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Abstract We provide the Hamiltonian version of the
approximate Noether theorem developed for the per-
turbed ordinary differential equations (ODEs) (Govin-
der et al. in Phys Lett 240(3):127–131, 1998) for the
approximate Hamiltonian systems. We follow the pro-
cedure adopted by Dorodnitsyn and Kozlov (J Eng
Math 66(1–3):253–270, 2010) for theHamiltonian sys-
tems of unperturbed ODEs. The approximate Legen-
dre transformation connects the approximate Hamil-
tonian and approximate Lagrangian. The approxi-
mate Noether symmetries determining equation for the
approximate Hamiltonian systems is defined explic-
itly. We provide a formula to establish an approximate
first integral associated with an approximate Noether
symmetry of the approximate Hamiltonian systems.
We analyzed several physical models to elaborate the
approach developed here.
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1 Introduction

The non-trivial exact Lie symmetries do not exist for
many differential equations arising in engineering, epi-
demics, economic growth theory and in several other
fields. These type of differential equations are stud-
ied by the perturbation methods. Baikov et al. [3–5]
provided the approximate version of Lie’s theorems.
The approximate version of Noether’s theorem [6] was
developed by Govinder et al. [1]. Feroze and Kara [7]
analyzed a special group of second-order perturbed
ODEs in approximate invariant and Lagrangian per-
spective. Naeem and Mahomed [8,9] developed the
partial Lagrangian approach [10,11] for the perturbed
ODEs. Naz et al. [12] presented a review of different
techniques to compute first integrals/conservation laws
for unperturbed differential equations. Dorodnitsyn et
al. [13,14] developed new techniques to construct first
integrals for the ordinary difference equations that do
not have a variational formulation. In [15], new con-
servation laws were obtained directly from the equa-
tions of motion without invoking the Hamiltonians and
Lagrangians.

A separate strand of literature studied the approx-
imate Hamiltonian systems. The numerical analysis
of the nearly integrable Hamiltonian systems [16]
leads the foundations for the analytical studies of the
approximate first integrals. Different perturbation tech-
niques have been developed to establish the approxi-
mate first integrals, e.g., direct method [16], Birkhoff–
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Gustavson normal formmethod [17] and othermethods
as described in [18]. Recently, Naz and Naeem [19]
developed the approximate partial Noether approach
to construct approximate first integrals for the approx-
imate partial Hamiltonian systems.

Ünal [20] studied the approximate generalized sym-
metries, normal forms and approximate first integrals
for the approximateHamiltonian systems. The first step
is to compute the exact Noether symmetry vector fields
of the unperturbed part of an approximate Hamilto-
nian system and then combine it with the approxi-
mate symmetry vector field to obtain the approximate
Noether symmetry of the approximate Hamiltonian
system. Then, the total derivative of approximate first
integral dI is the interior product of the approximate
Noether symmetry and the simplectic form. Finally,
on integration of dI one can get the approximate first
integral I .

We provide the Hamiltonian version of the approx-
imate Noether theorem developed earlier for the per-
turbed ODEs [1] for the approximate Hamiltonian sys-
tems. We follow the procedure adopted by Dorodnit-
syn and Kozlov [2] for the Hamiltonian systems of
unperturbed ODEs. The approximate Hamiltonian is
associated with the approximate Lagrangian by uti-
lizing the approximate Legendre transformation [21].
The approximate Noether symmetries determining
equation for the approximate Hamiltonian system are
defined explicitly. We provide a formula to establish an
approximate first integral associated with an approxi-
mate Noether symmetry of the approximate Hamilto-
nian system. The approach developed here is applica-
ble to a wide variety of approximate Hamiltonian sys-
tems including Economic growth theory, epidemics,
physics, engineering and mechanics.

The detailed lay out of paper is as follows: In Sect. 2,
the overview of approximate Noether’s approach [1,7]
is presented. The Hamiltonian version of approximate
Noether theorem for the approximate Hamiltonian sys-
tems is provided in Sect. 3. We have explicitly pro-
vided the formulas for the approximate Noether sym-
metry determining equation and for the approximate
first integrals of the approximate Hamiltonian systems.
We analyzed several physical models to elaborate this
approach in Sect. 4.Weprovide the concluding remarks
in Sect. 5.

2 Approximate Noether’s approach

First, we provide an overview of the approximate
Noether approach for n-dependent variables case (see,
e.g., Govinder et al. [1], Feroze and Kara [7]). Follow-
ing definitions and Theorems are adopted from litera-
ture see, e.g., [1,7–9]

Let us consider the functional

∫ t1

t0
L(t, q j , q̇ j ; ε)dt, j = 1, 2, . . . , n, (1)

where ε is a small parameter, t is the independent vari-
able, q j are n dependent variables, q̇ j are all first-
order derivatives, and L(t, q j , q̇ j ; ε) is a first-order
approximate Lagrangian. Note that the derivatives of
q j with respect to t are given as q̇ j = q j

1 = Dt (q j ) ,

q̈ j = q j
2 = D2

t (q
j ) and so on.

The total derivative operator Dt with respect to t is
defined as

Dt = ∂

∂t
+ q̇ j ∂

∂q j
+ q̈ j ∂

∂ q̇ j
+ . . . , j = 1, 2, · · · n,

(2)

and the Euler–Lagrange operator δ
δq j is given by

δ

δq j
= ∂

∂q j
+

∑
s≥1

(−Dt )
s ∂

∂q j
s

, j = 1, 2, . . . , n.

(3)

Functional (1) reaches its extremal valueswhen vari-
ables q j (t) satisfy following n approximate Euler–
Lagrange equations:

δL

δq j
= ∂L

∂q j
− Dt

(
∂L

∂ q̇ j

)
= O(ε2), j = 1, 2, . . . , n,

(4)

where L(t, q j , q̇ j ; ε). Feroze and Kara [7] utilized
the Lagrangian function of form L(t, q j , q̇ j ; ε) =
L0(t, q j , q̇ j ) + εL1(t, q j , q̇ j ).

Note that the system of n equations (4) is the sys-
tem of second-order perturbed ODEs involving a small
parameter ε.

Definition 1 (see, e.g., [8,9]) A differential function
I (t, q j , q̇ j ; ε) = I0(t, q j , q̇ j ) + ε I1(t, q j , q̇ j ) is an
approximate first integral of system (4) if

Dt (I0 + ε I1) = O(ε2), (5)

holds for every solution of system (4).
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Theorem 1 (see, e.g., [7]) Suppose L(t, q j , q̇ j ; ε) =
L0(t, q j , q̇ j ) + εL1(t, q j , q̇ j ) is a first-order
Lagrangian corresponding to second-order ODEs (4).
If the functional

∫
Ldt is invariant under the one-

parameter group of transformations with approximate
Lie symmetry generator X = X0 + εX1, where X0 =
ξ0

∂
∂t + η

j
0

∂
∂q j and X1 = ξ1

∂
∂t + η

j
1

∂
∂q j up to gauge

B = B0 + εB1, then

X [1]
0 L0 + L0Dt (ξ0) = Dt (B0),

X [1]
1 L0 + X [1]

0 L1+L0Dt (ξ1)+L1Dt (ξ0) = Dt (B1),

(6)

where ξ0, ξ1. η0, η1. B0, depend on t and q j only.

