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Abstract Predator–prey interactions are the most
common phenomena in the natural population, which
are widely exploited for control of economically dam-
aging pest species in an eco-friendly manner. It is
proven that the pest adopts several mechanisms for
overcoming the predation pressure. Two such tech-
niques which are not well studied in the literature are
group defence, anti-predator behaviour in prey. Anti-
predator behaviour of prey is a counterattacking tech-
nique, inwhich adult prey attacks the juvenile predators
to reduce the future predation pressure. From the exist-
ing experimental studies, it is observed that the anti-
predator behaviour of the pest can have adverse effects
on the biological control programmes. One of the ways
to overcome the loss due to anti-predator behaviour
is to cater the predators with some alternative food.
In this current work, we have investigated this aspect
in a dynamical system framework. This study uncov-
ers many fascinating phenomena. It is found that the
considered system displays rich dynamics and demon-
strates various bifurcations such as saddle-node bifur-
cation, (supercritical and subcritical) Hopf bifurcation,
homoclinic bifurcation and a Bogdanov–Takens bifur-
cation of co-dimension 2 are studied. Treating the anti-
predator behaviour in prey as one of the control parame-
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ters, and by characterising the additional food supplied
to the predators, the strategies for achieving the suc-
cessful biological control are derived.
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1 Introduction

Controlling of economically damaging agricultural
weeds and insect pests is attracting much attention
from many researchers across several disciplines from
the last few decades. It is well established that the use
of pesticides and insecticides has long-lasting adverse
effects on the environment as well as on humankind
[13,14,19,64]. Consequently, research on bioremedi-
ation, biocontrol programmes and their implementa-
tion have gained a lot of momentum in the last few
decades [10,18,47,48]. The primary aim of these pro-
grammes is to develop techniques to identify the appro-
priate natural enemies and their time of release for the
success of pest control programmes. A vast amount of
experimental/theoretical works done in this direction
[5,15,36,43,44,77,81,84,85]. Many of these studies
conclude that a majority of natural enemies in nature
are generalists, whose diet choices include a portion
of non-prey food items derived from plants, viz., nec-
tar, pollen, etc. The availability of these non-prey food
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sources influences the pest control efficiency of preda-
tors.

The theoretical work by Srinivasu et al. [65] carried
out in the direction of accessing the impact of non-
prey food sources on the biocontrol efficiency of preda-
tors, establishes that the ability of a natural enemy to
control the pest is affected by the (nutritional) qual-
ity and quantity of additional food supplied. Further, it
is highlighted that an arbitrary choice can lead to pest
outbreaks and can even drive the predator population
to extinct, a contra-intuitive result which deviates the
outcomes of the biological programmes. The review
work by Wade et al. [86], highlighting the role of qual-
ity and quantity of supplemental food on the success of
biological control programmes supports the findings in
the study of Srinivasu et al. [65].

Some of the other factors that can influence the bio-
logical control efficiency of predators are intraspecific
competition, cannibalism etc. [23,24]. The effect of
intraspecific competition on the prey–predator inter-
actions and its outcome on biological control is well
established in the literature [1,6,62]. Investigation by
Prasad et al. [52] discusses the impact of providing
additional food on the biocontrol efficiency of mutu-
ally interfering predators. A noteworthy finding of their
study is that, at low mutual interference, the presence
of high (nutritive) quality non-prey food sources can
lead to a stable prey–predator coexistence with low
prey biomass. The intraspecific interactions can some-
times lead to cannibalistic nature, especially when the
resources become scarce. Many natural enemies in
nature found to adopt cannibalism as a “life-boat strat-
egy” [23,58–60,72,79]. One of the ways, to reduce the
cannibalistic behaviour in predators and increase their
population, is by providing the predators with some
additional/alternative food [24]. A recent theoretical
investigation carried out in this direction by Prasad and
Prasad [53] quantifies the additional food supply with
respect to quantity, quality along with the strength of
cannibalism for the success of biological control pro-
grammes. This study also provides the control strate-
gies for driving the prey population to extinct by vary-
ing quality, quantity.

