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Abstract This paper deals with the surrounding con-
trol problem for a class of multi-agent systems. The
followers and leaders have nonlinear heterogeneous
dynamics, and the dynamics of the leaders are time-
varying. In this work, it is supposed that dynamics
of each follower consists of unknown parameters. For
this reason, an adaptive law is used to adjust unknown
parameters and an estimator to estimate the center of
the leaders is used. Also, a new estimator is presented
to estimate the summation of distances of the leaders
from their geometric center. This estimation is used
in the surrounding control protocol, especially when a
sudden change happens in the movement of any leader.
It is proved that the proposed estimator is stable in finite
time sense. Some numerical examples to verify the the-
oretical results are given.

Keywords Surrounding control problem · Multi-
agent systems · Center of leaders estimator · Adaptive
control

1 Introduction

Distributed cooperative control of multi-agent systems
has gained much attention in the past decade [1,2].
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Multiplicity of the agents in such systems is an impor-
tant benefit. In some applications, performing a task
is impossible with a single agent. Some examples are
surveillance with the aid of multiple sensors or sensor-
enabled robots [3], the release of an injured soldier by
a group of autonomous robots [4], protection of vehi-
cles on ground by armed robots [5], etc. Nowadays,
the application of multi-agent systems is in broad areas
such as consensus [6,7], containment control [8], for-
mation control [9], flocking [10], and rendezvous [11].

One of the applications of cooperative control is sur-
rounding control problem [12]. In this problem, the
goal is to design an algorithm wherein some agents,
which are usually called followers, are trying to con-
struct a regular shape around some other agents, which
are called leaders or targets. In recent works, the sur-
rounding problem has been investigated for station-
ary or moving leaders. In [13], the surrounding prob-
lem was studied for a group of unmanned air vehicles,
which surrounds one target by using decentralized non-
linear model predictive control.

The surrounding control problem and target enclos-
ing problem have common cognate; in both issues, the
aim is to achieve an encircle formation around lead-
ers which are either stationary or moving, by a group
of agents. To solve the enclosing problem, some con-
trol methods have been implemented. For example,
in [14] cyclic pursuit method has been proposed, and
in [15] authors consider an agent, that must move to
the vicinity of the other agent with unknown location
and then encircle it at a prescribed distance. A hybrid
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control based on reachability specifications was pre-
sented in [16] to accomplish the cooperative surround-
ing problem with multiple robots. One of the novel and
interesting works in target enclosing problem has been
investigated in [17], where a rotary surrounding con-
trol around a group of moving targets is presented for
a second-order multi-agent system.

In the surrounding and target enclosing problem, the
followers need to know thegeometric center of the lead-
ers and the radius of placement from this geometric
center to construct a regular shape around the lead-
ers. The target enclosing problem for the moving and
stationery leaders is considered in [18], where authors
assume that each follower is connected exactly to one
leader and an estimator is used to achieve the geomet-
ric center of leaders. The connection of each follower
exactly with one leader is a conservative condition. In
[19], this condition has been removed and a distributed
estimator for each follower is proposed. Also, in [19]
it is assumed that the movement of the leaders around
their center is bounded.

In this article,we consider the surrounding control of
multi-agent systemswith local information andmoving
or stationary targets. It is assumed that the dynamics of
each follower is different from theothers and consists of
unknown parameters. In the surrounding problem, the
main challenge is to create a regular shape around the
leaders. For this reason, each follower needs to know
the distance of its placement from the geometric cen-
ter of the leaders. It should be noted that the presented
method in [18,19] can only estimate the geometric cen-
ter of the leaders. So if the dynamics of leaders are in a
way that the distances between leaders increase as time
grows, the followers will not enclose the leaders. The
proposed method in the current paper can overcome
this deficiency.

