
Nonlinear Dyn (2019) 96:1909–1926
https://doi.org/10.1007/s11071-019-04894-x

ORIGINAL PAPER

Prescribed performance adaptive attitude tracking control
for flexible spacecraft with active vibration suppression

Chao Zhang · Guangfu Ma · Yanchao Sun ·
Chuanjiang Li

Received: 28 August 2018 / Accepted: 13 March 2019 / Published online: 25 March 2019
© Springer Nature B.V. 2019

Abstract This paper investigates the high-
performance attitude control and active vibration sup-
pression problem for flexible spacecraft in the pres-
ence of external disturbances. The active vibration con-
trol usually depends on additional sensors and actua-
tors, which will highly increase the difficulty of practi-
cal application. In order to reduce the implementation
complexity, the piezoelectric sensors are not adopted,
but instead a modal observer is introduced to esti-
mate the modal information. Based on the observed
modal information and the prescribed performance
design process, an adaptive attitude controller is devel-
oped, which has the capabilities of rejecting distur-
bances as well as possessing predetermined transient
and steady-state control performance. Similarly, an
active controller is constructed to deal with the vibra-
tions induced by attitude motions. It can be proved that
by constraining the estimations of the modal variables,
the actual modal coordinate will also be constrained
with expected attenuation characteristics. The stabil-
ity of the entire closed-loop system is analyzed by the
Lyapunov theory. Simulation results in different cases
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show the effectiveness and performance of the pro-
posed algorithms.
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1 Introduction

Since the space projects, such as deep space explo-
ration, space debris removal, and on-orbit service, grow
more complex, the spacecraft attitude control system
becomes more vital for mission accomplishment. The
design of the attitude control system mainly focuses
on the following issues. The first one is the robustness.
It is required that the attitude control system should
be capable of coping with the disturbances and uncer-
tainties arising from the severe space environment for
reliability concern. Another one is the vibration sup-
pression of flexible appendages. The structural design
of the spacecraft with large size and lightweight results
in the increase in the flexibility, which will influence
the stability of the attitude control system. Moreover,
in order to complete the diverse and difficult missions
better, the requirement of the control performance is
dramatically increased as well. Therefore, the attitude
control design is still a challenging research subject.

The robust attitude control methods for flexible
spacecraft have been extensively studied [1–13]. Xiao
et al. [1] presented an adaptive sliding mode con-
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troller to achieve attitude tracking control with neu-
ral networks to deal with uncertainties. Sendi et al.
[2] studied the robust tracking control problem using
T-S fuzzy model to approximate the uncertain flexi-
ble spacecraft system and PDC (parallel distributed
compensation) technique to construct the controller.
To improve the convergence speed and the robust-
ness against disturbances, Zhong et al. [3] designed
finite-time control strategies by utilizing terminal slid-
ing mode method. In [4], a robust H∞ output feed-
back control method for flexible spacecraft attitude sta-
bilization was developed by combining LMI and the
convex optimization algorithm. Based on the ideas of
uncertainties estimation and feed-forward compensa-
tion, disturbance observers were designed to handle the
lumped disturbance (including external disturbances,
unmodeled dynamics, and flexible influences) in [5–
9], which can significantly improve the attitude control
accuracy. Similar to the disturbance observer, a modal
observer was proposed by Di Gennaro [10] with the
special purpose of addressing the vibration of flexi-
ble appendages. Utilizing backstepping and finite-time
control techniques, Ding and Zheng [11] developed the
controller to obtain the high-accuracy attitude stabi-
lization, while a modal observer was employed to sup-
press the vibration. For the multiple flexible spacecraft
distributed attitude synchronization control, a nonlin-
ear observer was introduced to solve the problem that
the modal variables and angular velocity cannot be
measured [12]. Although the above approaches can
effectively suppress the uncertainties including flexi-
ble vibrations while enhancing the system robustness,
two issues still need to be further considered. First, in
these works, the vibration suppression was realized by
the so-called centralized vibration control [13] whose
basic thought is to rely on the attitude controller to
reduce or eliminate the influence of the vibration on
the spacecraft attitude. In fact, the vibration itself is
not suppressed through the centralized control but will
decay through the damping of the flexible structures.
Thus, when the structures have the characteristics of
low damping and high flexibility, the simple use of the
centralized control may not possess the desired results.
On the contrary, it will increase the burden on the actu-
ators of the spacecraft main body. Second, these meth-
ods are not specially designed for performance con-
cerns resulting in the dependence on control gains and
the lack of flexibility. Therefore, the active vibration
control and the performance-oriented control schemes

are essential to be introduced into the attitude control
system to enhance the overall control performance.

The key to the active vibration control is exploiting
distributed intelligent materials or other instruments as
sensors and actuators to measure and control the vibra-
tion deformation. For the active vibration control of the
flexible spacecraft, Hu et al. [14–17] obtained some
important results, in which the robust sliding mode
control method was mainly studied to design the atti-
tude controllers, while the strain rate feedback or the
positive position feedback (PPF) compensators were
used to achieve the vibration suppression. In recent
years, several new results using active control have
emerged such as modal velocity feedback [18], PPF
[19,20], and component synthesis vibration suppres-
sion [21]. However, most of them concentrated on the
innovation of the centralized attitude control rather than
the active vibration control. Moreover, in the afore-
mentioned results, the attitude controller and active
controller were designed separately on the premise of
ignoring the dynamic coupling between flexible struc-
tures and the spacecraft main body, which could not
ensure the stability of the whole closed-loop system.
On the other hand, owing to the introduction of the addi-
tional devices, the consequent issues (such as the instal-
lation, the reliability, and the complexity of the control
system) which will make the practical application dif-
ficult cannot be neglected. Taking the above factors
into consideration, Wang et al. [13] studied the central-
ized vibration control with the optical camera measur-
ing the flexible dynamic behaviors instead of attaching
the smart sensors or actuators on the appendages and
explained the advantages of themethod. In [22–24], the
active vibration control was researched with only actu-
ators but no sensors to measure the modal variables,
while the coupling between flexible structures and the
spacecraft main body was considered.