Two other important phenomena linked to predator–
prey interactions, which have not attracted much atten-
tion from scientists, are group defence and anti-
predator behaviour in prey. The anti-predator behaviour
in prey is a tactical strategy adopted by the prey, in
which the adult prey species kill the juvenile preda-

tor, to avoid the future predation pressure and protect
their future offsprings [8,22,27,35,40,45]. In doing
so, prey may not always admit immediate benefit
[7,20,27,40,55,63]. In many situations, prey adopts
anti-predator behaviour as a counterattacking tech-
nique only, viz., the works of Vangansbeke et al. [76]
document the counterattacking strategy of thrips in
destroying the eggs of Amblydromalus limonicus and
thus reducing their growth. In some other situations,
the prey uses the anti-predator behaviour as a nutritive
source for their growth.An example of this behaviour is
found in the works of [33,34,75] in which it is reported
that western flowers thrips, Frankliniella occidentalis,
a cosmopolitan pest adopts anti-predator behaviour by
the feedings the eggs of phytoseiidmites.A similar type
of anti-predator behaviour wherein adult prey kill and
consume the juvenile predators is reported in [55,56].

The predator–prey interactions exhibit complex
dynamics when the prey species adopt anti-predator
behaviour. As the anti-predator behaviour depends on
various life history parameters of prey as well as preda-
tors, identifying the suitable natural enemies to con-
trol the pest adopting anti-predator behaviour remains
a challenging task. A few theoretical models studied
this effect [32,70] and concluded that the anti-predator
effect of prey species is beneficial to prey population
and detrimental to predator population, resulting in
increasing the density of prey community and in turn
the pest outbreaks.

In a recent experimental work, Vangansbeke et al.
[75] investigated the influence of food supplementation
on the anti-predator behaviour of prey species. This
study reports a mixed results. Although the food sup-
plementations lead to a decrease in the predation rate,
the numerical response of the predators increased in the
presence of right kind of food supplementation, yield-
ing a better pest suppression. The study highlights the
role of quality of food supplements in altering the coun-
terattacking behaviour of prey. The study also docu-
ments that the knowledge on the quantification of addi-
tional food for successful biological control when prey
adopts anti-predator behaviour is limited. Finally, it is
concluded that further investigations are necessary to
elucidate the significance of providing various addi-
tional food sources on enhancing the biocontrol effi-
ciency of natural enemies. This observation motivated
us to undertake a theoretical study to investigate the cir-
cumstances under which, the supply of additional food
(characterised by quantity and quality) leads to suc-
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cessful biological control when the prey species adopt
group defence and exhibit anti-predator behaviour. We
strongly feel that this type of theoretical studies can
provide valuable insights into the biological phenom-
ena that are responsible for achieving the required tar-
get and bridge the gap between the experimental and
theoretical works.

The model presented here assumes no dynamics for
the additional food. It is assumed that the additional
food supply is controlled by either eco-mangers or
nature. Further, we assume that the group defence in
prey influences the uptake of prey by predators and that
the predation pressure decreases monotonically with
an increase in the prey density, resulting in a Holling
type IV functional response.We further assume that the
prey adopts anti-predator behaviour as a counterattack-
ing strategy only and does not benefit from the killing
of the juvenile predator. Thus, the reduction in preda-
tor population as a consequence of the anti-predator
behaviour by prey is modelled using mass action
law.

At first, the dynamics of this model analysed sys-
tematically to identify the various equilibria that the
system exhibits and their dependency on the system
parameters. Subsequently, the global behaviour exem-
plified with the help of multiple bifurcations that are
occurring in the system (treating quantity and anti-
predator behaviour as control parameters). The con-
ditions leading to the existence of complex dynamics
such as the appearance of homoclinic orbit, saddle-
node bifurcation, Bogdanov–Takens bifurcation, etc.,
are established. The results presented in this study,
highlight the vital role of anti-predator behaviour, addi-
tional food quality and quantity in controlling the
economically damaging pest using biological control
agents.

