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Abstract Human and robotic legged locomotion can
be described with complex multi-degree-of-freedom
dynamic models, whose bifurcation or parameter anal-
ysis may explain some features of typical patterns dur-
ingmotion. In this paper, we focus on the effect of kine-
matic parameters and foot placement techniques on the
ground-foot impact intensity. The work is based on a
multibody dynamic model of a segmented leg, which
possesses some fundamental characteristics of loco-
motion systems: (a) distinct topology in the flight and
ground phases; (b) kinetic energy absorption due to par-
tially/fully inelastic ground-foot collision; (c) an active
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control strategy for maintaining a prescribed mechan-
ical energy level; and (d) different control strategies
for the flight and ground phases. We obtain a quanti-
tative measure for the foot collision intensity by ana-
lytic calculations. The pre-impact velocity conditions
are obtained from a hopping three-segmented planar
leg model that imitates pedal locomotion. The single-
legged model contains the foot, the shank, the thigh
and a reaction wheel attached to the hip, which models
the effect of the upper body. The existence of stable
periodic motion associated with hopping is shown for
a wide range of parameters by means of finding suit-
able control torques in the ankle, the knee and the hip
joint. The parameters of the linear feedback controller
are tuned to optimize different cost functions, such as
running speed, energy efficiency and impact intensity.
We also investigate how the stability of the periodic
motion depends on the control gains.

Keywords Legged locomotion · Human balancing ·
Constrained motion space kinetic energy (CMSKE) ·
Piecewise-smooth dynamical systems · Periodic orbits

1 Introduction

Analyzing the dynamics of legged locomotion is
a challenging task for several reasons. The associ-
ated mechanical models involve multiple degree-of-
freedom (DoF) systems, varying topology, alternat-
ing over- and under-actuated [1] motions related to
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the different phases of walking or running, nonlin-
earities related to geometrical configurations [2], and
non-smoothness at foot impacts [3–9]. Moreover, such
models often involve some kind ofmotor pattern gener-
ator [10]. Underlying feedback mechanisms introduce
additional components into models, such as reaction
time delay, sensory uncertainties and the saturation of
the forces exerted by the muscles [11]. Furthermore,
the control concept employed by the nervous system
to keep the body segments on the desired path is not
exactly known.

Still, there are high DoF models in the literature for
legged locomotion, which are used for the interpre-
tation of experimental results, such as the calculation
of joint forces derived from motion capturing [12,13].
Thesemodels take the geometry of the humanbody into
account precisely; however, important aspects such as
balance, motion pattern generation and control are gen-
erally not included.

Another group of models includes the balancing and
control strategy of the brain; however, their geometry
is reasonably simplified. Such models help one under-
stand how the nervous system keeps the body in bal-
ance, how the energy level is maintained and how the
motion patterns are generated during locomotion. The
balancing process can be understood better by includ-
ing a controller thatmimics the operation of the nervous
system [14]. For instance, the spring-loaded inverted
pendulum (SLIP) model in [15] involves a sophisti-
cated control algorithm that takes stability and control
issues into consideration, while the other elements of
the model are excessively simplified compared to the
human body. The model in [16], on the other hand, fea-
tures a geometry very similar to the human leg, but the
model still neglects the mass of leg segments. Conse-
quently, the important issues of ground-foot collision
and impact-induced energy absorption are missed. In
fact, a considerable amount of energy-demand in loco-
motion is related to ground-foot impact. Furthermore,
foot impact is themain source of injuries whenwalking
and running.

In this paper, we present the stability analysis of
the three-segmented controlled leg model developed
in [17]. The model describes a stable periodic motion
associated with hopping. The goal is to present a
dynamic analysis of a moderately complex model, for
which the number of parameters is still small enough to
be treated with qualitative mathematical methods. The
new contribution of the present paper is that the local

behavior of the model in [17], namely the stability of
periodic solutions, is explored as a function of the most
important control parameters. The model includes: (1)
human-like geometry; (2) energy absorption induced
by ground-foot impact; and (3) control for stabilization.
Mathematical tools for piecewise-smooth periodic sys-
tems are applied to demonstrate the feasibility of the
model and to analyze qualitatively the global behav-
ior of different types of running. More specifically,
we present stable forward, zero velocity and backward
hopping locomotion. We then perform an analysis of
how the forward hopping locomotion and its stability
depends on parameters and how it can be optimized in
terms of locomotion velocity, apex height, energy effi-
ciency and ground-foot impact intensity. Finally, going
well beyondwhat has been reported in [17], we address
biomechanical issues: the effect of tiptoe positioning on
locomotion velocity and impact intensity.

2 Motivation and background

Important elements of our model and analysis are gro-
und-foot interaction and stability control, which are
both crucial for efficient running.