To satisfy the performance requirements of the atti-
tude maneuver, motion planning approaches [25–27]
were usually introduced into the control system design,
whose aim is to acquire an ideal desired trajectory.After
that, the planned trajectory was tracked by designing
the high-performance controllers. This scheme can be
regarded as the common solution for the attitude con-
trol of the spacecraft with performance requirements.
However, actually the control effect mainly depends on
the designed tracking control methods. Furthermore, it
does not have a systematic procedure or specific design
technique which can obtain the required control behav-
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iors by a prior selection of some certain parameters.
To achieve the above characteristic, some distinctive
performance constraint methods including funnel con-
trol (FC) [28,29], barrier Lyapunov function (BLF)
technique [30,31], and prescribed performance control
(PPC) [32] attracted researchers’ attention. Consider
that FC is limited to be applied to some certain types
of systems and BLF technique places more emphasis
on handling the problems with state constraints. How-
ever, PPC can make the convergence rate, overshoot,
and steady-state error of the closed-loop system strictly
satisfy the requirements by utilizing a predefined per-
formance function and an error transformation, which
is more suitable for solving the control problems with
high-performance specifications. For the last decade,
PPC has been widely investigated in theory [33–35]
and was initially applied to robotic systems [36,37]. In
recent years, it has been gradually adopted in spacecraft
attitude control systems [38–40], which demonstrates
the good application prospect. Furthermore, when con-
sidering that PPC has the characteristic of making the
system state strictly stay within the predefined bounds,
it can be used to control the vibration to obtain a pre-
specified suppression effect.

To sum up, most published studies attached more
importance to the design of the centralized control.
Although many of them also deeply researched the
application of active vibration control, the influence of
the attitudemotionswas often neglected leaving the sta-
bility of the closed-loop system not guaranteed. Addi-
tionally, when taking into account the increasing con-
trol performance requirements, the idea of prescribed
performance should be reasonably adopted. Thus, both
high-performance attitude control and active vibration
control schemes with strong robustness need to be fur-
ther studied in the consideration of external distur-
bances and uncertainties.

In this study, a prescribed performance compos-
ite control strategy is proposed for flexible space-
craft, which contains a modal observer, an adaptive
prescribed performance attitude controller, and a pre-
scribed performance active vibration controller. The
modal observer is employed as a substitute for the
piezoelectric sensors to obtain the modal information.
The main contributions of this study can be summa-
rized as follows:

(1) Different from Ref. [14–21], this paper performs
the controllers design and stability analysis from

an overall perspective of the closed-loop system
with the dynamic coupling considered.

(2) The attitude controller and the active vibration con-
troller are derived by using the PPCdesign process,
such that the attitude error canobtain the prescribed
dynamic and steady-state control performance and
the modal coordinate of the flexible vibration can
be always kept within the prescribed constraint
bounds to achieve expected vibration attenuation
effect.

(3) Previous researches on PPC usually depend on the
assumption that all states are available formeasure-
ment. Since neither the modal coordinate nor the
modal velocity can be measured, this work intro-
duces a modal observer to make the estimation and
try to constrain the observed variables to achieve
the similar constraint effect on the actual modal
coordinate, which provides a solution to the PPC
problem without measured states. Specifically, the
actual modal coordinate of each controlled mode
can be driven to stay in a certain range with the
attenuation rate no less than a prespecified value.

The remainder of this research is organized as follows:
The mathematical models of the flexible spacecraft
with piezoelectric actuators and the control objective
are given in Sect. 2. Section 3 presents the design pro-
cedures of the proposed prescribed performance con-
trollers and the stability analysis of the closed-loop
system. Section 4 provides the numerical simulation
results in different cases to verify the approach, fol-
lowed by the conclusions summarized in Sect. 5.

2 Preliminaries

Let In ∈ Rn×n denote the n-by-n identity matrix. Let
|| · || stand for the Euclidean norm or its induced matrix
2-norm. λmin(·) and λmax(·), respectively, represent the
minimum and maximum eigenvalues of the matrix in
brackets. Specifically, || · ||1 represents the induced
matrix 1-norm and λ+

max(·) represents the maximum
positive eigenvalue of the matrix in brackets.

2.1 Flexible spacecraft attitude dynamics

Assume that the thin, homogeneous, and isotropic
piezoelectric films are attached on the surface of the
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flexible appendages as actuators. The dynamic equa-
tions of the spacecraft can be expressed as [22]

Jω̇ + ω×Jω + Fs η̈ + ω×Fs η̇ = u + d (1)

η̈ + 2ξ�η̇ + �2η + FT
s ω̇ = −Faup. (2)

Equation (1) is the attitude dynamic equation, where
ω = [ω1 ω2 ω3 ]T ∈ R3 denotes the angular velocity
vector of the spacecraft body-fixed frame with respect
to an inertial frame expressed in the body-fixed frame,
J ∈ R3×3 denotes the positive definite symmetric iner-
tia matrix of the whole spacecraft, u and d ∈ R3 denote
the control torque vector commanded by the controller
and the external environmental disturbance torque vec-
tor, respectively, η ∈ Rn denotes the n-dimension
modal coordinate vector, and Fs ∈ R3×n denotes the
coupling matrix between the flexible appendages and
the rigid body. Equation (2) is the modal equation,
where ξ and � are n-dimensional diagonal matrices
representing the corresponding damping ratio matrix
and the natural frequency matrix, respectively, Fa ∈
Rn×m is a couplingmatrix associatedwith the structural
characteristics of the appendage and themounting posi-
tion of the m piezoelectric actuators, and up ∈ Rm is
them-dimensional piezoelectric input voltage. For any
three-dimensional vector ν = [ ν1 ν2 ν3 ]T, the symbol

ν× denotes the following skew-symmetric matrix:

ν× =
⎡
⎢⎣
0 − ν3 ν2

ν3 0 − ν1

− ν2 ν1 0

⎤
⎥⎦ .

The modified Rodrigues parameters (MRPs) are used
to perform the attitude description of the spacecraft.
Let σ = φ tan(ϕ/4) = [σ1, σ2, σ3]T ∈ R3 represent
the MRPs, where φ ∈ R3 is the Euler axis, ϕ is the
Euler angle, and σi (i = 1, 2, 3) denotes the MRP of
each axis. The kinematic equation is given as [41]

σ̇ = G(σ )ω, (3)

where G(σ ) = 1
4 [(1 − σTσ )I3 + 2σσT + 2σ×].

Remark 1 Note that MRPs have a singularity problem
when ϕ = ± 2π rad. However, the original MRPs can
be switched to its shadow set σ s = − σ/(σTσ ) when
σTσ > 1, which guarantees the global rotation repre-
sentation without singularity. Therefore, the combined
set of the original and shadow MRPs may provide a
bounded attitude representation [42]. In this study, to
avoid using the shadow set σ s and simplify the control
design process, we limit the range of the Euler angle ϕ

to [−π, π ] rad (i.e., σTσ ≤ 1).