In [20], the surrounding control of multi-agent sys-
tems with unknown nonlinear dynamics was consid-
ered. In this work, the authors designed an adaptive
control strategy based on the estimation of geometric
center of the leaders. To surround the leaders by the
followers, the authors assumed that the maximum dis-
tance between the center of the leaders and each fol-
lower is known to each follower, and then, they used it
in the control strategy. This assumption may be restric-
tive in some applications, especially when one or some
of the leaders make sudden change in their movement.
The current paper proposes an estimator which esti-
mates the summation of the distances of leaders from

their geometric center. This estimator is used to correct
the placement of surrounding followers, i.e., if the dis-
tances between leaders change, the followers will adapt
the enclosing radius.

The rest of the paper is organized as follows: Some
preliminaries and assumptions are given in Sect. 2.
Problem formulation is given in Sect. 3. The main
results are presented in Sect. 4. An estimator is intro-
duced for the center of leaders, and then, it is used
to estimate the summation of the distances of leaders
from their geometric center. Using this estimator, the
surrounding control input is presented. To show the effi-
ciency of proposed method, two simulation examples
are presented in Sect. 5. Finally, the conclusion of the
paper is given in Sect. 6.

2 Preliminaries

In multi-agent systems, the communication network
between agents is shown by a graph. For a multi-agent
system consisting of P agents, G = (V, E) represents
the corresponding graph, where V = {v1, ..., vP } is a
nonempty set of nodes, E = {ei j = (vi , v j )} ⊆ V × V
is the set of edges. (vi , v j ) ∈ E shows an edge. It means
that agent v j knows the information of agent vi and the
node v j is a neighbor of node vi . The set of neighbors
of agent vi is represented by Ni . The graph G is an
undirected graph of order P if (vi , v j ) ∈ E implies
(v j , vi ) ∈ E . An undirected graph is connected if there
exists a sequence of distinct edges such that consecutive
edges are joint between any two vertices.

The Adjacencymatrix of the graph G isA = [ai j ] ∈
R
P×P , where ai j = 1 if ai j ∈ E and ai j = 0 if

ai j /∈ E . The graph Laplacian matrix is defined as

L = [li j ] ∈ R
P×P , where lii = ∑P

j=1, j �=i ai j and
li j = −ai j , i �= j . The Adjacency and Laplacian
matrices of an undirected graph are symmetric.

In this paper, a multi-agent system with N follow-
ers and M leaders is considered. It is supposed that the
graph G of the multi-agent system consisting of fol-
lowers and leaders is an undirected graph, and each
leader communicates with at least one follower. In this
paper, the set of nodes of the followers and leaders
are shown with VF and VL, respectively. The intercon-
nection relationship between each follower and corre-
sponding leader is indicated with the Explore matrix,
which is shown by B = [bik] ∈ R

N×M . It is defined
as bik = 1 if the i th follower communicates with the
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kth leader and bik = 0, otherwise. Kronecker prod-
uct is indicated with ⊗, and the 2-norm of a vector is
denoted by ‖.‖.

3 Problem formulation

Consider a multi-agent system which has N follow-
ers and M leaders. The dynamics of the followers and
leaders are assumed to be nonidentical. The follower
dynamics are represented by

ẋi = fi (xi , t) + ui (t), i ∈ VF, (1)

where xi (t) = (xix , xiy)T is the state of the i th fol-
lower, ui (t) ∈ R

2 is the control protocol and fi (xi , t)
is a vector of unknown nonlinear functions which is
assumed to be Lipschitz in xi and continuous in t . It is
assumed that the leaders move in R

2 with dynamics

l̇k(t) = vk(t), k ∈ VL, (2)

where lk(t) ∈ R
2 and vk(t) ∈ R

2, respectively, repre-
sent the position and the velocity of the kth leader.

The goal is to design a adaptive control law for the
followers to create a certain geometrical configuration
around the leaders. For this purpose, we should have

lim
t→∞(xi (t) − l(t)) = ρi

[
cos

( 2π i
N

)

sin
( 2π i

N

)

]

, i ∈ VF (3)

here l(t) denotes the center of leaders, ρi ∈ R
+ is the

radius of the i th follower with respect to the center of
leaders.

Assumption 1 The velocity of each leader is bounded,
namely ‖l̇ j (t)‖ ≤ p j , j ∈ VL.