Depending on the form of running, the ground-foot
interaction may lead to high-intensity impacts or colli-
sion. This may result in high kinetic energy absorption,
which should be avoided in order to minimize the risk
of injuries and also in order to increase energy effi-
ciency during running [5,6,9,18,19]. There is a debate
in the literature about the effect of running kinematics
and foot placement patterns on the ground-foot colli-
sion intensity. For instance, Souza [20] states: “At this
time, there is limited evidence that any foot strike pat-
tern is more or less likely to cause a runner to sustain
an injury”. Another example is Jungers [18] who says
“More studies ... are required to provide data instead
of opinion, and testable models and scientific explana-
tion instead of anecdotes”. Therefore, a reliable math-
ematical model of legged locomotion could strongly
contribute to the understanding of legged locomotion.

Despite considerable research efforts [21,22], the
neural processes behind human balancing tasks are still
not completely understood. An interesting approach is
to compare the required mechanical energy consump-
tion when standing still and during locomotion—when
walking, running and hopping. Postural sway observed
during standing still clearly demonstrates that certain
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energy input is required for the stabilization of the oth-
erwise unstable upright standing position. Locomotion,
on the other hand, is typically a periodic-like motion,
which requires energy from the muscles to both over-
come losses and to ensure stability, i.e., prevent falling.
A long-term goal is to answer the question whether the
energy required for stabilization is smaller in the case
of locomotion compared to standing still.

2.1 Hopping models and ground-foot collision

Many aspects of periodic motion of legged systems
were detailed in [15], where several walking, running
and hopping models are reviewed. The classical SLIP
model provides a fundamental background for hopping
legmodels. It represents the body inertia as a pointmass
which bounces along on a single elastic massless leg.
The supporting role of the leg in each stance phase
is characterized by the inverted pendulum. However,
geometric features of a human leg and the ground-
foot collision are not described by the SLIP model.
The stable static configurations of a three-segmented
leg model were presented in [2] for a case where the
inertia and dynamic effects of the body segments are
neglected and the body weight is modeled by a point
mass located at the hip. Self-stable running-like loco-
motion for this model was presented in [16], showing
that the stable domain in terms of landing angle and
horizontal velocity is larger than for the SLIP model.
Apart from the elimination of inertial forces, massless-
ness of the segments leads to smooth dynamics, i.e.,
there are no impulsive forces present when the foot
comes into contact with the ground. This smoothness
property allows one to use well-established analytical
and numerical approaches for smooth system.

A mechanical model containing the foot and the
shank was introduced in [19] for the investigation of
the impulsive forces and the effect of the foot strike
pattern. The foot-shank system falls vertically and the
foot hits a fixed point; the contact point position is
characterized by the strike index s = ls/ l, where ls
indicates the location of the resultant force Fp of foot
pressure and l is the foot length; see Fig. 1. An exten-
sion of the two-segmented model of [19] was intro-
duced in [5] by involving a variable ankle angle and
a horizontal velocity. Both [5] and [19] report that the
effective mass and, therefore, the impact intensity is
lower for forefoot-strike than for rear-foot-strike (heel-

Fig. 1 Foot strike patterns identified by the index s: rear-foot
strike (RFS), mid-foot strike (MFS) and forefoot strike (FFS)

strike), when the strike index satisfies s ∈ [0.7, 1] and
s ∈ [0, 0.3], respectively.

Results in [6] showed that, in addition to the strike
pattern, the angle of the shank also strongly affects the
properties of the ground-foot impact. The model in [6]
involves the thigh and the totalmass of the human body;
the segments perform a rigid-body-like motion in the
pre-impact phase with no relative motion of the body
segments. However, this is not realistic and, in order
to perform further biomechanical analysis of human
running performance, we introduced a dynamic model
with torque control in [17,23] as an extension of the
model from [16]. Thismodel includes themasses of the
segments so that the effects of the inertial forces can
be determined. Moreover, it provides measures for the
ground-foot collision, including kinetic energy absorp-
tion and effective mass, and it also provides a realistic
pre-impact configuration.

The advantage of the presented numerical study over
an experiment is that in the model the control parame-
ters can be tuned to optimize different cost functions,
such as running speed, energy efficiency and impact
intensity. In this paper, we demonstrate the feasibility
of this model by reporting results of a detailed analysis,
including of the stability of different types of hopping
motion; themathematical details of themodel are given
in 3.1.

