.L 0.5188 ± 0.0456 0.5138 ± 0.0322 0.4974 656

REC.L 0.5286 ± 0.0465 0.5293 ± 0.0373 0.4985 261

MTG.L 0.5184 ± 0.0392 0.5127 ± 0.0424 0.5451 1439

OLF.L 0.5415 ± 0.0439 0.5405 ± 0.0386 0.5885 87

PCG.L 0.5264 ± 0.0418 0.5181 ± 0.0440 0.5907 137

ORBsupmed.R 0.5303 ± 0.0431 0.5241 ± 0.0387 0.6257 262

SMG.L 0.5220 ± 0.0383 0.5166 ± 0.0425 0.6266 354

MTG.R 0.5201 ± 0.0393 0.5166 ± 0.0477 0.6302 1356

PHG.L 0.5433 ± 0.0440 0.5392 ± 0.0457 0.6477 286

ORBsup.R 0.5287 ± 0.0417 0.5272 ± 0.0455 0.7148 311

PHG.R 0.5456 ± 0.0373 0.5368 ± 0.0456 0.7353 316

ORBinf.L 0.5219 ± 0.0398 0.5217 ± 0.0399 0.8062 503

TPOsup.R 0.5349 ± 0.0419 0.5317 ± 0.0389 0.8151 400

CAU.R 0.5435 ± 0.0469 0.5449 ± 0.0518 0.8171 284

IFGoperc.R 0.5230 ± 0.0428 0.5201 ± 0.0391 0.8177 421

IFGtriang.R 0.5259 ± 0.0418 0.5262 ± 0.0421 0.8262 629

SFGmed.L 0.5164 ± 0.0406 0.5156 ± 0.0383 0.8574 846

AMYG.R 0.5365 ± 0.0373 0.5402 ± 0.0438 0.8586 70

DCG.R 0.5194 ± 0.0421 0.5091 ± 0.0443 0.8627 605
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Table 1 continued

Significant p values are
indicated by asterisks

Regions of interest SampEn of patients SampEn of controls p value Number of voxels

TPOmid.R 0.5369 ± 0.0495 0.5369 ± 0.0455 0.8779 349

IPL.R 0.5139 ± 0.0437 0.5118 ± 0.0402 0.9249 419

Firstly, we construct embedding vectors vi =
(xi , xi+1, . . . , xi+m−1) (1 ≤ i ≤ N − m + 1), where
m represents the dimension of vi.

Secondly, for each i , we define

Cm
i = 1

N − m

N−m+1∑

j=1, j �=i

Θ(r − ‖vi − v j‖). (1)

Here, r represents a tolerance value which is defined as
r = ε ·σx , where ε stands for a small parameter and σx
represents the standard deviation of x. Θ(·) is defined
as

Θ(x) =
{
0, x < 0;
1, x ≥ 0.

(2)

‖ · ‖ stands for the Chebyshev distance, i.e.,

‖vi − v j‖
= max(|xi − x j |, |xi+1 − x j+1|, · · · , |xi+m−1

−x j+m−1|). (3)

Similarly, we define

Cm+1
i = 1

N − m − 1

N−m∑

j=1, j �=i

Θ(r − ‖vi − v j‖). (4)

Thirdly, by averaging across different values of i ,
we obtain

Um = 1

N − m + 1

N−m+1∑

i=1

Cm
i , (5)

and

Um+1 = 1

N − m

N−m∑

i=1

Cm+1
i . (6)

Finally, we calculate SampEn of x as

SampEn = − ln
Um+1

Um
. (7)

The values of SampEn are nonnegative, and larger
values of SampEn mean more irregularity or com-
plexity [51]. Previous studies showed that the values
of SampEn exhibited good statistical properties when
m = 1 or 2 [52] and ε was in the range from 0.1 to

0.25 [15]. Previous studies also showed that m = 2
allowed more detailed reconstruction of the joint prob-
abilistic dynamics [53]. Hence,m is fixed at 2 through-
out this study. Our previous study showed that changes
of SampEn of dynamic functional connectivity time
series were not sensitive to values of ε in the range
from 0.1 to 0.25 [45]. Thus, ε is fixed at 0.2 throughout
this study.

2.5 SampEn at different levels of the brain

For each participant, after calculating SampEn of 4005
dynamic functional connections, SampEn of 90 regions
of interest, of 6 resting-state networks, and of thewhole
brain is further calculated, respectively. SampEn of
a region of interest is defined as the mean of Sam-
pEn of 89 dynamic functional connections related to it.
According to the previous study [54], the whole brain
was divided into 6 resting-state networks, including
the default mode network, the attention network, the
visual recognition network, the auditory network, the
sensory-motor network, and the subcortical network.
The default mode network, the attention network, the
visual recognition network, the auditory network, the
sensory-motor network, and the subcortical network
are composed of 20, 16, 14, 12, 8, and 20 regions
of interest, respectively. Regions of interest in each
resting-state network can be found in Table S2 of Ref.
[45]. SampEn of a resting-state network is defined as
the mean of SampEn of all regions of interest in the
resting-state network. SampEn of the whole brain is
defined as the mean of SampEn of all regions of inter-
est in the brain.

