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Abstract Aprocedure namedparameter-splittingper-
turbation method for improving the perturbation solu-
tions to the forced vibrations of strongly nonlinear
oscillators is proposed. The idea of the proposed proce-
dure is presented in general first. After that, it is applied
to optimize the solutions obtained by the multiple-
scalesmethodwhich is one of well-known perturbation
methods. The harmonically forced Duffing oscillator,
the harmonically forced oscillator with both nonlinear
restoring force and nonlinear inertial force, the harmon-
ically forced purely nonlinear oscillator and harmoni-
cally forced two-degree-of-freedom system with cubic
nonlinearity are analyzed in various cases to show the
advantages of the proposed method. The ratio of non-
linear stiffness coefficient to linear stiffness coefficient
is chosen to be larger than one to highlight the valid-
ity of the propose method when dealing with strongly
nonlinear oscillators. The validity of the proposed
procedure is examined by comparing the frequency–
response curves obtained by the proposedmethod, con-
ventional multiple-scales method and numerical con-
tinuation method. Moreover, the errors corresponding
to the results obtained by multiple-scales method are
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compared with those obtained by the proposed method
to examine the performance of the proposed method.
The results show that the proposed method can give
much improved solutions in comparison with those
obtained by multiple-scales method.
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1 Introduction

Nonlinearity exists inmany real-world problemswhich
can be approximately or exactly expressed by nonlin-
ear ordinary differential equations (ODEs) or nonlinear
partial differential equations (PDEs) [1,2]. However, it
is difficult, if possible, to find the exact solutions of
them. With the increasing interest in the applications
of nonlinear problems, various approximate analytical
methods for finding the approximate analytical solu-
tions to those differential equations have been devel-
oped in recent years. The methods for the approximate
analytical solutions to nonlinearODEsorPDEs are nor-
mally classified as (1) perturbation method, (2) Ado-
mian decomposition method (ADM), (3) homotopy
analysis method (HAM), (4) harmonic balance method
(HBM), (5) variousmodified perturbationmethods and
(6) hybrid perturbation-Galerkin method. The pertur-
bation method breaks a nonlinear equation down to
some linear differential equations for which exact solu-
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tions are obtainable. The regular perturbation method
not only suffers from the limitation of small perturba-
tion assumption but also the limitation of secular terms.
To overcome the limitation of secular terms, multiple-
scales (MS) method is proposed by introducing mul-
tiple timescales and setting the coefficients of the sec-
ular terms to be zeros [3]. However, the MS solution
to strongly nonlinear ODE is still invalid because the
asymptotic expansion of the solution is assumed to be
a power series of perturbation parameter and this series
can converge only when the perturbation parameter is
much smaller than one. The ADM, which is capable
for solving ODEs as well as PDEs, was developed by
Adomian in 1986 [4,5]. TheADM is based on a decom-
position of the solution of nonlinear operator equations
in appropriate function spaces into a series of functions.
It is valid for strongly nonlinear ODEs and PDEs. The
convergence of the method was examined and studied
in [6]. Recent applications in nano-systems by ADM
were presented [7,8]. Based on the concept that the
homotopy from topology can generate a convergent
series solution to nonlinear problems, the HAM was
developed to seek for approximate solutions to strongly
nonlinear ODEs by Liao in 1992 [9]. Some modifi-
cations of the method can be found in [10,11]. The
HAM with different orders is adopted to analyze the
frequency response of micro-/nano-electromechanical
system resonators in [12]. However, the selection of
‘auxiliary parameter’ can influence the convergence of
the solution given by HAM [13]. The HBMwas devel-
oped to obtain the solutions to nonlinear ODEs. This
method was firstly implemented by Bailey and Lind-
nenlaub in 1968 and 1969, respectively [14,15]. Some
improved HBM can be founded in many applications
with higher accuracy [16,17]. A Newtonian HBM not
limited to small response amplitude of oscillation was
proposed by Lim et al. [18]. A two-degree-of-freedom
quarter car model with a piecewise leaf spring for the
rear suspension of a truck was analyzed by the incre-
mental HBM. The effects of the leaf spring’s stiff-
ness, mass ratio and damping were investigated [19].
There are two well-known problems with HBM. The
first one is that the HBM is not able to give transient
response. The second one is that it is hard to find the
initial conditions for solving the converted nonlinear
algebraic equations for all solution branches [20]. The
MS method and Lindstedt–Poincaré (LP) method are
two improved perturbationmethods developed for ana-
lyzing the nonlinear oscillators which can eliminate

secular terms arising in the derivation of analytical
solutions. However, the small perturbation parameter
assumption cannot be avoided by this two methods.
Burton and Rahman proposed a modified MS method
and applied it to solve the forced vibration of oscil-
lator with cubic nonlinearity or oscillator with quin-
tic nonlinearity [21]. Burton and Rahman’s method
is valid for the oscillators with odd nonlinear terms.
Cheung et al. introduced a new expanding parame-
ter to LP method [22]. A strongly nonlinear oscillator
with large perturbation parameter is transformed into
an oscillator with small parameter. Chen et al. proposed
a modified LP method for the analytical approximate
solution of limit cycles in three-dimensional nonlinear
autonomous dynamical systems [23]. Hu and Xiong
applied the modified LP method to a Duffing equation
and compared the obtained resultswith those fromclas-
sical LP method [24]. In 2009, Pakdemirli provided a
new way for finding the expansion parameter α in Bur-
ton’smethod [21] by combining theMSmethod andLP
method [25], which has been applied to analyze various
oscillators [26]. It is seen that the perturbation meth-
ods [21–25] are based on the different description of the
nearness between the natural frequency and the excita-
tion frequency according to the type of nonlinearity. It
is noted that different expanding parameterswere intro-
duced for different oscillators with different nonlinear-
ities asmentioned in [27]. Geer andAndersen proposed
a hybrid perturbation-Galerkin technique by choosing
the perturbation solutions as the trial basis functions
in the Bubnov–Galerkin method [28] to accelerate the
convergence of the Bubnov–Galerkin method [29,30].
The asymptotic methods are combined with various
variational approaches in [31]. In order to increase
the precision of the solution or the number of trial
basis functions, higher-order perturbation solutions are
needed.