Remark 1 It is important to mention here that Govin-
der et al. [1] provided approximate Noether symmetry
determining equation (6) in following form:

(ξ0 + εξ1)
∂L

∂t
+ (η

j
0 + εη

j
1)

∂L

∂q j

×
[
Dt (η

j
0) + εDt (η

j
1) − q̇

(
Dt (ξ0) + εDt (ξ1)

)]
∂L

∂ q̇ j

+
(
Dt (ξ0) + εDt (ξ1)

)
L

= Dt (B0) + εDt (B1) + O(ε2). (7)

Equation (7) can be re-written as

(X [1]
0 + εX [1]

1 )L + LDt (ξ0 + εξ1)

= Dt (B0 + εB1) + O(ε2), (8)

where

X [1] = X [1]
0 + εX [1]

1

= (ξ0 + εξ1)
∂

∂t
+ (η

j
0 + εη

j
1)

∂

∂q j

+
[
Dt (η

j
0 + εη

j
1) − q̇ j Dt (ξ0 + εξ1)

∂

∂ q̇ j

]
,

j = 1, 2, . . . , n. (9)

Feroze andKara [7] utilized theLagrangian function
of form L(t, q j , q̇ j ; ε) = L0(t, q j , q̇ j ) + εL1(t, q j ,

q̇ j ) in (8) and then separated the resulting equation by
the powers of ε, up to order ε, to arrive at the approxi-
mate Noether symmetry determining equation (6). We
will utilize approximate Noether symmetry determin-
ing equation (8) to establish results for the approximate
Hamiltonian system.

Theorem 2 (see, e.g., [1,7]) Corresponding to each
approximate symmetry X = X0 + εX1 that fulfills the
criterion provided in Theorem1, there exists an approx-
imate first integral I = I0 + ε I1 given by

I0 + ε I1 = (ξ0 + εξ1)(L0 + εL1)

+[η j
0+εη

j
1 − q̇ j (ξ0+εξ1)] δ

δq̇ j
(L0+εL1)

− (B0 + εB1) + O(ε2). (10)

3 Hamiltonian version of approximate Noether
theorem for the approximate Hamiltonian
systems

Let time and phase-space variables be t and (q j , p j ),
respectively. The variational operators δ/δqi and δ/δp j

are defined as (see, e.g., [2,22])

δ

δq j
= ∂

∂q j
− D

∂

∂ q̇ j
, (11)

and

δ

δp j
= ∂

∂p j
− D

∂

∂ ṗ j
. (12)

The total derivative operator D satisfies

D = ∂

∂t
+ q̇ j ∂

∂q j
+ ṗ j ∂

∂p j
+ . . . , (13)

and

ṗ j = D(p j ), q̇ j = D(q j ). (14)

Definition 2 (Approximate Legendre transformation)
The approximateLagrangian L(t, qi , q̇i ; ε)=L0(t, q j ,

q̇ j ) + εL1(t, q j , q̇ j ) and the corresponding approxi-
mate Hamiltonian H(t, q j , p j ; ε) = H0(t, q j , p j ) +
εH1(t, q j , p j ) are related by the Legendre transforma-
tion (see, e.g., [19,21])

H0 + εH1 = p j q̇ j − L0 − εL1, (15)

where p j = ∂
∂q̇ j (L0+εL1) and q̇ j = ∂

∂p j (H0+εH1).
Relation (15) is an approximate version of Legendre
transformation.
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Remark 2 It is important to mention here that p j are
sometimes defined as the momenta in physics and
mechanics. In Economic growth theory, p j are the
costate variables and interpreted as the shadow prices.
In other fields of applied mathematics, the variables p j

can be interpreted in different ways.

Proposition 1 Let L(t, qi , q̇i ; ε) = L0(t, q j , q̇ j ) +
εL1(t, q j , q̇ j ) be an approximate Lagrangian and
H(t, q j , p j ; ε) = H0(t, q j , p j ) + εH1(t, q j , p j ) be
the corresponding approximate Hamiltonian which
are connected by the approximate Legendre transfor-
mation (15). If approximate Lagrangian L satisfies
Euler–Lagrange equations (4) then the corresponding
approximate Hamiltonian function H satisfies follow-
ing system

q̇ j = ∂H

∂p j
+ O(ε2),

ṗ j = − ∂H

∂q j
+ O(ε2), j = 1, . . . , n, (16)

and this is the first-order approximateHamiltonian sys-
tem.

Proof We employ the variational operator δ/δp j on
approximate Legendre transformation (15)which gives

δH

δp j
= q̇ j − δL

δp j
, (17)

as δL
δp j = 0 and this yields the first equation of (16). We

employ the variational operator δ/δq j to (15) and we
obtain

δH

δq j
= − ṗ j − δL

δq j
. (18)

Equation (18) reduces to the second equation of (16)
as δL

δq j = O(ε2). This completes the proof. ��
The canonical Hamiltonian equations for the unper-

turbed case studied in Dorodnitsyn and Kozlov [2] can
be deduced by setting ε = 0 in system (16).

3.1 Hamiltonian version of approximate Noether
theorem

The approximate operators in the space of variables
t, q j and p j are of the form X = X0 + εX1 where

X0 + εX1 =
(

ξ0 + εξ1

)
∂

∂t
+

(
η
j
0 + εη

j
1

)
∂

∂q j

+
(

ζ
j
0 + εζ

j
1

)
∂

∂p j
, (19)

and ξ0, ξ1, ζ
j
0 , ζ

j
1 , η

j
0 , η

j
1 depend on t, q j and p j .

Definition 3 The approximate operator in (19) is an
approximate point symmetry generator of the approx-
imate Hamiltonian system (16) if (see, e.g., [22])

(η̇
j
0 + εη̇

j
1) − q̇ j (ξ̇0 + εξ̇1)

− (X0 + εX1)

(
∂

∂p j

)
(H0 + εH1) = O(ε2),

(ζ̇ j + εζ̇
j
1 ) − ṗ j (ξ̇0 + εξ̇1) (20)

+ (X0 + εX1)

(
∂

∂q j

)
(H0 + εH1) = O(ε2),

i = 1, . . . , n

holds on system (16).

The point symmetry generator determining equation
for the unperturbed case Dorodnitsyn and Kozlov [2]
can be deduced by setting ε = 0 in system (20).