2.6 Statistical analysis

The difference in demographic characteristics
between the patients and the controls is assessed by
two-tailed, two-sample t tests or χ2 tests where appro-
priate. Specifically, the difference in age and in edu-
cation is assessed by t tests, whereas the difference in
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Table 2 Demographic characteristics

Patients Controls p value

Gender (male/female) 35/34 25/27 0.23

Age (years) 31.95 ± 9.60 29.87 ± 8.62 0.28

Education (years) 14.19 ± 2.16 15.29 ± 2.39 0.01∗

Illness duration (years) 7.17 ± 6.61 − −
Positive scale 11.92 ± 4.71 − −
Negative scale 13.61 ± 6.33 − −
General scale 27.28 ± 9.64 − −
P values which are less than 0.05 are indicated by asterisks

Fig. 2 The mean SampEn of the whole brain over all controls
and over all patients. The error bars represent standard deviations

gender is assessed by χ2 tests. The significance levels
of the tests are characterized by p values, with larger
p values corresponding to higher significance levels.

To study the difference in SampEn between the
patients and the controls, two-tailed, two-sample t tests
on SampEn at different levels of the brain are per-
formed, with gender, age, education, and head motion
as covariates. The significance levels of the t tests are
also characterized by p values. First, t tests on SampEn
of the whole brain and of the resting-state networks are
performed. Then, for each resting-state network, t tests
on SampEn of all regions of interest in the resting-state
network are performed. Because there are 6 resting-
state networks and each resting-state network is com-
posed of many regions of interest, corrections for mul-
tiple comparisons are needed for t tests on SampEn of
resting-state networks and of regions of interest. False
discovery rate (FDR) corrections are applied to correct
for multiple comparisons [55].

To explore whether the changed SampEn in the
patients is associated with the characteristics of
schizophrenia, the relationship between SampEn and
clinical variables such as PANSS and illness duration
is studied. Partial correlation analyses are applied to
study these relationships, controlling for the influence
of gender, age, education, and head motion. The sig-
nificance levels of the partial correlation analyses are
also characterized by p values. The patients who do
not finish their PANSS evaluation are excluded from
the partial correlation analyses.

Table 3 SampEn at different levels of the brain in the patients is significantly higher than that in the controls

SampEn of patients SampEn of controls p value

Whole brain 0.5282 ± 0.0285 0.5174 ± 0.0248 0.0074

Resting-state networks

VRN 0.5238 ± 0.0260 0.5078 ± 0.0237 0.0015

AUN 0.5298 ± 0.0239 0.5171 ± 0.0258 0.0108

Regions of interest

MOG. L 0.5263 ± 0.0380 0.5037 ± 0.0433 0.0014

MOG. R 0.5351 ± 0.0387 0.5094 ± 0.0399 0.0024

IOG. R 0.5352 ± 0.0420 0.5110 ± 0.0379 0.0033

SOG. L 0.5242 ± 0.0424 0.5060 ± 0.0349 0.0057

ROL. R 0.5354 ± 0.0458 0.5048 ± 0.0359 0.0009

VRN visual recognition network, AUN auditory network, MOG. L left middle occipital gyrus, MOG. R right middle occipital gyrus,
IOG. R right inferior occipital gyrus, SOG. L left superior occipital gyrus, ROL. R right rolandic operculum
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Fig. 3 The mean SampEn of each of 6 resting-state networks
over all controls and over all patients. The error bars stand for
standard deviations. After FDR controls, resting-state networks
with p values below 0.025 are deemed to be significant. DMN

defaultmode network,ATN attention network,VRN visual recog-
nition network, AUN auditory network, SMN sensory-motor net-
work, SCN subcortical network

Fig. 4 The mean SampEn of each region of interest over all controls (a) and over all patients (b). The color bars indicate the values of
SampEn. (Color figure online)

3 Results

3.1 Demographic characteristics of the participants

Details of the participants’ demographic characteris-
tics are displayed in Table 2. Except that the patients
have a shorter education duration (p value < 0.05),
which is caused by schizophrenia, the patients and
the controls are matched by gender (p value > 0.05)
and age (p value > 0.05). The illness duration, the
positive scale, the negative scale, and the general scale

are important clinical variables for characterizing the
symptoms of patients. Correlation analyses on SampEn
and these clinical variables are studied in Sect. 3.5 to
identify the relationship between SampEn and char-
acteristics of schizophrenia. In Table 2, the values
before and after the symbols ± represent the means
and the standard deviations, respectively. The means
and the standard deviations of the positive scale, the
negative scale, and the general scale are obtained
from the data of the patients who finish their PANSS
evaluation.
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Fig. 5 The mean SampEn of each region of interest over all
controls and over all patients. The error bars represent standard
deviations. Regions of interest showing significant effects are

indicated by asterisks. The full name of each region of interest
can be found in Table S1 of Ref. [45]

