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Abstract The edge node selection problem in edge
computing is a typical multi-criteria group decision-
making problem. In this paper, we put forward an
ELECTRE II method with the probabilistic linguistic
information to handle the edge node selection problem.
First, a novel distance measure is developed for prob-
abilistic linguistic term sets (PLTSs) and an entropy
measure is devised to measure the uncertainty degree
of PLTSs. Based on the score value and entropy, a novel
method is put forward to compare two PLTSs. Next, a
weight-determining method for criteria based on mul-
tiple correlation coefficient and a weight-determining
method for experts based on entropy theory are pro-
posed.After that, a novel probabilistic linguisticELEC-
TRE IImethod is put forward to dealwith the edge node
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selection problem. Comparison with previous methods
is provided to verify the superiority of our method.
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1 Introduction

In the last 10 years, cloud computing, offering elas-
tic computing and storage resources via the means of
purchase-on-demand, has dominated the IT (Informa-
tion Technology) market [1]. Many companies have
released their cloud computing services, which help
small and medium enterprises to decrease the high cost
for expanding and maintaining the IT infrastructure.
For example, Amazon has launched the Amazon Web
Services that provide the users with a set of cloud com-
puting services including elastic computing, storage,
database, and applications. To reduce the cost and bet-
ter focus on the business [2], many enterprises choose
to migrate their applications from traditional computer
systems to cloud computing platforms. Mobile users
upload their requests to cloud computing platforms for
being processedwhen they are connected to cloud com-
puting platforms.

However, with the quick development of Internet
of Things (IoTs), the data generated by mobile users
grow explosively. It is expected that 26 billion IoT
devices will be churning out and the average amount
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of data produced by per person per day will be 1.5
GB by 2020 [3]. Cloud computing platforms cannot
satisfy so big computing requirements for handling
explosively growing data. Moreover, the transmission
of huge data between cloud computing centers and
mobile users could result in the network congestion
since cloud computing centers are usually far way
from mobile users. They could lead to high network
latency, which cannot meet the real-time response
requirement of time-sensitive applications. For exam-
ple, live-streaming applications and game applications
need high real-time responses to ensure the high qual-
ity of experience (QoE) for mobile users. The edge
computing, as a supplement to cloud computing, takes
advantage of edge nodes in the edge of networks to
bear part of requests from mobile users for providing
real-time responses. The edge computing can help to
alleviate the computing pressure of cloud computing
platforms [4]. When the mobile users enter an edge
computing network, they should choose an appropriate
edge node to handle their requests. However, there usu-
ally exist some available edge nodes to be chosen. The
key factors should be considered, such as the amount of
available computing resource, security level, and net-
work bandwidth. Moreover, there may be manymobile
users taking part in the assessment process of edge
nodes. Hence, the edge node selection problem in edge
computing can be considered as a typical multi-criteria
group decision-making (MCGDM) problem.

Due to the complexity of decision-makingproblems,
people usually cannot use crisp values to express their
preference information [5]. Sometimes, decision mak-
ers (DMs) prefer to utilize qualitative terms rather than
quantitative values to assess objects [6–11]. In this case,
a fuzzy linguistic approach was put forward by Zadeh
[12] tomodel the qualitative assessment information. A
virtual linguisticmodel [13]was devised to redefine the
syntax and semantics of linguistic computational mod-
els. In some cases, DMs may hesitate among several
different linguistic terms when they assess the alter-
natives. Therefore, Rodriguez et al. [14] proposed the
definition of hesitant fuzzy linguistic term set (HFLTS)
to capture the hesitancy degree under the linguistic
environment. For example, when the performance of
the motor of a car is evaluated, the DM may hesitate
between the linguistic terms “medium” and “bad,” and
then, the evaluation information ismodeled as aHFLTS
{“bad”, “medium”}. However, in some cases, the DM
may prefer the linguistic term “medium” to the lin-

guistic term “bad,’ namely the probabilities of these
two linguistic terms are different [15]. It can be seen
that the HFLTS cannot model this kind of complex
qualitative information. To overcome this defect and
exactly model this kind of complex qualitative infor-
mation, Pang et al. [16] proposed the definition of the
probabilistic linguistic term set (PLTS), which allows
DMs to give their preference information as a set of
several linguistic terms associated with probabilities.

The concept of PLTS has attracted much attention
from researchers and scholars. Theymainly focused on
the comparison methods [17], entropy measures [18],
and operation laws [19]. Pan et al. [20] combined the
PLTS with ELECTRE II method and proposed a prob-
abilistic linguistic ELECTRE II method to handle the
therapeutic schedule evaluation problem. As a supple-
ment to it, we propose a novel score-entropy-based
ELECTRE II method for PLTSs in this study and then
apply it to handle the edge node selection problem in
the edge computing network. Our contributions can be
summarized as follows:

(1) We first develop a function to obtain PLTS vec-
tors from PLTSs and then propose a novel distance
measure based on PLTS vector for PLTSs.

(2) An information entropy is put forward to mea-
sure the uncertainty degrees of PLTSs. Combined
the score function with information entropy, a
novel comparisonmethod is developed to compare
PLTSs.

(3) The concept of multiple correlation coefficient
(MCC) is utilized to compute the weights of
criteria for MCGDM problems with probabilis-
tic linguistic information. In addition, a weight-
determining method based on entropy theory is
developed to calculate the weights of DMs.

(4) The comparison method and weight-determining
method are combinedwithELECTRE IImethod to
develop a novel probabilistic linguistic ELECTRE
II method. Then, this method is utilized to handle
the edge node selection problem in the edge com-
puting network.

The remainder of this paper is organized as fol-
lows: Section 2 presents some basic knowledge about
the linguistic term set and PLTSs. In Sect. 3, a novel
distance measure and a comparison method of PLTSs
are presented. A novel probabilistic linguistic ELEC-
TRE II method is developed in Sect. 4. Section 5 gives
a demonstrative example concerning the edge node
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selection problem to illustrate the process of the pro-
posed probabilistic linguistic ELECTRE II method.
Comparative analysis is provided in Sect. 6, and the
study ends with some conclusions in Sect. 7.

2 Preliminaries

2.1 The linguistic term set

The linguistic term set (LTS), which is also referred to
as the linguistic evaluation scale, is an essential tool for
linguistic decision making. It is composed of finite and
totally ordered linguistic terms, which can be mathe-
matically denoted as S1 = {sα|α = 0, 1, . . . , τ } [21],
where τ denotes a positive integer. The subscript of
each linguistic term in S1 is discrete, which would
lead to the information loss during the computation
processes of linguistic terms. To solve this issue, Xu
[22] extended the discrete LTS to the continuous LTS
S1 = {sα|α ∈ [0, q]} with q(q > τ). This continuous
LTS S1 satisfies: (1) sa ⊕ sb = sa+b, sa, sb ∈ S̄1; (2)
λsa = sλa , λ ∈ [0, 1].

For a LTS S1 = {s0 = very small, s1 = small ,
s2 = moderate, s3 = big, s4 = very big}, we can
get s1 ⊕ s2 = s3, which implies that the sum of lin-
guistic terms “small” and “moderate” is equal to the
linguistic term “big”. Obviously, it does not make any
sense. To avoid this defect, Xu [23] defined a subscript-
symmetric LTS as S2 = {sα|α = −τ, . . . , 0, . . . , τ }.
s−τ and sτ denote the lower and upper values of the lin-
guistic terms in S2, respectively. The linguistic terms
in S2 satisfy: (1) If a > b, then sa > sb; (2) there is a
negation operator: neg (sa) = s−a .

2.2 Concepts of probabilistic linguistic term set

The HFLTS is an important tool to model the hesi-
tancy under the linguistic setting [24]. Liao et al. [25]
presented the mathematical form of the HFLTS on S2
as HS = {〈x, hs (x) |x ∈ X〉}, where a hesitant fuzzy
linguistic element (HFLE) hs (x) = {sk (x) |sk (x) ∈
S2, k = 1, 2 . . . , #hs} is a set of some possible linguis-
tic terms in S2. In each HFLE, the linguistic terms have
equal weight or probability. In real applications, DMs
may prefer one linguistic term to another one when
providing evaluation information, namely the linguis-
tic terms should have different weights or probabilities.

To extend the modeling capability of HFLTSs, Pang et
al. [16] developed the definition of PLTSs to associate
each linguistic term with a probability value.