The first prolongation of the generator X is

X [1] = ξ
∂

∂t
+ η j ∂

∂q j
+ ζ j ∂

∂p j

+[D(η j − ξ q̇ j ) + ξ q̈ j ] ∂

∂q̇ j

+[D(ζ j − ξ ṗ j ) + ξ p̈ j ] ∂

∂ ṗ j
,

where ξ(t, q j , p j ) = ξ0(t, q j , p j ) + εξ1(t, q j , p j ),

ζ j (t, q j , p j ) = ζ
j
0 (t, q j , p j ) + εζ

j
1 (t, q j , p j ),

η j (t, q j , p j ) = η
j
0(t, q

j , p j ) + εη
j
1(t, q

j , p j ).

The divergence invariance of approximate Hamilto-
nian action is established in the following proposition:

Proposition 2 The approximate point symmetry gen-
erator X = X0 + εX1 of the approximate Hamil-
tonian system (16) is an approximate Noether sym-
metry corresponding to an approximate Hamiltonian
H(t, q j , p j ; ε), if there exists a function B(t, q j , p j ;
ε) = B0(t, q j , p j ) + εB1(t, q j , p j ) such that

(ζ
j
0 + εζ

j
1 )

∂

∂p j
(H0 + εH1) + p j D(η

j
0 + εη

j
1)

−(X0 + εX1)(H0 + εH1)

− (H0 + εH1)D(ξ0 + εξ1)

= D(B0 + εB1) + O(ε2) (21)
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holds on system (16). The function B(t, q j , p j ; ε) =
B0(t, q j , p j )+εB1(t, q j , p j ) is anapproximate gauge
function.

Proof The approximate Noether symmetry determin-
ing equation (8) with the aid of approximate Legendre
transformation (15) yields

(X0 + εX1)[p j q̇ j − H0 − εH1]
+ [p j q̇ j − H0 − εH1]D(ξ0 + εξ1)

= D(B0 + εB1) + O(ε2). (22)

On expanding Eq. (22), we have

p j [D(η
j
0 + εη

j
1) − q̇ j D(ξ0 + εξ1)] +

(
ζ
j
0 + εζ

j
1

)
q̇ j

− (X0 + εX1)(H0 + εH1) + p j q̇ j D(ξ0 + εξ1)

− (H0 + εH1)D(ξ0 + εξ1)

= D(B0 + εB1) + O(ε2). (23)

With the aid of first equation from (16), Eq. (23) sim-
plifies to

(ζ
j
0 + εζ

j
1 )

∂

∂p j
(H0 + εH1) + p j D(η

j
0 + εη

j
1)

−(X0 + εX1)(H0 + εH1)

− (H0 + εH1)D(ξ0 + εξ1)

= D(B0 + εB1) + O(ε2). (24)

This completes the proof. ��
The unperturbed part of the divergence invariance of

approximate Hamiltonian action (21) yields the invari-
ance of Hamiltonian action for the unperturbed case
[2].

The question arises how the approximate Noether
symmetry determining procedure proposed here for the
approximate Hamiltonian system is different from the
one given in Ünal [20].

Remark 3 The procedure adopted by Ünal [20] is to
compute the exact Noether symmetry vector fields of
the unperturbed part of an approximate Hamiltonian
system and then combine it with the approximate sym-
metry vector field to obtain the approximate Noether
symmetry of the approximate Hamiltonian system. We
have provided approximate Noether symmetry deter-
mining equation (21) for the approximate Hamiltonian
systemwhich is analogue to the formula established by

Emmy Noether [6]. The approximate Legendre trans-
formation connects the approximate Hamiltonian func-
tion to the approximate Lagrangian function. It is uti-
lized to establish approximateNoether symmetry deter-
mining equation (21) for the approximate Hamiltonian
system. Dorodnitsyn and Kozlov [2] adopted this pro-
cedure to provideNoether symmetry determining equa-
tion for the unperturbed Hamiltonian systems.

Next, we provide a formula to construct the approx-
imate first integrals for system (16) which is analogous
to one provided in literature [2,19].

Proposition 3 Corresponding to each approximate
point symmetry generator X = X0+εX1 of the approx-
imate Hamiltonian system (16) that fulfills the criterion
provided in Proposition 2, there exists an approximate
first integral I = I0 + ε I1 given by

I0 + ε I1 = p j (η
j
0 + εη

j
1) − (ξ0 + εξ1)(H0 + εH1)

− (B0 + εB1) + O(ε2). (25)

Proof The formula for first integral (10) with the help
of approximateLegendre transformation (15) and p j =

∂
∂q̇ j (L0 + εL1) yields

I0 + ε I1 = (ξ0 + εξ1)(p
j q̇ j − H0 − εH1)

+[η j
0+εη

j
1−q̇ j (ξ0+εξ1)] δ

δq̇ j
(p j q̇ j −H0−εH1)

− (B0 + εB1) + O(ε2), (26)

which after some simplifications provides formulas
(25). This completes the proof. ��

The unperturbed part of the approximate first inte-
gral formula (25) yields the first integrals for the unper-
turbed case [2].

Remark 4 Ünal [20] computed the total derivative of
approximate first integral dI which is the interior prod-
uct of the approximate Noether symmetry and the sim-
plectic form. Finally, on integration of dI one can
get the approximate first integral I . We have provided
approximate first integral determining equation (26) for
the approximateHamiltonian systemwhich is analogue
to the formula established by Emmy Noether [6]. The
approximate Legendre transformation is employed to
establish approximate first integral formula (26) associ-
ated with each approximate Noether symmetry for the
approximate Hamiltonian systems. Dorodnitsyn and
Kozlov [2] adopted this procedure to provide first inte-
gral associated with each Noether symmetry for the
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unperturbed Hamiltonian systems. The Noether sym-
metry determining equation and first integrals for the
unperturbed case [2] can be deduced by setting ε = 0
in Eqs. (21) and (25).