The article is structured as follows: Sect. 2 intro-
duces the prey–predator model with anti-predator
behaviour in prey and provision of additional food to
predators. Section 3 investigates the conditions for the
existence of various equilibria and their stability. The
mathematical analysis for various bifurcations (viz.,
transcritical, saddle-node, Hopf bifurcation andmainly
Bogdanov–Takens) exhibited by the system are pre-
sented in Sect. 4. The global dynamics of the system
treating quantity of the food that is supplied and anti-
predator behaviour in prey as control parameters are
presented in Sect. 5. Section 6 discusses the conse-
quences of the provision of additional food and its util-

ity in biological control. The key finding of the analysis
illustrated through numerical simulations in Sect. 7.
Finally, Sect. 8 presents the discussions and conclu-
sions.

2 The model

The present section is devoted to the assumptions and
formulation of the mathematical model for studying
the consequences of providing additional food to the
predator–prey interactions that are influenced by the
anti-predator behaviour in prey.

In the present study, the prey growth in the absence
of predators is modelled using logistic equation. Fur-
ther, it is assumed that the prey species exhibit group
defence mechanism and anti-predator behaviour to
escape the predation pressure. Accordingly, the func-
tional and numerical responses of predators are con-
sidered to follow Holling type IV functional response.
The anti-predator behaviour in prey, which causes a
decline in the predator population by killing the preda-
tor’s egg/juvenile, is modelled using mass action law.
In general, the anti-predator behaviour in prey calls
for a stage structure in predators. However, the present
model ignores the stage structure in predators and treats
both the juvenile and adult predators into a single group.
This relaxation serves two purposes. This assumption
enables us to investigate the effect of anti-predator
behaviour in prey in combination with the additional
food provided to predators, keeping predators as a sin-
gle functional group [70], which is the first and fore-
most principal goal. The second use is reducing the sys-
tem dynamics from three dimension to two dimension
and enabling us to carry out the phase plane techniques
to achieve the first goal.

Given the above assumptions, denoting the prey,
predator population by N , P , respectively, the follow-
ing system [70] describes the prey–predator dynamics
with anti-predator behaviour in prey.

dN

dT
= r N

(
1 − N

K

)
− cN P

qaN 2 + a
, (1)

dP

dT
= bN P

qaN 2 + a
− mP − η̄N P. (2)

For a complete analysis of model (1, 2), the reader is
referred to Tang and Xiao [70]. It is established that the
anti-predator behaviour in prey has a positive effect on
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the growth of prey and has a detrimental effect on the
predator population. This damaging effect is caused
only when the predators are specialists. However, in
reality many of natural enemies are generalists and
depend on the other food resources. Hence, it is inter-
esting to investigate the impact of the provision of addi-
tional food on the system dynamics and to establish the
conditions under which the predators can overcome the
detrimental effect caused by group defence and anti-
predator behaviour of prey.

Accordingly, we now assume that predators are sup-
plementedwith an additional food of biomass A, which
is distributed uniformly in the habitat. Addition of
this food biomass into the system brings in qualitative
changes to the functional/numerical response of preda-
tors. Accordingly, system (1, 2) gets transformed to the
following system.

dN

dT
= r N

(
1 − N

K

)
− cN P

(qN 2 + 1)(a + αη1A)
,

(3)

dP

dT
= b(N + (qN 2 + 1)η1A)P

(qN 2 + 1)(a + αη1A)
− mP − η̄N P.

(4)

The biological description of the various parameters of
models (1, 2) and (3, 4) is presented in Table 1.

Before analysing model (3, 4) for the existence of
various equilibria and their stability, multiple bifurca-
tions that the considered system admits, we first non-
dimensionalise themodel by using the transformations,

x = N

a
, y = cP

ar
, t = rT,

to obtain the following non-dimensionalised system:

dx

dt
= x

(
1 − x

γ

)
− xy

(wx2 + 1)(1 + αξ)
, (5)

dy

dt
= β(x + (wx2 + 1)ξ)y

(wx2 + 1)(1 + αξ)
− δy − ηxy, (6)

where

γ = K
a , η = η̄a

r , ξ = η1A
a ,

β = b
r , δ = m

r , w = qa2. (7)

3 The model analysis

In the present section, we investigate the existence of
various equilibria that system (5, 6) admits and study
their stability nature.