Fig. 6 SampEn of the left middle occipital gyrus (MOG. L),
the right middle occipital gyrus (MOG. R), the right inferior
occipital gyrus (IOG. R), the left superior occipital gyrus (SOG.
L), and the right rolandic operculum (ROL. R) in the patients
is significantly higher than that in the controls. The color bar
represents the p value. After FDR controls, regions of interest in
the visual recognition network with p values below 0.0179 are
considered to be significant, whereas regions of interest in the
auditory network with p values below 0.0083 are deemed to be
significant. (Color figure online)

3.2 Higher SampEn at the whole-brain level of the
patients’ brain

The mean SampEn of the whole brain over all controls
and over all patients is 0.5174 and 0.5282, respectively
(Fig. 2 and Table 3). The patients show significantly
higher SampEn than the controls (p value < 0.05;
Fig. 2 and Table 3). In Table 3, values before and
after the symbols ± represent mean values and stan-
dard deviations, respectively.

3.3 Higher SampEn at the network level of the
patients’ brain

The mean SampEn of a resting-state network over all
controls and over all patients is in the range from
0.5078 to 0.5283 and in the range from 0.5238 to
0.5374, respectively (Fig. 3). The mean SampEn of the
visual recognition network over all controls and over
all patients is, respectively, 0.5078 and 0.5238, and the
mean SampEn of the auditory network over all con-
trols and over all patients is, respectively, 0.5171 and
0.5298 (Table 3 and Fig. 3). For the visual recognition
network and the auditory network, the patients exhibit
significantly higher SampEn than the controls (p value
< 0.05, FDR corrected; Table 3 and Fig. 3). However,
for the other 4 resting-state networks (the default mode
network, the attention network, the sensory-motor net-
work, and the subcortical network), there is no signif-
icant difference in SampEn between the two groups
(p value > 0.05, FDR corrected). This suggests that
for the patients, the significantly higher SampEn of the
whole brain is caused by the significantly higher Sam-
pEn of the visual recognition network and the auditory
network.

3.4 Higher SampEn at the regional level of the
patients’ brain

The mean SampEn of a region of interest over all
controls and over all patients , respectively, ranges
from 0.4992 to 0.5449 and from 0.5134 to 0.5469
(Fig. 4). The detailed SampEn value of each region of
interest is shown inTable 1 and Fig. 5. For some regions
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Fig. 7 Significant positive
correlations between
SampEn of regions of
interest and clinical
variables. a SampEn of the
right middle occipital gyrus
(MOG. R) and the negative
scale. b SampEn of the right
inferior occipital gyrus
(IOG. R) and the positive
scale. c SampEn of the right
inferior occipital gyrus
(IOG. R) and the general
scale. d SampEn of the left
superior occipital gyrus
(SOG. L) and the illness
duration. R represents the
correlation coefficient

of interest in the visual recognition network and in
the auditory network, the patients display significantly
higher SampEn than the controls. In the visual recog-
nition network, regions of interest showing significant
effects are the left middle occipital gyrus, the rightmid-
dle occipital gyrus, the right inferior occipital gyrus,
and the left superior occipital gyrus (p value < 0.05,
FDR corrected; Table 3, Fig. 5, and Fig. 6). In the audi-
tory network, only the right rolandic operculum shows
significant effects (p value < 0.05, FDR corrected;
Table 3, Fig. 5, and Fig. 6). For regions of interest
in other 4 resting-state networks, no significant differ-
ences in SampEn between the two groups are identi-
fied (p value> 0.05, FDR corrected). This implies that
these 5 regions of interest mainly determine the differ-
ence in SampEn between the patients and the controls.