Definition 1 [16] Let S1 = {s0, . . . , sτ } be a subscript-
asymmetric LTS, and then, the mathematical form of a
PLTS can be expressed as

L (p)

=
⎧
⎨

⎩
L(k)

(
p(k)
) ∣
∣
∣L(k) ∈ S1, p

(k) ≥ 0,

k = 1, 2, . . . , #L (p) ,

#L(p)∑

k=1

p(k) ≤ 1

⎫
⎬

⎭
(1)

where the element L(k)
(
p(k)
)
is composed of the k th

linguistic term L(k) and its probability p(k) and the term
#L (p) denote the number of elements in L (p). The
linguistic terms L(k), k = 1, 2, . . . , #L (p) in L (p)
are arranged in ascending order.

From Definition 1, it can be noted that the sum
of probabilities in a PLTS may be less than 1,
namely

∑#L(p)
k=1 p(k) < 1. In this case, it implies

that some DMs give up rating the object. For exam-
ple, ten consumers are called to assess the perfor-
mance of a computer. Three consumers said that it
is “good,” five consumers said that it is “medium,”
and other consumers do not give any evaluation infor-
mation. Then, the evaluation information regarding
the performance of this computer can be expressed a
PLTS {“good”(0.3), “medium”(0.5)}, where the sum
of probabilities is equal to 0.8.

To avoid the deficiency of the LTS S1, Zhang
et al. [26] proposed the definition of PLTS based on the
subscript-symmetric LTS S2. When the sum of proba-
bilities of the linguistic terms in a PLTS is less than 1,

L (p) =
{
L(k)

(
p(k)
)∣
∣ L(k) ∈ S2,

∑#L(p)
k=1 p(k) ≤ 1

}

is normalized to LN (p) = {
L(k)

(
pN (k)

)∣
∣ L(k) ∈ S2,

∑#L(p)
k=1 pN (k) = 1

}
with pN (k) = p(k)/

∑#L(p)
k=1 p(k)

for each k [16]. Let L (p) = { L(k)
(
p(k)
)∣
∣ k = 1, 2, ...,

#L (p)} denote a PLTS, then the score function of
L (p) is defined as E (L (p)) = sγ̄ , where γ̄ =
∑#L(p)

k=1 γ (k) p(k)/
∑#L(p)

k=1 p(k) and γ (k) is the subscript
of linguistic term L(k) [16].

For two PLTSs L1 (p) = {L(k)
1

(
p(k)
1

)
|k = 1, 2,

. . . , #L1 (p)} and L2 (p) =
{
L(k)
2

(
p(k)
2

)∣
∣
∣ k = 1, 2,
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..., #L2 (p)
}
, they usually have different numbers of

elements. Pang et al. [16] made them have the same
number of elements using the following method. If
#L1 (p) > #L2 (p), then #L1 (p) − #L2 (p) linguis-
tic terms are added into L2 (p) so that the numbers of
elements in L1 (p) and L2 (p) are equal. The added
linguistic terms are the smallest one in L2 (p), and the
probabilities of these added linguistic terms are zero.

To fuse PLTSs in the decision-making processes,
Pang et al. [16] developed two aggregation operators.

Definition 2 [16] Let Li (p) =
{
L(k)
i

(
p(k)
i

)
|k =

1, 2, . . . , #Li (p)
}

(i = 1, 2, . . . , n) denote n PLTSs

with L(k)
i and p(k)

i being the kth linguistic term
and its probability in the i th PLTS Li (p). w =
(w1, w2, . . . , wn)

T is the weight vector of PLTSs that
satisfiesw j ∈ [0, 1] and

∑n
j=1w j = 1. Then, the prob-

abilistic linguistic weighted averaging (PLWA) opera-
tor is defined as:

PLW A (L1 (p) , L2 (p) , . . . , Li (p))

= w1L1 (p) ⊕ w2L2 (p) ⊕ . . . ⊕ wnLn (p)

=
⋃

L(k)
1 ∈L1(p)

{
w1L

(k)
1 p(k)

1

}

⊕
⋃

L(k)
2 ∈L2(p)

{
w2L

(k)
2 p(k)

2

}
⊕ . . .

⊕
⋃

L(k)
n ∈Ln(p)

{
wnL

(k)
n p(k)

n

}
(2)

Pang et al. [16] defined the distance between twoPLTSs
as follows:

Definition 3 [16] Let L1 (p) =
{
L(k)
1

(
p(k)
1

)
|k =

1, 2, ..., #L1 (p)
}
and L2 (p) =

{
L(k)
2

(
p(k)
2

)
|k =

1, 2, ..., #L2 (p)
}

be two PLTSs with #L1 (p) =
#L2 (p); then, the distance between these two PLTSs
can be computed as

d (L1 (p) , L2 (p))

=
√
√
√
√

#L1(p)∑

k=1

(
p(k)
1 r (k)

1 − p(k)
2 r (k)

2

)2
/#L1 (p) (3)

where r (k)
1 and r (k)

2 are the subscripts of the linguistic

terms L(k)
1 and L(k)

2 .

Suppose that L1 (p) = {s0 (0.2) , s1 (0.6) , s2 (0.2)}
and L2 (p) = {s0 (0.6) , s2 (0.3) , s4 (0.1)} are two

PLTSs based on the LTS S2 = {s−4, s−3, s−2, s−1, s0,
s1, s2, s3, s4}. According to Eq. (3), the distance
between them is computed as d (L1 (p) , L2 (p)) = 0.
Obviously, L1 (p) and L2 (p) are not equal and the
distance between them cannot be 0. Hence, the above
distance measure is not reasonable.

3 New distance measure and comparison method
for PLTSs

Based on the transformation function for PLTSs [27,
28], we develop a function, which can map the PLTSs
into a high-dimensional space and obtain the PLTS vec-
tors with the same length as follows.

Definition 4 Given aPLTS L (p) = { L(k)
(
p(k)
)∣
∣ k =

1, 2, ..., #L (p)
}
with L(k) ∈ S2 = { sα| α = −τ, ..., 0,

..., τ }, all the linguistic terms in S2 except the ones in
L (p) are added to L (p) and the added linguistic terms
are assigned with the probability of 0. All the elements
in L (p) are ordered according to the subscripts of lin-
guistic terms from−τ to τ . Then, L (p) can bemapped
into a vector L (p)T = (δ1, δ2, ..., δk, ..., δ2τ+1)

T

using the following function:

f : [−τ, τ ] → [0, 1] , δθ = f
(
L(θ)

)
× p(θ)

= γ (θ) + τ

2τ
× p(θ) (θ = 1, 2, . . . , 2τ + 1)

where γ (θ) means the subscript of the linguistic term
L(θ) in L (p).

Given a subscript-symmetric LTS S2 = { sα| α =
−τ, ..., 0, ..., τ } and two PLTSs L1 (p) and L2 (p), the
distance between L1 (p) and L2 (p) can be defined as

d (L1 (p) , L2 (p)) =
√
√
√
√

2τ+1∑

θ1=θ2=1

(
δθ1 − δθ2

)2 (4)

where L1 (p)T = (
δ1, δ2, ..., δθ1 , ..., δ2τ+1

)T and

L2 (p)T = (
δ1, δ2, ..., δθ2 , ..., δ2τ+1

)T are the PLTS
vectors of PLTSs L1 (p) and L2 (p), respectively.

Property 1 The proposed distance between L1 (p)
and L2 (p) satisfies: (1) 0 ≤ d (L1 (p) , L2 (p)) ≤
1; (2) d (L1 (p) , L2 (p)) = d (L2 (p) , L1 (p)); (3)
d (L1 (p) , L2 (p)) = 0, if and only if L1 (p) =
L2 (p).
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Proof (1) According to Eq. (4), we have

0 ≤ d (L1 (p) , L2 (p))

=
√
√
√
√

2τ+1∑

θ1=θ2=1

(
δθ1 − δθ2

)2

≤ max

⎛

⎝

√
√
√
√

2τ+1∑

θ1=1

(
δθ1

)2
,

√
√
√
√

2τ+1∑

θ2=1

(
δθ2

)2

⎞

⎠

≤ max

⎛

⎜
⎜
⎝

√
√
√
√
√

⎛

⎝
2τ+1∑

θ1=1

δθ1

⎞

⎠

2

,

√
√
√
√
√

⎛

⎝
2τ+1∑

θ2=1

δθ2

⎞

⎠

2
⎞

⎟
⎟
⎠

= max

⎛

⎝
2τ+1∑

θ1=1

δθ1 ,

2τ+1∑

θ2=1

δθ2

⎞

⎠

= max

⎛

⎝
2τ+1∑

θ1=1

(
γ (θ1) + τ

2τ
× p(θ1)

)

,

2τ+1∑

θ2=1

(
γ (θ2) + τ

2τ
× p(θ2)

)
⎞

⎠

≤ max

⎛

⎝
2τ+1∑

θ1=1

(
p(θ1)

)
,

2τ+1∑

θ2=1

(
p(θ2)

)
⎞

⎠ = 1

Hence, 0 ≤ d (L1 (p) , L2 (p)) ≤ 1.
(2) It is straightforward.