4 Main results

Assume that the graph topology G of the multi-agent
system is connected and undirected. The estimator of
the geometric center of leaders for the i th follower is
represented by x̂i (t) and is given as follows [19],

x̂i (t) = φi (t) + l̃i (t), i ∈ VF. (4)

Here, φi (t) is a dynamic variable with the following
dynamics,

φ̇i (t) =

⎧
⎪⎨

⎪⎩

α
N∑

k=1
aik

[
x̂k(t)−x̂i (t)∥
∥̂xk(t)−x̂i (t)

∥
∥

]
, x̂k(t) �= x̂i (t)

0, x̂k(t) = x̂i (t)

(5)

where φi (0) = 0 and α > 0 is a constant, and l̃i (t) is
defined as
⎡

⎢
⎢
⎢
⎢
⎢
⎣

l̃1(t)

l̃2(t)
...

l̃N (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= N

M

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In ⊗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11∑N
k=1 bk1

b12∑N
k=1 bk2

· · ·
b21∑N
k=1 bk1

b22∑N
k=1 bk2

· · ·
...

...
. . .

bN1∑N
k=1 bk1

bN2∑N
k=1 bk2

· · ·
b1M∑N
k=1 bkM
b2M∑N
k=1 bkM

...

bNM∑N
k=1 bkM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

l1(t)
l2(t)

...

lM (t)

⎤

⎥
⎥
⎥
⎦

(6)

in which l j (t) denotes the position of the j th leader.
In [19], it has been shown that the estimator defined

by (4)–(6) will converge to the leaders center in a finite
time T , i.e.,

x̂i (t) = 1

M

M∑

k=1

lk(t), t > T = 1

δ

√
V (0) (7)

where δ �
√
2N [c1−(N−1)c2]

2(N−1) with c1 > c2, wherein c1
and c2 are real positive constants. The initial condition
of Lyapunov function is represented by V (0).

The increment of the distances between leaders will
cause the increment of their radius around their geo-
metric center. Therefore, a system is needed to estimate
these changes. In the following subsection, a distributed
estimator for each follower is presented to estimate the
summation of leaders’ distances from their geometric
center. This is used to obtain the radius of the i th fol-
lower around the geometric center of leaders.

4.1 Estimator for the summation of distances of the
leaders from their geometric center

A estimator x̂ui (t) is proposed to estimate the summa-
tion of the distances of leaders from their geometric
center. x̂ui (t), which is calculated for the i th follower,
is as follows,

x̂ui (t) = ψi (t) + d̃i (t), i ∈ VF (8)
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where d̃i (t) is defined as

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d̃1(t)

d̃2(t)

.

.

.

d̃N (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=N

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In ⊗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11∑N
k=1 bk1

b12∑N
k=1 bk2

· · ·
b21∑N
k=1 bk1

b22∑N
k=1 bk2

· · ·
.
.
.

.

.

.
. . .

bN1∑N
k=1 bk1

bN2∑N
k=1 bk2

· · ·
b1M∑N
k=1 bkM
b2M∑N
k=1 bkM

.

.

.

bNM∑N
k=1 bkM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

l1(t)
l2(t)

.

.

.

lM (t)

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

x̂1(t)
x̂2(t)

.

.

.

x̂N (t)

⎤

⎥
⎥
⎥
⎦

(9)

and ψi (t) satisfies

ψ̇i (t) =

⎧
⎪⎨

⎪⎩

γ
N∑

k=1
aik

[
x̂uk (t)−x̂ui (t)∥
∥̂xuk (t)−x̂ui (t)

∥
∥

]
, x̂uk(t) �= x̂ui (t)

0, x̂uk(t) = x̂ui (t)

(10)

where ψi (0) = 0 and γ > 0. Before introducing The-
orem 1, a lemma from [21] is presented.