3 Dynamic model of the controlled hopping leg

Hopping and running motion can be divided into flight
(airborne) and ground (stance) phases, which are con-
nected by ground-foot collisions [24]. For running and
hopping robotic or biomechanical systems, some seg-
ments of the limbs periodically come into contact with
the ground; therefore, the motion of these body seg-
ments are constrained during the duration of the stance
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phase. The intermittent constraints of the limb(s) lead
to the absorption of a certain portion of the kinetic
energy, referred to as constrained motion space kinetic
energy (CMSKE) [3,5,6]. Since the energy loss of pas-
sive walkers [25] is caused mostly by the foot impact,
CMSKE is often used as an energy efficiency indica-
tor. It can also be used as an indicator of foot impact
intensity, since it is proportional to the contact reaction
force impulse and also to the peak reaction force [5,26].
During the stance phase, kinetic energy accumulates
in the rest of the body while the muscles provide fur-
ther mechanical power; finally, the ground-foot contact
phase terminates.

The model used in the present study was devel-
oped to include and analyze the foot-ground impact
described above. The body segments move downward
before the end of the flight phase. The flight phase ter-
minates when the tiptoe, denoted by point A in Fig. 2,
comes into contact with the ground. During the ground
phase, the active spring-damper system increases the
total kinetic energy of the system. As a result, the
height of the next hop is not lower than the height of
the previous hop, in spite of the energy lost. The con-
troller (detailed in Sect. 3.2) aims tomaintain a nominal
mechanical energy level E0.

3.1 Mechanical structure

Figure 2 presents a diagram of the mechanics of the
model. Segments 1, 2 and 3 correspond to the foot,
shank and thigh, respectively. Similarly, the points A,
B, C and D correspond to the tiptoe, the ankle joint, the
knee joint and the hip joint, respectively. The reaction
wheel plays the role of the upper body, and the torque
MD is acting between the reaction wheel and the thigh.
The mass of the reaction wheel and its moment of iner-
tia with respect to the y-axis through point D are mr

and Jr, respectively. The three homogeneous prismatic
bars are characterized by theirmassesmi and lengths li ,
i = 1, 2, 3; they are connected by torsional springs of
stiffness kB and kC. The overall center ofmass (CoM) is
located at point G. Control torques are applied at joints
B, C and D, as it is shown in the right panel of Fig. 2.
Actuating torques MB and MC implement the motion
described by the control law,which is introduced below
in Sect. 3.2.

Themodel has a total of 6DoFs and the general coor-
dinates are chosen to be q = [xA, zA, θ1, θ12, θ23, θr]T,

Fig. 2 Segmented leg model with torsional springs, under ver-
tical gravity above a flat, rigid, horizontal ground (left). Free-
body-diagram showing control torques (right)

where xA and zA are the Cartesian coordinates of the
tiptoe, θ1 is the foot angle measured from the horizon-
tal, θ12 and θ23 are the relative angles of the ankle and
the knee, respectively, and θr is the angle of the reac-
tion wheel. The tiptoe is fixed to the ground during the
ground phase.

The equation of motion assumes the general form:

H(q)q̈ + C(q, q̇) = Q(q, q̇), (1)

where q̇ ∈ R
n and q̈ ∈ R

n are the general velocity and
the acceleration, respectively, with n = 6. The general
mass matrix is denoted by H ∈ R

n×n , and C ∈ R
n

represents the inertial force vector. The general force
Q ∈ R

n contains the gravitational forces, the torques
of the torsional springs and the control torques.

Nonlinear spring characteristics due to the muscle-
tendon dynamics, asmentioned in [2], is not considered
here in order to keep the number of parametersmanage-
able. The torques exerted by the linear torsional springs
of stiffness kB and kC are given by

kB(θ12 − α12) and kC(θ23 − α23), (2)

where α12 and α23 denote the ankle and knee joint
angles corresponding to theunstretched springs, respec-
tively.

3.2 Torque control

The control law determines the required active torques
in Eqs. (3)–(5) and (7)–(9) based on the motion of the
segments and information about the actual phase. Con-
trol concepts based on trajectory tracking and those
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based on feedforward inputs form the central pattern
generators are clearly distinguished and described in
greater detail in [4] and in [15]. Our control approach
rather fits into the latter category in that we consider a
type of feedback for the control; the strategy of keeping
the leg segments on some prescribed trajectories is not
employed as part of the work presented here.

In the flight phase, the control torques MB and MC

behave as damping torques and suppress the possible
oscillations of the relative segmental angles as (3) and
(4) show. The horizontal position xA of the tiptoe rel-
ative to horizontal position xG of the CoM has a large
effect on stability, on locomotion velocity v̄ and on
impact intensity. Approaching and reaching the nom-
inal horizontal position of point A is facilitated by a
proportional-derivative (PD) controller defined in (5)
below. We consider this as the foot touchdown prepa-
ration. The torques MF

B, M
F
C and MF

D are given by

MF
B = −DBθ̇12, (3)

MF
C = −DCθ̇23, (4)

MF
D = P(xA − (xG + xΔ)) + D(ẋA − ẋG), (5)

where DB, DC, P and D are tuned control gains. The
nominal tiptoe position is modified by

xΔ = PΠ ΠA − Kv, (6)

whereΠA is the angular momentum about the point A,
PΠ is an associated control gain and Kv is a control
parameter responsible for tuning the nominal locomo-
tion speed v̄.

