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Abstract In this paper, the nonsmooth dynamics of
two contacting rigid bodies is analysed in the presence
of dry friction. In three dimensions, slipping can occur
in continuously many directions. Then, the Coulomb
friction model leads to a system of differential equa-
tions, which has a codimension-2 discontinuity set in
the phase space. The new theory of extended Filip-
pov systems is applied to analyse the dynamics of a
rigid body moving on a fixed rigid plane to explore the
possible transitions between the slipping and rolling
behaviour. The paper focuses on finding the so-called
limit directions of the slipping equations at the discon-
tinuity. This leads to a complete qualitative description
of the possible scenarios of the dynamics in the vicinity
of the discontinuity. It is shown that the new approach
consistently extends the information provided from the
static friction force of the rolling behaviour. The meth-
ods are demonstrated on an application example.

Keywords Nonsmooth dynamics - Filippov systems -
Coulomb friction - Slipping

1 Introduction

If dry friction is assumed between the surfaces of rigid
bodies, the dynamical model of the bodies leads to
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discontinuous behaviour. By considering the simple
Coulomb model in the two-dimensional (2D) contact
problems, the friction force changes sign at zero rela-
tive velocity of the surfaces. The situation is similar but
more complicated in the three-dimensional (3D) con-
tact dynamics. Then, for infinitesimally small relative
velocities, the Coulomb friction model provides con-
tinuously many directions of the friction force with a
constant finite amplitude.

The direct substitution of the discontinuous friction
models into the dynamical equations leads to discon-
tinuous systems of differential equations. In the 2D
case, the Coulomb friction leads to Filippov systems
(for an overview and examples, see [7]). Considering
the friction as a set-valued force law leads to differen-
tial inclusions, which is a completely different point of
view of modelling (see [13] for an overview). A further
approach can be found in [6,16,17].

The generalization of the Filippov systems to
codimension-2 discontinuity sets in the phase space
leads to the concept of extended Filippov systems (see
[1] and [4]). This type of differential equation can
be used for modelling and analysis of 3D mechanical
systems with dry friction, which was demonstrated in
specific mechanical examples in [4]. The early results
about two general contacting bodies have been pre-
sented by the authors in [3].

In this paper, we analyse the dynamics of a single
rigid body in contact with a fixed rigid plane. During the
motion of the body, rolling or slipping can occur, and
the slipping case reveals to be described by an extended
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Filippov system. We focus on the transitions between
the slipping and rolling dynamics when applying the
theory of extended Filippov systems. The so-called
limit directions can be determined, which are strongly
connected to the possible slipping-rolling transitions.
One of our main motivations is to provide a deeper
understanding of the qualitative dynamics in the neigh-
bourhood of the discontinuity. But the results makes the
possibility for new numerical methods for simulating
these mechanical systems, as well.

The paper is organized as follows: In Sect. 2, the
dynamic equations of the moving body are derived by
appropriate choice of the state variables for the subse-
quent analysis. In Sect. 3, the basic concepts and defini-
tions of extended Filippov systems are presented. The
main part of the paper is Sect. 4, where the theory of
extended Filippov systems is applied to the dynamics of
the moving body. From the analysis, we get four typical
cases of the limit directions. In Sect. 5, the mechani-
cal consequence of the four cases is explained, and the
relation with the static friction force is presented. In
Sect. 6, the results are demonstrated on a mechanical
example. In Sect. 7, an overview can be found about the
possible extension of the results to more complicated
contact models.

This paper is a significantly extended version of the
conference paper [3]. The content of Sects. 2-5 has
been rearranged and improved, and most importantly,
the former conjectures have been developed into a
series of proved statements about the possible slipping—
rolling transitions, as can be found in the current paper.
Sections 6 and 7 are completely new.

2 Dynamics of a rigid body on a flat surface

We consider a rigid body moving in contact with a
fixed rigid plane (see Fig. 1). It is assumed that the at
any moment, the body and the plane are touching each
other in a single contact point, denoted by P. The centre
of the gravity of the body is denoted by C. The notation
of the important quantities are summarized in Table 1.

2.1 Kinematics
Let v¢ and v p denote the velocities of the points C and

P, respectively, and @ denotes the angular velocity of
the body. The relation between these quantities of the
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Fig.1 Sketch of the analysed mechanical scenario. A rigid body
is moving in contact with a fixed plane. In this paper, the transi-
tions between slipping and rolling are investigated

Table 1 Important notation of the mechanical system

Notation Quantity

C Centre of gravity of the rigid body

P Contact point

rpc Position vector between P and C

m Mass of the body

J Mass moment of inertia of the body

" Friction coefficient between the surfaces

Fc,Tce Resultant force and torque of external forces
computed at C

n Normal unit vector at P

t;,t Tangential unit vectors at P

Nn Normal force at P

Fy Friction force at P

Fp Total contact force at P

Pn Reciprocal of the normal curvature of the
body in the direction of motion

ve,Vp Velocities of C and P

uy, Uz Components of the velocity vp (slipping)

® Angular velocity of the body

w1, w2, @3 Components of ®

q Vector of generalized coordinates

s Vector of quasi-velocities

rigid body is given by

Ve =Vp+®Xrpc, (D

where rpc is the position vector of C measured from
the contact point P.
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During the motion of the body, the contact point
P corresponds to different material points of the rigid
body. We can take the time derivatives of (1) by using
two different approaches: either by following the mate-
rial point of the body currently located at P, or, follow-
ing the motion of the instantaneous geometric contact
point P.

In the first case of considering P as a material point,
the differentiation of (1) gives the usual acceleration
formula
ac =ap+®Xrpc+wx (V¢ —vp), 2)
where ac and ap denote the acceleration of the points
C and P, respectively, and @ denotes the angular accel-
eration of the body.

However, when differentiating (1) by considering P
as the contact point, we get
ac =Vp+®XTrpc+wXTIpc. 3)
The time derivative v p is the rate of change of the veloc-
ity of the instantaneous contact point P, which is not
equal to the acceleration ap of the material point of P
in (2). The time derivative of r pc can be written as
fpc =vVec — (Vp +Wp). “)
In the bracket, the two terms are the velocity vp of the
motion of the material point at P and the velocity w p of
the translation of the contact point on the surface of the
body. This latter quantity depends on the rotation and
the local curvature of the body, and it can be calculated
by
wWp = p, - (@ X N), )
where n is the unit normal vector of the rigid plane and
pn denotes the reciprocal of the normal curvature of the
surface of the body in the plane determined by @ x n. In
the general case, the normal curvature is determined by
the second fundamental form of the surface of the body
(see [12], p. 206). In the case of simple geometries, the
quantities p or wp can be often found intuitively.

What is the point of writing ac in the form of (3)? In
the subsequent calculations, we are using the compo-
nents of v p as phase variables. As the Coulomb friction
model is discontinuous exactly at vp = 0, this choice
of variables, the discontinuity set of the resulting dif-
ferential equation can be treated easily.

2.2 Dynamics

The effect of the rigid plane on the body is modelled
by a single force Fp acting at P. This force can be

separated into a normal force Nn and a friction force
F in the form

Fp=Nn+F; (©6)

We assume that the normal force N is strictly positive
and the body remains in permanent contact with the
plane (the scalar product vp - n is zero). That is, the
effects of loosing contact, impact without collision, and
consistency problems of the Painleve paradox (see [11,
15]) are excluded from this analysis.