Table 1 Descriptions of variables and parameters present in systems (3, 4) and (5, 6)

Parameter Dimension Definition Non-dimensionalised representation

T time Time t = rT

N biomass Prey density x = N
a

P biomass Predator density y = cP
ar

r time−1 Prey intrinsic growth rate

K biomass Prey carrying capacity γ = K
a

c time−1 Maximum rate of predation

b time−1 Maximum growth rate of predator β = b
r

m time−1 Predator mortality rate δ = m
r

q biomass−2 Group defence in prey ω = a2q

η̄ time−1 biomass−1 Rate of anti-predator behaviour η = η̄ a
r

a biomass Normalisation coefficient relating the densities of
prey and predator to the environment in which they
interact

α Ratio between the handling times towards the
additional food and the prey

α

η1 Effectual ability of the predators to detect additional
food relative to the prey

A biomass Quantity of additional food provided to the predators ξ = η1A
a
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Before, proceeding to this, we first discuss the nature
of nullcline of the considered system. One can observe
that, the trivial predator and prey nullclines of system
(5, 6) are x-axis and y-axis, respectively. The non-
trivial prey and predator nullclines are given by, respec-
tively,

(
1 − x

γ

)
− y

(wx2 + 1)(1 + αξ)
= 0, (8)

β(x + (wx2 + 1)ξ)

(wx2 + 1)(1 + αξ)
− δ − ηx = 0. (9)

Observe that the non-trivial prey nullcline (8) of sys-
tem (5, 6) is a cubic equation which is a smooth curve
joining the points (γ, 0) and (0, 1+αξ) in the positive
quadrant of xy-plane. Following the theory of equa-
tions [74], it can be established that the prey nullcline
attains zero at x = γ and no other point in the positive
quadrant. Now, the slope of the prey nullcline is given
by

dy

dx
= 2ωx(1 + αξ) − 3ωx2

γ
(1 + αξ) − (1 + αξ)

γ
.

A straightforward calculation shows that the prey null-
cline has a negative slope at x = 0 and x = γ . Also,
from the second derivative test, we observe that the
prey nullcline attains both maximum and minimum in
(0, γ ) when ωγ 2 − 3 ≥ 0 and monotonically decreas-
ing in (0, γ ) for ωγ 2 − 3 < 0. Figure 1 depicts these
two scenarios.

Re-arranging the terms in the non-trivial predator
nullcline (9), we obtain the following cubic equation
concerning x , given by

f (x) ≡ ηw(1 + αξ)x3 − [βξ − δ(1 + αξ)]wx2

−[β − η(1 + αξ)]x − [βξ − δ(1 + αξ)] = 0.

(10)

Thus, the non-trivial predator nullcline(s) of system (5,
6) are nothing but the straight lines, occurring at the
roots of (10). The admission of positive coexistence
equilibrium for model (5, 6) (which is nothing but the
intersection of the non-trivial prey and predator null-
clines) is equivalent to admitting of a positive root by
Eq. (10), which is less than γ . Below, we establish the
conditions for the existence of positive roots ofEq. (10),
which are less than γ using the qualitative theory of
cubic equations. For this, we first compute the first and
second derivatives of Eq. (10), which are given by:

f ′(x) = 3ηw(1 + αξ)x2

−2w[βξ − δ(1 + αξ)]x − [β − η(1 + αξ)],
(11)

f ′′(x) = 6ηw(1 + αξ)x − 2w[βξ − δ(1 + αξ)]. (12)

We now have the following cases describing the exis-
tence of at least one positive root for Eq. (10).