2.2 Attitude error dynamics

Denote σ d = [σd1, σd2, σd3]T ∈ R3 and ωd ∈ R3 as
the desired attitudeMRPs and desired angular velocity.
The attitude error MRPs σ e = [σe1, σe2, σe3]T ∈ R3 is
defined as [42]

σ e = σ ⊗ σ−1
d

= σ d(σ
Tσ − 1) + σ (1 − σT

dσ d) + 2σ×
d σ

1 + σT
dσ dσTσ + 2σT

dσ
. (4)

The error angular velocity ωe = ω − ωr , where ωr =
R̃(σ e)ωd and R̃(σ e) is the coordinate transformation
matrix from the desired body-fixed frame to the body-
fixed frame described by σ e, where

R̃(σ e) = I3 − 4(1 − σT
e σ e)

(1 + σT
e σ e)2

σ×
e

+ 8

(1 + σT
e σ e)2

(σ×
e )2. (5)

Further, we have

ω̇r = R̃(σ e)ω̇d + ˙̃R(σ e)ωd = R̃(σ e)ω̇d

−ω×
e R̃(σ e)ωd . (6)

Let C = 2ξ� and K = �2 represent the damping and
stiffness matrices, respectively. ψ = FT

s ωe + η̇ repre-
sents the difference between the total modal velocity
FT
s ω + η̇ and the reference modal velocity FT

s ωr [22].
Combining Eqs. (1)–(5), one can obtain the attitude
error dynamic equations as

Jmω̇e = −ω×Jmωe − ω×Jωr − FsCFT
s ωe − Jmω̇r

+Fs(Kη + Cψ) − ω×Fsψ

+FsFaup + u + d

σ̇ e = G(σ e)ωe (7)[
η̇

ψ̇

]
= A

[
η

ψ

]
− ABFT

s ωe − BFT
s ω̇r − BFaup (8)

where Jm = J − FsFT
s , G(σ e) = 1

4 [(1 − σT
e σ e)I3 +

2σ eσ
T
e + 2σ×

e ], A =
[

0 In

−K −C

]
, and B =

[
0
In

]
.

2.3 Control objective

To proceed further, the following basic assumptions are
required in this study:

Assumption 1 The desired attitudeMRPs σ d , angular
velocity ωd , and their first-order time derivatives are
known and bounded for all t ≥ 0.
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Assumption 2 The attitude MRPs σ and the angular
velocity ω are available for measurement.

Assumption 3 The number of the piezoelectric actu-
ators should be equal to the order of the controlled
modes, such that the coupling matrix Fa is invertible.

The control objective can be expressed as follows:
Design the attitude controller u and the active vibra-
tion controller up, such that the error MRPs σ e and the
modal coordinate η can converge to zero with the pre-
scribed transient and steady-state performance, respec-
tively.

3 Prescribed performance controllers design and
stability analysis

In this section, the attitude controller and the active
controller are proposed based on PPC design process
with the stability of the whole closed-loop system ana-
lyzed by the Lyapunov theory. It should be noted that
the controllers can be derived from the process of the
Lyapunov stability analysis.

3.1 Attitude controller design

To achieve the control objective, we expect to solve the
constrained problem as

− δiρi (t) < σei (t) < δ̄iρi (t), (9)

where δi and δ̄i (i = 1, 2, 3) are constantswhich belong
to the set (0, 1]. ρi (t) is a designed function, which will
be utilized to describe the envelope of σei (t). In order
to present a simple and intuitive expression, ρi (t) is
commonly chosen as the following consistently posi-
tive and exponentially decaying form [32]:

ρi (t) = (ρi0 − ρi∞)e−ki t + ρi∞, (10)

where ρi0, ρi∞, and ki are prespecified positive con-
stants. According to the performance function Eq. (10)
and the constraint Eq. (9), it can be found that if the ini-
tial valueσei (0) is located in the set (− δiρi0, δ̄iρi0), the
behaviors of σei (t) should be completely determined
by the properties of ρi (t), that is, the decreasing rate ki
of ρi (t) provides the minimum convergence speed of
σei (t), δiρi0 (or δ̄iρi0) represents the upper bound of
the maximum overshoot of the transient response, and
the terminal valueρi∞ denotes themaximumallowable

error of σei (t) at the steady state. Thus, the expected
performance can be obtained by designing δi , δ̄i , and
ρi (t) properly.

Since it is difficult to find a solution of the con-
strained problem (9), a new error variable εi (t) ∈
(−∞,+∞) is introduced to make the error transfor-
mation according to the PPC design process [32]:

εi (t) = 1

2
ln

zi (t) + δi

δ̄i − zi (t)
, (11)

where zi (t) = σei (t)/ρi (t). Note that if εi (t) is
bounded, the constraint Eq. (9) can hold, which means
the control objective is obtained. Consequently, design-
ing the controller to keep εi (t) bounded becomes the
control problem to be solved.

To move forward, define a sliding variable si (t) as

si = ciεi + ε̇i , (12)

where ci > 0 are constants to be selected. Taking the
time derivative of si to establish a new error system, we
have

ṡi = ci ε̇i + ε̈i = vi + ri σ̈ei , (13)

where ri = (∂ε−1
i /∂zi )/ρi > 0 and vi = (ciri +

ṙi )(σ̇ei−σei ρ̇i/ρi )−ci (σ̇ei ρ̇i+σei ρ̈i )/ρi+ciσei ρ̇2
i /ρ

2
i .

σ̈ei can be obtained from the attitude error dynamicsEq.
(7), where the second-order time derivative of σ e is

σ̈ e = Ġ(σ e)ωe + G(σ e)ω̇e

= Ġ(σ e)ωe + G(σ e)J−1
m [−ω×Jmωe − ω×Jωr

−FsCFT
s ωe − Jmω̇r + Fs(Kη + Cψ)

−ω×Fsψ + FsFaup + u + d]. (14)

Further, rewrite Eq. (13) into a compact form as

ṡ = cε̇ + ε̈ = V + R[F + Hu + HFsFaup

+HFs(Kη + Cψ) − Hω×Fsψ + D] (15)

where ε = [ε1, ε2, ε3]T, c = diag[c1, c2, c3], R =
diag[r1, r2, r3], V = [v1, v2, v3]T, H = G(σ e)J−1

m ,
F = Ġ(σ e)ωe −H(ω×Jmωe +ω×Jωr +FsCFT

s ωe +
Jmω̇r ), and D = Hd. Now, if we force s of the error
system Eq. (15) to be bounded, then it is known from
Eq. (12) that εi and ε̇i are bounded.