A parameter-splitting method is proposed in this
paper for improving the solutions obtained by the per-
turbation methods. The strategy of this method is that
some parameters in the nonlinear system are split by
introducing some unknown parameters. After that, the
solution of the system is obtained by a perturbation
method. Based on the solution obtained by a pertur-
bation method, an optimization objective is formu-
lated and the introduced unknown parameters are deter-
mined by minimizing the cumulative residual error
of the original nonlinear system. This procedure is
applied to improve the solutions given by MS method.
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Therefore, the whole solution procedure is named
parameter-splitting–multiple-scales (PSMS)method in
the following analysis. The frequency–response curves
(FRCs) obtained by MS method and PSMS method
are compared to those obtained by numerical contin-
uation method (NCM) with the software MATCONT
[32,33]. Moreover, the errors in the results obtained by
MSmethod are comparedwith those obtainedbyPSMS
method to show the improvement in the results obtained
by PSMSmethod. Totally four examples about, respec-
tively, the harmonically forced strongly nonlinearDuff-
ing oscillator, the harmonically forced oscillator with
the coexistence of strongly nonlinear restoring force
and strongly nonlinear inertial force, the harmonically
forced purely nonlinear oscillator with strongly non-
linearity and the harmonically forced two-degree-of-
freedom (TDOF) system with strong cubic nonlinear-
ity are analyzed to highlight the validity of the pro-
posed method in analyzing strongly nonlinear sys-
tems. The results show that the solutions obtained by
PSMS method are much improved comparing to those
obtained by MS method.

2 Strategy for improving the solutions obtained by
perturbation methods

Consider the following second-order nonlinear oscilla-
tor

ÿ + cε2 ẏ + ω2
0 y + εg(y, ẏ, ÿ) = ε2F cos(�t), (1)

where y is displacement, t is time, c is damping coef-
ficient, ω0 is the natural frequency of oscillator, ε is
perturbation parameter, F is excitation amplitude, �

is excitation frequency and g(y, ẏ, ÿ) is a polynomial
function of y, ẏ and ÿ. g(y, ẏ, ÿ) is given as

g(y, ẏ, ÿ) =
n∑

i=0

m∑

j=0

l∑

k=0

ηi jk y
i ẏ j ÿk, (2)

where ηi jk are the nonlinear parameters which reflect
the degrees of nonlinearity and

∑
i + j + k ≥ 2. The

linear natural frequency ω0 and the nonlinear parame-
ters ηi jk are split and expressed as follows.

ω2
0 = ω2

00 + ω2
01ε + ω2

02ε
2 (3)

ηi jk = ηi jk,1 + ηi jk,2ε. (4)

With the above procedure, Eq. (1) can be written as

ÿ + cε2 ẏ + ω2
00y + εω2

01y + ε2ω2
02y + εg1(y, ẏ, ÿ)

+ ε2g2(y, ẏ, ÿ) = ε2F cos(�t),

(5)

where

g1(y, ẏ, ÿ) =
n∑

i=0

m∑

j=0

l∑

k=0

ηi jk,1y
i ẏ j ÿk (6)

g2(y, ẏ, ÿ) =
n∑

i=0

m∑

j=0

l∑

k=0

ηi jk,2y
i ẏ j ÿk . (7)

By perturbation methods, the oscillator response can
be generally expressed as

y = y0(t) + εy1(t) + ε2y2(t) + O(ε3). (8)

Substituting Eq. (8) into Eq. (5) leads to

(ÿ0 + ε ÿ1 + ε2 ÿ2) + cε2(ẏ0 + ε ẏ1 + ε2 ẏ2)

+ (ω2
00 + εω2

01 + ε2ω2
02)(y0 + εy1 + ε2y2)

+ ε

n∑

i=0

m∑

j=0

l∑

k=0

ηi jk,1(y0 + εy1

+ ε2y2)
i (ẏ0 + ε ẏ1 + ε2 ẏ2)

j

(ÿ0 + ε ÿ1 + ε2 ÿ2)
k

+ ε2
n∑

i=0

m∑

j=0

l∑

k=0

ηi jk,2(y0 + εy1

+ ε2y2)
i (ẏ0 + ε ẏ1 + ε2 ẏ2)

j

(ÿ0 + ε ÿ1 + ε2 ÿ2)
k + O(ε3) = ε2F cos(�t).

(9)

Equating the coefficients of εs (s = 0, 1, 2) to zero
gives the following equations.

O(ε0) : ÿ0 + ω2
00y0 = 0 (10)

O(ε1) : ÿ1 + ω2
01y1

= −
n∑

i=0

m∑

j=0

l∑

k=0

ηi jk,1y
i
0 ẏ

j
0 ÿ

k
0 − . . . (11)

O(ε2) : ÿ2 + ω2
02y2

= F cos(�t) − cẏ0 − η110,1y1 ẏ0 − . . .

−
n∑

i=0

m∑

j=0

l∑

k=0

ηi jk,2y
i
0 ẏ

j
0 ÿ

k
0 . (12)
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The expressions of y1 and y2 can be easily deter-
mined as y0 is obtainable which is the solution to a
second-order homogeneous differential equation.Once
y0, y1 and y2 are determined, the approximate analyti-
cal steady-state response ya can be expressed as

ya = y0 + εy1 + ε2y2, (13)

where the subscript a stands for approximation. Substi-
tuting Eq. (13) into Eq. (1) gives the following residual
error function.

f (ÿa, ẏa, ya, t,�s) = ÿa + cε2 ẏa + ω2
0 ya

+ εg(ya, ẏa, ÿa) − ε2F cos(�t),
(14)

where�s is a set of system parameters and split param-
eters. The following cumulative residual error Re is
introduced.

Re =
∫ T

0
f 2(ÿa, ẏa, ya, t,�s)dt, (15)

where T = 2π/�. Since the function f consists of
periodic functions with periods 2π

n�
(n = 1, 2, 3 . . .)

where � is the excitation frequency, the integration
upper limit is hence selected as T to cumulate all the
errors induced by each periodic function. The unknown
splitting parameters are determined by minimizing Re.
The details and advantages of this solution procedure
are presented in the following when it is combined and
applied with MS method.

3 Parameter-splitting–multiple-scales method and
numerical analysis

The MS method was proposed decades ago [34] and
many of its applications can be found [35,36]. Due
to the small parameter assumption with MS method,
the solution obtained by MS method is not valid if the
nonlinear parameters in the governing equations are not
small. In the following, the procedure presented above
is combined and applied with MS method to improve
the solutions obtained by MS method. Totally four
types of oscillators are analyzed, which are the Duff-
ing oscillator, an oscillator with both nonlinear restor-
ing force and nonlinear inertial force, a purely nonlin-
ear oscillator and a TDOF system with cubic nonlin-
earity. Hence, the whole solution procedure is named

parameter-splitting–multiple-scales (PSMS)method in
the following analysis. For each oscillator, the solu-
tion procedure of PSMS method is presented first.
After that, the accuracy and the effectiveness of PSMS
method is tested numerically. The FRCs obtained by
PSMSmethod andMSmethod are comparedwith those
obtained by NCM. In the last, the results are discussed.