Case I βξ − δ(1 + αξ) ≤ 0: In this case, we have
that f ′′(x) > 0 for all x > 0 and f (0) > 0. Thus,
we have that f (x) is concave up in (0,+∞) with
f (0) > 0 for x > 0. Now, the existence of a pos-
itive root of Eq. (10), depends on the existence of
critical/inflection point of f (x). Consequently, we
have the two sub-cases.

Sub case I β − η(1 + αξ) ≤ 0: In this case,
we have that f ′(x) ≥ 0 for all x . This along
with the fact that f (0) > 0 in (0,+∞), implies
that f (x) has no positive root in the interval
(0,+∞), and subsequently system (5, 6) does
not admit any positive coexisting equilibrium
in this case.
Sub case II β − η(1 + αξ) > 0: In this case,
f (x) = 0 has a minimum at

xc =
a2 +

√
a22 + 3a1a3

3a1
. (13)

Thus, the function f (x) is concave up, decreas-
ing in the interval (0, xc) and is concave up,
increasing in the interval (xc,∞). Now,

1. If f (xc) > 0 then f (x) has no positive root
in [0,∞).

2. If f (xc) = 0, then xc is the only positive
root of f (x) = 0.

3. If f (xc) < 0 then the f (x) admits two pos-
itive roots, denoted by x1, x2, given by

x1 = −1

3a1

(
a2 + u1C + D0

u1C

)
, (14)

x2 = −1

3a1

(
a2 + u2C + D0

u2C

)
, (15)

with x1 < xc < x2, where

a1 = ηω(1 + αξ), a2 = −ω(βξ − δ(1 + αξ)),

a3 = −(β − η(1 + αξ)),

a4 = −(βξ − δ(1 + αξ)), D0 = a22 − 3a1a3,
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E

A B

C D

F

Fig. 1 Graphical illustration of the qualitative behaviour of null-
clines (as described in the text) and the various equilibria that the
system exhibits. Frames A, B and C present the nullclines struc-

ture in the case ωγ 2 −3 > 0 and the Frames D, E and F depicts
the situation in the case of ωγ 2 − 3 < 0

D1 = 2a32 − 9a1a2a3 + 27a21a4,

C =
⎛
⎝ D1 +

√
D2
1 − 4D3

0

2

⎞
⎠
1/3

,

u1 = −1 − i
√
3

2
, u2 = −1 + i

√
3

2
. (16)

Case II βξ − δ(1+ αξ) > 0: In this case, we have
that f ′′(x) = 0 admits a positive real root denoted
by xcc. It can easily verified that f ′′(x) < 0 for x ∈
[0, xcc) and f ′′(x) > 0 for x ∈ (xcc,+∞). Thus,
xcc is an inflection point for f (x) = 0 and that
f (x) is concave down in (0, xcc) and concave up in
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(xcc,+∞) with f (0) < 0. Now, the existence of a
positive root of Eq. (10), depends on the existence
of critical/inflection point and discriminate of f (x).
We now have the following two sub-cases.

Sub case I β − η(1+ αξ) > 0: In this case, we
have that f ′(0) < 0. From the theory of cubic
equations, we observe that the discriminant of
Eq. (10) is either negative or positive. Conse-
quently, Eq. (10) admits one positive real root,
x2.
Sub case II β −η(1+αξ) ≤ 0: In this case, we
observe that f ′(0) > 0, f (0) < 0 and the dis-
criminant of Eq. (10) is always negative. Thus,
Eq. (10) has a pair of complex conjugate roots
and one positive real root, x2.
Denoting the positive interior equilibrium of
system (5, 6) as E1 = (x1, y1), and E2 =
(x2, y2), where 0 < x1 < x2 < γ , and y1,
y2 are given by

y1 =
(
1 − x1

γ

)
(ωx21 + 1)(1 + αξ), (17)

y2 =
(
1 − x2

γ

)
(ωx22 + 1)(1 + αξ). (18)

The following theorem summarises the above find-
ings regarding the existence of positive equilibria of the
system.