3.5 Positive correlation between SampEn and clinical
variables

For the whole brain, the 2 significant resting-state net-
works, and the 5 significant regions of interest, we per-

form partial correlation analyses between SampEn and
clinical variables to identify the relationship between
SampEn and characteristics of the schizophrenia, con-
trolling for the effect of gender, age, education, and
head motion. Although SampEn of the whole brain,
of the visual recognition network, and of the audi-
tory network is not correlated with the clinical vari-
ables, SampEn of 3 out of 5 regions of interest shows
a strong positive correlation with the clinical variables.
The 3 regions of interest are the right middle occip-
ital gyrus, the right inferior occipital gyrus, and the
left superior occipital gyrus. Specifically, SampEn of
the right middle occipital gyrus is significantly and
positively correlated with the negative scale (p value
< 0.05; Fig. 7a). SampEn of the right inferior occip-
ital gyrus shows significant positive correlations with
the positive scale and with the general scale (p value
< 0.05; Fig. 7b, 7c). SampEn of the left superior occip-
ital gyrus is significantly and positively correlated with
the illness duration (p value < 0.05; Fig. 7d). Detailed
results of the partial correlation analyses are shown in
Table 4.
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Table 4 Partial correlation analyses between SampEn and clinical variables

Positive scale Negative scale General scale Illness duration

R p value R p value R p value R p value

Whole brain 0.1117 0.3996 0.1314 0.3211 −0.0327 0.8059 −0.0212 0.8736

VRN 0.1970 0.1347 0.2313 0.0780 0.0567 0.6697 0.1182 0.3728

AUN 0.1136 0.3916 0.0982 0.4592 −0.0424 0.7498 0.0778 0.5582

MOG. L −0.0006 0.9962 0.1504 0.2556 0.0608 0.6476 0.0224 0.8661

MOG. R −0.0539 0.6851 0.3481 0.0069* 0.0778 0.5581 0.1091 0.4107

IOG. R 0.4006 0.0017* 0.2434 0.0632 0.3288 0.0110* 0.0297 0.8231

SOG. L 0.0546 0.6815 0.0183 0.8904 0.0070 0.9582 0.3014 0.0203*

ROL. R −0.0128 0.9234 −0.0300 0.8218 −0.1127 0.3954 0.0543 0.6831

R represents the correlation coefficient. VRN visual recognition network, AUN auditory network, MOG. L left middle occipital gyrus,
MOG. R right middle occipital gyrus, IOG. R right inferior occipital gyrus, SOG. L left superior occipital gyrus, ROL. R right rolandic
operculum
P values which are less than 0.05 are indicated by asterisks

4 Conclusion and discussion

In the present paper, the nonlinear properties of func-
tional brain networks of patients with schizophre-
nia are characterized by SampEn of dynamic func-
tional connectivity. It is shown that the visual cor-
tex of the patients with schizophrenia exhibits signif-
icantly higher SampEn than that of the healthy con-
trols. This is consistent with previous studies on non-
linear properties of brain signals measured by differ-
ent techniques. For example, Fernandez et al. used
Lempel-Ziv complexity to characterize the nonlinear
properties of resting-state MEG signals of patients
with schizophrenia and of healthy controls, and found
that patients showed significantly higher complexity
as compared to controls [11]. Sokunbi et al. used Sam-
pEn to identify the nonlinear properties of BOLD sig-
nals of patients with schizophrenia and of healthy con-
trols while performing the cyberball social exclusion
task, and showed that patients exhibited significantly
higher complexity than controls [14]. Because non-
linear properties are important indices in describing
the nonlinearity, these previous studies along with our
study further validate the notion that the nonlinear-
ity underlies the irregularity in psychotic symptoms
of schizophrenia [56]. Moreover, we also show that
the changed SampEn of patients with schizophrenia
is associated with the illness duration or the symptom
severity scores. These results indicate that nonlinear
properties are effective biomarkers in characterizing

the brain functional networks of patients with brain
disorders.

In our previous study [45], the association between
SampEn of dynamic functional connectivity and age
was investigated. It was demonstrated that SampEn
of the amygdala–cortical connectivity decreased with
advancing age, and this age-related loss disappeared in
patients with schizophrenia. Different from our pre-
vious study, the present study examines the effect
of schizophrenia on SampEn of dynamic functional
connectivity by analyzing the difference in SampEn
between patients with schizophrenia and healthy con-
trols. It is demonstrated that the patients show signif-
icantly higher SampEn than the controls at different
levels of the brain, which is mainly caused by a sig-
nificantly higher SampEn in the visual cortex of the
patients. In addition, it is also demonstrated that Sam-
pEn of the visual cortex of the patients is significantly
and positively associated with the illness duration or
the symptom severity scores.

As suggested by our finding that the visual cortex of
the patients with schizophrenia exhibits significantly
higher SampEn than that of the healthy controls, the
visual cortex should be related to schizophrenia. This
is in line with many earlier researches on static func-
tional connectivity, which showed that functional con-
nectivity corresponding to the visual cortex changed
in patients with schizophrenia [57–60]. Our study and
these previous studies help to understand abnormal
visual functions in patients with schizophrenia such as
visual hallucinations. In addition to the visual cortex,
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by using different samples of patients with schizophre-
nia, previous studies showed that some other brain
regions were also related to schizophrenia [33–36].
In the future, nonlinear analysis should be extensively
used to study the components as well as the dynamic
properties of brain functional networks.
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