3.1 Duffing oscillator and an oscillator with both
nonlinear restoring force and nonlinear inertial
force

Consider the following nonlinear oscillator

ÿ + αεy2 ÿ + cε2 ẏ + ω2
0 y + βεy ẏ2 + ηεy3

= Fε2 cos(�t).
(16)

This oscillator is a damped and forced Duffing oscil-
lator if α = β = 0. When α = β �= 0, this oscil-
lator describes the forced vibration of an inextensible
single-mode cantilever beam carrying an intermediate
lumped mass with a rotary inertia [37]. The second and
fifth terms in Eq. (16) are inertial nonlinearity arising
from the inextensibility assumption in analyzing the
vibration of cantilever beam.

3.1.1 Parameter splitting

The natural frequency ω0 and the nonlinear parameters
α, β and η are split and expressed as

ω2
0 = ω2

00 + ω2
01ε + ω2

02ε
2 (17)

α = α1 + α2ε (18)

β = β1 + β2ε (19)

η = η1 + η2ε. (20)

Then the nonlinear oscillator can be rewritten as

ÿ + α1εy
2 ÿ + α2ε

2y2 ÿ + cε2 ẏ + ω2
00y + ω2

01εy

+ ω2
02ε

2y + β1εy ẏ
2 + β2ε

2y ẏ2 + η1εy
3

+ η2ε
2y3

= Fε2 cos(�t).

(21)

123



Parameter-splitting perturbation method for the improved solutions 1851

3.1.2 The solution by MS method

With MS method, the response of the oscillator is
assumed to be

y = y0(T0, T1, T2) + εy1(T0, T1, T2)

+ ε2y2(T0, T1, T2)

+ O(ε3),

(22)

where T0, T1 and T2 are the fast and slow timescales
expressed by

T0 = t, T1 = εt and T2 = ε2t. (23)

By chain rule, the operators of time derivatives are

d

dt
= D0 + εD1 + ε2D2 + · · · , (24)

d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + · · · ,

(25)

where Dn = ∂/∂Tn and D2
n = ∂2/∂T 2

n . Substituting
Eqs. (22), (24) and (25) into Eq. (21) and equating
the coefficients of εm(m = 0, 1, 2) to zero lead to the
following equations.

O(ε0) : D2
0(y0) + ω2

00y0 = 0, (26)
O(ε1) : D2

0(y1) + ω2
00y1 = −ω2

01y0 − 2D0D1(y0)

−α1y
2
0D

2
0(y0) − β1y0[D0(y0)]2 − η1y

3
0 , (27)

O(ε2) : D2
0(y2) + ω2

00y2 = F cos(�t) − ω2
01y1 − ω2

02y0

− 2D0D1(y1) − D2
1(y0) − 2D0D2(y0) − cD0(y0)

− 2β1y0D0(y0)D0(y1) − 2β1y0D0(y0)D1(y0)

−β1y1[D0(y0)]2 − β2y0[D0(y0)]2 − α1D
2
0 y1y

2
0

− 2α1y
2
0D0D1(y0) − 2α1y0y1D

2
0(y0)

−α2y
2
0D

2
0(y0) − 3η1y

2
0 y1 − η2y

3
0 . (28)

The O(ε0) equation is a homogenous differential equa-
tion and the solution to it is

y0 = C(T1, T2)e
iω00T0 + C̄(T1, T2)e

−iω00T0 , (29)

where C is a function of timescales T1 and T2 which
can be determined by omitting the secular terms in the
O(ε1) equation. Substituting Eq. (29) into the right-

hand side of the O(ε1) equation and eliminating the
secular terms yield

D1(C) = 3α1C2C̄ω00

2i
− 3η1C2C̄

2iω00
− β1C2C̄ω00

2i

− Cω2
01

2iω00
(30)

and

y1 = 
e3iω00T0 + 
̄e−3iω00T0 , (31)

in which


 = η1C3

8ω2
00

− β1C3

8
− α1C3

8
. (32)

Substituting the expressions of y0 and y1 into the O(ε2)

equation, eliminating the secular terms and using the
expression � = ω00 + ε2σ where σ is a detuning
parameter that can be determined if � is given, it gives

D2(C) = FeiσT2

4iω00
− cC

2
− Cω2

02

2iω00
+ Cω4

01

8iω3
00

+ 7β1η1iC3C̄2

8ω00

+ β2
1 iω00C3C̄2

16
+ 65α2

1 iω00C3C̄2

16

+ β2iω00C2C̄

2

− 3α2iω00C2C̄

2
− β1ω

2
01C

2C̄

4iω00

+ 3α1ω
2
01C

2C̄

4iω00

− 15α1β1iω00C3C̄2

8
− 15iη21C

3C̄2

16ω3
00

− 25α1η1iC3C̄2

8ω00
− 3η2C2C̄

2iω00

+ 3η1C2C̄ω2
01

4iω3
00

(33)

and

q2 = �1e
3iω00T0 + �2e

5iω00T0 + �̄1e
−3iω00T0

+�̄2e
−5iω00T0 , (34)
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in which

�1 = −β2C3

8
− α2C3

8
− β2

1C
4C̄

64
+ 19α2

1C
4C̄

64

+ 9α1β1C4C̄

32
− 5β1η1C4C̄

32ω2
00

+ α1η1C4C̄

32ω2
00

+ η2C3

8ω2
00

− η1C3ω2
01

8ω4
00

− 21η21C
4C̄

64ω4
00

(35)

and

�2 = 11α2
1C

5

192
+ 7β2

1C
5

192
+ 3α1β1C5

32
− 7α1η1C5

96ω2
00

− 5β1η1C5

96ω2
00

+ η21C
5

64ω4
00

. (36)

The time derivative of C can be expressed as

dC

dt
= εD1(C) + ε2D2(C) + O(ε3). (37)

The polar form of C is assumed to be

C = 1

2
Aeib, (38)

where A is the response amplitude and b is the phase
of oscillator response. Substituting Eqs. (30), (33) and
(38) into Eq. (37) and separating the real and imaginary
parts yield