Consider that there are only piezoelectric actuators
to control themodal vibration but no sensors tomeasure
the modal variables. A modal observer is designed to
obtain the modal coordinate and velocity according to
the modal dynamics Eq. (8):
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[ ˙̂η
˙̂
ψ

]
= A

[
η̂

ψ̂

]
− ABFT

s ωe − BFT
s ω̇r

+P−1

[(
sTHFsK

)T
(
sTH(FsC − ω×Fs)

)T
]

− BFaup,

(16)

where η̂ and ψ̂ are the estimation of η and ψ , respec-
tively. P is a positive definite diagonal gain matrix and

can be denoted as a block matrix P =
[
P11 0

0 P22

]
,

where P11 and P22 are n-dimensional diagonal matrix,
respectively.

Moreover, an adaptive estimation approach is ado-
pted to deal with the disturbance which satisfies the
following assumption.

Assumption 4 The disturbance termD is unknownbut
bounded with ||D|| ≤ d̄.

The attitude controller can be proposed as

u = H−1
[
−R−1V − F − K1s − HFsFaup

−HFs(Kη̂+Cψ̂)+Hω×Fsψ̂ − ˆ̄dtanh
(
s
μ

)]

(17)

with the adaptive law to estimate the upper bound d̄ of
the disturbance D:
˙̄̂
d = 1

α

[
sTtanh

(
s
μ

)
− β ˆ̄d

]
(18)

where K1 > 0 is a control gain matrix, ˆ̄d is the estima-
tion of d̄, α, β, μ > 0 are adaptive gain constants, and

tanh
(

s
μ

)
=
[
tanh

(
s1
μ

)
, tanh

(
s2
μ

)
, tanh

(
s3
μ

)]T
.

3.2 Active vibration controller design

Similar to the design idea of constraining the space-
craft attitude, each flexible mode is expected to be
restricted to a certain range as well. Consider that we
can only obtain the estimations of the modal variables
frommodal observer (16) rather than themeasuredones
from sensors. Thus, the modal coordinate estimation η̂

will be constrained instead of the actual modal coordi-
nate η. Furthermore, it can be proved that by constrain-
ing η̂, η is also constrained indirectly.

Inspired by [43], the sliding variables containing
both estimations of the modal coordinate and velocity
are introduced:

saj = ca1 j η̂ j + ψ̂ j + ca2 j

∫ t

0
η̂ j (τ )dτ , (19)

where j = 1, 2, . . . , n represents the modal order,
ca1 j , ca2 j > 0 represent the designed constants, η̂ j

and ψ̂ j represent the j th order modal value of η̂ and ψ̂ ,
respectively. By using the performance bound ρaj , the
variable saj is required to satisfy the constraint

− ρaj < saj < ρaj . (20)

It can be obtained from the following lemmas that con-
straining saj is equivalent to constraining η j .

Lemma 1 [44] Consider the second-order nonhomo-
geneous linear differential equationwith constant coef-
ficients with respect to time

ÿ(t) + p1 ẏ(t) + p2y(t) = f (t), (21)

where the nonhomogeneous term f (t) is an arbitrary
continuous function. If its characteristic equation has
two different real roots λ1 and λ2, then the general
solution of Eq. (21) can be given as

y(t) = C1e
λ1t + C2e

λ2t + 1

λ1 − λ2

×
[
eλ1t

∫ t

0
f (τ )e−λ1τdτ − eλ2t

∫ t

0
f (τ )e−λ2τdτ

]
,

(22)

where C1 = [ẏ(0) − λ2y(0)]/(λ1 − λ2) and C2 =
[λ1y(0) − ẏ(0)]/(λ1 − λ2).

Lemma 1 is used to support the proof of Lemma 2.

Lemma 2 Consider the variable saj in Eq. (19) obtai-
ned by modal observer (16)with the performance func-
tion ρaj = (ρaj0 − ρaj∞)e−kaj t + ρaj∞. If the fol-
lowing conditions are satisfied: 1) attitude error vari-
ables σ e, ωe, s, and the observation error ηe = η − η̂

are bounded, 2) Eq. (20) holds, and 3) the constant
gains ca1 j and ca2 j are chosen as c2a1 j > 4ca2 j and
λa2 j < λa1 j < − kaj , respectively, then the modal
coordinate η j will eventually converge to the set

Nη =
{
ηi ∈ R : |ηi | ≤ ρaj∞+q̄

ca1 j
+ ρaj∞+q̄

λa1 j − λa2 j
+η̄

}

(23)

with the convergence rate no less than e−kaj t , where

λa1 j =
(
−ca1 j +

√
c2a1 j − 4ca2 j

)
/2, λa2 j =(

−ca1 j −
√
c2a1 j − 4ca2 j

)
/2. q̄ and η̄ > 0 denote

the bound of Q = FT
s ωe − P−1

11

(
sTHFsK

)T
and ηe,

respectively.
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The proof of Lemma 2 is given in “Appendix A.”
To proceedwith the active controller design, an anal-

ogous error transformation as Eq. (11) is provided:

εaj = 1

2
ln

zaj + 1

1 − zaj
, (24)

where zaj = saj (t)/ρaj (t). The objective is to keep εaj
bounded. The time derivative of εaj is

ε̇aj = ∂ε−1
aj

∂zaj
· ża j

= raj (ṡa j − vaj sa j ), (25)

where raj = (∂ε−1
aj /∂zaj )/ρaj > 0 and vaj = ρ̇aj/ρaj .

Rewriting Eq. (25) as a compact form and according to
Eqs. (16) and (19), we obtain the error system of the
active vibration control

ε̇a = Ra(ṡa − Vasa)

= Ra(ca1 ˙̂η + ˙̂
ψ + ca2η̂ − Vasa)

= Ra

{
(ca1 − C)ψ̂ − ca1FT

s ωe + ca1P
−1
11 (sTHFsK)T + (ca2 − K)η̂

+CFT
s ωe − FT

s ω̇r + P−1
22

[
sTH(FsC − ω×Fs)

]T − Faup − Vasa

}
(26)

where Ra = diag[ra1, . . . , ran], λa = diag[λa1, . . . ,
λan], Va = diag[va1, . . . , van], ca1 = diag[ca11, . . . ,
ca1n], and ca2 = diag[ca21, . . . , ca2n]. Then, based on
Assumption 3, the active controller can be proposed as

up = F−1
a

{
(ca1 − C)ψ̂ − ca1FT

s ωe + ca1P
−1
11 (sTHFsK)T + (ca2 − K)η̂

+CFT
s ωe − FT

s ω̇r + P−1
22

[
sTH(FsC − ω×Fs)

]T − Vasa + R−1
a K2εa

}
(27)

where K2 > 0 is a control gain matrix.