All other forces and torques acting on the body are
substituted by a single force F¢ and a torque T¢ acting
at the centre of gravity C. Let m denote the mass of the
body and J is the moment of inertia tensor with respect
to the point C. Then, the Newton—Euler equations of
the body are
mac = Fc + Fp, 7
Jo+ o x (Jo)=T¢c —rpc x Fp. (

In addition, we have to consider supplementary con-
ditions about contact between the body and the plane,
according to the rolling or slipping. In the case of
rolling, the kinematic constraint

vp =0 (8)

is satisfied. In the case of slipping, the friction force F

is modelled by the three-dimensional Coulomb friction

law,

vp

Ivel’

where u denotes the friction coefficient.
Equations (6)—(9) lead to a system of differential

equations in the case of rolling or slipping. In this paper,

we focus on the slipping equations with special atten-

tion to their behaviour close to the rolling state.

2.3 Differential equations for the slipping case

By considering (1)—(5), the Newton—Euler equations
(7) can be written into the form

@=J" (0 xJw) +Tc—rpc xFp),  (10)
Vp = ch;Ff’—cbxrpc—wx (@ X (rpc — ppn)) .
1D
We introduce coordinates both on the displacement
and the velocity level. Thus, a set of first-order ordinary
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differential equations (ODEs) is obtained from (10)—
(11).

In the vicinity of a chosen initial state, the position
and the orientation of the rigid body by five generalized
coordinates; the sixth degree of freedom is constrained
by the contact between the body and the plane. Let the
generalized coordinates be denoted by

q = (q1. 92, 43, 44, 45)- 12)
Note that along the paper, the vectors with a three-
dimensional physical meaning are denoted by boldface
symbols (e.g. Fc, vp), but all other vectors are not dis-
tinguished from scalars in notation (e.g. g, s, X).

Instead of describing the velocity level by the time
derivatives of (12), we choose quasi-velocities (see
[14], p. 254) independently from the generalized coor-
dinates (12) to describe the velocity state of the body.
By choosing two orthogonal unit vectors t; and t; par-
allel to the rigid plane (see Fig. 1), we get an orthonor-
mal basis (t1, to, n). In this coordinate system, vp and
® can be written as
vp =uity +usty, @ = wit; +wrty +w3n, (13)
where the components are chosen as quasi-velocities
in the form

s = (ug, uz, w1, w2, w3) (14)

These five linearly independent variables fully describe
the velocity state of the body for any state of general
coordinates. That is, the time derivatives of the gener-
alized coordinates can be written as

qg=K(q)-s, (15)
where K (g) is a 5-by-5 matrix depending on the gen-
eralized coordinates themselves.
By taking the time derivative of (13), we get
vp = uit; + usty, ® = wit; + @ty + w3n,
(16)

which can be substituted into the left-hand sides of (10)
and (11). On the right-hand sides of (10)—(11), all quan-
tities can be expressed by ¢, s, and N in the follow-
ing way: The geometric quantities rpc(g) and p,(q)
depend on the generalized coordinates. The moment
of inertia tensor J(g) depends on g as well, because
of the change of the orientation of the body. With the
assumption of no explicit time dependence in the exter-
nal forces, the resultants Fc (g, s) and T¢(g, s) are
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expressed by ¢ and s. In the slipping case, (6),(9), and
(13) leads to

Fp = iVt b — N 25
uytus uytus

to+Nn. (17

Consequently, Eqgs. (15), (10), and (11) form a set
of six differential-algebraic equations in the general-
ized coordinates (12), the quasi-velocities (14), and the
normal force N.

Equations (10)—(11) are linear in the derivatives of
the quasi-velocities and N; it can be solved in the form

s = fs(q,s), (18)
NZfN(qss)’ (19)

where fs(q, s) and fy (g, s) denote the formal depen-
dence on the variables.

Equations (15) and (18) form a system of ten first-
order ODEs for the variables (12) and (14). Due to the
discontinuity of the contact force (17), the system is
not defined at u1 = up = 0, which corresponds to the
rolling behaviour. For the rolling states, a different set
of differential equations can be derived by excluding
the slipping Coulomb law (9) but including the rolling
constraint (8). To obtain a deeper insight to the switches
between rolling and slipping, this paper focuses on the
analysis of slipping system (15) and (18) in the vicinity
of the discontinuity u| = uy = 0.

Note that this discontinuity is located at the states
where two variables (u; and u;) are zero at the same
time. For the analysis of differential equations with
such discontinuity, we can use effectively the theory of
extended Filippov systems, which is presented briefly
in the next section.

3 Overview of extended Filippov systems

The concept of extended Filippov systems was intro-
duced by the authors in [1] and [4]. Roughly speak-
ing, these dynamical systems are vector fields con-
taining m — 2-dimensional discontinuities in the m-
dimensional phase space. We will show in Sect. 4 that
the contact problem of the rigid body presented in
Sect. 2 leads to an extended Filippov system.

In this section, only the most important concepts and
definitions of these dynamical systems are presented,
which are utilized in the subsequent analysis of the
mechanical system. For a more detailed presentation of
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Table 2 Important notation

of extended Filippov Notation Quantity
systems D Phase space of the system (subset of R")
X Vector of phase variables (element in D)
F(x) Vector field of the system
x Discontinuity manifold of F'(x) (m — 2-dimensional subset of D)
T X Tangent space of ¥ at xq
Oy Orthogonal space of X at xq
ni,ny Orthogonal basis vectors of O, X at xgo
¢ Aangle parametrizing the directions of O, X around xq
n(¢p) Set of unit normal vectors to X at xq
F*(¢)(x0) Limit vector field (directional limit of F at x¢ from the different directions ¢)
R(¢) Radial component of F*(¢)
V(p) Circumferential component of F*(¢)

the theory of extended Filippov systems, see [1] and [4].
The notation of the important corresponding quantities
can be found in Table 2.

Consider a domain D € R™ containing an m — 2-
dimensional smooth manifold ¥ <C D. This
codimension-2 subset consists of the points where the
vector field of the system is discontinuous in the sense
of the following definition. At a chosen point xp € X,
let us denote the tangent space by 7, X, and its orthog-
onal complement by O,, ¥ (see Fig. 2). By consider-
ing the usual scalar product (., .) in R, the orthogonal
complement is defined by

Oy X = {v eR": (v,w)=0 Yw e ’Z}OE}. (20)

Consequently, the direct product of the two-dimensional
Ty, % and the m —2-dimensional O, X spans the whole
vector space R™.

Consider a point x9p € X and choose two vectors
ni(xg) and na2(xp) in Oy, X depending smoothly on
xo with (n1,ny) = (np,ny) = 1 and (n, np)=0. In
other words, n1(xp) and ny(xp) generate an orthonor-
mal basis of O,,X. Then, let us define

n(¢)(xp) :=cos ¢ - n1(xp) + sin¢ - n2(xo), (21)

in which function n(¢) maps the interval [0, 277) onto
the set unit vectors of Oy X. The parameter ¢ €
[0, 27r) can be imagined as an angle corresponding to
a direction which is orthogonal to ¥ at x¢ (see Fig. 2).