Ȧ = Fε2

2ω00
sin γ − cAε2

2
(39)

and

γ̇ = � − ω00 − εω2
01

2ω00
− ε2ω2

02

2ω00
+ ε2ω4

01

8ω3
00

− β2
1ω00ε

2A4

256

− 65α2
1ω00ε

2A4

256
− β1ω00εA2

8
+ 3α1ω00εA2

8

− β2ω00ε
2A2

8
+ 3α2ω00ε

2A2

8

+ 15α1β1ω00ε
2A4

128
− 7β1η1ε

2A4

128ω00

+ 25α1η1ε
2A4

128ω00
− β1ω

2
01ε

2A2

16ω00

+ 3α1ω
2
01ε

2A2

16ω00
− 3A2η2ε

2

8ω00
+ 15A4η21ε

2

256ω3
00

− 3A2η1ε

8ω00
+ ε2F cos(γ )

2Aω00
+ 3A2η1ε

2ω2
01

16ω3
00

, (40)

where γ = σT2 − b.
At steady state, Ȧ and γ̇ are equal to zero. Then the FRC
can be obtained by eliminating γ and σ in Eq. (40).
The relation between the excitation frequency and the
response amplitude at steady state is then obtained to
be

� = ω00 + εω2
01

2ω00
+ ε2ω2

02

2ω00
− ε2ω4

01

8ω3
00

+ β2
1ω00ε

2A4

256

+ 65α2
1ω00ε

2A4

256
+ βω00εA2

8
− 3αω00εA2

8

− 15α1β1ω00ε
2A4

128
+ 7β1η1ε

2A4

128ω00

− 25α1η1ε
2A4

128ω00

+ β1ω
2
01ε

2A2

16ω00
− 3α1ω

2
01ε

2A2

16ω00
− 15A4η21ε

2

256ω3
00

+ 3A2η1ε

8ω00
− ε2F cos(γ )

2Aω00
− 3A2η1ε

2ω2
01

16ω3
00

.

(41)

The approximate response of the oscillator is obtained
to be

ya = A1 cos
(
�t − γ

) + 2A3 cos
(
3�t − 3γ

)

+ 2A5 cos
(
5�t − 5γ

)
,

(42)

in which

A1 = A, (43)

A3 = ηεA3

64ω2
00

− αεA3

64
− βεA3

64

−β2
1ε

2A5

2048
+ 19α2

1ε
2A5

2048

−21η21ε
2A5

2048ω4
00

− 5β1η1ε
2A5

1024ω2
00

+ 9A5α1β1ε
2

1024

+α1η1ε
2A5

1024ω2
00

− A3ε2η1ω
2
01

64ω4
00

(44)
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and

A5 = 11α2
1ε

2A5

6144
+ 7β2

1ε
2A5

6144
+ η21ε

2A5

2048ω4
00

+3α1β1ε
2A5

1024

−5β1η1ε
2A5

3072ω2
00

− 7α1η1ε
2A5

3072ω2
00

. (45)

3.1.3 Optimization objective

From Eq. (42) it is seen that the expression of ya can
be considered as a function f (ω01, ω02, α1, β1, η1) of
the variables ω01, ω02, α1, β1 and η1 once the system
parameters ω0, c, α, β, η, � and F are given. Select an
interval � = [�l ,�u] on the positive frequency axis,
in which most of the FRC falls. Then for a given value
of excitation frequency within �, the values of ω01,
ω02, α1, β1 and η1 can be determined by minimizing
the value of the residual error Re expressed by Eq. (15).
The complete FRC can be obtained by repeating this
procedure and varying � from �l to �u .

3.1.4 Numerical analysis

(a) Duffing oscillators 1 and 2 with viscous damping
and harmonic force
When α and β in Eq. (16) equal zeros, Eq. (16)
expresses a Duffing oscillator excited by harmonic
force. This oscillator can be found in many areas such
as the forced vibrations of pendulum, isolator, electri-
cal circuit [38–42] and so on. The Duffing oscillator
was also frequently analyzed for testing new solution
procedures. Two strongly nonlinear Duffing oscilla-
tors whose ratios of nonlinear restoring force to linear

restoring force

(
ηεy3

ω2
0 y

)
are equal to y2 and 1.5y2 are

analyzed, respectively. The parameter values of these
two oscillators are listed in Table 1. The FRCs obtained
by PSMS method, MS method and numerical continu-
ation method are shown and compared in Figs. 1 and 2
for oscillators 1 and 2, respectively. A large deviation
can be observed in eachFRCobtained byMSmethod in
comparisonwith those obtained byNCMas the value of
ηεy3/(ω2

0 y) increases. Even when the response ampli-
tude is small,MSmethod still cannot predict the results
with enough accuracy, which can be observed from the
enlarged local details shown in Figs. 1 and 2. On the
other hand, PSMSmethod can give accurate solution to

Table 1 Parameters in the Duffing oscillators 1 and 2

Oscillator no. ε ω0 c η F

1 0.1 20 20 4000 1000

2 0.1 20 20 6000 2000
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Fig. 1 Oscillator 1’s FRCs by MS method, PSMS method and
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Fig. 2 Oscillator 2’s FRCs by MS method, PSMS method and
NCM

the Duffing oscillator in the whole frequency domain
in comparison with those obtained by NCM.

(b) Oscillators 3 and 4 with nonlinear inertial force
and nonlinear restoring force
When α = β �= 0, Eq. (16) expresses the equation of
motion governing the forced vibration of a cantilever
beam with large deflection. It can be found in many
applications [43,44]. Two cases are considered for this
strongly nonlinear oscillators which are analyzed by
meansofPSMSmethod,MSmethod andNCM, respec-
tively. The first case represents the forced vibration
of the cantilever beam when the nonlinear restoring
force dominates the oscillator nonlinearity, which can
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Table 2 Parameters in oscillators 3 and 4 with restoring force
and inertial force