(3) d (L1 (p) , L2 (p))=0⇒
√
∑2τ+1

θ1=θ2=1

(
δθ1−δθ2

)2

= 0 ⇒ δθ1 = δθ2 ⇒ L1 (p) = L2 (p), which
completes the proof.


�

The PLTS vectors of PLTSs L1 (p) and L2 (p) in
Sect. 3 are L1 (p)T = {

0, 0, 0, 0, 1
10 ,

3
8 ,

3
20 , 0, 0

}
and

L2 (p)T = {0, 0, 0, 0, 3
10 , 0,

9
40 , 0,

1
10

}
. Using Eq. (4),

we have d (L1 (p) , L2 (p)) = 0.4430. It can be seen
that the distance defined as Eq. (4) is more reasonable.

When the score function values of two PLTSs are
equal, the information entropy is utilized to measure
the uncertainty degree of each PLTS.

Definition 5 Let L (p) = {
L(k)

(
p(k)
)∣
∣ k = 1, 2, ...,

#L (p)
}
denote a PLTS, and then, the information

entropy of L (p) is defined as μ (L (p)) = −∑#L(p)
k=1

p(k) log2 p
(k).

Theorem 1 For a PLTS L (p) = {
L(k)

(
p(k)
)∣
∣ k =

1, 2, ..., #L (p)
}
, if p(1) = p(2) = · · · = p(#L(p)) =

1
#L(p) , then L (p) has a maximum entropy, i.e.,

− ln 1
#L(p) .

Proof In a PLTS, the probabilities of the linguistic
terms satisfy that

∑#L(p)
k=1 p(k) = 1. Bring a Lagrange

multiplier λ and construct a Lagrange function as

G
(
p(1), p(2), . . . , p(#L(p)), λ

)

= −
#L(p)∑

k=1

p(k) ln p(k) + λ

⎛

⎝
#L(p)∑

k=1

p(k) − 1

⎞

⎠ = 0

Then, we take the partial derivatives with respect to
p(k) and λ as
⎧
⎪⎨

⎪⎩

∂G

∂p(k)
= − ln p(k) − 1 + λ = 0

∂G

∂λ
=∑#L(p)

k=1 p(k) − 1 = 0

Solving the above equations, we have p(1) = p(2) =
· · · = p(#L(p)) = 1

#L(p) . Hence, the maximum value

of μ (L (p)) is − ln 1
#L(p) . The higher the entropy of

PLTS is, the higher the uncertainty degree is.
Based on the score function and entropy, amethod is

devised to compare two PLTSs. For L1 (p) and L2 (p),
if E (L1 (p)) > E (L2 (p)), then L1 (p) � L2 (p).
If E (L1 (p)) = E (L2 (p)), then if μ (L1 (p)) >

μ (L2 (p)), L1 (p) ≺ L2 (p); if μ (L1 (p)) =
μ (L2 (p)), then L1 (p) ∼ L2 (p).

4 A novel probabilistic linguistic ELECTRE II
method for MCGDM problems

In this section, we combine the score function and
entropy of PLTSs to develop a novel probabilistic lin-
guistic ELECTRE II method. We also propose two
methods to determine the weight vectors for criteria
and DMs.

4.1 Problem description

Consider a multi-criteria group decision-making
(MCGDM) problem that consists of m alternatives,
denoted as X = {x1, x2, . . . xm}, and n criteria
expressed as A = {a1, a2, . . . , an}. The weight vector
of criteria is w = (w1, w2, . . . , wn), which satisfies
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that w j ≥ 0 and
∑n

j=1 w j = 1. A group of decision
makers, denoted as DM = {dm1, dm2, . . . , dmu}, are
invited to take part in this MCGDM process, and the
weight vector of them is e = (e1, e2, . . . , eu), satisfy-
ing that eϕ ≥ 0 and

∑u
ϕ=1 eϕ = 1. Because of the com-

plexity and uncertainty of real MCGDM problems, the
weight information of criteria andDMs are supposed to
be completely unknown.TheDMschoose the linguistic
terms from the LTS S2 = { sα| α = −τ, . . . , 0, . . . , τ }
to express their evaluation information over each alter-
native xi concerning to each criterion a j . The linguistic
decision matrix given by the DM dmϕ is

Rϕ =
[
rϕ
i j

]

m×n
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rϕ
11 rϕ

12 · · · rϕ
1n

rϕ
21 rϕ

22 · · · rϕ
2n

...
...

. . .
...

rϕ
m1 rϕ

m2 · · · rϕ
mn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Wu et al. [29] put forward a method to form the collec-
tive evaluation information for a group of DMs. If the
linguistic decision matrix provided by the DM dmϕ

is Rϕ =
[
rϕ
i j

]

m×n
, then the group decision matrix,

namely the probabilistic linguistic decision matrix
(PLDM) of this group of DMs, can be obtained as

Li j (p) =
⎧
⎨

⎩
s(l)
i j

(
p(l)
i j

)∣
∣
∣ s

(l)
i j ∈ rϕ

i j , p
(l)
i j

=
h∑

ϕ=1

ν
ϕ
i j eϕ

⎫
⎬

⎭
(ϕ = 1, 2, . . . , u) (5)

where ν
ϕ
i j is the probability of s(l)

i j in rϕ
i j and ν

ϕ
i j =

{
1, i f s(l)

i j ∈ rϕ
i j

0, i f s(l)
i j /∈ rϕ

i j

. If the weights are not given, we can

assume that eϕ = 1/u, ϕ = 1, 2, . . . , u.

Example 1 Suppose that three DMs are called to eval-
uate a third-party reverse logistics provider and their
opinions are expressed as HFLTSs H1 = {s1}, H2 =
{s2}, andH3 = {s1}. Let e = (1/3, 1/3, 1/3)denote the
weight vector of DMs, and then, the collective evalua-
tion information of the group ofDMs can be aggregated
as LG (p) = {s1 (2/3) , s2 (1/3)}.

4.2 A weight-determining method for
criteria based on multiple correlation coefficient

The multiple correlation coefficient [30,31] is an
important indicator that can reflect the correlation
degree between one dependent variable and a set of
independent variables. When the multiple correlation
coefficient (MCC) becomes bigger, it means that the
correlation degree between the dependent variable and
the group of independent variables goes closer. In this
section, we use the multiple correlation coefficient to
measure the correlation degree between each criterion
and other criteria, based on which, the weight vector is
computed for criteria.

To facilitate the calculation, the PLDM is divided
into #Li j (p) parts. The k th part of the PLDM is

denoted as Rk =
[
ξ

(k)
i j

]

m×n
, which is named the

k th expected value decision matrix, where ξ
(k)
i j =

γ
(k)
i j × p(k)

i j and γ
(k)
i j is the subscript of the linguis-

tic term L(k)
i j . Assume that the criterion a j is linearly

related to the other ones, and then, the multiple linear
regression can be obtained as

ξ
(k)
j = β̂0 + β̂1ξ

(k)
1

+ · · · + β̂ j−1ξ
(k)
j−1

+ β̂ j+1ξ
(k)
j+1 + · · · + β̂nξ

(k)
n .

To obtain the parameter vector β = (β0, β1, . . . , β j−1,

β j+1, . . . , βn
)T , the least square method is utilized to

calculate its estimated value β̂ =
((


(k)
)T


(k)
)−1

(

(k)

)T
ξ

(k)
j , where 
(k) =

(
1, ξ (k)

1 , . . . , ξ
(k)
j−1, ξ

(k)
j+1,

. . . , ξ
(k)
n

)
and ξ

(k)
j−1 =

(
ξ

(k)
1( j−1), ξ

(k)
2( j−1), . . . , ξ

(k)
m( j−1)

)
.

Let β = β̂, and then, an empirical regression equa-
tion with known parameters is obtained as ξ̂

(k)
j =

β0+β1ξ
(k)
1 +· · ·+β j−1ξ

(k)
j−1+β j+1ξ

(k)
j+1+· · ·+βnξ

(k)
n .