0x,Z

Fig. 2 Basic concepts of extended Filippov systems. The
codimension-2 discontinuity set ¥ is depicted as a curve (1D)
in a 3D phase space, but it possesses more dimensions in higher
dimensional systems. There are continuously many unit vectors
n being perpendicular to the discontinuity set at any point x.
The possible normal directions are parameterized by an angle ¢.
The vector field F is discontinuous at X, and it possesses a direc-
tional limit F*(¢) for any direction ¢. The set of these limits is
called the limit vector field

Definition 1 Consider the vector field

x = F(x), xeDCR", F:D\X— R",

(22)

with the m — 2-dimensional smooth manifold . The
system (22) is called an extended Filippov system if
the following properties are satisfied:

(a) The vector field F is smooth on D\ X.
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(b) The limit
F*(¢)(x0) := eg%g F (xo + en(¢)(xo)) (23)

exists for all xg € X and for all ¢ € [0, 27).
(c) For all xq, there exist ¢1, ¢ € [0,27) for that

F*(¢1) # F*(¢2).

In the sense of Definition 1, X is called a codimen-
sion-2 discontinuity manifold of F. At a chosen point
xo € X, the function F*(¢) is called the limit vector
field of F (see Fig. 2), which contains the directional
limits of F from the different directions parameterized
by ¢.

The three conditions of Definition 1 formally express
that there is no discontinuity outside X (see (a)), there
is indeed discontinuity at any point of ¥ (see (c)), and
the directional limit does not diverge from any direction
(see (b)).

By projecting the limit vector field F*(¢) on Oy, X,
we get the components
Fi@) = (F*@).m).  F3(@) = (F*@).n).

(24

For the subsequent analysis, it is useful to write up
the components of F*(¢) considering the component
being parallel and perpendicular to the corresponding
normal vector n(¢). Let us define

R(¢) := (F*(@).n(¢)). (25)
V(9) = (F*(¢).n(¢ +7/2)). (26)

The function R(¢) contains the behaviour of vec-
tor field in the radially inward or outward direction.
The function V (¢) gives the circumferential, rotating
behaviour of the vector field around the discontinuity
set (see Fig. 3).

Let us now define the concept of limit directions,
which are strongly connected to the behaviour of the
trajectories at the discontinuity.

Definition 2 Consider an extended Filippov system
X = F(x)and apointxg € X of the discontinuity man-
ifold. The roots of the equation V (¢) = 0 are called
the limit directions of x( with respect to F.

Definition 3 A limit direction ¢y with V(¢1) = 0 is
called attracting if R(¢1) < 0, anditis called repelling
if R(¢1) > 0.
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Fig. 3 Quantities of the vector field defined in the orthogonal
space Oy % of xo € X. For a given ¢ € [0, 27), the value
F*(¢) is projected into Oy, X of xo € X. This vector can be sep-
arated to the components R(¢) and V (¢) by using the direction
of the corresponding normal vector n(¢). The function R gives
the radial behaviour of the vector field around the discontinuity,
and V expresses the circumferential behaviour, which is the key
of finding the limit directions

It can be proved (see [4]) that if xg € X possesses
at least one limit direction, then all trajectories tending
to xo (either forward or backward time) approach xg
along the limit directions.

In this sense, the limit directions are somewhat
analogous to the eigenvectors of equilibrium points
of smooth systems, but there are fundamental differ-
ences. Firstly, an eigenvector of a saddle or node is
bi-directional (corresponding to a line), while a limit
direction is uni-directional (corresponding to a half-
line). Secondly, the eigenvectors of equilibria corre-
spond to infinite-time (exponential) convergence of the
solutions in forward or backward time, while trajecto-
ries reach xo in finite time in forward (attracting) or
backward (repelling) direction of time.

By continuing the analogy with the equilibria, we
can separate the node-like (sliding) and saddle-like
(crossing) behaviour.

Definition 4 Consider a point xo € X which possesses
at least one limit direction. If all the limit directions are
either attracting or repelling, then we say that xq is
located in the sliding region of X. If there is at least
one attracting and one repelling limit direction, then we
say that x is located in the crossing region of X.

The terminology of crossing and sliding was intro-
duced in [1] and [4] by generalizing of the crossing
and sliding region of classical Filippov systems with
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codimension-1 discontinuities (see [7]). In the cross-
ing case, there is at least one incoming and one leav-
ing half-trajectory at xo, which can be concatenated to
a trajectory crossing through X at xo. In the sliding
case, there are either only incoming or only leaving
trajectories and the dynamics of F gets stuck into X
in forward or backward time, respectively. Then, the
so-called sliding dynamics generated inside the dis-
continuity manifold 2. For the derivations and a more
detailed explanation, see [4].

The introduction of the extended Filippov systems
was originally motivated by 3D contact problems of
rigid bodies. In these mechanical problems, the slipping
of the bodies in the presence of Coulomb friction leads
to extended Filippov systems, and the rolling or stick-
ing of the bodies corresponds to the sliding dynamics
inside the discontinuity manifold. In the following cen-
tral part of the paper, the analysis of the limit directions
is applied to explore the transitions between slipping
and rolling between the bodies.

4 Analysis of limit directions at the rigid body
4.1 The resulting extended Filippov system

The full phase space of the body consists of the quasi-
velocities (14) and the generalized coordinates (12).
Hence, the state variable vector can be written in the
form

x=(s,q) = (u1,uz, w1, w2, W3, 41, ...45). (27)
Consequently, x € D c R!°. By composing the
vector field from (18) and (15) in the form F =

(f(s,q), K(g) - s), the dynamics of the body can be
simply written as

x = F(x). (28)

The vector field F(x) is discontinuous due to
the terms u1/, /u% + u% and uy/,/ u% + u% originating
from the contact force (17). Equations (10)—(11) show
that the final form of F (x) depends linearly on the con-
tact force F p. Hence, the resulting vector field can be
written in the form

F(x)_F A(x)—l—\/i

where A(x), B(x), and C(x) are smooth vector fields.

Bx)+C(x), (29

The system (29) is smooth everywhere except in
u1 = up = 0. That is, the discontinuity set is

% ={0,0,01, w2, 03,491, ...95)}, (30)
which is a codimension-2 (8 dimensional) discontinu-
ity.

Theorem 1 The system (29) is an extended Filippov
system.