Oscillator no. ε ω0 c α β η F

3 0.1 1 4 5 5 10 5

4 0.1 1 4 10 10 0.1 5

be found in the first-mode vibration of the beam. The
second case represents the forced vibration of the can-
tilever beam when the nonlinear inertial force domi-
nates the oscillator nonlinearity, which can be found in
the second-mode or higher-mode vibration of the beam
[37,45]. The parameter values are listed in Table 2.
The FRCs obtained by PSMSmethod, MS method and
numerical continuation method are shown and com-
pared in Figs. 3 and 4 for oscillators 3 and 4, respec-
tively. From the numerical analysis on the FRCs of
oscillator 3, it is observed that the term ηεy3 (η > 0)
dominates the response of the oscillator, which can be
found in the application of the first-mode vibration of
a cantilever beam [37,45]. The deviation between the
FRC obtained byMSmethod and the FRC obtained by
NCM increases as the response amplitude increases.
From the numerical analysis on the FRCs of oscilla-
tor 4, it is observed that the terms αεy2 ÿ and βε ẏ2y
(α = β > 0) dominate the response of the oscillator,
which can be found in the applications of the second- or
higher-mode vibrations of a cantilever beam [37,45].
The FRC obtained by MS method starts to turn right
near � = 0.9, which not agrees with the behavior of
the FRC obtained by numerical continuation method.
The peak of the FRC obtained by MS method is obvi-
ously different from that obtained by numerical con-
tinuation method. On the contrary, the FRCs obtained
by PSMS method agree well with the FRCs obtained
by numerical continuation method no matter which
kind of nonlinearity dominates the response. What’s
more, even when the response amplitude is small, the
response amplitudes obtained by PSMS method are
still improved in comparison with those obtained by
MS method as shown in the enlarged local details in
Figs. 3 and4. The results presented anddiscussed above
show that PSMS method can give accurate solutions
to the forced vibrations of the oscillators with nonlin-
ear restoring force and inertial force no matter which
term, either the nonlinear restoring force or the non-
linear inertial force, dominates the nonlinearity of the
oscillator.
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3.2 PSMS solution procedure and numerical analysis
of a purely nonlinear oscillator

In this section, a harmonically forced oscillator without
linear restoring force but with nonnegative geometric
nonlinearity is considered. This kind of oscillator can
be found the applications in purely nonlinear material
properties [46,47]. The oscillator is given as

ÿ + 2ζε ẏ + κεsgn(y)|y|α = Fε cos(�t), (46)

where κ and α are oscillator parameters and ε is pertur-
bation parameter. As there is no linear restoring force,
classical perturbation method cannot be applied as the
nearness between the natural frequency and the exci-
tation frequency cannot be described. Kovacic made
a transformation and some solutions were obtained by
Lindstedt–Poincaremethod andMSmethod [46]. As in
[46], adding a zero linear stiffness term to the oscillator
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yields

ÿ + 2ζε ẏ + ω2
0 y + κεsgn(y)|y|α = Fε cos(�t),

(47)

where ω0 = 0.

3.2.1 Parameter splitting

The natural frequency ω0 and the nonlinear parameter
κ are split and expressed as

ω2
0 = ω2

00 + ω2
01ε (48)

κ = κ0 + κ1ε. (49)

After that, the nonlinear oscillator can be rewritten as

ÿ+2ζε ẏ+ω2
00y+ω2

01y+κ0εsgn(y)|y|α = Fε cos(�t)

(50)

3.2.2 The solution by MS method

A two-term expansion of the response is assumed to be

y = y0(T0, T1) + εy1(T0, T1) + O(ε2), (51)

where the definition of T0, T1 and the operation of time
derivatives are the same as those in Eqs. (23)–(25).
The nearness between natural frequency and excitation
frequency is assumed to be� = ω00 +σε. The natural
frequency can be rewritten as ω2

00 = �2 − 2σ�ε +
O(ε2). As y is a power series of perturbation parameter
ε, the nonlinear term can be expanded by using Taylor
series expansion as

sgn

( ∞∑

i=0

yiε
i

) ∣∣∣∣∣

∞∑

i=0

yiε
i

∣∣∣∣∣

α

= sgn(y0)|y0|α + ε1αy1|y0|α−1 + · · ·
(52)

Substituting this alongwithω2
00 = �2−2σ�ε+O(ε2),

Eqs. (51) and (23)-(25) into Eq. (50) and equating the
coefficients of εm(m = 0, 1) to zero lead to the follow-
ing equations.

O(ε0) : D2
0(y0) + �2y0 = 0, (53)

O(ε1) : D2
0(y1) + �2y1 = F cos(�t) − 2D0D1y0

− 2ζD0y0 + 2σ�y0 − ω2
01y0 − κ0sgn(y0)|y0|α.

(54)

The O(ε0) equation is a homogenous differential equa-
tion and the solution to it is

y0 = C(T1)e
i�T0 + C̄(T1)e

−i�T0 , (55)

where C is assumed to be

C = 1

2
Aeiγ , (56)

where A is the response amplitude and γ is the response
phase angle. Therefore, y0 can be rewritten as

y0 = A cos(�t + γ ). (57)

Since y0 is a cosine function, the nonlinear term
sgn(y0)|y0|α can be expressed by a Fourier expansion
as follows as in [39].

sgn(y0)|y0|α = |A|α[b1α cos(�t + γ )

+ b3α cos(3�t + 3γ )], (58)

where

b1α = 2�
(
1 + α

2

)
√

π�
( 3+α

2

) , b3α = (α − 1)�
(
1 + α

2

)

√
π�

(
5+α
2

) ,

(59)

where �(.) is the gamma function defined as �(z) =∫ ∞
0 xz−1e−xdx . SubstitutingEqs. (55) and (56) into the
right-hand side of the O(ε1) equation and eliminating
the secular terms yield

D1(C) = F

4i�
− ζ Aeib

2
+ σ Aeib

2i
− ω2

01Ae
ib

4i�

− κ0Aαb1αeib

4i�
.

(60)

With elimination of the secular terms, the solution y1
to the O(ε1) is determined to be

y1 = κ0Aαb3α
8�2 cos(3�t + 3γ ). (61)

The time derivative of C can be expressed as

dC

dt
= εD1(C) + O(ε2). (62)

With the polar form ofC , separating the real and imag-
inary parts yields
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Table 3 Parameters in the purely nonlinear oscillators 5, 6 and
7

Oscillator no. ε ω0 ζ α κ F

5 0.1 0 1 1/3 100 100

6 0.1 0 1 2 100 100

7 0.1 0 1 3 100 100

1

2
Ȧ = − Fε

4�
sin(γ ) − ζ Aε

2
(63)

and

1

2
Aγ̇ = −Fε

4�
cos(γ ) − σ Aε

2
+ ω2

01Aε

4�
+ κ0Aαb1αε

4�
.