Theorem 1 System (5, 6) exhibits

(i) an unique interior equilibrium E1, when βξ −
δ(1+αξ) ≤ 0, β−η(1+αξ) > 0 and f (xc) < 0,
x1 < γ < x2.

(ii) two interior equilibria E1 and E2, when βξ −
δ(1+αξ) ≤ 0, β−η(1+αξ) > 0 and f (xc) < 0,
x1 < x2 < γ .

(iii) an instantaneous equilibrium,

Ec = (xc, yc)

=
(
xc,

(
1 − xc

γ

)
(ωx2c + 1)(1 + αξ)

)
, (19)

when the system satisfies βξ − δ(1 + αξ) ≤ 0,
β − η(1 + αξ) > 0 and f (xc) = 0, xc < γ .

(iv) only one interior equilibrium, E2, when βξ −
δ(1 + αξ) > 0 and x2 < γ .

3.1 Stability analysis

In this section, we investigate the conditions for stabil-
ity/instability of the various equilibria that the system
exhibits. The community matrix for system (5, 6) is
given by:

J =
[
J11 J12
J21 J22

]
,

where

J11 = 1 − 2x

γ
− (wx2 + 1)(1 + αξ)y − 2wyx2(1 + αξ)[

(wx2 + 1)(1 + αξ)
]2 ,

J12 = − x

(wx2 + 1)(1 + αξ)
,

J21 = (wx2 + 1)(1 + αξ)[βy + 2βξwxy] − 2β(x + (wx2 + 1)ξ)ywx(1 + αξ)[
(wx2 + 1)(1 + αξ)

]2 − ηy,

J22 = β[x + (wx2 + 1)ξ ]
(wx2 + 1)(1 + αξ)

− δ − ηx .

Wenowhave the following theorem, establishing the
stability of the trivial and axial equilibria. The proof of
which follows from the evaluation of the eigenvalues
of the community matrix at the respective equilibria.

Theorem 2 (i) The trivial equilibrium E0 = (0, 0)
is saddle whenever −δ + ξ(β − δα) < 0 and
unstable otherwise.

(ii) The axial equilibrium E1 = (γ, 0) is stable for
β(γ+(wγ 2+1)ξ)

(wγ 2+1)(1+αξ)
−δ−ηγ < 0and saddle otherwise.

Theorem 3 (i) The interior equilibrium E2 (if exists)
is always a saddle point.

(ii) The interior equilibrium E1 is stable whenever
trJE1 < 0 and unstable otherwise.
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Proof Evaluating the community matrix at the interior
equilibrium Ei , i = 1, 2, we have

JEi =
[
J11i J12i
J21i J22i

]
,

where

J11i = − xi
γ

+
2ωx2i

(
1 − xi

γ

)
ωx2i + 1

,

J12i = − xi
(ωx2i + 1)(1 + αξ)

J21i = β

(
1 − xi

γ

)
(1 + 2ωξ xi )

−(δ + ηxi )2ωxi (1 + αξ)

(
1 − xi

γ

)

−ηyi , J22i = 0.

The characteristic equation is given by:

λ2 − tr JEi λ + det JEi = 0,

where

tr JEi = − xi
γ

+
2ωx2i

(
1 − xi

γ

)
ωx2i + 1

,

det JEi = xi
(ωx2i + 1)(1 + αξ){
β

(
1 − xi

γ

)
(1 + 2ωξ xi )

−(δ+ηxi )2ωxi (1+αξ)

(
1− xi

γ

)
−ηyi

}
,

= xi
(ωx2i + 1)(1 + αξ){
−3ηw(1 + αξ)x2i + 2w[βξ − δ(1 + αξ)]
xi + [β − η(1 + αξ)]} .

(i) From the condition of existence for E2, we have
that−3ηw(1+αξ)x22 +2w[βξ −δ(1+αξ)]x2+
[β −η(1+αξ)] < 0. Therefore, det JE2 < 0 and
that E2 (if exists) is saddle in nature.