Proof Let us check conditions (a) and (b) in Defini-
tion 1 by calculating the limit vector field F*(¢). As
(30) is a linear subspace of the phase space D, the cor-
responding orthogonal space Oy, X is constant. Hence,
independently fromxg € ¥, we can fix the basis vectors
of OxyX ton; = (1,0,...0)and np = (0, 1,...0).
Then, the set of normal vectors from (21) becomes

n(¢) = (cos ¢, sing, 0, ...0), 31

and direct calculation of (23) leads to

F*(¢p)(x0) = cos ¢ - A(xg) + sin¢ - B(xg) + C(xo).
(32)

Condition (b) in Definition 1 is satisfied because F*(¢)
exists for all xop and ¢. Condition (c) requires that
A(xp) = B(xp) = 0 cannot occur for any xg € X.
These quantities come from the coefficients of the non-
smooth terms in the expression of Fp in (17). These
coefficients are nonzero because of u > 0 (there is
indeed friction) and N > 0 (required in Sect. 2.2).
Therefore, the non-singular linear operations on Fp in
(10)—(11) show that it is not possible to obtain zero for
all components of A(xg) and B(xp) at the same time.
Consequently, all conditions of Definition 1 are satis-
fied, and thus, (29) is an extended Filippov system. 0O

4.2 Analysis of the limit directions of the system

The discontinuity set ¥ of (29) is defined by u; =
uy = 0 (see (30)), which corresponds to the rolling of
the body on the plane. In this subsection, we categorize
the points of ¥ according to the number and type of
limit directions, which are strongly connected to the
transitions between rolling and slipping.

For a chosen point xgp € X, the projection (24) of
the limit vector field can be calculated by simply taking
first two components of (32). Hence, we get

Fi(¢) =
F5(¢) =

Ajcos¢ + Bysing + Cy,

. (33)
Az cos¢ + Brsing + Cs,
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where Aj...C> denote the first two components of
A(xp), B(xp) and C(xg) from (32) without denoting
the (smooth) dependence on xg. Then, the functions R
and V from (26) become

AL+ B .
R(¢)=—2 + Cjcos¢ + Cp sin¢p

Ay — B A B

+_‘2 2 cos20 + 2P Gnog, (34

Ar — B .
V(¢)=—2 + Cycos¢p — Cy sing

A, + B A —B
+%cos2¢—%sin2¢. (35)

From Definition 2, the limit directions are the zeroes
of the function V (¢). In this section, we derive condi-
tions from the coefficients of (33) and (34)—(35), which
determine the type and number of the limit directions.

4.2.1 Possible formal simplifications

Proposition 1 In (33), the coefficients satisfy By =
Aj.

Proof Let us calculate the coefficients A, and B; for-
mally from (10)—(11). By using the notations

| Jr g

J7' = ol Jiz J2 J23 (36)
J13 J23 J33

and

rpc =rit; +raty +r3m, 37)

we get

_ N . . 2. .

Ay = =5 =(rar3ji3 + rir3ja3 — ryjiz — rir2jsz),

B, = —%(Vzmjla +rir3jos — V32j12 —rirj3s).
(38)

We obtained that B} = A,. O

Proposition 2 The coefficients Ay and By in (38) are
strictly negative for the physically relevant parameters.

Proof By performing similar direct calculation as in
the previous proof, we get

Al

_% (1 + (r3 j33 — 2rar3 o3 + r3j22)) ,
(39)
B,

—% (1 + (rij33 — 2r1ir3 i3 + r3j11)) )
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The moment of inertia tensor J is positive definite. In the
inner bracket of the expression of Aj in (39), the expres-
sion can be obtained as the bilinear mapping of the vec-
tor r3t, —ron by the positive definite matrix mJ ~1- thus,
this expression is positive. Similarly, the expression of
B5 contains the bilinear mapping of r3t; —r1n by mJ~!,
which is positive, again. If there is non-vanishing con-
tact force (N > 0) and there is indeed friction (1 > 0),
then we obtain A} < O and B, < 0. O

Proposition 3 Consider the transformation of the vari-
ables uy and uy defined by

U}y = ujcosd + upsiné, “0)
uhy = up cosd — uj siné.

Then, 8 can be chosen such that the coefficients A, =
B} vanish, which denote the transformed coefficients
corresponding to Az and By in (33).

Proof By performing the transformation (40), the rela-
tion of the original and transformed coefficients of (33)
is

1
A} = Bj :A2c0528+§(Bz—A1)sin25. (41)

By choosing tan 26 = 2A, /(A1 — B»), the coefficients
A, = Bj are eliminated. m]

It follows from Proposition 3 that with an appropri-
ate choice of the basis vectors t; and t; in the tangent
plane of the body, (33) can be written into the form

F{ (@) = Aicosg + C1,

. (42)
F3(¢) = Bysing + Ca,

without the loss of generality. In this form, (43)-(44)
become

A B
R($) = A1t B

> 4+ Cicos¢p + Crsing
Al — B

2
. Al — By .
V(¢p) = Crcos¢p — Cysing — — sin2¢. (44)

cos2¢, (43)

4.2.2 Possible number of limit directions

In the expression of (35) and (44), V (¢) is a truncated
Fourier series containing terms up to the second har-
monics. According to [10], determining the zeroes of
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such function leads to the eigenvalue problem of a 4-
by-4 complex matrix. Alternatively, finding the zeroes
of V(¢) is equivalent to solving the following fourth-
order polynomial equation.

Proposition 4 The zeroes ¢ € [0, 27) of (44) satisfy
the following equation:

((Ba — A1) cos ¢ — C1)*(1 —cos ¢p)> — C3cos’> p = 0
(45)

Proof Equation (45) can be derived from (44) by direct
calculation using basic trigonometric identities. O

Proposition 5 The function V(¢) in (44) has maxi-
mum four zeroes except if V (xo) (@) is identically zero.

Proof Equation (45) is a fourth-order polynomial in
cos ¢, which leads to maximum four different roots for
¢ on the interval ¢ € [0, 2). In the degenerate case
when V (¢) is identically zero, all ¢ € [0, 27) are limit
directions. O

Proposition 6 The function V (¢) in (44) has minimum
two zeroes.

Proof In the form (44) of V (¢), the constant term van-
ishes. Therefore, V (¢) is a periodic continuous func-
tion with zero mean value. Thus, it needs to have at
least two zeroes on ¢ € [0, 27). |

Proposition 7 The function V(¢) in (44) has three
zeroes if and only if

¥ 3

(B, — A*? #0. (46)
Proof The periodic differentiable function V (¢) can
have odd number of roots only if it has a double root
¢1 € [0, 27r) with

Vg =0 Y=o )
1) =Y, d ¢ 1) = 0.

By substituting (44) into the two equations of (47),

direct calculation leads to tan ¢; = —(C»/C1)'/? and

(46). m

Theorem 2 Consider a point xg € X of the system
(29). The following cases can occur.

1. Ifo/3—}-C§/3 > (By— A1)*/3, then xq has 2 limit

directions.

1807

2. IfCIP +C3° < (By— A3, then xo has 4 limit
directions.

3. 1fCP + €% = (By— AN #£0, then xo has 3

limit directions.
4. If C1 = Co = By — A1 = 0, then xo has continu-
ously many limit directions.

Proof Point 3 of the Theorem is contained by Propo-
sition 7. The condition (46) separates the space of
the coefficient Ay, B>, C1, C» into two regions, where
there can be 2 or 4 limit directions (see Propositions 5
and 6). In the case Cf/B + Cf/S > (B — A1)2/3, the
last term in (44) is negligible, that is, there are two roots
of V(¢) on [0, 27), resulting in Point 1 of the Theo-
rem. Point 2 can be proved similarly by checking the
extreme case C12/3 + C12/3 < (By—A; )2/3, when there
are four roots of (44). In Point 4, V (¢) is identically

zero and all ¢ € [0, 277) are limit directions. O

4.2.3 Attracting and repelling limit directions

Proposition 8 The function (44) possesses a zero sat-
isfying R(¢1) = 0in (44) if
S

L4+ 2 =1 48
FER: (48)

Proof The condition V (¢1) = R(¢1) = Oisequivalent
to F{'(¢1) = F5(¢1) = 0in (42). By direct calculation,
we get tan ¢ = A;C,/(B2C1) and the condition (48)
of Proposition. O

Theorem 3 Consider a point xo € X of the system
(29). The following cases can occur.