(64)

At steady state, Ȧ and γ̇ are equal to zero. Then the FRC
can be obtained by eliminating γ and σ . The relation-
ship between the excitation frequency and the response
amplitude at steady state is then obtained to be
[
2A�

(
ω00 − �

ε

)
+ ω2

01A

+ κ0A
αb1α

]2 + 4ζ 2A2�2 = F2. (65)

For a given excitation frequency �, the value of A can
be solved numerically.
The approximate response of the oscillator is obtained
by combining y0 and y1 as

ya = A cos(�t+γ )+ κ0Aαb3αε

8�2 cos(3�t+3γ ). (66)

The optimum FRC can then be obtained in the same
way as stated in Sect. 3.1.3.

3.2.3 Numerical analysis of a purely nonlinear
oscillator

Consider three oscillatorswith nonlinearity be of a frac-
tional power (α = 1/3) and nonlinearity with α = 2
and 3. The first one is a ‘under-linear’ (softening) oscil-
lator, and the second and third ones are ‘over-linear’
(hardening) oscillators [47]. The responses of both
the softening-type and hardening-type oscillators are
adopted to examine the validity of PSMS method. The
parameter values in ‘Fig. 5’ of [46] are adopted for
numerical analysis, which correspond to strongly non-
linear oscillators and are listed in Table 3. The FRCs
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Fig. 5 Oscillator 5’s FRCs by MS method, the PSMS method,
Ref. [46] and fourth-order Runge–Kutta method
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Fig. 6 Oscillator 6’s FRCs by MS method, PSMS method, Ref.
[46] and NCM

obtained by PSMS method, MS method and NCM are
shown and compared in Figs. 5, 6 and 7. It is noted
that when α = 1/3, the NCM implemented in ‘MAT-
CONT’ fails to give a solution. Therefore, the pertur-
bation solution obtained in [46] and the fourth-order
Runge–Kutta method are both adopted to examine the
validity of PSMS method when α = 1/3. In this case,
good agreement between the FRC obtained by PSMS
method and that obtained by the perturbation method
in [46] can be observed. However, the FRC obtained
by the conventional MS method differs a lot from the
FRC obtained by the perturbation method in [46]. In
particular, the peak amplitude of the FRC obtained by
the conventional MS method is about 1.65 times larger
than that obtained by the perturbation method in [46].
Moreover, the occurrence excitation frequency corre-
sponding to the lower turning point of MS solution
differs a lot from that of the solution in [46]. In the
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Fig. 7 Oscillator 7’s FRCs by MS method, PSMS method, Ref.
[46] and NCM

cases of α = 2 and α = 3, the PSMS solution agrees
well with the NCM solution. On the contrary, the MS
solution differs a lot from the NCM solution.

3.3 TDOF system with cubic nonlinearity

The primary resonance with the coexistence of internal
resonance of a TDOF system with cubic nonlinearity
is considered in the following.

The two-degree-of-freedom system with cubic non-
linearity is given in general as

ÿ1 + 2μ1ε
2 ẏ1 + ω2

1 y1 + α1y
3
1

+α2y
2
1 y2 + α3y1y

2
2 + α4y

3
2

= F1ε
3 cos(�t) (67)

ÿ2 + 2μ2ε
2 ẏ2 + ω2

2 y2 + α5y
3
1

+α6y
2
1 y2 + α7y1y

2
2 + α8y

3
2

= F2ε
3 cos(�t). (68)

This system can be found in the application of a
forced geometrically nonlinear beam with simple sup-
port [48].

3.3.1 Parameter splitting

The natural frequenciesωi (i = 1, 2) and the nonlinear
parameters α j ( j = 1, . . . , 8) are split and expressed as

ω2
i = ω2

i1 + ω2
i3ε

2 (i = 1, 2) (69)

α j = α j1 + α j3ε
2 ( j = 1, . . . , 8). (70)

After that, the system can be rewritten as

ÿ1 + 2μ1ε
2 ẏ1 + ω2

11y1 + ω2
13ε

2y1 + α1y
3
1 + α2y

2
1 y2

+α3y1y
2
2 + α4y

3
2 = F1ε

3 cos(�t) (71)

ÿ2 + 2μ2ε
2 ẏ2 + ω2

21y2 + ω2
23ε

2y1 + α5y
3
1 + α6y

2
1 y2

+α7y1y
2
2 + α8y

3
2 = F2ε

3 cos(�t). (72)

3.3.2 The solution by MS method

The responses are assumed to be

y1 = y11(T0, T2)ε + y13(T0, T2)ε
3 (73)

y2 = y21(T0, T2)ε + y23(T0, T2)ε
3, (74)

where the definition of T0, T2 and the operation of time
derivatives are the same as those in Eqs. (23)–(25). It
is noted that the terms O(ε2) and the timescale T1 are
missing in Eqs. (73) and (74) since the effect of nonlin-
earity appears at O(ε3) as stated in [1]. The responses
are therefore expressed as it is in [1] to examinewhether
it is valid for strongly nonlinear system. In order to
examine the performance of PSMS method by using
only two-term expansions of the responses, the two-
term expansions of the responses are adopted in the
following. SubstitutingEqs. (73) and (74) intoEqs. (71)
and (72) and equating the coefficients of εm(m = 1, 3)
to zero lead to the following equations.

O(ε) : D2
0(y11) + ω2

11y11 = 0 (75)

D2
0(y21) + ω2

21y21 = 0 (76)

O(ε3) : D2
0(y13) + ω2

11y13 = F1 cos(�t)

−2D0D2(y11)

−ω2
13y11 − μ1D0(y11) − α11y

3
11

−α21y
2
11y21 (77)

−α31y11y
2
21 − α41y

3
21.