Remark 5 It is worthy to mention here that for the sake
of simplicity we have used expansions with respect to
small parameter ε up to the first degree only. How-
ever, the theory developed in this section is valid for the
higher powers of ε as well. One can utilize the approx-
imate Lagrangian, approximate Hamiltonian, approx-
imate point symmetry generator, gauge function and
first integral involving the small parameter ε up to the
degree k ≥ 1 as follows:

L(t, qi , q̇i ; ε) = L0(t, q
j , q̇ j ) + εL1(t, q

j , q̇ j )

+ · · · + εk Lk(t, q
j , q̇ j ), (27)

H(t, q j , p j ; ε) = H0(t, q
j , p j ) + εH1(t, q

j , p j )

+ · · · + εk Hk(t, q
j , p j ), (28)

X = X0 + εX1 + · · · + εk Xk, (29)

ξ(t, q j , p j ) = ξ0(t, q
j , p j ) + εξ1(t, q

j , p j )

+ · · · + εkξk(t, q
j , p j ), (30)

ζ j (t, q j , p j ) = ζ
j
0 (t, q j , p j ) + εζ

j
1 (t, q j , p j )

+ · · · + εkζ
j
k (t, q j , p j ), (31)

η j (t, q j , p j ) = η
j
0(t, q

j , p j ) + εη
j
1(t, q

j , p j )

+ · · · + εkη
j
k (t, q

j , p j ), (32)

B(t, q j , p j ; ε) = B0(t, q
j , p j ) + εB1(t, q

j , p j )

+ · · · + εk Bk(t, q
j , p j ), (33)

I = I0 + ε I1 + · · · + εk Ik . (34)

4 Applications

In this section, we provide applications of theory pre-
sented in previous section. It is important to mention
here that the approach developed here is applicable to
a wide variety of problems from physics, engineer-
ing, mechanics, economics growth theory and many
other fields of applied mathematics. First, we study
the perturbed orbit equation governing one body prob-
lem [1,5] to re-derive previously established results

to ensure that formulas derive here are correct. Sec-
ond, we analyze a linear non-autonomous second-order
ODE [7] for the approximated first integrals; this is a
linear time-dependent model. Next, we show how the
approach developed here can be utilized to establish
approximate first integrals for more variables case. We
have also shown that how to solve physical problems
involving arbitrary functions and to determine the func-
tional forms of these arbitrary functions such that the
approximate Noether symmetry algebra in phase space
is extended. The approximate Hamiltonian system dis-
cussed by Campoamor-Stursberg [23] is analyzed to
look at this perspective.

4.1 The perturbed orbit equation governing one body
problem

The perturbed orbit equation governing one body prob-
lem is given by (see, e.g., [1,5])

q̈ + q = εF(q). (35)

It is worthy to mention here that for the perturbed orbit
equation (35) in order to admit approximate symme-
tries, Baikov et al. [5] computed four non-equivalent
forms of F , in addition to F being arbitrary. We con-
sider following special case of (35)

q̈ + q − εAq2 = 0. (36)

Equation (36) is the perturbed version of harmonic
oscillator equation. Dorodnitsyn and Kozlov [2] inves-
tigated the unperturbed harmonic oscillator for the dis-
crete case.

The approximate Lagrangian for Eq. (36) is

L = 1

2
q̇2 − 1

2
q2 + εA

q3

3
. (37)

The approximateHamiltonian byutilizing approximate
Legendre transformation (15) is

H = pq̇ − L (38)

which yields

H = p2

2
+ q2

2
− εA

q3

3
, (39)
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The approximate Noether symmetries and approximate 2231

where p = ∂L
∂q̇ . The approximate Hamiltonian system

associated with approximate Hamiltonian given in Eq.
(39) is

q̇ = p,

ṗ = − q + εAq2. (40)

Note that the approximate Hamiltonian (39) and
approximate Hamiltonian system (40) reduce to the
canonical Hamiltonian and Hamiltonian system for the
unperturbed case [2] if we set ε = 0. The approximate
Noether symmetries determining equation (21)with the
help of approximateHamiltonian (39) and approximate
Hamiltonian system (40) results in

p(α0t + pβ0t + εα1t + εpβ1t )

+ p2(α0q + pβ0q + εα1q + εpβ1q)

− (α0 + pβ0 + εα1 + εpβ1)(q − εAq2)

− (ξ0t + εξ1t )

(
p2

2
+ q2

2
− εA

q3

3

)

= B0t + εB1t + p(B0q + εB1q), (41)

where ξ(t) = ξ0(t) + εξ1(t), η(t, p, q) = α0(t, q) +
pβ0(t, q)+ε(α1(t, q)+ pβ1(t, q)), B(t, q) = B0(t, q)

+εB1(t, q).We separate Eq. (41)with respect to ε0 and
ε1 to obtain approximate Noether symmetries deter-
mining equations for the zeroth-order and first-order
approximations.After some simplifications, the zeroth-
order approximation yields following systems of equa-
tions:
Zeroth-order approximation:

p3 : β0q = 0,

p2 : β0t + α0q − 1

2
ξ0t = 0,

p : −2qβ0 + α0t = B0q ,

p0 : −q
(
α0 + q

2
ξ0t

)
= B0t . (42)

After some simplifications, the first-order approxi-
mation yields following systems of equations:
First-order approximation:

p3 : β1q = 0,

p2 : β1t + α1q − 1

2
ξ1t = 0,

p : 2β0Aq
2 − 2qβ1 + α1t = B1q ,

p0 : Aq2α0 − qα1 − q2

2
ξ1t + A

3
q3ξ0t = B1t .

(43)

The solution of systems of equations (42) and (43)
for the zeroth- and first-order approximations yields
following approximate Noether symmetries and the
gauge terms in phase space:

X1 = ∂

∂t
, B1 = 0,

X2 = 4εA sin(t)
∂

∂t
+ [3 cos t + 2εAq cos t] ∂

∂q
,

B2 = − 3q sin t − εAq2 sin t,

X3 = − 4εA cos t
∂

∂t
+ [3 sin t + 2εAq sin t] ∂

∂q
,

B3 = 3q cos t + εAq2 cos t,

X4 = ε
∂

∂t
, B4 = 0,

X5 = ε

(
sin(2t)

∂

∂t
+ q cos(2t)

∂

∂q

)
,

B5 = − εq2 sin(2t),

X6 = ε

(
cos(2t)

∂

∂t
− q sin(2t)

∂

∂q

)
,

B6 = − εq2 cos(2t),

X7 = ε cos t
∂

∂q
, B7 = −εq sin(t),

X8 = ε sin t
∂

∂q
, B8 = εq cos t,

X9 = p
∂

∂q
, B9 = −q2 + 2

3
εAq3,

X10 =
(
3 cos(t) + 2Aε(q cos(t) − p sin(t))

)
∂

∂q
,

B10 = − 3q sin(t) + Aεq2 sin(t),

X11 =
(
3 sin(t) + 2Aε(q sin(t) + p cos(t))

)
∂

∂q
,

B11 = 3q cos(t) − Aεq2 cos(t),

X12 = εp
∂

∂q
, B12 = −εq2,

X13 = ε

(
− 2q cos(2t) + p sin(2t)

)
∂

∂q
,

B13 = εq2 sin(2t),

X14 = ε

(
− 2q sin(2t) − p cos(2t)

)
∂

∂q
,

B14 = − εq2 cos(2t),
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Xα = 2α(t)
∂

∂t
+ pα(t)

∂

∂q
,

Bα =
(

−q2 + ε
2

3
Aq3

)
α(t),

Xβ = ε

(
2β(t)

∂

∂t
+ pβ(t)

∂

∂q

)
,

Bβ = − εβ(t)q2. (44)

In [1], the Noether symmetries X1, X2, . . . , X8

were derived by utilizing the calculus of variation tech-
niques and Lagrangian formulation. This shows that
approach developed here is correct. We have obtained
some additional Noether symmetries X9, X10, . . . ,

X14, Xα, Xβ which are the Hamiltonian symmetries,
but in Lagrangian picture these will be the general-
ized symmetries. Note that Xα and Xβ yield infi-
nite many Hamiltonian symmetries. The approximate
Noether symmetries X1, X2, X3, X9, X10, X11

and Xα of the approximate Hamiltonian system (40)
are stable.