Lemma 1 [21] Suppose there is a positive definite Lya-
punov function V (x, t) : Rn × R

+ −→ R
+ and there

are positive real constants C > 0 and 0 < α < 1, such
that V̇ (x, t) +CV α(x, t) ≤ 0. Then, V (x, t) is locally
finite-time convergent with a settling time Ts where

Ts <
V 1−α(x0, t)
C(1 − α)

(11)

Theorem 1 Consider a graph topology G = (V, E)

corresponding to an undirected and connected multi-
agent system. If there exists a constant ξ > 0 for which
‖ ˙̃di (t)‖ < ξ and γ is selected in a way that γ > (N −
1)ξ , then for all followers, the estimator vector defined
by (8) converges to the summation of the distance vector
of the leaders from their geometric center in a finite
time.

Proof The proof is organized in two steps: (1) The esti-
mator defined by (8) converges in a finite time. (2) The
estimator vector converges to the summation of dis-
tances vector of the leaders from their geometric center.

The candidate of Lyapunov function is selected as
follows:

V (t) = 1

2

N∑

i=1

⎛

⎜
⎝

⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦

T

×
⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦

⎞

⎠ . (12)

Time derivative of V (t) and using (8) and (10) result
in.

V̇ (t) =
N∑

i=1

⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦

T

×
⎡

⎣ ˙̂xui (t) − 1

N

N∑

j=1

˙̂xu j (t)
⎤

⎦

=
N∑

i=1

⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦

T

×
⎡

⎣ψ̇i (t) + ˙̃di (t) − 1

N

N∑

j=1

˙̂xu j (t)
⎤

⎦ . (13)

We will continue the proof in two cases, when ψ̇i (t) �=
0, and when ψ̇i (t) = 0. When ψ̇i (t) �= 0, V̇ (t) is as
follows

N∑

i=1

⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦

T

×
[

γ

N∑

k=1

aik

[
x̂uk(t) − x̂ui (t)∥
∥̂xuk(t) − x̂ui (t)

∥
∥

]]

= γ

N∑

i=1

N∑

k=1

aik x̂Tui (t)

×
[

x̂uk(t) − x̂ui (t)∥
∥̂xuk(t) − x̂ui (t)

∥
∥

]

− γ

N

N∑

j=1

xTu j (t)
N∑

i=1

N∑

k=1

aik

×
[

x̂uk(t) − x̂ui (t)∥
∥̂xuk(t) − x̂ui (t)

∥
∥

]

= γ

2

N∑

i=1

N∑

k=1

aik [̂xui (t) − x̂uk(t)]T

×
[

x̂uk(t) − x̂ui (t)∥
∥̂xuk(t) − x̂ui (t)

∥
∥

]

− γ

N

N∑

j=1

xTu j (t)

⎛

⎝
N∑

i=1

N∑

k=1

aik

×
[

x̂uk(t)∥
∥̂xuk(t) − x̂ui (t)

∥
∥

]

−
N∑

i=1

N∑

k=1

aik

[
x̂ui (t)∥

∥̂xuk(t) − x̂ui (t)
∥
∥

]⎞

⎠

= − γ

2

N∑

i=1

N∑

k=1

[
aik

∥
∥̂xui (t) − x̂uk(t)

∥
∥
]
. (14)

SinceG is connected and
∥
∥ ˙̃di (t)

∥
∥ < ξ , by using triangle

inequality, one has
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N∑

i=1

{[
x̂ui (t) − 1

N

N∑

j=1

x̂u j
]T ˙̃di (t)

}
≤

N∑

i=1

∥
∥
∥[̂xui (t)−

1

N

N∑

j=1

x̂u j ]T ˙̃di (t)
∥
∥
∥ ≤ ξ

N∑

i=1

∥
∥
∥̂xui (t) − 1

N

N∑

j=1

x̂u j
∥
∥
∥ =

ξ

N

N∑

i=1

∥
∥
∥N x̂ui (t) −

N∑

j=1

x̂u j
∥
∥
∥ ≤ ξ

N

N∑

i=1

N∑

j=1

‖̂xui − x̂u j‖

≤ (N − 1)ξ max
i, j=1,..., N

‖̂xui − x̂u j‖ ≤ (N − 1)ξ

2
N∑

i=1

N∑

k=1

[
aik

∥
∥̂xui (t) − x̂uk(t)

∥
∥
]
. (15)

Also

N∑

i=1

⎛

⎜
⎝

⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦

T ⎡

⎣− 1

N

N∑

j=1

˙̂xu j (t)
⎤

⎦

⎞

⎟
⎠ =

⎡

⎣
N∑

i=1

x̂Tui −
N∑

j=1

x̂Tu j

⎤

⎦

⎡

⎣− 1

N

N∑

j=1

˙̂xu j (t)
⎤

⎦ = 0.