Thus, themultiple correlation coefficient of criterion a j

in the kth expected value decision matrix is defined as

ρ
(k)
j =

∑m
i=1

(
ξ̂

(k)
i j −ξ̄

(k)
i j

)2

∑m
i=1

(
ξ

(k)
i j −ξ̄

(k)
i j

)2 , where ξ̄
(k)
i j denotes the aver-

age value of ξ
(k)
i j . If the value of multiple correlation

coefficient ρ(k)
j approaches 0, then it means that the cri-

terion a j can be easy to be replaced by other criteria in
the kth expected value decision matrix Rk . Hence, the
weight of criterion a j is defined as
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w j =
∑#Li j (p)

k=1

(
1 − ρ

(k)
j

)

∑n
j=1
∑#Li j (p)

k=1

(
1 − ρ

(k)
j

) (6)

4.3 A weight-determining method based on entropy
theory for DMs

In this subsection, a weight-determining method based
on entropy theory is put forward to derive the weight
vector of DMs.

We utilize the LWA operator [32] to aggregate the
criterion values of each alternative xi provided by the
ϕth DM as V

(
xϕ
i

)
and the PLWA operator to fuse

the collective criterion values of each alternative xi as
V (xi ). LetVϕ = (V (xϕ

1

)
, V
(
xϕ
2

)
, . . . , V

(
xϕ
m
))T and

GV = (E (V (x1)) , E (V (x2)) , . . . , E (V (xm)))T ,
and then, the deviation degree of evaluation informa-
tion between the DM dmϕ and the group of DMs

is defined as Dϕ =
√
∑m

i=1

(
V
(
xϕ
i

)− E (V (xi ))
)2,

where E (V (xi )) denotes the average value of ele-
ments in V (xi ). Hence, when the deviation degree is
used, the weight of the DM dmϕ is given as eϕ

d =
1

/

Dϕ

/
∑u

ϕ Dϕ .

If h DMs provide their evaluation information as

Hϕ =
{
s(k)
ϕ

∣
∣
∣ s

(k)
ϕ ∈ S2, k = 1, 2, . . . , #Hϕ

}
(ϕ = 1,

2, . . . , h) and u − h DMs do not give the evaluation
information, then the entropy value of the DM dmϕ can
be defined as Entropy

(
dmϕ

) = −∑m
i=1 f ϕ

i log2 f ϕ
i ,

where f ϕ
i = B

(
xϕ
i

)
/
∑m

i=1 B
(
xϕ
i

)
with B

(
xϕ
i

) =
I(V (x

ϕ
i ))+τ

2τ and the term I
(
V
(
xϕ
i

))
is the subscript

of the linguistic term V
(
xϕ
i

)
. When fiϕ = 0, then

−∑m
i=1 fiϕ log2 fiϕ = 0. When f ϕ

1 = f ϕ
2 =

· · · = f ϕ
m , then the entropy value of the DM dmϕ

could be maximum, and the maximum entropy value
is max

(
Entropy

(
dmϕ

)) = log2 m. Hence, when
the entropy value is used, the weight of the DM

dmϕ is eϕ
e = 1−E ′(dmϕ)

u−∑u
ϕ=1 E

′(dmϕ)
, where E ′ (dmϕ

) =
Entropy(dmϕ)

log2 m
.

Based on the above two measurements for deter-
mining the weight vector of DMs, a linear weighting
function is used to adjust the weight of each DM as
e′
ϕ = aeϕ

d + (1 − a) eϕ
e , where ϕ = 1, 2, . . . u.

According to Eq. (5), when the weight vector e of
DMs is changed to e′, then the PLDM of the group

of DMs is changed to L ′ =
[
L ′
i j (p)

]

m×n
. Hence,

the deviation degree between these two
PLDMs can be calculated as Dg

(
L , L ′) =

√
∑m

i=1 (E (V (xi )) − E (V ′ (xi )))2, where V (xi ) =
PLW A (Li1 (p) , Li2 (p) , . . . Lin (p)) and V ′ (xi ) =
PLW A

(
L ′
i1 (p) , L ′

i2 (p) , . . . L ′
in (p)

)
.

An algorithm is developed to adjust the weight vec-
tor of DMs as follows.

Algorithm 1 Input: u linguistic decision matri-

ces Rϕ =
[
rϕ
i j

]

m×n
(ϕ = 1, 2, . . . , u) given by

DMs, the initial weight vector of DMs denoted as
e = (e1, e2, . . . , eu), the convergence parameter
a ∈ [0, 1], the threshold l of the deviation degree
between two PLDMs.
Output: The PLDM L = [

Li j (p)
]

m×n , the
adjusted weight vector of DMs denoted as e =
(e1, e2, . . . , eu).
Step1. Use theLWAoperator to aggregate the crite-
rion value of each alternative in each linguistic deci-
sion matrix Rϕ as V (xϕ) =
LW A

(
rϕ
i1, r

ϕ
i2, . . . , r

ϕ
in

) = rϕ
i1w1 ⊕ rϕ

i2w2 ⊕ · · · ⊕
rϕ
inwn , where w = (w1, w2, . . . , wn) denotes the
weight vector of criteria.
Step 2. According to Eq. (5), the initial PLDM L =[
Li j (p)

]

m×n can be obtained.
Step 3. Compute the hybrid weight vector of DMs.
Step 4. Utilizing Eq. (5) and the hybrid weight
vector e′ = (

e′
1, e

′
2, . . . , e

′
u

)
, a new PLDM L ′ =

[
L ′
i j (p)

]

m×n
can be obtained.

Step 5. Compute the deviation degree
between these two PLDMs L = [

Li j (p)
]

m×n

and L ′ =
[
L ′
i j (p)

]

m×n
as Dg

(
L , L ′) =

√
∑m

i=1 (E (V (xi )) − E (V ′ (xi )))2.
Step 6. If Dg

(
L , L ′) ≤ l, then end the algorithm;

otherwise, let L = L ′ and e = e′, then turn to
Step 3.

4.4 Score-entropy-based ELECTRE II method

Based on the novel comparison method presented in
Sect. 3, a novel score-entropy-based ELECTRE II
method is proposed to handle MCGDM problems with
probabilistic linguistic information.

For a set of alternatives A, four kinds of binary rela-
tions among alternatives can be obtained: 1) i P j means
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that “i is strictly preferred to j ”; 2) i I j means that “i is
indifferent to j ”; 3) iW j means that “i is weakly pre-
ferred to j ”; 4) iC j means that “i is not comparable to
j”. Each outranking approach is devised based on the
notions of concordance and discordance that describe
the reasons for and against an outranking relation [33–
35]: 1) to verify an outranking relation i Sb, a sufficient
majority of criteria should support this assertion (con-
cordance); 2) when it satisfies the concordance con-
dition, none of criteria in the minority is not against
this assertion too strongly (non-discordance). When
the assertion i Sb is validated, the above two condi-
tions should hold at the same time. The probabilistic
linguistic concordance set (PLCS) of the alternatives
xi and x j , expressed as Jci j = {k| Lik (p) � L jk (p)

}
,

consists of the criteria where the satisfactory degree of
alternative xi is superior to that of alternative x j . It can
be divided into: the strong PLCS Jsci j , medium PLCS
Jmci j , and weak PLCS Jwci j :

Jsci j = {k| E (Lik (p))

> E
(
L jk (p)

)
and μ (Lik (p))

< μ
(
L jk (p)

)}
(7)

Jmci j = {k| E (Lik (p))

> E
(
L jk (p)

)
and μ (Lik (p))

≥ μ
(
L jk (p)

)}
(8)

Jwci j = {k| E (Lik (p))

= E
(
L jk (p)

)
and μ (Lik (p))

< μ
(
L jk (p)

)}
(9)

where J is the set of criteria that satisfy the condition
or outranking relation.

These three PLCSs have different degrees that cap-
ture the intensity that alternative xi is superior to alter-
native x j . The difference between Jsci j and Jmci j results
from the information entropy. A lower value of infor-
mation entropy implies that the evaluation information
of the DMs has a higher consistency degree. Hence,
Jsci j is more concordant than Jmci j . Compared to the
information entropy, the score function has a more
important role when determining the outrank relations

among alternatives. Thus, Jmci j containing the criteria
with higher score function values is more concordant
than Jwci j .