3.3 Closed-loop stability analysis

The stability of the entire closed-loop system under the
action of the proposed control strategies is analyzed.
First, we present an additional lemma.

Lemma 3 [45]: For any μ > 0 and for any x ∈ R, the
following inequality holds

0 ≤ |x | − x tanh
x

μ
≤ κμ, (28)

where κ is a constant which satisfies κ = exp(−κ −1),
i.e., κ = 0.2758.

When summarizing the results in Sects. 3.1 and 3.2,
a theorem can be proposed as follows:

Theorem 1 Consider the flexible spacecraft attitude
system described by Eqs. (7) and (8) under the Assump-
tions 1–4 with the modal observer (16) to estimate the
modal variables, which are transformed into the error
systems (15) and (26) by the error transformations (11)
and (24). If the attitude controller, the active vibra-
tion controller, and the adaptive law are designed as
Eqs. (17), (27), and (18), while the gain parameters
K1, K2, P, ca1 j , ca2 j , α, β, μ are chosen to satisfy cer-
tain conditions, then the corresponding error variables
in the closed-loop system are bounded, and σei and
ηi will obtain prescribed convergence performances,
respectively.

Proof Choose a Lyapunov candidate which is made up
of four components as

V = V1 + V2 + V3 + V4, (29)

where

V1 = 1

2
sTR−1s

V2 = 1

2

[
ηTe ψT

e

]
P

[
ηe

ψe

]

V3 = 1

2
εTaεa

V4 = 1

2
αd̃2

with ψe = ψ − ψ̂ and d̃ = d − d̂. Taking the time
derivatives of V1, V2, V3, and V4 along the trajectories
of the systems (15), (8), and (26) while substituting
the controller (17), the modal observer (16), the active
controller (27), and the adaptive law (18) into them,
respectively, one has
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V̇1 = sTR−1ṡ + 1

2
sTṘ−1s

= sT
[
HFs(Kηe + Cψe) − Hω×Fsψe

+D − ˆ̄dtanh
(
s
μ

)
− K1s

]
+ 1

2
sTṘ−1s

= − sTK1s + 1

2
sTṘ−1s + sT[HFsK H(FsC−ω×Fs) ]

[
ηe

ψe

]
+ sT

[
D − ˆ̄dtanh

(
s
μ

)]
, (30)

where the symbol R−1 denotes R−1.

V̇2 =
[
ηTe ψT

e

]
P

[
η̇e

ψ̇e

]

= [
ηTe ψT

e

]
P

{
A

[
ηe

ψe

]
+ P−1

[(
sTHFsK

)T
(
sTH(FsC − ω×Fs)

)T
]}

=
[
ηTe ψT

e

]
PA

[
ηe

ψe

]

+
[
ηTe ψT

e

] [ (HFsK)T

(
H(FsC − ω×Fs)

)T
]
s (31)

V̇3 = εTa ε̇a

= εTaRa

{
(ca1 − C)ψ̂ − ca1FT

s ωe + ca1P
−1
11 (sTHFsK)T + (ca2 − K)η̂

+CFT
s ωe − FT

s ω̇r + P−1
22

[
sTH(FsC − ω×Fs)

]T − Faup − Vasa

}

= − εTaK2εa (32)

V̇4 = −αd̃
˙̄̂
d

= − d̃sTtanh
(
s
μ

)
+ βd̃ ˆ̄d. (33)

Further,we combineEqs. (30)–(33) and substitute them
into the derivative of the Lyapunov function V

V̇ = V̇1 + V̇2 + V̇3 + V̇4

= − sTK1s + 1

2
sTṘ−1s + [

ηTe ψT
e

]
PA

[
ηe

ψe

]

− εTaK2εa + sTD − d̄sT(tanh)

(
s
μ

)
+ βd̃ ˆ̄d.

(34)

Utilizing Lemma 3 yields

sTD − d̄sTtanh
(
s
μ

)
≤ ||s|| · ||D|| − d̄sTtanh

(
s
μ

)

≤ d̄||s||1 − d̄sTtanh
(
s
μ

)

= d̄
3∑

i=1

(
|si | − si tanh

si
μ

)

≤ 3d̄κμ. (35)

Moreover, according to the Young inequality, we have

βd̃ ˆ̄d = βd̃ d̄ − βd̃2

≤ β

(
1

2
d̃2 + 1

2
d̄2
)

− βd̃2

= − 1

2
βd̃2 + 1

2
βd̄2. (36)

Therefore, when substituting Eqs. (35) and (36) into
Eq. (34), it follows that

V̇ ≤ − sTK1s + 1

2
sTṘ−1s + [

ηTe ψT
e

]
PA

[
ηe

ψe

]

− εTaK2εa − 1

2
βd̃2 + 3d̄κμ + 1

2
βd̄2

≤ − τ1sTs − τ2
[
ηTe ψT

e

] [ηe

ψe

]
− τ3ε

T
aεa

−τ4d̃
2 + γ, (37)

where γ = 3d̄κμ + 0.5βd̄2 > 0. If we choose appro-
priate control gains K1, P, K2, β, and μ, such that the
following conditions are fulfilled

τ1 = λmin(K1) − λ+
max(Ṙ−1) > 0

τ2 = λmin(−PA) > 0

τ3 = λmin(K2) > 0

τ4 = 1

2
β > 0, (38)

then the transformed errors s and εa , the modal obser-
vation errors ηe andψe, and the disturbance estimation
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Fig. 1 Schematic of the
proposed control system

error d̃ are bounded, while, respectively, converging to
the sets

N1 =
{
s ∈ R3 : ‖s‖ ≤ √

γ /τ1

}

N2 =
{[

ηTe ψT
e

]T ∈ R2n :
∥∥∥[ηTe ψT

e

]T∥∥∥ ≤ √
γ /τ2

}

N3 =
{
εa ∈ Rn : ‖εa‖ ≤ √

γ /τ3

}

N4 =
{
d̃ ∈ R :

∣∣∣d̃
∣∣∣ ≤ √

γ /τ4

}
. (39)

From Eq. (12), it can be further derived that εi is
bounded with respect to the set

Nε =
{
εi ∈ R : |εi | ≤ √

γ /τ1/ci
}

. (40)

Hence, the performance constraint Eq. (9) can hold,
which means the error MRPs σ e can converge to zero
with the prescribed transient and steady-state perfor-
mance. Meanwhile, Eq. (20) is satisfied. Consider that
σ e, ωe, s, and ηe are bounded, while Eq. (20) holds.
After choosing ca1 j and ca2 j to meet the inequality
conditions c2a1 j > 4ca2 j and λa2 j < λa1 j < −kaj ,
the modal coordinate η j will obtain prescribed conver-
gence performance by using Lemma 2. �	

Finally, the control objective presented in Sect. 2.3
is accomplished.