(ii) Similarly, from the fact that x1 > 0 and from the
condition for the existence of E1, it is to verify that
−3ηw(1+αξ)x21 +2w[βξ −δ(1+αξ)]x1+[β−
η(1+αξ)] > 0, implying det JE1 > 0. Therefore,
the stability of the interior equilibrium E1 depends

on the sign of tr JE1 . So, E1 is stable for − x1
γ

+
2ωx21

(
1− x1

γ

)
ωx21+1

< 0 and unstable otherwise.

	

One can easily observe that the expression for tr JE1

is nothing but the slope of the prey nullcline at E1.
From the concavity properties of the prey nullcline, we
have that prey nullcline is concave down, decreasing
function for ωγ 2 − 3 < 0. We now have the following
Corollary establishing the asymptotical stability of E1.

Corollary 1 The interior equilibrium E1 (if exists), is
asymptotically stable whenever ωγ 2 − 3 < 0.

Figure 2 numerically depicts the stability nature of
the various equilibria that the system exhibits.

4 Bifurcation analysis

In this section, we investigate the various bifurcations
that are occurring in the system. From the model anal-
ysis, it follows that the system dynamics depend on
three crucial parameters α, ξ , and η representing the
(nutritional) quality, quantity of the additional food and
strength of the anti-predator behaviour in prey, respec-
tively. In this present study, we are mainly interested
in studying the consequence of anti-predator behaviour
in prey and provision of additional food; accordingly,
we treat η and ξ as bifurcation parameters, and α is a
fixed parameter (maintained by the eco-manager). This
assumption of treating ξ as a bifurcation parameterwith
fixed α is justified as variations in the quantity of addi-
tional food are more convenient than changing quality;
moreover, it is more economically viable [2,3,61,78].

4.1 Hopf bifurcation around interior equilibrium E1

System (5, 6) can be represented in the form,

dx

dt
=P(x)(F(x) − y), (20)

dy

dt
=y(−d1 + Q(x)), (21)

where

P(x) = x

(ωx2 + 1)(1 + αξ)
,
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Fig. 2 Figure depicting the stability nature of various equilibria
that the system exhibits as described in Sect. 3. The ecosystem
parameter values chosen are:γ = 3.3,β = 0.5, δ = 0.4,ω = 0.3
and α = 0.5. Frame I presents the global stability of (γ, 0) in the
absence of interior equilibria. Frames II and III depict the exis-
tence of two interior equilibria with equilibrium with lower prey

population unstable (stable) in Frame II (Frame III). Frames IV
and V present the scenario wherein the unique coexistence state
is stable and unstable, respectively. Finally, frame VI represents
case where predators experience the unbounded growth in the
absence of prey

F(x) =
(
1 − x

γ

)
(ωx2 + 1)(1 + αξ),

d1 = δ(1 + αξ) − ξ

1 + αξ
, Q(x) = βP(x) − ηx .

Now, the Jacobian matrix is given by

J =
(
P ′(x)[F(x) − y] + P(x)F ′(x) −P(x)

Q′(x)y −d1 + Q(x)

)
.

(22)
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Evaluating the Jacobian matrix at E1, we obtain

det E1 = P(x1)Q
′(x1)y1. (23)

From the existence condition of E1, it is easy to verify
that det E1 is positive.Now, the trace of Jacobianmatrix
at E1 is

tr JE1 = P(x1)F
′(x1). (24)

Clearly, the stability of E1 depends on the F ′(x1)
and the considered system exhibits Hopf bifurcation
around the interior equilibrium E1 when tr JE1 = 0
i.e., F ′(x1) = 0. From Corollary 1, we observe that
F ′(x1) < 0 whenever ωγ 2 − 3 < 0. Thus, for exis-
tence of Hopf bifurcation we must have ωγ 2 − 3 > 0.
So, in what follows we assume ω and γ are chosen so
that they satisfy ωγ 2 − 3 > 0. Simplifying the expres-
sion F ′(x1) = 0, leads to the quadratic equation in x1,

S(x1) ≡ −3ωx21 + 2ωγ x1 − 1 = 0. (25)