D2
0(y23) + ω2

21y23 = F2 cos(�t)

−2D0D2y21

−ω2
23y21 − μ2D0(y21) − α51y

3
11

−α61y
2
11y21

−α71y11y
2
21 − α81y

3
21. (78)

Equations (75) and (76) are homogenous differential
equations. The solutions of them can be expressed as

y11 = C10(T2)e
iω11T0 + C̄10(T2)e

−iω11T0 (79)

y21 = C20(T2)e
iω21T0 + C̄20(T2)e

−iω21T0 . (80)

As we restrict our attention to the case of internal reso-
nances, an internal resonance is assumed to occur when
ω2 ≈ 3ω1. A detuning parameter σ1 is therefore intro-
duced to describe the internal resonance as

ω21 = 3ω11 + σ1ε
2. (81)
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Here we consider the case of the primary resonance
around ω1 and F2 = 0. Hence, a second detuning
parameter σ2 is introduced to describe the nearness
between the excitation frequency and the natural fre-
quency ω1 as

� = ω11 + σ2ε
2. (82)

Substituting the expressions for y11 and y21 and
Eqs. (81) and (82) into the right-hand side of Eqs. (77)
and (78) yields the coefficients of secular terms as

2iω11D2(C10) + μ1iω11C10

+ω13
2C10 + 3α11C

2
10C̄10

+ 2α31C20C̄20C10

+α21C20C̄
2
10e

iσ1T2 − F1
2
eiσ2T2 = 0 (83)

2iω21D2(C20) + μ2iω21C20

+ω23
2C20 + 3α81C

2
20C̄20

+ 2α61C10C̄10C20 + α51C
3
10e

−iσ1T2 = 0. (84)

After eliminating the secular terms, y13 and y23 can be
obtained as

y13 = D(0,1)e
iω21T0 + D(3,0)e

3iω11T0 + D(0,3)e
3iω21T0

+D(2,1)e
i(2ω11+ω21)T0 + D(1,2)e

i(ω11+2ω21)T0 (85)

+D(1,−2)e
i(ω11−2ω21)T0 + c.c.

y23 = E(1,0)e
iω11T0 + E(0,3)e

3iω21T0

+E(2,1)e
i(2ω11+ω21)T0

+E(1,2)e
i(ω11+2ω21)T0 + E(−2,1)e

i(−2ω11+ω21)T0

+E(1,−2)e
i(ω11−2ω21)T0 + c.c, (86)

where c.c represents the complex conjugate and the
values of D(.,.) and E(.,.) are expressed as

D(0,1) = 3α41C2
20C̄20 + 2α21C10C̄10C20

ω2
21 − ω2

11

(87)

D(3,0) = α11C3
10

8ω2
11

(88)

D(0,3) = α41C3
20

8ω2
21

(89)

D(2,1) = α21C2
10C20

3ω2
11 + 4ω11ω21 + ω2

21

(90)

D(1,2) = α31C10C2
20

4ω11ω21 + 4ω2
21

(91)

D(1,−2) = α31C10C̄2
20

4ω2
21 − 4ω11ω21

(92)

E(1,0) = 3α51C2
10C̄10 + 2α71C10C20C̄20

ω2
11 − ω2

21

(93)

E(0,3) = α81C3
20

8ω2
21

(94)

E(2,1) = α61C20C2
10

4ω2
11 + 4ω11ω21

(95)

E(−2,1) = α61C20C̄2
10

4ω2
11 − 4ω11ω21

(96)

E(1,2) = α71C10C2
20

ω2
11 + 4ω11ω21 + 3ω2

21

(97)

E(1,−2) = α71C10C̄2
20

ω2
11 − 4ω11ω21 + 3ω2

21

. (98)

Inserting Cm0 = 1
2 Ameibm into Eqs. (79), (80), (85)

and (86) yields

y1 = A1ε cos(�t − γ1)

+ 3α41A3
2ε

3

4ω2
21 − 4ω2

11

cos(3�t − 3γ1 + γ2)

+ α21A2
1A2ε

3

2ω2
21 − 2ω2

11

cos(3�t − 3γ1 + γ2)

+α11A3
1ε

3

32ω2
11

cos(3�t − 3γ1)

+α41A3
2ε

3

32ω2
21

cos(9�t − 9γ1 + 3γ2)

+ α21A2
1A2ε

3

12ω2
11 + 16ω11ω21 + 4ω2

21

× cos(5�t − 5γ1 + γ2)

+ α31A1A2
2ε

3

16ω11ω21 + 16ω2
21

cos(7�t − 7γ1 + 2γ2)

+ α31A1A2
2ε

3

16ω2
21 − 16ω11ω21

cos(5�t − 5γ1 + 2γ2)

(99)

y2 = A2ε cos(3�t − 3γ1 + γ2)

+ 3α51A3
1ε

3

4ω2
11 − 4ω2

21

cos(�t − γ1)

+ α71A1A2
2ε

3

2ω2
11 − 2ω2

21

cos(�t − γ1)

+α81A3
2ε

3

32ω2
21

cos(9�t − 9γ1 + 3γ2)
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Table 4 Parameters in the
TDOF system with cubic
nonlinearity

ε ω1 ω2 μ1 μ2 α1,4,5,8 α2,3,6,7 F1 F2

0.1 1 3.01 2 2 1 0 50 0

+ α61A2
1A2ε

3

16ω2
11 + 16ω11ω21

cos(5�t − 5γ1 + γ2)

+ α61A2
1A2ε

3

16ω2
11 − 16ω11ω21

× cos(�t − γ1 + γ2)

+ α71A1A2
2ε

3

4ω2
11 + 16ω11ω21 + 12ω2

21

× cos(7�t − 7γ1 + 2γ2)

+ α71A1A2
2ε

3

4ω2
11 − 16ω11ω21 + 12ω2

21

× cos(5�t − 5γ1 + 2γ2), (100)

where γ1 = σ2T2−b1 and γ2 = σ1T2+b2−3b1.Again,
inserting Cm0 = 1

2 Ameibm into Eqs. (83) and (84) and
separating the real and imaginary terms yield

4F1 sin(γ1) − 4μ1A1ω11

−α21A
2
1A2 sin(γ2) = 0 (101)

−4F1ε
2 cos(γ1) + 4ω2

13ε
2A1

+ 3α11ε
2A3

1 + 2α31ε
2A1A

2
2

+α21ε
2A2

1A2 cos(γ2)

+ 8A1ω
2
11 − 8A1�ω11 = 0 (102)

α51A
3
1 sin(γ2) − 4μ2ω21A2 = 0 (103)

4ω2
23ε

2A2 + 3α81ε
2A3

2

+ 2α61ε
2A2

1A2 + α51ε
2A3

1 cos(γ2)

− 8ω21A2(3� − ω21) = 0. (104)

3.3.3 Numerical analysis of a TDOF system with
cubic nonlinearity

One case is considered with parameters given in
Table 4. The comparisons of FRCs of y1 and y2
obtained by MS method, PSMS method and NCM are
shown in Figs. 8 and 9, respectively. It is observed that
MS method over-evaluates the nonlinear stiffness of
the system as the FRCs obtained by MS method bend
to the right-hand side too much. However, the FRCs
obtained by PSMS method can still agree well with
those obtained by NCM for this TDOF system.
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Fig. 8 FRCs of y1 in a TDOF system by MS method, PSMS
method and NCM
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4 Error analysis