Remark 2 It should be pointed out that owing to
Lemma 2, the boundedness of modal coordinate η is
guaranteed indirectly by driving εa to be bounded.
Thus, in the stability analysis, the Lyapunov function
related to the modal system (8), for example,

V5 = 1

2

[
ηT ψT ]P2

[
η

ψ

]

has been actually contained in V3, such that it can be
omitted.

Table 1 Simulation parameters

Parameters Values

J (kgm2)

⎡
⎣
420.8 3.6 − 4.2
3.6 410.6 9.4
− 4.2 9.4 690.7

⎤
⎦

� (rad/s) diag[0.379; 1.042; 1.331] × 2π

ξ diag[0.005; 0.005; 0.005]

Fs (kg1/2 m)

⎡
⎣
2.620 − 0.001 − 0.001
0.007 0.124 0.437
− 0.003 − 2.730 − 0.051

⎤
⎦

Fa (kg1/2 m/(kV s2))

⎡
⎣
70.26 − 4.23 2.34
4.80 31.93 1.24
− 1.05 2.55 29.84

⎤
⎦

The structure of the attitude and vibration control
system with the proposed control approaches is illus-
trated in Fig. 1.

4 Simulation results

To evaluate the effectiveness of the proposed meth-
ods, numerical simulations are performed on a flexible
spacecraft model. The main parameters of the inertia
and the flexible appendage are given in Table 1. We try
to control the first three flexible modes (i.e., n = 3).

Assume that the flexible spacecraft is running in an
orbit with the altitude of 500 km such that the total
environmental disturbance torque d (N·m) is assumed
as

d = 4.5 × 10−3

⎡
⎣
cos(ω0t) + 1
cos(ω0t) + sin(ω0t)
sin(ω0t) + 1

⎤
⎦ , (41)
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Table 2 Parameters of
performance functions of
the varying angular velocity
tracking case

Parameters ρ0 ρ∞ k δ̄ δ

ρi 0.1 5 × 10−5 0.1 1 1

ρaj 0.01 1 × 10−5 0.1 / /

Table 3 Parameters of the proposed controllers of the varying angular velocity tracking case

Parameters P1 c ca1 ca2 K1 K2 α β μ

Values 2000I6 0.125I3 diag[10; 80; 100] diag[10; 15; 20] 0.001I3 0.04I3 10 0.01 0.5

whereω0 ≈ 0.0011 rad/s represents the orbital angular
velocity.

The simulations are carried out in the following four
cases.

4.1 Attitude tracking with varying angular velocity

In some missions, the spacecraft is required to track
certain targets, such as other spacecraft and the shore-
lines of the earth. In this section, the attitude control
performance is verified by the simulation of track-
ing a desired time-varying angular velocity ωd =
[sin(0.1t), 0.5 sin(0.1t),− sin(0.1t)]T ◦/s. The initial
states are given as σ d(0) = [0, 0, 0]T, σ (0) =
[0.0389, 0.0560,− 0.0389]T, and ω(0) = [0, 0, 0]T
◦/s. The parameters of the performance functions (PFs)
and the controllers are presented in Tables 2 and 3,
respectively. In order to better illustrate the effective-
ness of the attitude controller and the active vibra-
tion controller, the results with no active control (i.e.,
up = 0) are simultaneously provided for comparison,
which will be denoted as “ac-on” and “ac-off” to dis-
tinguish between whether the active control is used or
not.

Remark 3 In practical application, the parameters of
the performance functions should normally be chosen
according to the performance requirements, i.e., the
overshoot limit, the minimum convergence rate, and
the maximum allowable steady-state error.

The simulation results are shown in Figs. 2, 3, 4, 5,
and 6.

Figures 2, 3, and 4 show the comparative results of
error MRPs, control torque, and the modal coordinate
whether the active vibration controller (27) is intro-
duced or not. It can be seen from Fig. 2 that the error
MRPs in both cases are coincidence and can always

0 10 20 30 40 50 60 70
-0.1

0

0.1

Time (s)

σ e
1

ac-on
ac-off
PF

(a) 

0 10 20 30 40 50 60 70
-0.1

0

0.1

Time (s)

σ e
2

ac-on
ac-off
PF

(b) 

0 10 20 30 40 50 60 70
-0.1

0

0.1

Time (s)

σ e
3

ac-on
ac-off
PF

(c) 

Fig. 2 Error MRPs σ e with or without active control: a σe1, b
σe2, and c σ e3

maintain between the prescribed bounds defined by the
performance function with an acceptable dynamic and
steady-state response, which means that the proposed

123



Prescribed performance adaptive attitude tracking control 1919
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Fig. 3 Control torque u with or without active control: a u1, b
u2, and c u3

attitude controller (17)–(18) is sufficient to obtain the
expected attitude tracking performance and has certain
robustness to handle the influence of the flexible vibra-
tion. FromFigs. 3 and 4, we can find that when utilizing
the active controller (27), the vibration induced by the
attitude motion can be greatly suppressed to a certain
small range with a fast attenuation rate and the control
torque can be smoothed so that the burden on the actua-
tors of the spacecraft could bemoderated. Figures 5 and
6 show the corresponding attitude Euler angle, angular
velocity, and modal estimation errors. From Fig. 5, one
can have amore intuitive understanding that the attitude
tracking mission is well accomplished. As shown in
Fig. 6, the modal estimation errors are relatively small

0 10 20 30 40 50 60 70
-5

0

5
x 10

-3

η 1

Time (s)

ac-on ac-off
(a) 

0 10 20 30 40 50 60 70
-4
-2
0
2
4
6
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-4

η 2
Time (s)

ac-on ac-off
(b) 
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-5

0

5

10

x 10
-5

η 3

Time (s)

ac-on ac-off

(c) 

Fig. 4 Modal coordinate η with or without active control: a η1,
b η2, and c η3

and tend to converge, which verifies the effect of the
modal observer.