Similarly, the probabilistic linguistic discordance set
(PLDS) Jdi j consists of the criteria where the satisfac-
tion degree of alternative xi is inferior to that of alter-
native x j . It is also divided into: the strong PLDS Jsdi j ,
medium PLDS Jmdi j , and week PLDS Jwdi j :

Jsdi j = {k| E (Lik (p))

< E
(
L jk (p)

)
and μ (Lik (p))

> μ
(
L jk (p)

)}
(10)

Jmdi j = {k| E (Lik (p))

< E
(
L jk (p)

)
and μ (Lik (p))

≤ μ
(
L jk (p)

)}
(11)

Jwdi j = {k| E (Lik (p))

= E
(
L jk (p)

)
and μ (Lik (p))

> μ
(
L jk (p)

)}
(12)

Finally, the indifferent PLDS J=
i j of alternatives xi and

x j is defined as:

J=
i j = {k| E (Lik (p))

= E
(
L jk (p)

)
and μ (Lik (p))

= μ
(
L jk (p)

)}
(13)

According to the PLCS and PLDS on each pair of alter-
natives xi and x j , the probabilistic linguistic concor-
dance index (PLCI) of PLCS can be computed as

ci j =
ωsc ×∑k∈Jsci j

wk + ωmc ×∑k∈Jmci j
wk + ωwc ×∑k∈Jwci j

wk + ω=
i j ×∑k∈J=

i j
wk

∑n
k=1 wk

= ωsc ×
∑

k∈Jsci j

wk + ωmc ×
∑

k∈Jmci j

wk + ωwc

∑

k∈Jwci j

wk + ω=
i j ×

∑

k∈J=
i j

wk (14)

where ci j denotes the PLCI. wk is the weight of crite-
rion ak . ωsc, ωmc, ωwc, and ω=

i j are the attitude weights
of strong PLCS,mediumPLCS, weak PLCS, and prob-
abilistic linguistic indifferent set. The PLCI ci j denotes
the relative importance of alternative xi over alternative
x j , and it satisfies 0 ≤ ci j ≤ 1. Then, the probabilis-
tic linguistic concordance matrix C can be constructed
using all the PLCIs of pairs of alternatives as:
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C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− · · · c1 j · · · c1m
...

. . .
...

. . .
...

ci1 · · · ci j · · · cim
...

. . .
...

. . .
...

cm1 · · · cmj · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The probabilistic linguistic discordance index
(PLDI) indicates the relative inferior of alternative xi
over alternative x j , which can be defined as

di j =
maxk∈Jsdi j ∪Jmdi j ∪Jwdi j

{
ωsd × wkd

(
Lik (p) , L jk (p)

)
, ωmd × wkd

(
Lik (p) , L jk (p)

)
, ωwd × wkd

(
Lik (p) , L jk (p)

)}

maxk∈J d
(
Lik (p) , L jk (p)

)

(15)

where di j denotes the PLDI of alternative xi over alter-
native x j . The larger di j implies the stronger it goes
against the assertion that “the alternative xi is at least as
good as the alternative x j”. ωsd , ωmd , and ωwd denote
the attitude weights of strong PLDS, medium PLDS,
and weak PLDS. d

(
Lik (p) , L jk (p)

)
denotes the dis-

tance between xi and x j under the k th criterion, which
can be measured using Eq. (4).

Similarly, all the PLDIs of alternatives can form the
probabilistic linguistic discordance matrix D as

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− · · · d1 j · · · d1m
...

. . .
...

. . .
...

di1 · · · di j · · · dim
...

. . .
...

. . .
...

dm1 · · · dmj · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

When the concordance and discordance sets are
defined, it is easy to devise the ranking procedure of
ELECTRE II. The ranking procedure constructs the
concordance Boolean matrix and discordance Boolean
matrix using the thresholds that are computed as the
average of the elements in the probabilistic linguistic
concordance matrix and probabilistic linguistic discor-
dance matrix. Finally, a global matrix can be defined
to confirm the outranking relation about each pair of
alternatives.

Definition 6 Let C = [
ci j
]

m×m be the probabilis-
tic linguistic concordance matrix, then the threshold

C̄ = ∑m
i=1
∑m

k=1cik

/

m (m − 1), and the probabilis-

tic linguistic concordanceBooleanmatrix E is obtained
as

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− . . . e1 j . . . e1m
...

. . .
...

. . .
...

ei1 . . . ei j . . . eim
...

. . .
...

. . .
...

em1 . . . emj . . . −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the element ei j has a binary value of 0 or 1 and
when (1) ci j ≥ c̄ ⇒ ei j = 1; (2) ci j < c̄ ⇒ ei j = 0. If

ei j = 1, then we assume that alternative xi dominates
alternative x j in concordant perspective.

Definition 7 Let D = [
di j
]

m×m be the probabilis-
tic linguistic discordance matrix, then the threshold

d̄ = ∑m
i=1
∑m

j=1 di j

/

m (m − 1), and the probabilis-

tic linguistic discordance Booleanmatrix Q is obtained
as

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− · · · q1 j · · · q1m
...

. . .
...

. . .
...

qi1 · · · qi j · · · qim
...

. . .
...

. . .
...

qm1 · · · qmj · · · −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the element qi j has the binary value of 0 or 1 and
when (1) di j < d̄ ⇒ qi j = 1; (2) di j ≥ d̄ ⇒ qi j = 0.

Let E and Q be the probabilistic linguistic concor-
dance Boolean matrix and probabilistic linguistic dis-
cordance Boolean matrix, and then, the global matrix
M is defined by multiplying the matrices E and Q
component-wise, whose element mik = ei j × qi j .

According to the graph theory, the relationships
included in the global matrix can be described using
a digraph G = (V, A) where V is a set of vertices
{v1, v2, . . . , vm} and A is the set of arcs associated with
the vertices. Each vertex stands for an alternative and
each directed arc stands for an outranking relation. In
such graph, if there is a directed arc from vertices vi to
v j , then itmeans that alternative xi outperforms alterna-
tive x j . Another situation is that there is no arc between
xi and x j since they are incomparable.
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Liao et al. [36] utilized the averaging values of the
probabilistic linguistic concordance matrix C and dis-
cordance matrix D as the thresholds for construct-
ing the probabilistic linguistic concordance Boolean
matrix E and discordance Boolean matrix Q. Then,
the values in the symmetric positions of the global
matrix M are not always complementary, which may
fail to compare two alternatives. To solve this issue, we
improve the method that was proposed by Liao et al.
[36].

LetM be aglobalmatrix,which is obtainedbymulti-
plying thematrices E and Q in component-wise,whose
element mi j = ei j × qi j If the elements mi j = 1
and m ji = 0, then it implies that alternative xi is
strictly superior to alternative x j . If mi j = 0 and
m ji = 0 or mi j = 1 and m ji = 1, then it means
that the elements in the matrices E and Q satisfy that{
mi j = ei j × qi j = 0
m ji = e ji × q ji = 0

and

{
mi j = ei j × qi j = 1
m ji = e ji × q ji = 1

.

When a graph is drawn to depict the relationships
among the alternatives using the global matrix M , then
there is no arc between xi and x j since they are incom-
parable. In this case, we set mi j = 1 and m ji = 0,
which means that alternative xi weakly excels alterna-

tive x j when

{
mi j = e∗

i j × q∗
i j = 1

m ji = e∗
j i × q∗

j i = 0
, in which e∗

i j = 1

when ci j > c ji and q∗
i j = 1 when di j < d ji .

4.5 The decision-making procedure

According to the above analysis, the decision-making
procedure of our proposed score-entropy-based ELEC-
TRE II method can be summarized as follows:

Step 1. Use Eq. (5) to fuse the linguistic decision
matrices provided by the DMs dmϕ(ϕ = 1, 2, . . . ,
u) and obtain the group decision matrix L =[
Li j (p)

]

m×n of this group of DMs.
Step 2. Use Eq. (6) to calculate the weight vector
w = (w1, w2, . . . wn)

T of criteria.
Step 3. Use Algorithm 1 with the weight vec-
tor w = (w1, w2, . . . wn)

T of criteria to calcu-
late the weight vector e = (e1, e2, . . . , eu)T of the
DMs DM = {dm1, dm2, . . . , dmu} and get a new

PLDM L ′ =
[
L ′
i j (p)

]

m×n
.

Step 4. Set the attitude weights of probabilistic lin-
guistic concordance, discordance, and indifference

sets, which are denoted asωsc,ωmc,ωwc,ωsd ,ωmd ,
ωwd , and ω=

i j , respectively.
Step 5. Compute the score function value and

entropy value of the PLDM L ′ =
[
L ′
i j (p)

]

m×n
as

E
(
L ′
i j (p)

)
= s∑#L(p)

k=1 γ
(k)
i j p(k)/

∑#L(p)
k=1 p(k) (16)

μ
(
L ′
i j (p)

)
=

#L(p)

−
∑

k=1

p(k) log2 p
(k) (17)

where γ
(k)
i j denotes the subscript of the linguistic

term L ′
i j .