(16)

From (14)–(16), one can write

V̇ (t) ≤ (N − 1)ξ − γ

2

N∑

i=1

N∑

k=1

[
aik ‖̂xui (t) − x̂uk(t)‖

]
.

(17)

Since γ > (N − 1)ξ , V̇ (t) ≤ 0. When ψ̇i (t) = 0, we
obtain

N∑

i=1

⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦

T

[ψ̇i (t)] = 0 (18)

From (18), inequality (15) and equality (16) are also
hold. Because x̂uk(t) = x̂ui (t), the time derivative of
Lyapunov function is also V̇ (t) ≤ 0 in this case. In
addition,

∥
∥̂xui (t) − 1

N

N∑

j=1

x̂u j
∥
∥ ≤ 1

N

N∑

j=1

∥
∥̂xui (t) − x̂u j (t)

∥
∥.

(19)

Thus, based on (12), one has

V (t) ≤ 1

2

N∑

i=1

⎛

⎝ 1

N

N∑

j=1

∥
∥̂xui (t) − x̂u j (t)

∥
∥

⎞

⎠

2

≤ 1

2

N∑

i=1

[
N − 1

N
max

j=1,..., N

∥
∥̂xui (t) − x̂u j (t)

∥
∥
]2

≤ (N − 1)2

2N

(

max
i, j=1,..., N

∥
∥̂xui (t) − x̂u j (t)

∥
∥
)2

.

(20)

Then

√
V (t) ≤ N − 1√

2N
max

i, j=1,..., N

∥
∥̂xui (t) − x̂u j (t)

∥
∥

≤ N − 1

2
√
2N

N∑

i=1

N∑

j=1

[
ai j

∥
∥̂xui (t) − x̂u j (t)

∥
∥
]
.

(21)

From (17) and (21), one has

V̇ (t) + C
√
V (t) ≤

(
(N − 1)ξ − γ

2
+ C

N − 1

2
√
2N

)

N∑

i=1

N∑

j=1

[
ai j

∥
∥̂xui (t) − x̂u j (t)

∥
∥
]
.

(22)

If C is chosen to satisfy 0 < C ≤ −√
2N
(
(N−1)ξ−γ

)

(N−1) ,
then from Lemma 1 it is concluded that V (t) is conver-
gent in finite time with a settling time Ts as follows:

Ts ≤ −2
√
V (0)(N − 1)√

2N ((N − 1)ξ − γ )
. (23)

Therefore, from (17) and (23) we have

lim
t→Ts

⎡

⎣̂xui (t) − 1

N

N∑

j=1

x̂u j (t)

⎤

⎦ = 0

lim
t→Ts

[
x̂ui (t) − x̂u j (t)

] = 0. (24)

It is proved that the estimator defined by (8)–(10) con-
verges in finite time with a settling time defined by
(23). In the next step, it is shown that this estimator
converges to the summation of distance vectors of the
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leaders from their geometric center. From (8) and (10),
we have

N∑

i=1

x̂ui (t) = γ

N∑

i=1

∫ τ=t

0

N∑

k=1

aik

[
x̂uk(τ ) − x̂ui (τ )
∥
∥̂xuk(τ ) − x̂ui (τ )

∥
∥

]

dτ

+
N∑

i=1

d̃i (t) = γ

∫ τ=t

0

N∑

i=1

N∑

k=1

aik

[
x̂uk(τ ) − x̂ui (τ )
∥
∥̂xuk(τ ) − x̂ui (τ )

∥
∥

]

dτ +
N∑

i=1

d̃i (t).