4.2 Attitude tracking with zero angular velocity

In order to execute the mission of earth orientation and
observation, the fast and accurate attitude maneuver
is needed. This section conducts the simulation with
the desired angular velocity ωd = [0, 0, 0]T deg/s,
which is equivalent to the case of rest-to-rest maneu-
ver. The spacecraft is supposed to rotate from the ini-
tial attitude σ (0) = [0.1965, 0.2231,− 0.0773]T to the
desired attitude σ d = [0, 0, 0]T with the initial angu-
lar velocity ω(0) = [0, 0, 0]T deg/s. The parameters
of the performance functions and the controllers are
presented in Tables 4 and 5, respectively.
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Fig. 5 Attitude Euler angle and angular velocity ω of the pro-
posed scheme
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Fig. 6 Modal estimation errors ηe and ψe of the proposed
method

Table 4 Parameters of performance functions of the zero angu-
lar velocity tracking case

Parameters ρ0 ρ∞ k δ̄ δ

ρi 0.4 5 × 10−5 0.1 1 1

ρaj 0.01 1 × 10−5 0.1 – –

The simulation results are shown in Figs. 7, 8, 9, 10,
11, and 12.

Figure 7 shows the response of the error MRPs. It
can be seen that in this case the error MRP σei can
also keep between the prescribed performance bounds,
and converges smoothly toward the equilibrium point,
which means the attitude maneuver is effectively com-
pleted with the preassigned performance. Figures 8, 9,
and 10 provide the responses of attitude Euler angle,
angular velocity, and control toque which clearly illus-
trate the maneuver process. From Fig. 8, we find that
the attitude angle can converge to the accuracy range
of 5 × 10−4 deg within 60 s. Figures 11 and 12 show
the modal coordinates and the modal estimation errors,
which demonstrate that the excited vibration can be
suppressed effectively, while the modal variables can
be estimated accurately.

4.3 Attitude control under modal parameter
uncertainties

It should be noted that the modal observer is used in the
controller design, which highly depends on the accu-
racy of the modal parameters. This section considers a
situation that the modal parameters are measured inac-
curately or changed under some certain circumstances.
Suppose that there exist± 10%parameter uncertainties
as shown in Table 6. The simulation conditions as well
as the parameters of the performance functions and the
controllers are exactly the same as in Sect. 4.2.

Remark 4 During the simulation, the nominal values
in Table 6 which are taken from Table 1 will be used in
the designed controller, while the actual values will be
adopted in the flexible spacecraft model.

Figures 13, 14, 15, and 16 show the responses of
the error MRPs, control torque, modal coordinate, and
modal estimation errors under modal parameter uncer-
tainties. Comparing with the results of the zero angular
velocity tracking case in Sect. 4.2, we can find out that
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Table 5 Parameters of the proposed controllers of the zero angular velocity tracking case

Parameters P1 c ca1 ca2 K1 K2 α β μ

Values 2000I6 0.125I3 100I3 20I3 0.001I3 0.04I3 10 0.01 0.5
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Fig. 7 Error MRPs σ e of the zero angular velocity tracking case
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Fig. 8 Attitude Euler angle of the zero angular velocity tracking
case

although themodal estimations become relatively inac-
curate owing to the uncertain modal parameters, the
error MRPs can still stay between the prescribed per-
formance bounds with a well dynamic process and the
modal coordinate remains small with the tendency of
convergence. That means the proposed control scheme
is robust to deal with a certain degree of modal param-
eter uncertainties.
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Fig. 9 Angular velocity ω of the zero angular velocity tracking
case
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Fig. 10 Control torque u of the zero angular velocity tracking
case

4.4 Attitude control under measurement noise

For practical engineering application, the attitude sen-
sor noises are considered, which are modeled as zero-
mean Gaussian random variables [46]. Thus, one has
the measurement equation

σmi (t) = σi (t) + N
(
0, σ 2

p

)
, (42)
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Fig. 11 Modal coordinate η of the zero angular velocity tracking
case
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Fig. 12 Modal estimation errors ηe and ψe of the zero angular
velocity tracking case

Table 6 Modal parameter uncertainties

Modal parameters Nominal
values

Actual values

Frequency (rad/s) � (1 − 10%)�

Damping ratio ξ (1 − 10%)ξ

Coupling coefficient
(kg1/2 m)

Fs (1 + 10%)Fs
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Fig. 13 Error MRPs σ e under modal parameter uncertainties
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Fig. 14 Control torque u under modal parameter uncertainties

where σmi (t) represents themeasurement from the atti-
tude sensor, σi (t) represents the attitude true value,
N (0, σ 2

p) represents a zero-mean Gaussian white noise
with the variance σ 2

p : 0.0001 (1σ).
Since there is no filtering process, the parameters

of the performance functions are redesigned to accom-
modate the influence of the noises (see Table 7 where
the steady-state constraint ρi∞ is relaxed). The simu-
lation conditions and the parameters of the controllers
are also taken from Sect. 4.2.

The simulation results are shown in Figs. 17 and 18.
It can be seen that the attitude and vibration control
objectives are also achieved with the control accuracy
better than 1.5 × 10−5, which illustrates the effective-
ness of the proposed strategy undermeasurement noise.
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Fig. 15 Modal coordinate η under modal parameter uncertain-
ties
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Fig. 16 Modal estimation errors ηe andψe under modal param-
eter uncertainties

Table 7 Parameters of performance functions of the zero angu-
lar velocity tracking case

Parameters ρ0 ρ∞ k δ̄ δ

ρi 0.4 5 × 10−3 0.1 1 1

ρaj 0.01 1 × 10−5 0.1 – –

0 10 20 30 40 50 60 70
-0.4

-0.2

0

0.2

0.4

Time (s)

σ e

σe1

σe2

σe3

PF

60 65 70
0
5

10
15

x 10-6

Fig. 17 Error MRPs σ e under measurement noise
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Fig. 18 Modal coordinate η under measurement noise