Step 6.Use Eqs. (7)–(9) to obtain the strong PLCS,
medium PLCS, and weak PLCS.
Use Eqs. (10)–(12) to obtain the strong PLDS,
medium PLDS, and weak PLDS and Eq. (13) to
obtain the probabilistic linguistic indifference set.
Step 7. Calculate the PLCIs of pairs of alterna-
tives by Eq. (14) to construct the probabilistic lin-
guistic concordance matrix C and then also calcu-
late the PLDIs of pairs of alternatives by Eq. (15)
to construct the probabilistic linguistic discordance
matrix D.
Step 8. Use Definitions 6 and 7 to obtain the prob-
abilistic linguistic concordance Boolean matrix E
and the probabilistic linguistic discordance
Boolean matrix Q, respectively.
Step9.Compute the globalmatrixM and then draw
the outranking graph.

Locate the symmetrical positions in the global
matrix M where the elements are not complementary.
Then the elements in the same positions of the matri-
ces E and Q are updated and the outranking graph is
redrawn.

To demonstrate the process of group decision-
making process with probabilistic linguistic informa-
tion, we summarize its procedures in Fig. 1.

5 Demonstrative example: edge node selection

How to choose an appropriate edge node to process the
requests frommobile users is a very important problem
in the edge computing network [37,38]. The edge nodes
are usually assessed using seven factors, such as the
workload A1, availability A2, reliability A3, network
latency A4, quality of experience (QoE) A5, resource
utilization A6, and security level A7. Assume that there
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Fig. 1 Process of decision
making

Description of the problem

Construct the linguistic decision matrices

Determine the attribute weights

Determine the weight vector of DMs

Obtain a new probabilistic linguistic 
decision matrix

Preparatory Work

Probabilistic linguistic concordance, 
indifferent and discordance sets

Probabilistic linguistic concordance and 
discordance matrices 

Construct the outranking relations

Decision Supporting

Exploration of outranking relations and 
outranking graph

Fuse linguistic decision matrices to obtain 
the probabilistic linguistic decision matrix

are five edge nodes to be evaluated, which are denoted
as x1, x2, x3, x4, x5. Let S = {sτ |τ = −4, . . . , 0, . . . 4}
denote a LTS, and four experts {dm1, dm2, dm3, dm4}
are invited to use theLTSs to express the preferences for
these five alternatives with respect to these seven crite-
ria. Then, we construct the linguistic decision matrices

Rϕ =
[
rϕ
i j

]

m×n
as follows:

R1 =

⎡

⎢
⎢
⎢
⎢
⎣

s1
s−4

s4
s−3

s4

s3
s−1

s2
s−2

s−2

s4
s−1

s1
s2
s−3

s1
s2
s−3

s−3

s4

s−1

s1
s−4

s4
s1

s2
s1
s2
s2
s3

s2
s−4

s1
s−3

s4

⎤

⎥
⎥
⎥
⎥
⎦

,

R2 =

⎡

⎢
⎢
⎢
⎢
⎣

s4
s−3

s2
s1
s4

s1
s1
s4
s−1

s−1

s2
s3
s1
s2
s2

s1
s−2

s−1

s4
s−3

s−2

s−1

s4
s−3

s2

s1
s3
s−2

s−2

s4

s−2

s−1

s−4

s2
s−2

⎤

⎥
⎥
⎥
⎥
⎦

R3 =

⎡

⎢
⎢
⎢
⎢
⎣

s−1

s−1

s2
s−1

s−3

s2
s2
s−4

s1
s−1

s1
s−2

s2
s2
s2

s−1

s−3

s1
s−1

s−4

s2
s−4

s4
s−3

s4

s−1

s2
s−2

s−1

s3

s−2

s4
s−1

s2
s−1

⎤

⎥
⎥
⎥
⎥
⎦

,

R4 =

⎡

⎢
⎢
⎢
⎢
⎣

s−3

s−2

s2
s2
s−2

s2
s−3

s−1

s−4

s−1

s3
s−1

s3
s2
s−2

s−1

s1
s1
s−4

s1

s3
s−4

s3
s−3

s3

s−2

s−3

s2
s−3

s2

s−2

s3
s−3

s−2

s1

⎤

⎥
⎥
⎥
⎥
⎦

The initialization weight vector of these experts is set
to e = (e1, e2, e3, e4)T = (0.25, 0.25, 0.25, 0.25)T .

Step 1.Use Eq. (5) to aggregate the above linguistic
decision matrices and then construct the PLDM L =[
Li j (p)

]

m×n as (Table 1):
Step 2. Use Eq. (6) to compute the weight vector of

criteria as

w = (0.0887, 0.5088, 0.1183, 0.0414, 0.0355,

0.1716, 0.0355)T .

Step 3. Utilize Algorithm 1 with the parameters a =
0.5 and l = 0.01 to calculate the weight vector of
experts as e = (0.2746, 0.1876, 0.1943, 0.3435)T and

obtain a new PLDM L ′ =
[
L ′
i j (p)

]

m×n
as (Table 2)

Step 4. Initialize the attitude weights of all the
probabilistic linguistic concordance, discordance, and
indifference sets as ω = (ωsc, ωmc, ωwc, ωsd , ωmd ,

ωwd , ω
=
i j

)
= (1, 0.9, 0.8, 1, 0.9, 0.8, 0.7).

Step 5. Compute the score function values and
entropy values of the elements included in the PLDM

L ′ =
[
L ′
i j (p)

]

m×n
as shown in Table 3.

Step 6. Obtain the strong PLCS, medium PLCS,
weak PLCS, denoted as Jsc, Jmc, and Jwc, as

Jsc =

⎡

⎢
⎢
⎢
⎢
⎣

− 2 2, 4, 7 2, 4 −
− − − − 3

1, 5, 6 1, 6 − 1, 4, 6 1, 3
− 3, 5 3, 7 − 3
1, 6 1, 6 − 1, 2, 6 −

⎤

⎥
⎥
⎥
⎥
⎦

,

Jmc =

⎡

⎢
⎢
⎢
⎢
⎣

− 1, 3, 5 3 3, 5, 6 2, 3
4, 6, 7 − 4, 7 2, 4, 6, 7 2

− 2, 3, 5 − 2, 5 2
1, 7 1 − − −
4, 5, 7 4, 5, 7 4, 5, 6, 7 4, 5, 7 −

⎤

⎥
⎥
⎥
⎥
⎦

,
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Table 3 Score function values and entropy values
(
E
(
L ′
i j (p)

)
, μ
(
L ′
i j (p)

))

A1 A2 A3 A4 A5 A6 A7

X1 s−0.18, 1.9497 s2.08, 1.4453 s2.67, 1.9497 s−0.08, 0.9954 s0.75, 1.9497 s−0.14, 1.9497 s−0.92, 0.8415
X2 s−2.52, 1.9497 s−0.72, 1.9497 s−0.43, 1.338 s−0.07, 1.9497 s−2.08, 1.4453 s0.2, 1.9497 s0.51, 1.9497
X3 s2.54, 0.8415 s0.2, 1.9497 s1.86, 1.4997 s−0.46, 1.4453 s1.46, 1.5697 s0.48, 0.958 s−1.7, 1.9497
X4 s−0.13, 1.9497 s−1.9, 1.9497 s2, 0 s−1.6, 1.9497 s−1.11, 0.8415 s−1.05, 1.9497 s−0.73, 1.5697
X5 s0.59, 1.4997 s−1.27, 0.8415 s−0.73, 1.57 s0.09, 1.95 s2.43, 1.95 s2.85, 1.4964 s0.85, 1.9497

Jwc =

⎡

⎢
⎢
⎢
⎢
⎣

− − − − −
− − − − −
− − − − −
−
−

−
−

−
−

−
−

−
−

⎤

⎥
⎥
⎥
⎥
⎦

Obtain the strong PLDS, medium PLDS, weak
PLDS, denoted as Jsd , Jmd , Jwd , as

Jsd =

⎡

⎢
⎢
⎢
⎢
⎣

− − 1, 5, 6 − 1, 6
2 − 1, 6 3, 5 1, 6
2, 4, 7 − − 3, 7 −
2, 4 − 1, 4, 6 − 1, 2, 6
− 3 1, 3 3 −

⎤

⎥
⎥
⎥
⎥
⎦

,

Jmd =

⎡

⎢
⎢
⎢
⎢
⎣

− 4, 6, 7 − 1, 7 4, 5, 7
1, 3, 5 − 2, 3, 5 1 4, 5, 6
3 4, 7 − − 4, 5, 6, 7
3, 5, 6 2, 4, 6, 7 2, 5 − 4, 5, 7
2, 3 2 2 − −