During the ground phase, CMSKE is recovered by
means of the control torques (7) and (8) exerted at the
ankle and the knee. The goal is to keep the totalmechan-
ical energy E at the freely chosen target energy level
E0. The mechanical power of these torques is positive
only if the joints are in extension, so that θ̇12 is posi-
tive and θ̇23 is negative. The torque MG

D in (9) prevents
the continuous growth of the angular velocity θ̇r of the
reaction wheel. The control torques MG

B , M
G
C and MG

D
are given by

MG
B = PE (E − E0) sgn(θ̇12), (7)

MG
C = PE (E − E0) sgn(−θ̇23), (8)

MG
D = −Prθr − Dr θ̇r, (9)

where PE , Pr and Dr are control gains.

3.3 Flight and ground phase transitions

The system is described by the state variable vector
x = [

q, q̇
]T, where x ∈ R

2n . The system dynamics is
given by

ẋ(t) = fF(x(t)) in flight phase, (10)

ẋ(t) = fG(x(t)) in ground phase, (11)

where

fF =
[

q̇
−H−1(C − Q)

]
and (12)

fG =

⎡

⎢⎢
⎣

02×1

q̇red

02×1

−H−1
red(Cred − Qred)

⎤

⎥⎥
⎦ (13)

are smooth vector fields that describe the flight and
the ground phase, respectively. Here, q̇red = [θ̇1, θ̇12,
θ̇23, θ̇r]T is a reduced general velocity vector; similarly,
the reduced mass matrix Hred is obtained by truncating
the first two rows and columns of H, while Cred and
Qred are obtained by truncating the first two rows of
C and Q, respectively. Equation (13) in effect imposes
ẍA = 0 and z̈A = 0 for the tiptoe coordinates.

The overall system features switching and disconti-
nuities of the solutions due to the transitions between
the two phases ofmotion, which also need to be defined
to determine the dynamics; one speaks of a hybrid sys-
tem [3,27,28]. The transition between (10) and (11)
occurs at codimension-one switching (hyper) surfaces
ΣG2F and ΣG2F; these are illustrated in Fig. 3.

3.3.1 Flight to ground

The flight phase is terminated by the foot touchdown.
In the presented model, the ground contact is modeled
as a single point contact at point A. The contact force at
any other body segments is not considered. In certain
parameter regions, this leads to stable hopping solu-
tions while point B penetrates into the ground, which is
physically unfeasible. This modeling issue arises com-
monly in single contact point models, see, e.g., [5,19].
Physical feasibility is monitored, and unfeasible solu-
tions are detected in Sect. 4.

The flight to ground (F2G) transition occurs when
ΣF2G, defined by

hF2G(x) := zA = 0, (14)

is reached. The F2G transition involves an impact,
which corresponds to a discontinuity of the solution.
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Fig. 3 Schematic picture of the overall system, showing a stable
relative period and a nearby trajectory with flight phase, ground-
foot impact, ground phase and ground-foot detachment

We assume that the ground-foot collision is instan-
taneous and completely inelastic so that there is no
rebound [5,6,19]. Furthermore, we assume that the
friction coefficient is large enough so that the foot does
not slip on the ground; this means that it satisfies

μC ≥
∣∣∣∣∣
γ q,nH−1γ T

q,t

γ q,nH−1γ T
q,n

∣∣∣∣∣
, (15)

where γ q,n and γ q,t are the gradients of the constraints
in the normal and tangential directions, respectively.

Under these assumptions, the tiptoe remains con-
strained to a single point on the ground during the
ground phase, as in [5,6,17,23,29]. Consequently, the
velocities ẋA and żA become zero and the angular
velocities change abruptly when the solution reaches
ΣF2G. The jump function

gF2G(x) =
[

q
(In×n − Pc)q̇

]
(16)

maps the state to the specified location [30], by project-
ing the velocities into the admissible direction of the
constraints γ (q) [6,31,32]. Here

Pc = H−1γ T
q(γ qH−1γ T

q)−1γ q (17)

is the projection matrix onto the subspace of con-
strained motion.

The instantaneous ground-foot collision leads to
infinitely large instantaneous forces, over infinitesimal
time duration, so that the net impulse due to the impact
force is finite [5,19]. Since CMSKE is proportional to

the impulse of the contact reaction force and also to the
peak reaction force [5,26], it is used for characterizing
the foot impact intensity in this work.