Next, we compare our results with those of the
unperturbedharmonic oscillator investigatedbyDorod-
nitsyn and Kozlov [2]. Setting ε = 0 in (44) yields fol-
lowing Hamiltonian symmetries and gauge terms sat-
isfying the invariance condition:

X1 = ∂

∂t
, B1 = 0,

X2 = X10 = 3 cos t
∂

∂q
− 3 sin t

∂

∂p
,

B2 = B10 = −3q sin t,

X3 = X11 = 3 sin t
∂

∂q
+ 3 cos t

∂

∂p
,

B3 = B11 = 3q cos t,

X9 = p
∂

∂q
− q

∂

∂p
, B9 = −q2,

Xα = 2α(t)
∂

∂t
+ pα(t)

∂

∂q
− (qα(t) + pα(t)′) ∂

∂p
,

Bα = −q2α(t), (45)

where the coefficient ∂
∂p term is computed with aid of

ζ = D(η) − q̇ D(ξ). The Hamiltonian symmetries and
gauge terms satisfying invariance condition given in
Eq. (45) are exactly same as derived by Dorodnitsyn
and Kozlov [2] except Xα .

Next, we utilize formula (25), to establish the
approximate first integral I = I0 + ε I1 correspond-

ing each approximate Noether symmetry (44) in phase
space. The approximate first integrals are

I 1 = p2

2
+ q2

2
− ε

3
Aq3 + O(ε2),

I 2 = 3p cos t + 3q sin t

+ ε

(
2Apq cos t − A(2p2 + q2) sin t

)
+ O(ε2),

I 3 = 3p sin t − 3q cos t

+ ε

(
2Apq sin t + A(2p2 + q2) cos t

)
+ O(ε2),

I 4 = 1

2
ε(p2 + q2) + O(ε2), (46)

I 5 = ε

(
pq cos(2t) − p2

2
sin(2t) + q2

2
sin(2t)

)

+ O(ε2),

I 6 = ε

(
− pq sin(2t) − p2

2
cos(2t) + q2

2
cos(2t)

)

+ O(ε2),

I 7 = ε

(
p cos t + q sin t

)
+ O(ε2),

I 8 = ε

(
p sin t − q cos t

)
+ O(ε2),

I 9 = I 1, I 10 = I 2, I 11 = I 3,

I 12 = I 4, I 13 = I 5, I 14 = I 6,

I α = I β = O(ε2).

In [1], the approximate first integrals I 1, . . . , I 8 were
derived by utilizing the calculus of variation tech-
niques and Lagrangian formulation. This guarantees
that formulas proposed here are correct. The approx-
imate Noether symmetries Xα, Xβ of the approxi-
mate Hamiltonian system (40) yield the trivial approx-
imate first integrals which vanish on the solution of
the approximate Hamiltonian system (40). The approx-
imate Noether symmetries X1 and X9 yield same
approximate first integral of the approximate Hamil-
tonian system (40). Similarly, the approximate first
integrals I 10 = I 2, I 11 = I 3, I 12 = I 4, I 13 =
I 5, I 14 = I 6 and thus eight independent approxi-
mate first integrals I 1, . . . , I 8 exist for the approximate
Hamiltonian system (40). The stable approximate first
integrals correspond to stable approximate symmetries
and vice versa [20].

Next, we compare our results with those of the
unperturbedharmonic oscillator investigatedbyDorod-
nitsyn and Kozlov [2]. Setting ε = 0 in (46) yields
following three first integrals:
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I 1 = I 9 = p2

2
+ q2

2
,

I 2 = I 10 = 3p cos t + 3q sin t,

I 3 = I 11 = 3p sin t − 3q cos t, (47)

which are exactly same as derived by Dorodnitsyn and
Kozlov [2].

4.2 A linear non-autonomous second-order ODE

Consider a linear non-autonomous second-order ODE
(see, e.g., [7])

q̈ − ε(1 − t2)q̇ + q = 0. (48)

Feroze and Kara [7] discussed the symmetries of the
linear non-autonomous second-order ODE (48) that
leave the invariant functional including a Lagrangian
using the symmetry conservation laws theorem. The
approximate Lagrangian for a linear non-autonomous
second-order ODE given as in (48) is

L =
(
q2

2
− q̇2

2

)
e
−ε

(
t− t3

3

)
. (49)

The approximate Hamiltonian by utilizing approxi-
mate Legendre transformation (15) is

H = p2

2
e
ε
(
t− t3

3

)
+ q2

2
e
−ε

(
t− t3

3

)
, (50)

and the corresponding approximate Hamiltonian sys-
tem is given by

q̇ = pe
ε
(
t− t3

3

)
,

ṗ = − qe
−ε

(
t− t3

3

)
. (51)

Taylor series of eε(t− t3
3 ) and e−ε(t− t3

3 ) up to order ε

is given by

e
ε
(
t− t3

3

)
= 1 + ε

(
t − t3

3

)
+ O(ε2),

e
−ε

(
t− t3

3

)
= 1 − ε

(
t − t3

3

)
+ O(ε2). (52)

The approximateHamiltonian (50) and approximate
Hamiltonian system (51), with the aid of (52), can be
re-written as

H = p2

2
+ q2

2
+ ε

(
t − t3

3

) (
p2

2
− q2

2

)
, (53)

and

q̇ = p

[
1 + ε

(
t − t3

3

)]
,

ṗ = − q

[
1 − ε

(
t − t3

3

)]
. (54)

The approximate Noether symmetries determining
equation (21) with the aid of approximate Hamiltonian
(53) and approximate Hamiltonian system (54) gives
rise to

p

[
η0t + εη1t + p(η0q + εη1q)

(
1 + ε

(
t − t3

3

))]

− ε

2
(ξ0 + εξ1)(p

2 − q2)(1 − t2)

− (η0 + εη1)q

[
1 − ε

(
t − t3

3

)]

−
[
ξ0t + εξ1t + (ξ0q + εξ1q)p

(
1 + ε

(
t − t3

3

)]

×
[
p2

2
+ q2

2
+ ε

(
t − t3

3

) (
p2

2
− q2

2

)]

= B0t + εB1t + p(B0q + εB1q)

[
1 + ε

(
t − t3

3

)]
,

(55)

where ξ0 = ξ0(t, q), ξ1 = ξ1(t, q), η0 = η0(t, q), η1
= η1(t, q), B0 = B0(t, q), B1 = B1(t, q).