⎤

⎥
⎥
⎥
⎥
⎦

,

Jwd =

⎡

⎢
⎢
⎢
⎢
⎣

− − − − −
− − − − −
− − − − −
−
−

−
−

−
−

−
−

−
−

⎤

⎥
⎥
⎥
⎥
⎦

and obtain the probabilistic linguistic indifference set
as

J= =

⎡

⎢
⎢
⎢
⎢
⎣

− − − − −
− − − − −
− − − − −
−
−

−
−

−
−

−
−

−
−

⎤

⎥
⎥
⎥
⎥
⎦

Step 7. Calculate the PLCI of each pair of alternatives
and then construct the probabilistic linguistic concor-
dance matrix C as

C =

⎡

⎢
⎢
⎢
⎢
⎣

− 0.7272 0.6923 0.8432 0.5645
0.2237 − 0.0692 0.6817 0.5763
0.2959 0.8568 − 0.7917 0.6651
0.1118
0.3615

0.2337
0.3615

0.1538
0.2556

−
0.8704

0.1183
−

⎤

⎥
⎥
⎥
⎥
⎦

Then, we calculate the PLDI of each pair of alter-
natives and then construct the probabilistic linguistic
discordance matrix D as

D =

⎡

⎢
⎢
⎢
⎢
⎣

− 0.0767 0.2478 0.0173 0.2916
1 − 0.5876 0.2468 0.4735
0.1649 0.1041 − 0.0775 0.0549
0.0834
0.1689

0.1572
0.9

0.2995
0.9

−
0.4695

0.6693
−

⎤

⎥
⎥
⎥
⎥
⎦

The concordance threshold c̄ = 0.4727 and discor-
dance threshold d̄ = 0.3495.

Step 8. Use Definitions 6 and 7 to obtain the prob-
abilistic linguistic concordance Boolean matrix E and
probabilistic linguistic discordance Boolean matrix Q
as

E =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 1
0 1 − 1 1
0 0 0 − 0
0 0 0 1 −

⎤

⎥
⎥
⎥
⎥
⎦

, Q =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 0
1 1 − 1 1
1 1 1 − 0
1 0 0 0 −

⎤

⎥
⎥
⎥
⎥
⎦

Step 9. Compute the global matrix M by multiplying
the matrices E and Q as

M =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 0
0 1 − 1 1
0 0 0 − 0
0 0 0 0 −

⎤

⎥
⎥
⎥
⎥
⎦

and draw the strong outranking graph as
As depicted in Fig. 2, the directional arc S implies

that there exists strong outranking relation between two
alternatives.

Locate the symmetrical positions of the global
matrix M , where the elements are not complementary,
and mark them using the symbol of “*”, then we have

M =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 0∗
0 1 − 1 1
0 0 0 − 0∗
0 0∗ 0 0∗ −

⎤

⎥
⎥
⎥
⎥
⎦
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Fig. 2 The strong outranking graph
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Fig. 3 The final outranking graph

The elements in the same positions of the matrices E
and Q are updated as

E =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 1
0 1 − 1 1
0 0 0 − 0
0 0 0 1 −

⎤

⎥
⎥
⎥
⎥
⎦

Q =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 1∗
1 1 − 1 1
1 1 1 − 0∗
1 0∗ 0 1∗ −

⎤

⎥
⎥
⎥
⎥
⎦

Then, the final global matrix M can be obtained as

M =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 1∗
0 1 − 1 1
0 0 0 − 0∗
0 0∗ 0 1∗ −

⎤

⎥
⎥
⎥
⎥
⎦

and the final outranking graph is redrawn as
As depicted in Fig. 3, the directional arc W implies

that there exists weak-order relation between two alter-
natives.

6 Comparative analysis

Toverify the superiority of our proposed score-entropy-
based ELECTRE II method, the comparative analysis
among the score-deviation-based ELECTRE IImethod
is proposed by Liao et al. [36] to process the hesitant
fuzzy linguistic term sets, the classical ELECTRE II
method [39], the PL-ELECTRE II method [20] using
the possibility degree and our proposed score-entropy-
based ELECTRE II method.

6.1 Compare
with score-deviation-based ELECTRE II method

The score-deviation-based ELECTRE II method in
[36] uses a different comparison method from that
in our proposed score-entropy-based ELECTRE II
method to compare two PLTSs.

Let L (p) = {
L(k)

(
p(k)
)∣
∣ k = 1, 2, ..., #L (p)

}

denote a PLTS, and then, the deviation degree of L (p)

in [36] is computed as D (L (p)) =
(∑#L(p)

k=1

(
p(k)

(
γ (k) − γ̄

))2
) 1

2
/
∑#L(p)

k=1 p(k), where γ̄ = ∑#L(p)
k=1

γ (k) p(k)

/
∑#L(p)

k=1 p(k) and γ (k) denotes the subscript

of linguistic term L(k). If E (L1 (p)) > E (L2 (p)),
then L1 (p) � L2 (p). If E (L1 (p)) = E (L2 (p)),
then their deviation degrees should be further com-
pared. If D (L1 (p)) > D (L2 (p)), then L1 (p) ≺
L2 (p). If D (L1 (p)) = D (L2 (p)), then L1 (p) ∼
L2 (p).

The score-deviation-based ELECTRE II method is
utilized to solve the example concerning the edge node
selection and its decision-making procedure is listed as
follows:

Steps 1–4. Steps 1 to 4 are the same as that in
Sect. 5.

Step 5. Compute the score function value

E
(
L ′
i j (p)

)
and deviation degree D

(
L ′
i j (p)

)
of each

PLTS in the probabilistic linguistic decision matrix

L ′ =
[
L ′
i j (p)

]

m×n
, and the results are listed in

Table 4.
Step 6. According to the comparison method pre-

sented in [36], the strong PLCS J̄sc, medium PLCS
J̄mc, and weak PLCS J̄wc can be obtained as

123



ELECTRE II method to deal with probabilistic linguistic term sets 2139

Table 4 Corresponding score function value and deviation degree

A1 A2 A3 A4 A5 A6 A7

X1 s−0.18, 1.2945 s2.08, 0.3251 s2.67, 0.5084 s−0.08, 0.7026 s0.75, 1.0667 s−0.14, 0.8986 s−0.92, 1.115

X2 s−2.52, 0.5317 s−0.72, 0.9902 s−0.43, 0.7991 s−0.07, 0.9429 s−2.08, 1.3449 s0.2, 1.2769 s0.51, 1.6497

X3 s2.54, 0.5575 s0.2, 1.2493 s1.86, 0.5545 s−0.46, 1.05 s1.46, 1.8382 s0.48, 1.3328 s−1.7, 0.9672

X4 s−0.13, 1.0947 s−1.9, 0.9183 s2, 0 s−1.6, 1.3978 s−1.11, 1.9512 s−1.05, 1.0726 s−0.73, 1.28

X5 s0.59, 1.9239 s−1.27, 0.2787 s−0.73, 1.28 s0.09, 1.4693 s2.43, 0.5313 s2.85, 0.3691 s0.85, 1.069

J̄sc =

⎡

⎢
⎢
⎢
⎢
⎣

− 2, 3,5 2,3,4 2, 4, 5, 6 3
− − 4 4 3
1 3 − 1, 4, 5 1, 3
1 3 3 − 3
5,6,7 5,6,7 5,6 2,5,6,7 −

⎤

⎥
⎥
⎥
⎥
⎦

,

J̄mc =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 7 3 2
4,6,7 − 7 2,6,7 2
5,6 1,2,5,6 − 2,6 2
7 1,5 7 − −
1,4 1,4 4,7 1,4 −

⎤

⎥
⎥
⎥
⎥
⎦

,

J̄wc =

⎡

⎢
⎢
⎢
⎢
⎣

− − − − −
− − − − −
− − − − −
−
−

−
−

−
−

−
−

−
−

⎤

⎥
⎥
⎥
⎥
⎦

The strong PLDS J̄sd , medium PLDS J̄md , and weak
PLDS J̄wd can be obtained as

J̄sd =

⎡

⎢
⎢
⎢
⎢
⎣

− − 1 1 5,6,7
2,3,5 − 3 3 5,6,7
2,3,4 4 − 3 5,6
2, 4, 5, 6 4 1,4,5 − 2,5,6,7
3 3 1,3 3 −