1. IfC%/A%—i—C%/BZ2 < 1, then x¢ has only attracting
limit directions and no repelling limit directions.

2. IfC%/A% + C%/BZ2 > 1, then x¢ has at least one
attracting limit direction and exactly one repelling
limit direction.

3. IfClz/A% +C§/B§ = 1, then xq has attracting limit
directions and a limit directions on the boundary
of being attracting and repelling.

Proof In Point 3 of the Theorem, we can find the con-
dition of Proposition 8 which ensures the existence of
a limit directions between being repelling and attract-
ing (see Definition 3). This condition (48) separates
the space of the coefficient Ay, B>, C1, C2 into two
regions, and the number of the repelling (or attracting)
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direction changes by one when crossing the boundary
(48).

In the limit case (C? 4+ C3)/ max(Ay, By) — 0, the
terms with sin ¢ and cos ¢ are negligible in (44), and
we get

R($) — BL(1 +cos2¢) + 22(1 — cos2¢), (49)

which is always negative because Ay, B, < 0 (see
Proposition 2). That is, there is no possibility for a
repelling limit direction ¢;with R(¢1) > 0, and Point
1 of the Theorem is proved. Proof of Point 2 comes
from the fact that exactly one limit direction changes
between attracting and repelling on the curve (48). O

4.2.4 The four generic cases

The boundary (46) in Proposition 7 divides the space
of the coefficients Ay, Bz, C1, C, into two typical
regions (see Theorem 2). Similarly, the boundary (48)
in Proposition 8 creates two typical regions (see The-
orem 3). This creates four generic regions in the space
of A, By, Cy, andC,. For fixed values of A and B»,
these regions can be visualized in the plane of C; and
Cs.

For |A; — B2| > min(|A1], |B1]), all four types of
regions appear (see Fig. 4). The boundary curves corre-
sponding to (46) and (48). The Roman numbers denote
the combinations of the cases of Theorems 2 and (3)
according to the following nomenclature:

I. 2 attracting limit directions,

II. 4 attracting limit directions,
II. 1 attracting and 1 repelling limit directions,
IV. 3 attracting and 1 repelling limit directions.

In the case |[A; — B2| < min(]A1], |B1]), the case IV
is absent from the plane of C; and C, (see Fig. 5).
Note that the coefficients A1, By, C1, and C, depend
smoothly on the state variables w; ...g5 from (27).
Thus, the boundaries in Figs. 4-5 could be mapped
onto seven-dimensional surfaces in the phase space,
where they divide the eight-dimensional discontinuity
set X into regions according to the behaviours I-IV.
The typical structure of the vector field in the four
cases can be seen in Figs. 6-9. The figures show the
projection of the vector field into the orthogonal space
Oy, 2. The origin of the diagram corresponds to the
given point xg of the discontinuity u; = up; = 0 of
the rolling behaviour. The direction of the vector field
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Fig. 4 Location of the regions with different type and num-
ber of limit directions. The diagram is depicted in the space of
the parameters of (33) in the case |A|| > |A] — B2| > |Ba|.
The cases I-1V are denoted in the different regions of the figure.
The ellipse corresponds to (48) and the star-like boundary cor-
responds to (46). A similar structure of the figure is obtained for
|B2| > [A1 — Ba| > |Ai]

Fig. 5 Location of the regions with different type and number
of limit directions. The diagram is depicted in the space of the
parameters of (33) inthe case |[Aj| > |By| > |A|— B3|. A similar
structure of the figure is obtained for |By| > |A|| > |A] — Ba|

induces that the trajectories approach the discontinu-
ity along the attracting limit directions (denoted by
solid lines), and they leave the discontinuity along the
repelling limit directions (denoted by dashed lines).

4.2.5 Angularly stable and unstable limit directions

We can see in Figs. 6-9 that the the trajectories are
different in the neighbourhood of different attracting
directions. For example in Fig. 6, most trajectories seem
to be follow the direction ¢, and not ¢, . This difference
can be explained by the subsequent analysis.

Let us consider the system
i) = Fy (arctan(ua, uy)),

50
iy = Fj(arctan(ua, uy)), oY
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Fig. 6 Phase portrait with the limit directions in Case I

which is an asymptotic approximation of projection of
the system (29) into the normal plane of u; and u; in

the limit case ,/u% + u% — 0.

By using the transformation u := ,/u% + u%, ¢ =
arctan(us, u1), and an appropriate transformation of
time, the trajectories of (50) are mapped to the trajec-

tories of the system

u' = uR(p), (S1)
' =V(p), (52)

where the dash denoted the differentiation with respect
to the new time variable. Note that the solutions of
(52) can be determined independently from (51). The
Taylor expansion of (52) around an equilibrium ¢; with
V(¢1) = 0is given by

, V()
P70

where O? denotes the higher order terms. The linear
stability of ¢; of equation (52) is determined by the
signofdV (¢)/d¢ at ¢ = ¢1. The equilibrium points of
(52) corresponds to the limit directions of the original
system (see Definition 2). Hence, the terms stable and
unstable of the equilibrium point can be transferred to
the limit directions.

(=) +O D —¢1),  (53)

Definition 5 The limit direction ¢; of (29) is called
angularly stable if dV (¢)/d¢ is negative at ¢ = ¢y,
and it is called angularly unstable if dV (¢)/d¢ is pos-
itive at ¢ = ¢y.

In the angularly stable case, the limit direction is attract-
ing the adjacent trajectories (see ¢ in Fig. 6). In the

Table 3 Number and type of the limit directions in the four
generic cases of the system

Case I II 1 v

Total number of limit directions
Attracting, angularly stable
Attracting, angularly unstable

Repelling, angularly stable

S O = = N
S O YA
S = = O N
S = N = B

Repelling, angularly unstable

angularly unstable case, the adjacent trajectories get far
from the limit directions in the sense of the angle ¢ (see
¢» in Fig. 6).

The special case dV (¢p) /d¢ = Ois a fold bifurcation
of (52), which corresponds to the fold of limit direc-
tions in (29). This condition was already discussed in
Proposition 7 (see (47)); thus, the fold of directions
coincides with the condition (46). The next Proposi-
tion completes our analysis of the limit directions of
(29).

Proposition 9 If a limit direction of (29) is repelling,
then it is an angularly stable limit direction.

Proof A limit direction can change from attracting to
repelling only on the boundary (48). Let us substitute
(48) and the corresponding value of ¢ from the proof
of Proposition 8 into dV (¢)/d¢. Then, we get

dv C3 c?
T (54)

¢ o=, B; Ay
which is always negative due to Proposition 2. That is,
the limit direction is angularly stable. O

To summarize our results, the number and properties
of the limit trajectories can be found in Table 3.