CMSKE, which vanishes at foot touchdown, is cal-
culated with the pre-impact general velocity as in [26]
as

Tc = 1

2
q̇TPT

c HPcq̇. (18)

The papers [5] and [26] showed that foot strike intensity
can be characterized by the CMSKE, which depends
on the pre-impact configuration and velocity, and the
effective massmatrixHe = PT

c HPc. The effectivemass
concept for foot impact is introduced in [33] for a one
DoF model of legged locomotion.

3.3.2 Ground to flight

The ground to flight (G2F) transition at the surface
ΣG2F, defined by

hG2F(x) := λz = 0, (19)

is a switch from (11) to (10) without a discontinuity
of the solution. Here, the Lagrange multiplier λz is the
vertical ground contact force acting on the tiptoe, and
a negative and positive sign of λz refers to a pushing
and a pulling force, respectively. The contact force is
calculated by solving the linear algebraic system
[

q̈
λ

]
=

[
H(q) γ T

q(q)

γ q(q) 0

] [
Q(q, q̇) − C(q, q̇)

−γ̇ q(q, q̇)q̇

]
(20)

adopted from [31]. The second time derivative γ̈ =
γ qq̈ + γ̇ qq̇ of the geometric constraint vector γ (q)

appears in (20), where

γ q(q) = ∇qγ (q) (21)

is the gradient of the constraint. The ground-foot con-
tact is represented by γ (q) = 0 with

γ (q) = [xA , zA]
T . (22)

Control torques included in Q(q, q̇) in (20) are calcu-
lated with the control law (7)–(9) in the ground phase.

3.4 Finding stable relative periodic orbits

Our focus is on hopping motion, which corresponds to
a relative periodic orbit with a translational symmetry
in the lateral ground direction, given by the variable
x . Such an orbit is shown in the phase space sketch in
Fig. 3.

123



Stable periodic motion of a controlled segmented leg model 1951

A relative periodic orbit is found with a shooting
approach as a root x∗

0 of

F(x0) := ue(x0) − u0(x0), (23)

where u0(x0) is a subvector of a point x0 ∈ ΣF2G and
ue(x0) is the corresponding subvector at the end point
of the solution trajectory of the overall system that starts
at x0 and ends again in the section ΣF2G by reaching
ΣG2F. We remark that u0 has lower dimension than x0,
because some of the state variables (both coordinates
and velocities) are known when the tiptoe is in con-
tact with the ground. This reduction in the number of
unknowns considerably reduces the computation time.

3.4.1 Monodromy matrix and Floquet multipliers

To determine the stability of the relative periodic orbit
given by x∗

0 (see Fig. 3), we proceed as described in
[3,30,34]. During the flight and ground phases we inte-
grate from t = 0 for the two vector fields fF and fG,
respectively, the first variational equation

ẋ(t) = f(x(t)) ; x(tinit) = x∗
0 , (24)

Φ̇(t) = fx(x(t))Φ(t) ; Φ(tinit) = I2n×2n , (25)

where I is 2n×2n identity matrix and fx is Jacobian of
the vector field. This results in the fundamental solution
matrices ΦF(t) and ΦG(t) [34].

The Jacobian or monodromy matrix Φ̃(t) over the
entire relative periodic orbit is then obtained as the
composition

Φ̃(tG2F) = SG2F ΦG(tG2F) SF2G ΦF(tF2G). (26)

Here, SG2F and SF2G describe the contribution of the
mappings at the switchings, which are known as the
saltation matrices and are related to the Jacobian of
the transition condition [35,36]. A saltation matrix can
be determined [3,30] as

S = g−
x +

(
f+ − g−

x f−)
h−

x

h−
x f− , (27)

where g−
x is the gradient of the jump function, and h−

x
is the gradient of the indicator function [see (14) and
(19)] evaluated at the state just before the transition.
For the G2F transition, SG2F is obtained from (27) by
applying the substitutions

f+ = fF(xG2F), f− = fG(xG2F),

g−
x = I2n×2n, h−

x = ∇xhG2F(xG2F).

For the F2G transition, the discontinuity mapping gF2G
(16) is taken into account, and substitutions

f+ = fG(x+
F2G), f− = fF(x

−
F2G),

g−
x = ∇xgF2G(x−

F2G), h−
x = ∇xhF2G(x−

F2G)

are applied for the calculation of SF2G. Here, x−
F2G

and x+
F2G = gF2G(x−

F2G) are, respectively, the state
just before and just after the impacting transition (see
Fig. 3).

The stability of the relative periodic orbit is deter-
mined from the eigenvalues of the monodromy matrix
Φ̃(tG2F), which are known as the Floquet multipliers
[34]. There is always a Floquet multiplier equal to 1,
because of periodicity; moreover, due to the translation
in the x-direction there is a second Floquet multiplier
1. The relative periodic orbit is stable when all other
Floquet multipliers have modulus less than 1.