Separating (55), after expansion, with respect to
ε0 and ε1 to obtain approximate Noether symmetries
determining equations for the zeroth-order and first-
order approximations. After some simplifications and
separation with respect to different powers of p, the
zeroth-order approximation yields following systems
of equations:

Zeroth-order approximation:

p3 : ξ0q = 0,

p2 : η0q − 1

2
ξ0t = 0,

p : −qη0t = B0q ,

p0 : −q
(
η0 + q

2
ξ0t

)
= B0t . (56)

After some simplifications and separation with respect
to different powers of p, the first-order approximation
yields following systems of equations:
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First-order approximation:

p3 : ξ1q = 0,

p2 :
(
t − t3

3

)
η0q + η1q −

(
t

2
− t3

6

)
ξ0t

− (1 − t2)
ξ0

2
− 1

2
ξ1t = 0,

p : −
(
t − t3

3

)
B0q + η1t − q2

2
ξ1q = B1q ,

p0 : q2

2
(1 − t2)ξ0 − qη1 + q

(
t − t3

3

)
η0

+ q2

2

(
t − t3

3

)
ξ0t − q2

2
ξ1t = B1t . (57)

The solution of systems of equations (56) and (57)
yields the following approximate Noether symmetries
and the gauge terms for the approximate Hamiltonian
system (54):

X1 =
(
1 + ε

2
t
) ∂

∂t
− ε

2
q

(
t2 − 3

2

)
∂

∂q
, B1 = − ε

2
q2t,

X2 =
[
cos 2t + ε

((
t2

2
− 1

4

)
sin 2t + t

2
cos 2t

)]
∂

∂t

+
[
−q sin 2t + ε

2
q cos 2t

] ∂

∂q
,

B2 = − q2 cos 2t + ε

[−2

3
(−3t + t3)q2 cos2 t

− q2 sin t cos t + 1

12
(4t3 − 12t)q2

]
,

X3 =
[
sin 2t + ε

(
t

2
sin 2t + 1

4
(1 − 2t2) cos 2t

]
∂

∂t

+
[
q cos 2t + ε

2
q sin 2t

] ∂

∂q
,

B3 = − q2 sin 2t + ε

[
−q2

2
+ q2 cos2 t

− 2

3
q2(−3t + t3) sin t cos t

]
,

X4 =
[
cos t + ε

(
1

12
(9t − 2t3) cos t + t2

4
sin t

)]
∂

∂q
,

B4 = − q sin t

+ ε
(q
4
(3 − t2) cos t − q

12
(2t3 − 9t) sin t

)]
,

X5 =
[
sin t + ε

(
1

12
(9 − 3t2) cos t

+ 1

12
(9t − 2t3) sin t

)]
∂

∂q
,

B5 = q cos t + ε

[
q

6

(
t3 − 9

2
t

)
cos t − 1

4
t2q sin t

]
,

X6 = ε

2
sin 2t

∂

∂t
+ ε

2
q cos 2t

∂

∂q
, B6 = − ε

2
q2 sin 2t,

X7 = − ε

2
cos 2t

∂

∂t
+ ε

2
q sin 2t

∂

∂q
, B7 = ε

2
q2 cos 2t,

X8 = ε
∂

∂t
, B8 = 0,

X9 = ε cos t
∂

∂q
, B9 = − εq sin t,

X10 = ε sin t
∂

∂q
, B10 = εq cos t. (58)

Next, we utilize formula (25), to establish the approx-
imate first integrals I = I0 + ε I1 associated with the
approximate Noether symmetries (58) for the approx-
imate Hamiltonian system (54). The approximate first
integrals are

I 1 = εq

4

(
3p − 2pt2 + 2tq

)

− 1

4
(2 + εt)

[
p2 + q2 + ε

(
t − t3

3

)
(p2 − q2)

]

+ O(ε2),

I 2 = p

(
− q sin 2t + εq

2
cos 2t

)

− 1

2

[
cos 2t + ε

(
1

4
(2t2 − 1) sin 2t + t

2
cos 2t

)]

×
[
p2 + q2 + ε

(
t − t3

3

)
(p2 − q2)

]
+ O(ε2),

I 3 = q

(
p cos 2t + q sin 2t

)

+ εq

2

[((
− 2t + 2

3
t3

)
q + p

)
sin 2t − q cos 2t

]

− 1

2

[
sin 2t + ε

4

(
(1 − 2t2) cos 2t + 2t sin 2t

)]

×
[
p2 + q2 + ε

(
t − t3

3

)
(p2 − q2)

]
+ O(ε2),

I 4 = p cos t + pε

(
1

12
(−2t3 + 9t) cos t + 1

4
t2 sin t

)

+ q sin t

− ε

(
1

4
(3 − t2)q cos t − 1

12
(2t3 − 9t)q sin t

)

+ O(ε2),

I 5 = p sin t

+ pε

(
1

12
(−2t3 + 9t) sin t + 1

12
(9 − 3t2) cos t

)

− q cos t − ε

(
1

12
(2t3 − 9t)q cos t − 1

4
t2q sin t

)

+ O(ε2),
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I 6 = ε

2

[
pq cos 2t + q2 sin 2t

− 1

2
sin 2t

(
p2 + q2 + ε(t − t3

3
)(p2 − q2)

)]

+O(ε2),

I 7 = ε

2

[
pq sin 2t − q2 cos 2t

+ 1

2
cos 2t

(
p2 + q2 + ε

(
t − t3

3

)
(p2 − q2)

)]

+ O(ε2),

I 8 = − ε

2

[
p2 + q2 + ε

(
t − t3

3

)
(p2 − q2)

]
+ O(ε2),

I 9 = ε

[
p cos t + q sin t

]
+ O(ε2),

I 10 = ε

[
p sin t − q cos t

]
+ O(ε2). (59)

The approximateNoether approach in phase space pro-
vided five stable and five unstable first integrals. The
stable approximate first integrals correspond to stable
approximate symmetries and vice versa [20].