(25)

Since the graph is undirected,

N∑

i=1

x̂ui (t) =
N∑

i=1

d̃i (t). (26)

Also from (9) and (7), one has

N∑

i=1

x̂ui (t) = N
M∑

k=1

lk(t) −
N∑

j=1

x̂ j (t). (27)

So, from (24), x̂ui (t) = ∑M
k=1 lk(t) − x̂i (t), when t ≥

max{T, Ts}. The values of T and Ts are defined in (7)
and (11), respectively. �
Remark 1 GivenAssumption 1 and defining a real pos-
itive constant δk j , k ∈ VF, j ∈ VL with 0 ≤ δk j ≤ 1
when the follower k is connected to the leader j and
δk j = 0 when the follower k is not connected to the
leader j , we have
∥
∥
∥ ˙̃di (t)

∥
∥
∥ =

∥
∥
∥
(
δi1 l̇1(t) + δi2 l̇2(t) + · · · + δiM l̇M (t)

)

−˙̂xi (t)
∥
∥
∥. (28)

From (4) and (6), we deduce that

∥
∥
∥ ˙̃di (t)

∥
∥
∥ =

∥
∥
∥
(
δi1 l̇1(t) + δi2 l̇2(t) + · · · + δiM l̇M (t)

)

− 1

M

(
δi1 l̇1(t) + δi2 l̇2(t) + · · · + δiM l̇M (t)

)

− φ̇i (t)
∥
∥
∥ ≤

∥
∥
∥
M − 1

M

(
δi1 l̇1(t) + δi2 l̇2(t) + · · ·

+ δiM l̇M (t)
)∥∥
∥ +

∥
∥
∥φ̇i (t)

∥
∥
∥ ≤ M − 1

M

×
(
δi1 p1 + δi2 p2 + · · · + δiM pM

)
+ α

N∑

k=1

∥
∥aik

∥
∥

≤
(M − 1

M

) M∑

j=1

p j + α

N∑

k=1

∣
∣aik

∣
∣. (29)

Then from (29), an upper bound for ξ is
(
M−1
M

)

∑M
j=1 p j + α

∑N
k=1

∣
∣aik

∣
∣. To use estimator (8), the

parameter γ in (10) should be selected. From Theo-
rem 1, we need ξ to determine γ . This remark proposed
an upper bound for ξ .

4.2 Surrounding control protocol

Suppose that the nonlinear dynamics of the follower
fi (xi , t) can be parameterized as

fi (xi , t) = ϑ(t, xi )χi , i ∈ VF (30)

where ϑ(t, xi ) ∈ R
2×2 is a symmetric matrix of a non-

linear function with bounded elements and χi ∈ R
2 is

an unknown constant parameter vector.
Theorem 2 presents an adaptive surrounding control

protocol for the followers with dynamics (1) by using
the proposed estimator (8).

Theorem 2 Consider the multi-agent system (1) and
(2) with estimators (4) and (8). The control protocol

ui (t) = ˙̂xi (t) + v
d

dt
‖̂xui (t)‖

(

In ⊗
[
cos

( i.2π
N

)
0

0 sin
( i.2π

N

)

])

1 − ϑ(t, xi )χ̂i − cρi

(31)

causes the followers to create certain geometrical con-
figuration with adaptive law given by

˙̂χi (t) = c f

c
ϑ(t, xi )ρi (32)

and

ρi = xi (t) − x̂i (t) − v‖̂xui (t)‖
([

cos
( 2π i

N

)

sin
( 2π i

N

)

])

(33)

where c, v and c f are real positive constants.