3.4.2 Tuning control parameters

Tuning of the physical and control parameters is crucial
for the study of the model. Our goal here is to find the
control parameter set associated with a stable periodic
motion for which some cost function, such as energy
use, is minimized. We collect 10 parameters of (3)–(9)
in the vector p

p = [α12, α23, DB, DC, P, D,

PΠ, Kv, PE , E0, Pr, Dr]. (28)

An initial parameter set p, which provides stable hop-
ping, was found using a trial-and-error method as
reported in [17]. To tune the parameters p, the associ-
ated solution x∗

0 of (23) was found by continuation for a
parameter sweepduringwhichminimaof the given cost
function were detected. Note that if the cost function
is chosen as the norm of the largest eigenvalue of Φ̃,
then it characterizes stability. Another possible choice
is to use CMSKE [denoted Tc in (18)] as the cost func-
tion, which characterizes impact intensity and energy
efficiency.

4 Results on stable locomotion

We consider now the test-case example of a 24-year-
old male subject with bodyweight of 73kg and body
height of 173.1 cm, adopted from [37] with further ana-
tomical data as given in Table 1. The parameters of the
torsional springs at the joints are independent of human
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Table 1 Inertial and
geometric data of the body
segments

Mass (kg) Length/ height (m) Mass moment of inertia w.r.t.
CoM (kgm2)

Body mb = 73 lb = 1.731 –

Feet 0.0274mb 0.0885lb 1/12m1l21
Shanks 0.0866mb 0.2470lb 1/12m2l22
Thighs 0.2832mb 0.2320lb 1/12m3l23
Trunk 0.6028mb – 1.978

Table 2 Parameters of the torsional springs placed at the ankle
and the knee joints

α12 (◦) 80
α23 (◦) 225
kB (Nm) 1200
kC (Nm) 1300

Table 3 Control parameters: E0 and Kv are different for the
different cases A, B and C, all the other control parameters are
fixed

Case A B C

Kv (m) 0.4 0 −0.4

E0 (J) 1000

DB (Nms) 15

DC (Nms) 20

P (N) 950

D (Ns) 50

PΠ [1/(Ns)] 0.01

PE [1] 0.2

Pr (Nm) 4

Dr (Nms) 15

anthropometry and are shown in Table 2. The control
parameters used in the study presented here are given
in Table 3.

For these choices of parameters, relative periodic
motion (i.e., hopping) was found. In what follows,
the parameters E0 and Kv are considered as the main
parameters, because they are responsible for the tuning
of the apex height zAmax and the average horizontal
locomotion velocity v̄ of the hopping motion, respec-
tively. The rest of the parameters remain fixed.

Fig. 4 Stable hoppingmotion for casesA,B andC for Kv = 0.4,
Kv = 0 and Kv = −0.4, respectively. Panels a1, b and c1:
instances of leg position over one period with tiptoe elevation
zA (dashed black curves), CoM position (red dots), line between
the tiptoe and the CoM (green dash-dotted line), and angular
position of the reaction wheel (blue doted lines). Panels a2 and
c2:Corresponding tiptoe path (black) andCoMpath (graydotted)
in the (xG, zG)-plane for A and C; the direction of locomotion
is indicated by the arrow. (Color figure online)

123



Stable periodic motion of a controlled segmented leg model 1953

4.1 Illustrative examples of stable hopping motion

The model may display stable forward hopping, stable
hopping motion on the spot and stable backward hop-
ping, with a locomotion velocity that depends on the
choice of Kv . Setting Kv to 0.4, 0 and −0.4, respec-
tively, gives the hopping motions denoted A, B and C
and are illustrated in Fig. 4 over one complete period
of the relative periodic orbit. Panels a1 and a2 for case
A show forward locomotion, panel b for case B shows
hopping in one place, and panels c1 and c2 for case C
showbackward hopping locomotion. Here the time his-
tory of the tiptoe elevation is plotted together with the
stroboscopic view of the model in panels a1, b and c1.
The tilt angle of the line between the tiptoe and theCoM
at the beginning of the period is in correlation with the
direction of locomotion: tilting to the right yields for-
ward locomotion; no tilting yields hopping on the spot;
and tilting to the left yields backward locomotion. The
paths of the tiptoe and the CoM are shown in panels
a2 and c2 for the forward and backward locomotion,
respectively. We remark that tiptoe and the CoM paths
are qualitatively similar to that of the SLIP model in
[15].