5 Slipping-rolling transitions
5.1 Mechanical consequence of the limit directions

The system F(x) in (28) was introduced to describe
the slipping behaviour of the body. The discontinuity
manifold X is the set u; = uy = 0, which coincides
with the condition of the rolling constraint (8).

In this subsection, the slipping—rolling transitions
are analysed by considering purely the limit directions
of the slipping equations determined in Sect. 4. The
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relation to the dynamical conditions of the rolling equa-
tions is presented in the next subsection.

5.1.1 Case I: 2 attracting directions

In this case, all trajectories in the vicinity of xo tend
to the discontinuity at u; = up = 0 (see Fig. 6). That
is, the behaviour of the body turns from slipping to
rolling. It is proved in [4] that the trajectories reach
u1 = upy = 0 in finite time. In some sense, the rolling
motion is stable with respect to slipping perturbations,
because the effect of a small perturbation in #; and u;
is eliminated by the dynamics in finite time.

Note that almost all solutions reach the rolling state
along the angularly stable limit direction (¢; in Fig. 6).
The angle ¢ can be imagined not only as an angle in
the phase space but as an angle of the slipping veloc-
ity vp, as well. Therefore, the dominant behaviour of
the limit direction ¢; causes that the slipping velocity
points typically into the direction ¢; when the motion
changes from slipping into rolling. There is only a sin-
gle trajectory which approaches the state u; = up =0
from the direction ¢». The trajectories close to ¢, con-
tain a high-curvature turning when reaching xo. Hence,
the direction of the friction force changes rapidly just
before the transition from slipping to rolling.

5.1.2 Case II: 4 attracting directions

This case has a behaviour similar to Case I: all sur-
rounding trajectories tend to the discontinuity (u; =
uy = 0) in finite time (see Fig. 7. From mechanical
point of view, this means that the rolling motion is real-
izable, because small perturbations causing slipping are
eliminated by the dynamics and the body starts rolling
again.

But in contrast to Case I, here, we have four limit
directions and there are two angularly stable limit direc-
tions (¢1 and ¢3 in Fig. 7). That is, there are two typical
directions of the slipping velocity when the body is in
transition from slipping to rolling. The angularly unsta-
ble directions ¢» and ¢4 behave as separatrices. In the
regions ¢a < ¢ < @1 and ¢1 < ¢ < ¢, all trajecto-
ries approach the rolling state along the direction ¢.
In the regions ¢2 < ¢ < ¢3 and ¢3 < ¢ < ¢4, the
trajectories tend to the limit direction ¢3.
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Fig. 8 Phase portrait with the limit directions in Case 111

5.1.3 Case IlI: 1 repelling and 1 attracting direction

When an attracting limit direction turns into repelling,
the structure of the phase changes significantly. In Case
III, we can find an attracting and a repelling limit direc-
tion (see Fig. 8). The attracting direction is angularly
unstable and the repelling direction is angularly sta-
ble (according to Proposition 9). That is, the typical
behaviour of the system is slipping, and almost all tra-
jectories avoid the discontinuity at u; = up = 0.

In the vicinity of the discontinuity set (rolling
behaviour), the trajectories tend to the repelling limit
direction ¢ and they diverge from the rolling state.
That is, a slipping motion is generated with a typical
direction ¢, of the slipping velocity. There exists one
single trajectory which reaches the discontinuity, and
this happens along the limit direction ¢,. But the sys-
tem reaches the rolling state just for a moment, and it
starts slipping immediately in the direction of ¢;.
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Fig. 9 Phase portrait with the limit directions in Case IV

5.1.4 Case IV: 1 repelling and 3 attracting directions

In Case IV, there are a repelling and three attracting
limit directions, which lead to the most complicated
scenario of the four cases (see Fig. 9. The two angu-
larly unstable attracting directions ¢, and ¢4 are the
separatrices between two typical regions of the phase
plane. Between ¢4 < ¢ < ¢1 and ¢ < ¢ < ¢, all
trajectories avoid the discontinuity and the trajectories
tend to the repelling limit direction ¢;. In this sense,
this case is similar to Case III, and the typical behaviour
of the system is slipping.

However, intheregions ¢y < ¢ < ¢pzand ¢z < ¢ <
@4, the trajectories tend to the angularly stable attract-
ing direction ¢3, and they all reach the discontinuity
at u; = up = 0. There is rolling only for a moment,
and the system starts slipping with a slipping velocity
described by the direction ¢;. In contrast to Case III,
not just a single trajectory is connected to the discon-
tinuity, but a large portion of the phase plane tends to
u1 = up = 0. That is, the typical long-time behaviour
is slipping, but for many initial conditions, rolling can
occur for a moment.

5.1.5 Summary of the typical types of behaviour

After the detailed survey of the possible types of
solution, let us summarize the typical four cases of
behaviour from the mechanical point of view.

Corollary 1 Consider a rolling state of the body and
let us perturb the motion by a small amount of slipping.
According to the chosen state of rolling, the typical
behaviour of the body is the following:

— In Cases I and II, the perturbed body returns to
rolling in finite time and then it maintains the rolling
state.

— In Case I, the slipping velocity vanishes from a

certain direction for almost all perturbations (see

Fig. 6).

In Case II, the slipping velocity vanishes from two

certain directions for almost all perturbations (see

Fig. 7).

In Cases III and 1V, the perturbed body is unable

to maintain a lasting rolling state and it continues

slipping.

— In Case Ill, the slipping velocity remains finite for
almost all perturbations, thus, pure slipping con-
tinues (see Fig. 8).

— In Case 1V, two types of behaviour occur accord-
ing to the direction of the perturbation. Either, the
body continues pure slipping like in Case III. Or,
the slipping velocity vanishes in finite time, rolling

motion occurs for a single moment, and then, the
body continues slipping again (see Fig. 9).

5.2 Comparison with the rolling condition of the
friction law

Up to this point, we analysed the rolling—slipping tran-
sitions based on purely the phase space of the slipping
system (29). It can be seen that a detailed, consistent
structure of the behaviour can be obtained from this
analysis. But what is the relation between these results
and the ones from the rolling condition of the friction
law with the static friction force?

The equations of the rolling vector field can be
derived either from the Newton—Euler equations (7)
with the rolling constraint (8), or directly from the limit
vector field (32) of the slipping case.

In the latter case, we consider the dynamics on X
generated by F*(x) by a convex combination, which is
called sliding dynamics in the terminology of Filippov
systems and extended Filippov systems (see [1,7] and
[4]). In mechanical problems, we have to be careful
with this terminology because sliding dynamics corre-
spond to the mechanical rolling and not to the mechan-
ical slipping.

At a point xo € X, we search for the sliding vector
Fs (x0) € 7y, 2 in the form

2
Fy = /0 (@) F*($)dg, (55)
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where « is a [0, 2) — [0, 1] function which satisfies

02 r a(¢p)d¢p = 1 (a convex combination). By direct

calculation from (32)—(33), we get that the only such
sliding vector is

B1Cy — C1 B>

~ A1By— AB)

A1Cy — C1Ay

Fy
A1By — Ay By

B+C.