Proof For i ∈ VF, define ζi = χ̂i − χi . Consider the
following Lyapunov function candidate

V (t) = 1

2c

N∑

i=1

ρT
i ρi + 1

2c f

N∑

i=1

ζT
i ζi . (34)

By evaluating time derivative of V (t), we have

V̇ (t) = 1

c

N∑

i=1

ρT
i ρ̇i + 1

c f

N∑

i=1

ζ̇T
i ζi = 1

c

N∑

i=1

ρT
i

(
ẋi (t)−
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Fig. 1 Communication topology of a group of agents with 6
followers and 4 leaders (Fi the i th follower, L j the j th leader)

˙̂xi (t) − v
d

dt
‖̂xui (t)‖

(

In ⊗
[
cos

( i.2π
N

)
0

0 sin
( i.2π

N

)

])

1
)

+ 1

c f

N∑

i=1

˙̂χT
i ζi . (35)

Using (1) and (30)–(32), it follows that

V̇ (t) = 1

c

N∑

i=1

ρT
i

(
ϑ(t, xi )χi + ui (t) − ˙̂xi (t)−

v
d

dt
‖̂xui (t)‖

(

In ⊗
[
cos

( i.2π
N

)
0

0 sin
( i.2π

N

)

])

1
)
+

1

c

N∑

i=1

ρT
i ϑ(t, xi )ζi = −

N∑

i=1

ρT
i ρi ≤ 0. (36)

By employing (1), (30), (31), (33) and Barbalat’s
lemma,weconclude that limt→∞ ρi = 0where i ∈ VF.
Hence, the followers create certain geometrical config-
urations around the geometric center of the leaders. �

5 Simulation examples

To validate the proposed methods, three examples are
given in this section. Consider a group of agents with
N = 6 followers andM = 4 leaders and assume n = 2.
The communication topology given in Fig. 1 is undi-
rected. In this figure, solid line represents the commu-
nication among followers and dash line represents the
communication between the followers and the leaders.

In this example, the unknown nonlinear dynamics
of the followers are chosen as

fi (xi , t) = ϑ(t, xi )χi =
[
i cos(2t) 0

0 0.2e−|t xiy |
]

χi

(37)

0100
10

100

Time(sec)

200

X

Y 0

30
-100
-100

L1
L2
L3
L4
F1
F2
F3
F4
F5
F6

Fig. 2 Trajectories of agents in Example 1 with stationary lead-
ers

for the followers 1–3 and

fi (xi , t) = ϑ(t, xi )χi =
[
cos(0.1|xix |) 0

0 0.2i sin(4t)

]

χi .

(38)

for the followers 4–6.
The state vectors of the followers are defined as xi =

(xix , xiy)T, and the unknown constant parameter vec-
tors are chosen as χ1 = [0.5 0.7]T, χ2 = [−0.5 0.5]T,
χ3 = [1 0.5]T, χ4 = [0.6 0.5]T, χ5 = [−1 0.8]T and
χ6 = [−0.8 − 1]T.

Example 1 Consider the surrounding control prob-
lem for a multi-agent system with communication
topology given in Fig. 1. In this example, it is
assumed that the positions of the leaders are sta-
tionary and the nonlinear dynamics of the followers
are given by (37) and (38). The initial positions of
the followers and the leaders are chosen as X(0) =[
0, 20,− 10, 3,− 11,− 10,− 6,− 5,−6, 6,− 8, 18

]T

and L(0) = [ − 5.2, 17.5, 4, 7.1, 2.25,− 0.3,− 19,

− 4.2
]T, respectively. With the control input (31) and

adaptive laws (32) and estimators (4) and (8), the sim-
ulation results are shown in Fig. 2 with v = 2, c =
13, c f = 0.2, α = 2 and γ = 5. In this figure, + and
o represent start and end points of the agents, respec-
tively. Solid line denotes the trajectory of the follow-
ers, and dash line shows the trajectory of the leaders.
In Fig. 3, the surrounding error vector of the system is
illustrated.

To show the performance of estimator (8), the norm
of the estimated vector x̂ui of each follower is illustrated
in Fig. 4. It is easy to see that the estimator converges
to a constant value after a finite time.
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Fig. 3 Global surrounding error vector in Example 1
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Fig. 4 Norm of the estimated vector x̂ui in Example 1

Example 2 In this example, it is assumed that the lead-
ers are moving. The dynamics of the leaders are chosen
as,

L(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 15 − 0.2t
sin(t)
14

− 17 + 0.1t
2.5

−0.3t
− 4.015t

− 4 − 0.2t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (39)

Under the control protocol (31) and adaptive laws (32)
and estimators (4) and (8), simulation results are shown
in Figs. 5, 6 and 7 with v = 2, c = 15, c f = 0.2,
α = 5 and γ = 15. From Fig. 5, it is easy to see that the
followers are surrounding the leaders in certain geomet-
rical configurations. Figure 6 represents surrounding
error vector of the system. In this example, because the
leaders are moving, the summation of the distances of
leaders from their geometric center gets larger as time
increases. In Fig. 7, we illustrate the norms of the sum-
mation of the distances that each follower estimates.