Since forward locomotion is the most relevant from
a practical point of view, we focus on case example A
in the rest of the section. It is illustrated in more detail
in Fig. 5. Panel a shows the relative periodic solution
in projection onto the subspace (zA, θr, żA). It starts at
the point G2F, which is located at the intersection of
the switching surfaces ΣG2F and ΣF2G. After the flight
phase, the solution has a jump within ΣF2G. Finally,
the ground phase stays on ΣF2G until it reaches ΣG2F

again. Different planar projections of the phase space
are shown in Fig. 5b. As can be seen, all of the general
coordinates are periodic in time, except for xA, which
illustrates that the corresponding motion is indeed rep-
resented by a relative periodic orbit. Also note that the
F2G transition generates a jump in each general coor-
dinate, except in θr. The reason for the continuous solu-
tion for θr is the lack of its inertial coupling with the
other general coordinates.

Figure 6 shows, in panels a and b, time evolutions of
the kinetic energy T , the potential function U and the
totalmechanical energy T+U . The constrainedmotion
space kinetic energy (CMSKE) Tc is indicated in both
cases; this portion of the kinetic energy is absorbed
during the F2G transition and then compensated for
during the ground phase.

a

b

Fig. 5 Relative periodic orbit for case example A, where the
transitions G2F and F2G are indicated by squares and the dot-
ted lines indicate the discrete mapping after foot touchdown.
a Shown in projection onto the subspace (zA, θr, żA). b Phase
plane sections for each general coordinate

4.2 Stability region and effect of main control
parameters

We now ascertain the role of the two main parameters
Kv and E0. First of all, starting from the three known
solutions A, B and C, we continue the relative peri-
odic orbit in Kv in the positive and the negative direc-
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a

b

Fig. 6 Time evolution of kinetic and potential energy for case
example A, where a complete period goes from t = 0 to the
dash-dotted line G2F. The absorbed amount of kinetic energy
(CMSKE) is indicated by Tc

Fig. 7 Dependence of locomotion velocity v̄ on control param-
eter Kv for case example A (where E0 = 1000 J)

tion until the boundary of stability is reached. Figure 7
shows the induced locomotion velocity v̄ as a func-
tion of Kv , which is approximately a linear function of
Kv for this particular value of E0. Consequently, the
locomotion velocity can be predicted by simple linear
extrapolation.

The parameter E0 is responsible for the tuning of
the apex height of hopping, and the Kv-range of stabil-
ity can be computed for different values of E0. In this
way, the stable region in the (Kv, E0)-plane in Fig. 8 is
determined, where parameter points for case examples
A, B and C are also indicated. Moreover, the continua-
tion shown in Fig. 7 is indicated in Fig. 8 by the verti-
cal dashed line at E0 = 1000 J.We have already shown
that the locomotion velocity is zero for case exampleB.
The locus of zero locomotion velocity can be computed
as well, and it is shown in Fig. 8, where it divides the
region of stability in subregions of forward and back-

Fig. 8 Stability region in the (E0, Kv)-plane. The black crosses
indicate the points where the stability border was identified
numerically. Case examples A, B and C are indicated. The locus
of zero velocity locomotion (thick black curve) separates the
region of stable forward motion (light blue) from that of stable
backward motion (light yellow). The energy level of standing
still is indicated by the vertical dash-dotted line. The horizontal
dashed lines indicate when Kv = 0 m and Kv = 0.4 m. The
physically feasible region, where the heel (point B) does not go
below the surface level, is bounded by the red curves and indi-
cated by opaque red shading. (Color figure online)

ward hopping. Notice also the narrowing of the stable
region at about a nominal energy level of E0 = 500 J.
This happens near the dash-dotted line in Fig. 8 indicat-
ing the potential energy levelUs = 490.4 J of standing
still (ankle and knee angles are α12 and α23, respec-
tively). This energy level is important, because a lower
energy level cannot be reached permanently. On the
other hand, the controller is able to ensure stable oper-
ation for a target energy level of E0 < Us as well.

In the region highlighted with red color in Fig. 8,
the ankle point B of the mechanical model shown in
Fig. 2 does not touch the ground and the minimum of
the vertical position zB is larger than zero. Hence, the
corresponding solutions are physically feasible. As is
the case for the entire diagram in Fig. 8, size and shape
of this feasibility region depend on the parameters of
the model. Note that case examples A and B are phys-
ically feasible for the chosen parameter values.

Figure 9 shows the properties of the locomotion as a
function of E0, which were derived from continuation
in E0 from caseA of forward locomotion and from case
B of hopping on the spot. Panel a shows that the apex
height zAmax of the hoppingmotion is not only affected
by the nominal energy level E0, but also by Kv . For
E0 > Us, the apex height zAmax can be approximated
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a

b

c

d

Fig. 9 The dependence of some key indicators on the target
energy level E0. a Apex height of the trajectory with different
parameters; b ratio of CMSKE to the total kinetic energy T ; c
time period and flight phase time to time period ratio; and d angle
range θr max − θr min of the rotation wheel

as a linear function of E0 (light blue lines). Moreover,
the hopping height for cases A and B, i.e., the elevation
of the CoM, is realistic according to [38,39], showing
that the generated motion is indeed a good replication
of human hopping.