(56)
By using the reduced form (42) in the appropriately
chosen coordinates, the formula (56) simplifies to
Ci &)

FE_—A—IA—i—B—zB—i-C. (57)

If the body is rolling then u; = u> = 0, and the
dynamics of the other variables is described by the sys-
tem (56). Then, the formula (9) is not valid, and the fric-
tion force F s can be obtained as a constraint force. The
dynamic condition of the rolling is usually expressed
by the maximal admissible friction force in the form
IF¢l < noN, (58)
where p is the static friction coefficient.

When the static and dynamic friction coefficient is

equal (o = w) then we can state the following theo-
rem.

Theorem 4 Consider a state xg € X of rolling, when

the static friction force is known from the constraints

and o = W

1. If the rolling is strictly admitted by (58), that is,
[F sl < moN, then xo possesses no repelling limit
directions.

2. Ifthe rolling is not admitted by (58), that is, |F 7| >
woNN, then xo possesses a repelling limit direction.

3. In the special case |Fy| = N, xo possesses
attracting limit directions and a limit direction on
the boundary of being attracting and repelling.

Proof The rolling dynamics ensures u; = up = 0 per-
manently, that is, the derivatives | and 1, have to be
zero, as well. If ;1o = w then third statement of the the-
orem with |Fr| = poN gives back the condition (9)
of the dynamic friction. That is, the rolling and slip-
ping dynamics is valid at the same time. In the slipping
dynamics, the condition ity = 1, = 0 is equivalent
to the condition (48) (see the proof of Proposition 8),
which decides whether there exists a repelling limit
direction or not (see Theorem 3). The magnitude |F z|
of the friction force tends to zero when A; — 0 and
By — 0 [compare (6), (11), (17) and (29)]. Conse-
quently, the three cases of Theorems 3 and 4 are pair-
wise equivalent. O
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Fig. 10 Graph of different dry friction models. Top-left: sim-
ple Coulomb model with uniform @ = po values of dynamic
and static friction coefficients. Top-right: Coulomb friction with
stiction effect, ;o > . Bottom: Stribeck model without viscous
effect (see (59)—(60))

The theorem is valid for the simple Coulomb model
with a uniform friction coefficient oy = w (see the top-
left panel of Fig. 10). However, itis not valid for the stic-
tion model where there are two distinct values of u and
o in (9) and (58), respectively (see the top-right panel
of Fig. 10). In some sense, this stiction model provides
inconsistent friction forces in the rolling and slipping
cases. In this model, there are three discontinuities at
|[vp| = 0: the change of the sign of the friction force
and the change between the static and dynamic fric-
tion in both directions. This degeneracy can be avoided
by replacing the constant dynamic coefficient u by a
function

a(vel) = (o — p) -exp(=y - [ve]) + i, (39)
and then, the slipping Coulomb model (9) becomes
vp

(60)
[vpl

Fp=—n(vpl)-N
The model (59)-(60) provides a Stribeck friction model
without the viscous effect (see the bottom panel of
Fig. 10). The parameter y can be estimated empiri-
cally, and the limit case y — oo gives back the stiction
model. In fact, (59) can be replaced by any smooth
function 1 (|vp|) satisfying

lim (lvp|) = uo, lim a(lvp|) = u. (61)
[vp|—0 vp|—>00

Proposition 10 By considering the improved slipping
friction model (60)—(61) instead of (9), Theorem 4
remains valid for different values of the static and
dynamic friction coefficients.
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Fig. 11 The model of the application example. The wheel is
moving on the plane driven by the driving moment M, and the
steering moment Mj. The tilting of the wheel is prevented by the
balancing moment M}. In this example, the occurrence of the
different types of slipping—rolling transitions is shown based on
the results presented in the paper

Proof By the first limit of (61), the dynamic friction
coefficient tends to ;o when |[vp| — 0. Then, u can be
replaced by 1 in F* and the related quantities all along
the analysis of the paper. Then, the proof of Theorem
4 can be repeated. O

Theorem 4 and Proposition 10 state that the analy-
sis of the limit directions in Sect. 4 is consistent with
the checking of the maximal admissible friction force.
In Cases I and II with only attracting limit directions
(Figs. 6-7), the condition (58) is satisfied (rolling is
realizable). In Cases III and IV with a repelling limit
direction (Figs. 8-9), the condition (58) is violated
(rolling is not realizable).

That is, Theorem 3 decides whether rolling is pos-
sible or not based on the slipping equations, and we
do not need to calculate the rolling dynamics (56) and
check the condition (58) of rolling. This property can be
useful especially in those systems where it is not pos-
sible to calculate the static friction force (see [1,2]).
Moreover, the analysis of limit directions gives more
detailed information than just deciding between rolling
or slipping. The number and location of limit direc-
tions characterize the possible transitions between the
slipping—rolling states and the direction of the slipping
velocities at the transition.

6 Application example

Consider a wheel moving on a plane (see Fig. 11),
where the symmetry axis of the wheel remains parallel

with the plane (no tilting of the wheel). The wheel is
modelled by a rigid disc with a radius p and a negligi-
ble thickness. The external forces acting on the wheel
are the gravity force (mg), the steering moment (M),
the driving moment (M), and the balancing moment
(Mp), ensuring the horizontal orientation of the sym-
metry axis. All the other notations are the same as in
Sects. 2—4 (see Tables 1). It is shown in [9] that the
rolling motion of this model is equivalent to the motion
of the Chaplygin-sleigh, which is an important bench-
mark problem of nonholonomic mechanics.

It is useful to fix the basis vectors t; and t, to the
wheel such that t; is parallel to the symmetry axis of
the wheel. Then, the Newton—Euler equations of the
wheels in the form (10)—(11) become

w1 =0,
2Mg | 2ug u
= ———,
N
. 4 M,
w3 = —,
mp? (62)
. 2Md ui
i =upw3 — —— — 3gp——m—,
N

uz
—U1w3z — pwWrw3 — gU—F———.
,/u%—i—u%

The location and orientation of the wheel on the plane
do not appear in (62) due to the symmetry properties
of the problem. By eliminating the trivial coordinate
w1 = 0, as well, the state vector (27) of the system can
be written into the reduced form

Uy =

x = (U1, uz, w2, w3). (63)

Then, the vector field F (x) becomes

r 2My Ul
U3 — St — g —
uy+u
—Ujw3 — pwrw3 — g )
F(x) = Veitid | (64

2M, 2
_g+ﬂL

mot 0 i
4M

L mp? i

The discontinuity set ¥ defined by u; = up = 0isa
plane of the variables w; and w3, and its selected point
isdenoted by xog = (0, 0, w2, 3). The limit vector field
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(23) becomes
2M
— m—pd —3gucos¢
—pwrw3 — g sin g
F*(x0)(¢) = (65)

2My 281
p? + = cos ¢
4M,

mp?
In the form (32), the vectors A, B, andC at x( are given
by

=318 0
0 _
A = | 2e0 |» B =| S0 60)
P
L 0 0
- oMy
mp
—pwWrW3
Coo)=| "y |- (67)
2
a1,
mp?

and the coefficients (33) are

Al = —3gu, By = —gpu,
B =0, Ay =0, (68)
Ci=—-2My/(mp), Cz=—pwrws.