4.3 Classification problem

The physical systems arising in applications naturally
contain small parameters or some arbitrary functions.
We illustrate the advantages of this newly developed
approach for the approximate Hamiltonian systems
involving arbitrary functions. The equation of motion
for the perturbed Lagrangian L = q̇1q̇2 − αq2q

−3
1 +

ε
F(r)
q21

is (see, e.g., Campoamor-Stursberg [23])

q̈1 = 3αr

q31
− 2ε

F(r)

q31
− ε

r F ′(r)
q31

,

q̈2 = − α

q31
+ ε

F ′(r)
q31

, (60)

where r = q2
q1
. Campoamor-Stursberg [23] reported

that the perturbed system (60) yields two stable approx-
imate first integrals for arbitrary F(r) and admits
one additional approximate first integral when F(r)
is constant. Campoamor-Stursberg [23] studied the
perturbed system (60) in approximate Lagrangian
perspective. We will analyze the perturbed system
(60) in approximate Hamiltonian perspective. The

approximate Hamiltonian by utilizing approximate
Legendre transformation (15) is

H = p1 p2 + αr

q21
− ε

F(r)

q21
, (61)

and the associated approximate Hamiltonian system is
given as follows:

q̇1 = p2,

q̇2 = p1,

ṗ2 = − α

q31
+ ε

F ′(r)
q31

,

ṗ1 = 3αr

q31
− 2ε

F(r)

q31
− ε

r F ′(r)
q31

. (62)

We utilize this newly developed approach to find
the functional forms of arbitrary function F(r) for
which the associated approximate Hamiltonian system
(61) becomes super-integrable.We assume ξ(t, q1, q2),
η1(t, q1, q2, p1), η2(t, q1, q2, p2) and G(t, q1, q2) in
the following form:

ξ(t, q1, q2) = ξ0(t, q1, q2) + εξ1(t, q1, q2),

η1(t, q1, q2, p1) = α0(t, q1, q2) + β0(t, q1, q2)p1

+ ε

(
α1(t, q1, q2) + β1(t, q1, q2)p1

)
,

η2(t, q1, q2, p2)

= A0(t, q1, q2) + B0(t, q1, q2)p2

+ ε

(
A1(t, q1, q2) + B1(t, q1, q2)p2

)
,

G(t, q1, q2) = G0(t, q1, q2) + εG1(t, q1, q2).

The approximate Noether symmetries determining
equation (21) with the aid of approximate Hamiltonian
(61) and approximate Hamiltonian system (62) yields
following systems for ε0 and ε:
ε0 :
β0q1 − ξ0q2 = 0, β0q2 = 0, B0q1 = 0,

B0q2 − ξ0q1 = 0,

β0t + α0q2 = 0, B0t + A0q1 = 0,

α0q1 + A0q2 − ξ0t = 0,

α0t + 6αβ0
q2
q41

− α
q2
q31

ξ0q2 − G0q2 = 0,

A0t − 2B0
α

q31
− α

q2
q31

ξ0q1 − G0q1 = 0,

3α0α
q2
q41

− A0
α

q31
− α

q2
q31

ξ0t − G0t = 0. (63)
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ε :
β1q1 − ξ1q2 = 0, β1q2 = 0, B1q1 = 0,

B1q2 − ξ1q1 = 0

β1t + α1q2 = 0, B1t + A1q1 = 0,

α1q1 + A1q2 − ξ1t = 0,

α1t − 2β0

(
2

q31
F(r) + q2

q41
F ′(r)

)
+ 6αβ1

q2
q41

−α
q2
q31

ξ1q2 + F(r)ξ0q2
q21

− G1q2 = 0,

A1t − 2
α

q31
B1 + 2

B0

q31
F ′(r)

−α
q2
q31

ξ1q1 + F(r)ξ0q1
q21

− G1q1 = 0,

−α0

(
2

q31
F(r) + q2

q41
F ′(r)

)
+ 3α1α

q2
q41

+ A0

q31
F ′(r)

− A1α

q31
+ F(r)

q21
ξ0t − αq2

q31
ξ1t − G1t = 0. (64)

We arrive at different forms of F(r) in search of solu-
tion of system of equations (63) and (64). The solution
of systems of equations (63) and (64) yields different
forms of F(r). We provide as follows the details of
approximate Noether symmetries, the gauge terms and
approximate first integrals in phase space for these dif-
ferent forms of F(r):

Case 1 F(r) is arbitrary.
For arbitrary F(r), we obtain the following approxi-
mate Noether symmetries and the gauge terms in phase
space:

X1 = ∂

∂t
, G1 = 0,

X2 = q1q2
∂

∂t
+ 1

2
q21 p1

∂

∂q1
+ 1

2
q22 p2

∂

∂q2
,

G2 = α
q22
q21

− ε
q2
q1

F(r),

X3 = 2t
∂

∂t
+ q1

∂

∂q1
+ q2

∂

∂q2
, G3 = 0,

X64 = t2
∂

∂t
+ tq1

∂

∂q1
+ tq2

∂

∂q2
, G4 = q1q2,

X5 = ε
∂

∂t
, G5 = 0,

X6 = εq1q2
∂

∂t
+ ε

2
q21 p1

∂

∂q1
+ ε

2
q22 p2

∂

∂q2
,

G6 = εα
q22
q21

,

X7 = ε
(
2t

∂

∂t
+ q1

∂

∂q1
+ q2

∂

∂q2

)
, G7 = 0,

X8 = ε
(
t2

∂

∂t
+ tq1

∂

∂q1
+ tq2

∂

∂q2

)
, G8 = εq1q2,

X9 = εp2
∂

∂q2
, G9 = εα

q21
,

X10 = ε(tp2 − q1)
∂

∂q2
, G10 = ε

tα

q21
,

X11 = ε

(
t2 p2
2

− tq1

)
∂

∂q2
,G11= ε

2

(
αt2

q21
−q21

)
,

(65)

For arbitrary F(r), four stable and seven unstable
approximate Noether symmetries exist in phase space.

The first integrals of approximate Hamiltonian sys-
tem (62) for arbitrary F(r) are as follows:

I 1 = p1 p2 + α
q2
q31

− ε
F(r)

q21
+ O(ε2),

I 2 = 1

2
(p1q1 − p2q2)

2 − 2α
q22
q21

+ 2ε
q2
q1

F(r)

+ O(ε2),

I 3 = p1q1 + p2q2 − 2t

(
p1 p2 + α

q2
q31

− ε
F(r)

q21

)

+ O(ε2)

I 4 = t (p1q1 + p2q2)

− t2
(
p1 p2 + α

q2
q31

− ε
F(r)

q21

) − q1q2 + O(ε2)

I 5 = ε

(
p1 p2 + α

q2
q31

)
+ O(ε2),

I 6 = ε

(
1

2
(p1q1 − p2q2)

2 − 2α
q22
q21

)
+ O(ε2)

I 7 = ε

(
p1q1+p2q2 − 2t (p1 p2+α

q2
q31

)

)
+O(ε2),

I 8 = ε

(
tp1q1 + tp2q2 − t2(p1 p2 + α

q2
q31

) − q1q2

)

+ O(ε2),

I 9 = ε

(
p22 − α

q21

)
+ O(ε2),

I 10 = ε

(
p2(tp2 − q1) − tα

q21

)
+ O(ε2),

I 11 = ε

(
p2

(
t2 p2
2

− tq1

)
∂

∂q2
− 1

2

(
αt2

q21
− q21

))

+ O(ε2). (66)
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For arbitrary F(r), four stable and seven unsta-
ble approximate first integrals exist in phase space.
Campoamor-Stursberg [23] reported existence of only
two stable approximate first integrals I 1 and I 2. The
two additional stable approximate first integrals I 3 and
I 4 arise by utilizing this newly developed approach.