The ratio of CMSKE to the total kinetic energy T is
plotted in Fig. 9b as the function of E0. It is possible
to find the optimal parameter set where the ratio of
CMSKE is the smallest. The ratio Tc/T can therefore
be used as a cost function during the controller design
of artificial running and walking systems. We can also

deduce that the model can be applied for studying the
energetic costs of human locomotion.

Figure 9c shows the time period tper and the ratio
tF/tper of the flight phase time duration and the full
period. This ratio tF/tper is about 70% and 75% for
cases A and B, which are close to typical values for
human running [24]. Finally, panel d of Fig. 9 shows
the range of angular oscillation of the reaction wheel,
which plays the role of the torso of the runner. For
both cases A and B, the angle θr max − θr min is smaller
than 12 ◦, which again agrees with realistic human
running.

4.3 Biomechanical effect of foot positioning

To demonstrate that model and analysis methods pre-
sented in this paper can be used to analyze the effect
of biomechanical parameters on the locomotion perfor-
mance, we focus on the effect of pre-impact tiptoe posi-
tioning on locomotion velocity and impact intensity. To
this end, the range of investigated control parameters
is extended to higher energy levels in order to have a
more global view of the applicable parameter set.

The dependence of locomotion velocity v̄ on the tip-
toe positioning, characterized by the distance xA − xG,
is depicted in panel a of Fig. 10 for five different lev-
els of the energy E0. It can be seen that the relation
between v̄ and the tiptoe positioning is almost linear for
each value of E0. This observation indicates that foot-
landing in front of theCoMisbeneficial during running,
because it results in a higher locomotion velocity. This
case, when xA − xG > 0, is referred to as overstriding
in the literature [20]. Figure 10b shows the effect of tip-
toe positioning on the CMSKE, which is an indicator
of ground-foot impact intensity and impacting forces
[5,26]. For negative values of xA−xG the kinetic energy
ratio Tc/T is small (around 1%), while it tends to be
higher (up to 4%) for positive values (i.e., when over-
striding). The general consequence for athletes is that
foot-landing in front of the CoM induces high kinetic
energy loss and, therefore, high intensity ground-foot
collisions and low energy efficiency. In other words,
overstriding is disadvantageous in this respect, which
is the opposite outcome from the velocity consideration
represented in Fig. 10a. Hence, a runner has to find the
balance between energy efficiency and running speed:
short-distance sprinters may touch down their tiptoe in
front of the CoM in order to maximize speed, while
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a

b

Fig. 10 Average locomotion velocity v̄ and CMSKE (as given
by Tc) as functions of the horizontal tiptoe position xA − xG
relative to the body CoM

long distance runners may avoid overstriding in order
to reduce energetic costs.

5 Conclusions and further steps

A planar three-segmented leg model was analyzed,
which takes into account the inelastic ground-foot
impact-induced energy absorption and an active con-
troller, which maintains a uniform energy level. We
showed that there exist relative periodic orbits that cor-
responds to hopping, and that they are stable over a
large and realistic parameter range. This was achieved
by means of computing the monodromy matrix with a
well-establishedmethod for piecewise-smooth dynam-
ical systems.We found that both forward and backward
motion is possible and that the hopping height can be
tuned. Locomotion velocities in the range (−7, 3)m/s
and tiptoe elevations in range (0.01, 4)m were discov-
ered by tuning the main control parameters E0 and Kv

only, while the remaining parameters we have chosen
to guarantee stable operation in a wide region of E0

and Kv . We further showed that it is possible to tune

the parameters to achieve optimal motion, not only in
the sense of lowest foot impact intensity (i.e., energy
loss), but also in the sense of apex height, stability and
robustness. Overall, this demonstrates the usefulness
of the model and our analysis approach for obtaining
insights into the biomechanics of running.

Future work will concentrate on tuning control
parameters to achieve better performance and a larger
region of stability of forward hopping. In this way,
we intend to demonstrate that the presented method-
ology and results can be applied also to more complex
models of legged locomotion. The longer term goal
is to develop the model further toward more human-
like motion; in particular, two legs and a more accurate
model for the upper body can be considered. Further-
more, ground contact of multiple points of the foot will
be included in the model. Such a further developed
model can also be used to investigate the effect of the
terrain on the optimal motion, for instance, by consid-
ering inclination of the ground.

Although some conclusion regarding humanmotion
can be drawn from mathematically generated trajecto-
ries of a model, a comparison with laboratory exper-
iments with human subjects remains essential. After
refinement of the proposed mechanical model and
the controller, the determination of other performance
measures of human running may become feasible—
enabling fine-tuning against measured data.
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