As Ay = By = 0, the system is already in the form
(42), and it is not necessary to transform the variables
according to (40). By substituting these into the bound-
ary curve (48) between slipping and rolling, we get

Mgy ? 2 _ 2
— | + Bpwrw3)” = (3Bgu)”. (69)
mp

The boundary curve (46) between the 2 and 4 limit
directions becomes

Mg\ 23 2/3
<m—p> + (panw3)?? = 2gn)*. (70)

These curves are visualized in Fig. 12 in a similar dia-
gram similar to Fig. 4. There are three special val-
ues of |My|, which is the absolute value of the driv-
ing moment: |M;| = 3umgp, |Mg| = 2umgp, and
IMy| =~ 0.459umgp (see Fig. 12). By selecting typi-
cal values of M, in between these special values, the
sketch of the discontinuity set can be found in Fig. 13.
The discontinuity set X is the plane of the variables w;
and w3. In this plane, the boundary curves are trans-
formed into hyperbolas due to the product wyws3 in the
expressions. It is not surprising that the rolling is real-
izable (Cases I and II) when the product of the angular
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Fig. 12 Dynamic cases at the behaviour of the rolling wheel. In
the coordinate system of the driving moment M, and the prod-
uct of the angular velocities w, and w3, the curves separate the
different regions of behaviour from the point of view of slipping
and rolling. For some typical values of the parameter My, the
sketch of the plane w, — w3 can be found in Fig. 13
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I il I I
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Fig. 13 Sketch of the discontinuity set of the rolling wheel with
the typical regions of behaviour. The discontinuity setis the plane
of the variables w; and w3. For the selected values of the driving
moment M, (denoted by a—d) in Fig. 12), the different regions
correspond to the four cases I-IV of behaviour presented above
(see Figs. 6-9)

velocities are not larger than a critical value. Note that
the 4 limit directions (Cases II and IV) appear at low
values at the angular velocities.

7 Overview of more complex contact models

The results of the paper are based on the following mod-
elling assumptions of the contact between the bodies:
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1. the assumption of planar geometry of the fixed
body,

2. the assumption of rigid bodies,

3. assuming that the contact state is either slipping or
rolling,

4. the assumption of the Coulomb friction model,

5. the assumption of a well-defined, single contact
point of the unloaded bodies.

In this section, we overview the possibilities of the
extension of the analysis in the case of any of these
restrictions are released.

If we replace the fixed plane by a rigid body with an
arbitrary curved fixed surface, then the normal plane of
the contacting surfaces is changing during the motion.
It would make the dynamic equations more compli-
cated, but it would not be a structural modification of
the model. Thus, the different scenarios of the limit
directions are expected to be preserved in this case.

If we do not neglect the deformation of the bod-
ies, then we have to consider the formation of the con-
tact area around the theoretical contact point. In the
literature, it is usual to separate the motion into two
parts: the rigid body motion of the whole body and the
local deformations in the vicinity of the contact area.
The Hertz theory (see, e.g. [25], p. 55 or [19] p. 84)
assumes elliptical contact area and a parabolic distri-
bution of the normal pressure between the bodies in
the frictionless case. Similar but higher order theories
exist for the normal pressures (see, e.g. [20]). Com-
bining these models with friction leads to theoretical
and computational challenges [19,20,25]. For the pur-
pose of dynamical applications, analytical and semi-
analytical models of the contact forces can be derived
from these theories. When we consider the combined
effect of the slipping and drilling motion, the contact
laws are determined by the Coulomb-Contensou fric-
tion model (see, e.g. [21]). The combined effect of slip-
ping and rolling motion leads to the contact laws of
creep models (see, e.g. [18]). By improving our anal-
ysis by these models, higher-codimensional (3-5) dis-
continuities are expected to appear. This can be the
topic of the further research work. The concept of limit
directions probably remain important in these cases,
as well, to find the possible transitions between rolling
and slipping.

We assumed that the normal contact force N is
strictly positive, and the surfaces remain in permanent
contact at the contact point. Then, depending on the

state of the system, the friction model decides whether
slipping or rolling behaviour occurs. However, when
the contact force N decreases to zero, the bodies can
separate from each other (l/ift-off), and the nonsmooth
behaviour of the dynamics with the discontinuity set
vanishes. However, the switching of the contact and
the no-contact states introduces a further discontinu-
ity, containing the impacts of the bodies, as well. The
generalization of the results of the paper to these cases
would need additional extensive research work. The
Painlevé paradox of the contact states [11,15] causes
further complications.

In the analysis, we first considered the simple
Coulomb law for modelling dry friction. Then, in
Proposition 10, the results are generalized for a class
of friction models similar to the Stribeck friction law.
However, several different friction models can be found
in the literature (see [22] and [23] for an overview). It
is an open question how further effects like hystere-
sis (e.g. the Karnopp model) or internal variables (e.g.
the Dahl model) modify the qualitative structure of the
dynamics at the discontinuity.

A further complication can be the coexistence of
multiple contact points between the contacting bodies.
The results in [1] show that the concept of limit direc-
tions is applicable to two contact points, but still, a
throughout analysis would be necessary. An even fur-
ther case is the contact of conforming bodies, where
there is a finite contact area even with the rigid body
assumption. (The simplest example is a block mov-
ing on a plane.) Then, information is needed about
the normal pressure distribution, and the integration
on the contact area is expected to lead to higher-
codimensional discontinuities as we expected in the
deformable models, too.

8 Conclusion

The dynamical equations of a rigid body were derived,
in which body is in 3D slipping or rolling contact with a
rigid plane in the presence of dry friction. It was shown
that by assuming Coulomb friction model, the differ-
ential equations of the dynamics of the body lead to an
extended Filippov system. That is, the phase space of
the system contains a codimension-2 discontinuity set.

The nonsmooth differential equations of slipping
were analysed by the methods of new theory of
extended Filippov systems. The possible number and
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type of limit directions of the points of the disconti-
nuity were determined, where the transitions between
slipping and rolling occur. We got four structurally
different cases of limit directions; there can be two
or four limit directions, from which maximum one
can be repelling. The effect of these scenarios of the
mechanical behaviour was discussed in detail. It was
shown that in case of simple Coulomb model and the
Stribeck model, the limit directions lead to such con-
ditions of rolling, which are consistent with the con-
dition of maximum admissible friction force. Further-
more, the results of the new approach provides more
information about the qualitative behaviour of these
mechanical systems near the discontinuity. The result
was demonstrated on an example of a wheel. A part of
the further work would be to apply the results to other
well-known systems such as the rolling disc (see [5,8])
and the classical skate problem (see, e.g. [9]).

The considered contact model is clearly the sim-
plest mechanical model which is capable to describe the
problem of the different possible directions of transi-
tions between rolling and slipping in three dimensions.
However, several possibilities were presented in the last
section to improve the contact model in different ways.

One further important direction of the subsequent
research would be to utilize these results to develop
effective and reliable numerical methods for simulation
of these systems. The information of the structure of
the trajectories and limit directions could help to find
appropriate event-driven strategies similar to those of
classical Filippov systems [24].
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