Case 2 F(r) = b1.
For F(r) = b1, we have following three additional sta-
ble approximate Noether symmetry and approximate
first integral in phase space:

X12 = p2
∂

∂q2
, G12 = α

q21
,

I 12 =
(
p22 − α

q21

)
+ O(ε2), (67)

X13 = (tp2 − q1)
∂

∂q2
, G13 = tα

q21
,

I 13 =
(
p2(tp2 − q1) − tα

q21

)
+ O(ε2), (68)

X14 =
(
t2 p2
2

− tq1

)
∂

∂q2
, G14 = 1

2

(
αt2

q21
− q21

)
,

I 14 = p2

(
t2 p2
2

− tq1

)
− 1

2

(
αt2

q21
− q21

)

+O(ε2). (69)

Campoamor-Stursberg [23] reported existence of only
one stable approximate first integrals I 12. For this case,
the two additional stable approximate first integrals
I 13 and I 14 arise by utilizing this newly developed
approach.

Case 3 F(r) = b2r .
For F(r) = b2r , we have following three additional
stable approximate Noether symmetries and approxi-
mate first integrals in phase space:

X12 = p2
∂

∂q2
, G12 = α

q21
− ε

b2
q21

,

I 12 =
(
p22 − α

q21
+ ε

b2
q21

)
+ O(ε2), (70)

X13 = (tp2 − q1)
∂

∂q2
, G13 = tα

q21
− ε

tb2
q21

,

I 13 =
(
p2(tp2 − q1) − tα

q21

)
+ ε

tb2
q21

+ O(ε2),

(71)

X14 =
(
t2 p2
2

− tq1

)
∂

∂q2
,

G14 = 1

2

(
αt2

q21
− q21

)
− ε

t2b2
2q21

,

I 14 = p2

(
t2 p2
2

− tq1

)
− 1

2

(
αt2

q21
− q21

)

+ε
t2b2
2q21

+ O(ε2). (72)

Case 4 F(r) = b3r2.
When F(r) = b3r2, there are no additional approxi-
mate Noether symmetries and approximate first inte-
grals in phase space.

Case 5 F(r) = b4r3.
For F(r) = b4r3, we have following three additional
stable approximate Noether symmetries and approxi-
mate first integrals in phase space:

X12 = p2
∂

∂q2
− ε

2α
b4 p1

∂

∂q1
, G12= α

q21
−ε

3

2

b4q22
q41

,

I 12 = p22 − α

q21
+ εb4

2

(
− p21

α
+ 3

q22
q41

)
+ O(ε2),

(73)

X13 = (tp2 − q1)
∂

∂q2
+ εb4

2α
(q2 − p1t)

∂

∂q1
,

G13 = tα

q21
− ε

3

2

tb4q22
q41

,

I 13 = p2(tp2 − q1) − tα

q21

+ ε

(
tb4
2

(
− p21

α
+ 3

q22
q41

)
+ 1

2α
p1b4q2

)

+ O(ε2), (74)

X14 =
(
t2 p2
2

− tq1

)
∂

∂q2
+ εb4t

2α
(q2 − 1

2
p1t)

∂

∂q1
,

G14 = 1

2

(
αt2

q21
− q21

)
− ε

3

4

t2b4q22
q41

+ εb4q22
4α

,

I 14 = p2

(
t2 p2
2

− tq1

)
− 1

2

(
αt2

q21
− q21

)
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+ ε

(
t2b4
4

(
− p21

α
+ 3

q22
q41

)
+ t

2α
p1b4q2

− b4q22
4α

)
+ O(ε2). (75)

We have provided new forms of F(r) = b2r and
F(r) = b4r3 for which additional stable approximate
Noether symmetries and approximate first integrals
exist.

5 Conclusions

The approximate Noether theorem proposed for the
perturbed ODEs [1] was generalized in phase space
for approximateHamiltonian systems.We followed the
procedure adopted by Dorodnitsyn and Kozlov [2] for
the Hamiltonian systems of unperturbed ODEs. The
approximate Legendre transformation connecting the
approximateHamiltonian and approximate Lagrangian
was provided. The approximate Noether symmetries
determining equation for the approximate Hamiltonian
systemwas defined explicitly.Weprovided a formula to
establish an approximate first integral associated with
an approximate Noether symmetry of the approximate
Hamiltonian system.

First, we analyzed the perturbed orbit equation gov-
erning one body problem to re-derive previously estab-
lished results. The approximate Noether approach pro-
vided three stable and five unstable first integrals. In
[1], the same approximate first integrals were derived
by utilizing the calculus of variation techniques and
Lagrangian formulation. We also compared our results
with the unperturbed case studied by Dorodnitsyn and
Kozlov [2]. This guarantees that formulas proposed
here are correct. Next, we analyzed a linear non-
autonomous second-orderODE [7] for the approximate
first integrals. The approximate Noether approach pro-
vided five stable and five unstable first integrals.

This approach is applicable for the physical sys-
tems arising in applications containing small param-
eters or some arbitrary functions. We illustrated the
advantages of this newly developed approach to deter-
mine the functional forms of an approximate Hamilto-
nian system involving arbitrary function. Campoamor-
Stursberg [23] studied the perturbed system of ODEs
in Lagrangian perspective, and we have investigated
the same system in approximate Hamiltonian perspec-
tive. For arbitrary F(r), four stable and seven unstable

approximate first integrals were derived in phase space.
Campoamor-Stursberg [23] reported existence of only
two stable approximate first integrals for the case when
F(r) is arbitrary. The two additional stable approx-
imate first integrals are determined here by utilizing
this newly developed approach. Campoamor-Stursberg
[23] reported existence of only one stable approxi-
mate first integrals for the case when F(r) is con-
stant, whereas we have provided three stable approx-
imate first integrals for this case. We have also deter-
mined two additional functional forms F(r) = b2r
and F(r) = b4r3 for which additional stable approx-
imate Noether symmetries and approximate first inte-
grals exist.

The approximate Noether approach [1] is applica-
ble only for the calculus of variation problems. The
approach developed here is applicable for the optimal
control problems as well as calculus of variation prob-
lems, and this aspect of approach developed here will
be considered in a future work.
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