In this section, the values of cumulative error reflected
by Re corresponding to the results obtained by MS
method and PSMS method are compared to reveal the
improvement in the results obtained by PSMSmethod.
Besides for the values of Re, the values of the splitting
parameters that optimized the error function at some
specific excitation frequencies are also presented. They
are shown in Tables 5, 6, 7, 8 and 9 for the two Duffing
oscillators, the two oscillators with nonlinear restor-
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Table 5 Some values of splitting parameters and Re by PSMS method and corresponding Re values by MS method about oscillator 2

� η1 η2 ω2
00 ω2

01 ω2
02 R(MS)

e R(PSMS)
e

10 6.0000E+03 −0.0359 236.5169 1.6348E+03 0.2624 7.5844 0.0021

20 −5.5648E+03 1.1565E+05 381.7393 402.7605 − 2.2015E+03 3.8428E+06 4.2951E−04

30 −6.3713E+03 1.2371E+05 897.4618 5.3236E+03 −1.0298E+05 1.9365E+04 0.0738

40 6.0000E+03 − 0.0256 959.3436 −5.5935E+03 0.6758 7.8441 7.1257E−05

Table 6 Some values of splitting parameters and Re by PSMS method and corresponding Re values by MS method about oscillator 4

� α1 α2 β1 β2 η1 η2 ω2
00 ω2

01

0.6118 − 1.0672 110.6721 12.6285 − 26.2851 50.9961 −508.9611 0.3742 − 0.1055

0.8444 − 64.1045 741.0452 11.2600 − 12.6003 − 40.1042 402.0420 0.7117 −0 .1913

0.9011 − 37.8506 478.5061 −47.4620 574.6200 − 62.7801 628.8010 0.7920 3.9204

1.0002 17.7165 −77.1653 10.7419 −7.4190 15.9403 −158.4032 1.0001 −0.2609

� ω2
02 R(MS)

e R(PSMS)
e

0.6118 63.6402 4.3563E−04 1.9235E−10

0.8444 30.7420 5.1087E−05 2.0154E−08

0.9011 − 18.4069 3.1062 3.3372E−07

1.0002 2.5946 5.8143E−05 2.0291E−06

Table 7 Some values of splitting parameters and Re by PSMS method and corresponding Re values by MS method about oscillator 5

� κ0 κ1 ω2
00 ω2

01 R(MS)
e R(PSMS)

e

1.0004 100 0 1.0008 −10.0079 2.4747E+05 2.9123E−02

1.2516 100 0 1.5665 −15.6647 2.1155E+05 2.1643E−02

1.5032 100 0 2.2595 −22.5952 1.8405E+05 1.7517E−02

2.0009 100 0 4.0036 −40.0365 1.4547E+05 1.2892E−02

Table 8 Some values of splitting parameters and Re by PSMS method and corresponding Re values by MS method about oscillator 6

� κ0 κ1 ω2
00 ω2

01 R(MS)
e R(PSMS)

e

2.5270 100 0 17.4207 − 174.2094 7.2892E+03 6.1090E−03

3.0420 100 0 22.9657 − 229.6661 4.4526E+03 5.4270E−03

4.0205 100 0 33.1027 − 331.0270 3.5350E+03 4.6569E−03

5.0505 100 0 42.0294 − 420.3014 2.6265E+03 4.1221E−03

ing force and inertial force, the three purely nonlinear
oscillators and a TDOF system. It is seen that the errors
induced by PSMSmethod are much less than the errors
induced by MSmethod for all the given oscillators and
TDOF system.

5 Conclusions

A method named parameter-splitting method is pro-
posed in this paper to improve the solutions given by
the perturbation methods. The idea of this method is
that some parameters in the system are split and some
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Table 9 Some values of splitting parameters and Re by PSMS method and corresponding Re values by MS method about y1 and y2
of the TDOF system

� α11 α41 α51 α81 α13 α43 α53 α83

0.75 1.0079 1.0000 1.4990 1.0001 − 0.7887 3.5230E-05 − 49.8975 − 0.0114

1.00 0.9993 1.0569 1.0340 0.9585 0.0744 −5.6893 − 3.3952 4.1498

1.25 1.0179 7.0378 0.9504 1.3185 − 1.7854 −603.7783 4.9613 − 31.8547

1.50 1.0233 8.0834 0.8555 0.7008 − 2.3320 −708.3367 14.4534 29.9175

� ω2
11 ω2

21 ω2
13 ω2

23 R(MS)
e R(PSMS)

e

0.75 0.5571 13.2908 44.2933 − 423.0712 0.0874 3.2324E−08

1.00 0.9754 9.3124 2.4576 − 25.2281 0.0784 9.9160E−06

1.25 1.5196 8.5275 − 51.9639 53.2641 0.0770 4.5193E−04

1.50 2.1761 7.8885 − 117.6119 117.1550 0.746 0.0078

unknown parameters are introduced to the system.
Then the solution of the systemwith unknown parame-
ters is obtained by a perturbation method. The cumula-
tive error of the equation of motion due to the approx-
imate solution obtained by the perturbation method is
formulated and considered as objective function. The
optimum values of the unknown parameters can then
be determined by minimizing the objective function.
This solution procedure is named parameter-splitting–
multiple-scales (PSMS) method when it is applied to
improve the solutions obtained by MS method. The
FRCs of the nonlinear oscillators are analyzed by
PSMS method, MS method and NCM, respectively.
Given an excitation frequency, the values of the intro-
duced unknown parameter and the response amplitude
are determined by minimizing the cumulative equa-
tion error expressed by Eq. (15). The forced vibra-
tions of the Duffing oscillators, the oscillators with
both nonlinear inertial force and nonlinear restoring
force, a purely nonlinear oscillator and a TDOF sys-
tem with cubic nonlinearity are analyzed to examine
the effectiveness of PSMS method. Through numer-
ical study, it is observed that the results obtained by
PSMS method are much improved in comparison with
the results obtained byMSmethod even if the oscillator
or system nonlinearity is strong. The effectiveness of
this method is not limited to the presented oscillators
and system and the presented procedure is not limited
to improving the solutions obtained by MS method.
Other oscillators can also be studied by PSMSmethod,
and the proposed parameter-splitting method can also

be applied to improve the solutions obtained by other
perturbation methods.
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