⎤

⎥
⎥
⎥
⎥
⎦

,

J̄md =

⎡

⎢
⎢
⎢
⎢
⎣

− 4,6,7 5,6 7 1,4
1 − 1,2,5,6 1,5 1,4
7 7 − 7 4,7
3 2,6,7 2,6 − 1,4
2 2 2 − −

⎤

⎥
⎥
⎥
⎥
⎦

,

J̄wd =

⎡

⎢
⎢
⎢
⎢
⎣

− − − − −
− − − − −
− − − − −
−
−

−
−

−
−

−
−

−
−

⎤

⎥
⎥
⎥
⎥
⎦

The probabilistic linguistic indifference set can be
obtained as

J̄= =

⎡

⎢
⎢
⎢
⎢
⎣

− − − − −
− − − − −
− − − − −
−
−

−
−

−
−

−
−

−
−

⎤

⎥
⎥
⎥
⎥
⎦

Step 7. Compute the PLCI of each pair of alternatives
and then construct the probabilistic linguistic concor-
dance matrix C2 as:

C2 =

⎡

⎢
⎢
⎢
⎢
⎣

− 0.7426 0.7006 0.8639 0.5763
0.2237 − 0.0734 0.6858 0.5763
0.2834 0.9112 − 0.8373 0.6953
0.1207
0.3598

0.2302
0.3598

0.1503
0.2763

−
0.8686

0.1183
−

⎤

⎥
⎥
⎥
⎥
⎦

and the concordance threshold C̄2 = 0.4743.
Calculate the PLDI of each pair of alternatives

and construct the probabilistic linguistic discordance
matrix D2 as:

D2 =

⎡

⎢
⎢
⎢
⎢
⎣

− 0.0767 0.2523 0.1173 0.0532
0.114 − 0.5289 1 0.0991
0.0515 0.1042 − 0.5434 0.5339
0.3224 0.1572 0.2697 − 0.1352
0.9 0.9 0.9 0.4695 −

⎤

⎥
⎥
⎥
⎥
⎦

and the discordance threshold D̄2 = 0.3764.
Step 8. Obtain the probabilistic linguistic concor-

dance Boolean matrix E2 and probabilistic linguis-
tic discordance Boolean matrix Q2 using the concor-
dance threshold C̄2 = 0.4743 and discordance thresh-
old D̄2 = 0.3764. Then, we have

E2 =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 1 1
0 1 − 1 1
0 0 0 − 0
0 0 0 1 −

⎤

⎥
⎥
⎥
⎥
⎦

, Q2 =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
1 − 0 0 1
1 1 − 0 0
1 1 1 − 1
0 0 0 0 −

⎤

⎥
⎥
⎥
⎥
⎦
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Fig. 4 The outranking graph

Step 9. Compute the global matrix M2 as

M2 =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 1
0 − 0 0 1
0 1 − 0 0
0 0 0 − 0
0 0 0 0 −

⎤

⎥
⎥
⎥
⎥
⎦

and draw the outranking graph as
As shown in Fig. 4, the directional arc S means that

the there is strong-order relationship between two alter-
natives. However, the relationship between alternatives
x4 and x5 and the relationship between x3 and x4 cannot
be determined by the score-deviation-based ELECTRE
II method, which can be solved by our proposed score-
entropy-based ELECTRE II method.

6.2 Compare with classical ELECTRE II method

In this section, our proposed score-entropy-based
ELECTRE II method is compared with the classical
ELECTRE II method [39]. We define the concepts of
the strong relationship OF and the weak relationship
O f by the indices of concordance and discordance lev-
els.

Let c−, c0, and c+ denote three concordance lev-
els with 0 < c− < c0 < c+ < 1 and d0 and d+ be
two discordance levels with 0 < d0 < d+ < 1. Then,
the strong outranking relation in the graph implies that
alternative xi strongly outranks alternative xk , denoted
as xi OF x j , if

xi OF x j ⇔
{
C (xi , xk) ≥ C (xk, xi )(
C (xi , xk) ≥ c+, D (xi , xk) ≤ d+) or

(
C (xi , xk) ≥ c0, D (xi , xk) ≤ d0

)

5x

1x

2x 3x

4x

(a)

5x

1x

2x 3x

4x

(b)

Fig. 5 The strong outranking graph (a) and weak outranking
graph (b)

Table 5 The values of v′ (x) and v′′ (x)

Alternatives x1 x2 x3 x4 x5

v′ (x) 1 3 2 5 4

v′′ (x) 1 3 2 5 4
v′(x)+v′′(x)

2 1 3 2 5 4

and the weak outranking relation in the graph implies
that alternative xi weakly outranks alternative xk ,
denoted as xi O f xk , if

xi O f xk ⇔
⎧
⎨

⎩

C (xi , xk) ≥ C
(
x j , xi

)

C (xi , xk) ≥ c−
D
(
x j , xk

) ≤ d+

Here, the concordance levels
(
c−, c0, c+) are set

to (0.5, 0.6, 0.7) and the discordance levels
(
d0, d+)

is set to (0.6, 0.8). We draw the strong outranking
graph and the weak outranking graph as shown in
Fig. 5.

The values of v′ (x) and v′′ (x) are listed in Table 5,
where v′ (x) is the direct ranking and v′′ (x) denotes
the reverse ranking.

According to the value of v′(x)+v′′(x)
2 , the final rank-

ing is obtained as

x1 � x3 � x2 � x5 � x4.

The above ranking is contained in Fig. 3. How-
ever, the outranking graph presented in Fig. 3 can
offer more information about the relationships among
alternatives.
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Fig. 6 The outranking graph of our proposed score-entropy-
based ELECTRE II method

6.3 Compare with existing method

In this section, comparisons between our proposed
score-entropy-based ELECTRE II method and the PL-
ELECTRE II method in [20] are conducted. The PL-
ELECTRE IImethod uses the possibility degree to con-
struct the probabilistic linguistic concordance sets and
the probabilistic linguistic discordance sets. Our pro-
posed score-entropy-based ELECTRE II method is uti-
lized to process the example presented in [20] and the
outranking graph can be constructed as:

As shown in Fig. 6, the outranking graph of our pro-
posed score-entropy-based ELECTRE IImethod is dif-
ferent from that in [20] since Pan et al. [20] introduced
the concept of possibility degree to construct the prob-
abilistic linguistic concordance sets and probabilistic
linguistic discordance sets.

The differences between our proposed score-
entropy-basedELECTREIImethodandPL-ELECTRE
II presented in [20] are summarized in Table 6.

From Table 6, it can be seen that our proposed
score-entropy-based ELECTRE IImethod shows some
differences from the PL-ELECTRE II method that is
presented in [20]. Our proposed score-entropy-based
ELECTRE II method uses the comparison method to
compare PLTSs, while the PL-ELECTRE II method

uses the possibility degree. When the weights of cri-
teria are calculated, our proposed score-entropy-based
ELECTRE IImethod uses an objectivemethod, namely
themultiple correlation coefficient,which considers the
correlation degree between each criterion and other cri-
teria. The PL-ELECTRE II method in [20] uses a sub-
jective method, in which the relative importance of one
criterion over another one is evaluated by the DMs,
and then, a Chi-square method is utilized to obtain the
weight vector of criteria. The weight vector of DMs
is given directly in the PL-ELECTRE II method [20],
while it is determined using the entropy theory in our
proposed score-entropy-based ELECTRE II method.

7 Conclusions

In this paper, we proposed a novel score-entropy-based
ELECTRE II method to process the edge node selec-
tion problemwith the evaluation information of PLTSs.
We first defined a novel distance measure for PLTSs
and developed a novel comparison method based on
the score function and information entropy of PLTSs.
We also utilized the multiple correlation coefficient to
calculate the weight vector of criteria and introduced
the entropy theory to calculate the weight vector of
the DMs. Based on the weight-determining method
for criteria and the weight-determining method for
DMs as well as the comparison method, a novel score-
entropy-based ELECTRE II method was put forward
and its decision-making procedure was given. Finally,
a demonstrative example was provided to illustrate
the implementation process of our proposed score-
entropy-based ELECTRE II method and it was com-
pared with existing decision-making methods.

In the future, we plan to establish a two-layer index
system to evaluate the edge node from the view of
quality of service and introduce the theory of analytic
hierarchical process to handle the edge node selection
problems.

Table 6 Differences between our proposed score-entropy-based ELECTRE II method and PL-ELECTRE II in [20]

Methods How to compare PLTSs Weight-determining
method for criteria

Weight-determining
method for DMs

Our score-entropy-based
ELECTRE II

Score function and
Entropy value

Objective Entropy theory

PL-ELECTRE II in [20] Possibility degree Subjective Given
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