Example 3 In this example, we assume that the lead-
ers have two different time-varying dynamics, in two

Fig. 5 Trajectories of agents in Example 2 for moving leaders

Fig. 6 Global surrounding error vector in Example 2
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x̂
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i
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x̂u2

x̂u3

x̂u4

x̂u5

x̂u6

Fig. 7 Normof the estimatedvector x̂ui that each followermakes
from the summation of distances of the leaders to their geometric
center

intervals. In t ∈ [0, 9), the dynamics of leaders is to be
the same as Example 2. In t ∈ [9, 20], the dynamics of
leaders are chosen as follows

L(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−60 − 0.8t
28 + t
100

68 + 0.4t
10 + 4t

−28 − 12t
−8.06t
−12.8t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (40)

The constant parameter of the control protocol (31)
and adaptive laws (32) is v = 7.5, c = 15, c f = 0.2,
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Fig. 8 Trajectories of agents in Example 3 for moving leaders

α = 6 and γ = 15. The simulation result is shown
in Fig. 8. From this figure, it can be seen that if any
of the leaders makes a sudden change in its motion,
the proposed method can estimate it and produce
necessary forces to keep the followers enclosing the
leaders.

Remark 2 In [18], the enclosing control problem is
investigated for a multi-agent system with stationary
and moving target. In this paper, similar to contain-
ment problem, the followers should be placed around
the convex hall created by the leaders with a speci-
fied distance. In [19], the surrounding control for a
multi-agent system with linear second-order dynam-
ics is considered. Using the estimator of the geometric
center of the leaders, a control protocol has been cre-
ated such that the followers create a equidistant circular
formation around the leaders. In [20], the surrounding
problem is studied for a multi-agent system with non-
linear dynamics, where the dynamics of the agents have
unknown parameters. Using the geometric center of the
leaders, two adaptive control strategies are proposed. In
[19,20], it is assumed that the movement of the leaders
around their geometric center is bounded. Each fol-
lower must know the maximum distance between the
leaders and the geometric center; then, by using this
maximum distance, the control strategies have been
created. To overcome these restricting assumptions,
in this article an estimator to estimate the summation
of distances of the leaders from their geometric cen-
ter is proposed. If the distance between any of the
leaders and their geometric center increases, the esti-
mated summation also increases. So each follower gets
aware of this increment, and in consequence, the con-
trol input gets adjusted. Example 3 clearly shows this
case.

6 Conclusion

In this paper, we studied the surrounding control of
the stationary and moving leaders, where a group of
followers wants to surround a team of leaders. It was
assumed that the dynamics of the followers are nonlin-
ear and nonidentical with unknown parameters. First,
an estimator for the geometric center of the leaders was
introduced. Then, based on the estimation of the center
of leaders, an estimator was presented to predict the
summation of the distances of leaders from their geo-
metric center. This estimation was used to calculate the
placement radius of the followers around the geometric
center of the leaders. This made the movement of the
leaders adaptive to the position changes of the leaders.
For futurework, the redesignof the proposed estimators
wherein the convergence time is fixed and is not depen-
dent on the initial conditions, can be considered. On the
other hand, the total number of the followers is used
in the estimator of the summation of the distances of
leaders from their geometric center. Another direction
for future work is to take this number as an unknown
parameter and try to find suitable adaptive laws for its
estimation. Stochastic disturbance and time delay may
be found in very dynamical system. The mathemati-
cal analysis and designing a suitable controller for the
considered system in this article, when exposed to the
stochastic disturbance and time delay, can be another
headline for future works.
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