5 Conclusion

A control scheme which aims at solving both attitude
and active vibration control problems has been inves-
tigated based on the idea of prescribed performance
under the influence of external disturbances.When con-
sidering that the modal variables are unmeasured, a
modal observer is introduced to acquire the estimated
values. Further, by using the estimatedmodal variables,
an attitude controller is designed with an adaptive law
to address the upper bound of the disturbances. More-
over, an active vibration controller is constructed to
suppress the flexible vibration excited by the attitude
motions. The rigorous stability analysis of the whole
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closed-loop control system is carried out by the Lya-
punov theory. Finally, numerical simulations in differ-
ent cases illustrate that the proposed control method is
effective on both attitude control and vibration attenu-
ation and have certain robustness to modal parameter
uncertainties. Future works will concern the actuator
saturation problem of the attitude control.
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Appendix A: The proof of Lemma 2

Proof According to the modal observer (16), we com-
bine saj into a compact form as

sa = ca1η̂ + ψ̂ + ca2

∫ t

0
η̂(τ )dτ

= ca1η̂+ ˙̂η+ca2

∫ t

0
η̂(τ )dτ +FT

s ωe

−P−1
11 (sTHFsK)T. (43)

Let
∫ t
0 η̂ j (τ )dτ = χ j andQ = FT

s ωe−P−1
11 (sTHFsK)T

= [q1, q2, . . . , qn]T. Owing to the boundedness of σ e,
ωe, and s, one knows that Q is bounded. Denote q̄ as
the bound of Q, then ||Q|| ≤ q̄ as well as |q j | ≤ q̄ . Eq.
(19) can be rewritten as

χ̈ j + ca1 j χ̇ j + ca2 jχ j = saj − q j . (44)

Given that c2a1 j > 4ca2 j , the solution of the second-
order nonhomogeneous linear differential equation
(44) with the initial conditions χ j (0) = 0 and χ̇ j (0) =
η̂ j (0) is obtained based on Lemma 1

χ j = η̂ j (0)

λa1 j − λa2 j
eλa1 j t − η̂ j (0)

λa1 j − λa2 j
eλa2 j t

+ 1

λa1 j − λa2 j

[
eλa1 j t

∫ t

0
(saj − q j )e

−λa1 j τdτ

− eλa2 j t
∫ t

0
(saj − q j )e

−λa2 j τdτ

]
, (45)

where λa1 j and λa2 j are the unequal real character-
istic roots of Eq. (44). Assume that λa1 j > λa2 j ,

we have λa1 j =
(
−ca1 j +

√
c2a1 j − 4ca2 j

)
/2 and

λa2 j =
(
−ca1 j −

√
c2a1 j − 4ca2 j

)
/2. Taking the

absolute value on both sides of Eq. (45) yields

|χ j | ≤ |η̂ j (0)|
λa1 j − λa2 j

eλa1 j t + |η̂ j (0)|
λa1 j − λa2 j

eλa2 j t

+ 1

λa1 j − λa2 j[
eλa1 j t

∫ t

0
(|saj | + |q j |)e−λa1 j τdτ

+ eλa2 j t
∫ t

0
(|saj | + |q j |)e−λa2 j τdτ

]
. (46)

Since |saj | < ρaj = (ρaj0 − ρaj∞)e−kaj t + ρaj∞,
|q j | ≤ q̄ , and λa2 j < λa1 j < −kaj , then

|χ j | ≤ |η̂ j (0)|
λa1 j − λa2 j

eλa1 j t + |η̂ j (0)|
λa1 j − λa2 j

eλa2 j t

+ 1

λa1 j − λa2 j

{
eλa1 j t

∫ t
0 [(ρaj0 − ρaj∞)e(−λa1 j−kaj )τ + (ρaj∞ + q̄)e−λa1 j τ ]dτ

+eλa2 j t
∫ t
0 [(ρaj0 − ρaj∞)e(−λa2 j−kaj )τ + (ρaj∞ + q̄)e−λa2 j τ ]dτ

}

≤ 1

λa1 j − λa2 j

[
2|η̂ j (0)| − ρaj0 − ρaj∞

λa1 j + kaj
− ρaj0 − ρaj∞

λa2 j + kaj

]
e−kaj t + ρaj∞ + q̄

λa1 j − λa2 j
· caj1
caj2

. (47)

From Eq. (44), one can obtain

˙̂η j + ca1 j η̂ j = saj − q j − ca2 jχ j . (48)

Solving the first-order linear differential equation with
respect to η̂ j , we have

η̂ j = η̂ j (0)e
−ca1 j t + e−ca1 j t

∫ t

0
(saj − q j − ca2 jχ j )e

ca1 j τdτ . (49)

Similarly, taking the absolute value and substitutingEq.
(47) into Eq. (49) with ca1 j > kaj yield
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|η̂ j | ≤ |η̂ j (0)|e−ca1 j t

+ e−ca1 j t
∫ t

0
(|saj | + |q j | + ca2 j |χ j |)eca1 j τ dτ

≤ |η̂ j (0)|e−ca1 j t

+ e−ca1 j t
∫ t

0

⎡
⎣ (ρaj0 − ρaj∞+ca2 jχ j0)e

(ca1 j−kaj )τ

+(ρaj∞+q̄)
(
1+ ca1 j

λa1 j−λa2 j

)
eca1 j τ

⎤
⎦ dτ

≤
[
|η̂ j (0)| + ρaj0 − ρaj∞ + ca2 jχ j0

ca1 j − kaj

]
e−kaj t

+ ρaj∞ + q̄

ca1 j
+ ρaj∞ + q̄

λa1 j − λa2 j
, (50)

where

χ j0 = 1

λa1 j − λa2 j[
2|η̂ j (0)| − ρaj0 − ρaj∞

λa1 j + kaj
− ρaj0 − ρaj∞

λa2 j + kaj

]
.

Noting that η̂ j = η j − ηej and ||ηe|| ≤ η̄, we can
further obtain

|η j | − ||ηe||
≤ |η j − ηej | ≤[

|η̂ j (0)| + ρaj0 − ρaj∞ + ca2 jχ j0

ca1 j − kaj

]
e−kaj t

+ ρaj∞ + q̄

ca1 j
+ ρaj∞ + q̄

λa1 j − λa2 j
, (51)

where η j and ηej are the j-th value of η and ηe. Thus,

|η j | ≤
[
|η̂ j (0)| + ρaj0 − ρaj∞ + ca2 jχ j0

ca1 j − kaj

]
e−kaj t

+ ρaj∞ + q̄

ca1 j
+ ρaj∞ + q̄

λa1 j − λa2 j
+ η̄. (52)

The proof is completed. �	
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