As x1 is a function of (η, ξ), for a fixed β, δ, α and
ω, γ satisfying the condition ωγ 2 − 3 > 0, we have
S(x1(η, ξ)), represents the Hopf bifurcation surface in
(η, ξ) space. Equation (25) has two positive roots,

xL ,H = γ ∓
√

ωγ 2−3
ω

3
. (26)

Thus when ωγ 2 − 3 > 0, the model undergoes Hopf
bifurcation whenever x1 = xL or x1 = xH . The inte-
rior equilibrium (x1, y1) is unstable for xL < x1 < xH
and stable otherwise. Now, we verify the transversal-
ity condition at Ex1 with x1 = xL or x1 = xH and
with respect to the bifurcation parameter η. Let 
 be
the real part of the eigenvalue, then a straightforward
computation from (22) and (24) gives


 = 1

2
P(x1)F

′(x1)

≡ x1
2(1 + αξ)(ωx21 + 1)

(−3ωx21 + 2ωγ x1 − 1).

Now,

∂


∂η
= ωx1

∂x1
∂η

(1 + αξ)(ωx21 + 1)
(−3x1 + γ ).

From the expression for f (x) (cf. Eq. 10), establishing
the existence of equilibrium prey component and it is
verify that

∂ f

∂η
= ω(1 + αξ)x31 + (1 + αξ)x1 > 0.

Further, we have that f (x) is monotonically decreasing
for 0 < x1 < xc. Thus,

∂x1
∂η

= ∂ f
∂η

/
∂ f
∂x1

< 0 in [0, xc).
Therefore, ∂


∂η
= 0 if and only if ωγ 2 − 3 = 0 and

this occurs only when xL = xH = γ
3 . This verifies the

transversality condition for Hopf bifurcation treating η

as a bifurcation parameter.
Proceeding in a similar manner, we observe that

∂


∂ξ
= ωx1

∂x1
∂ξ

(1 + αξ)(ωx21 + 1)
(−3x1 + γ ).

Now,

∂x1
∂ξ

= 1
∂ f
∂x1

× ∂ f

∂ξ
= 1

∂ f
∂x1

×
{
(1 + ωx21 )[ηαx1 − (β − δα)]

}
.

From the existence of x1, xc and from the qualitative
properties of f (x), we found that ηαx1−(β −δα) �= 0
and that ∂


∂ξ
= 0 if and only if xL = xH = γ

3 . This ver-
ifies the transversality condition for Hopf bifurcation
treating ξ as control parameter.

Now, at theHopf bifurcation instant, the first by Lya-
punov coefficient is calculated using the formula given
by Hastings [30], Wolkowicz [87], Xiao and Zhu [89],
Zhu et al. [92] and is given by

σ(x1) = −P(x1)F ′′(x1)Q′′(x1)
Q′(x1)

+P(x1)F
′′′(x1) + 2P ′(x1)F ′′(x1). (27)

The Hopf bifurcation is non-degenerate in nature for
σ(x1) < 0 and has degenerate nature for σ(x1) > 0. A
computationally intensive calculation with the help of
scientific computing tool such as MATLAB [46], it is
found that for Hopf bifurcation occurring at x1 = xH ,

we have σ(x1) is negative always. Thus, the system
undergoes non-degenerate Hopf bifurcation at x1 =
xH . At x1 = xL , the sign of σ(x1) is either negative or
positive depending on the parameter values γ , η and
ξ . One can establish the nature of Hopf bifurcation
at x1 = xL numerically by identifying suitable set of
parameter values γ, η and ξ . Further, it is important to
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note that at the instance of degenerate nature of Hopf
bifurcation occurring at x1 = xL , the system produces
two limit cycles surrounding the locally asymptotically
stable equilibrium E1. The two cycles surrounding the
equilibrium will disappear through saddle-node bifur-
cation of limit cycles, the normal form computation
of which is tedious, and we provided here a numeri-
cal example by identifying the proper set of parameter
range for which this phenomenon occurs.

Summarising the above findings, we have the fol-
lowing theorem establishing the existence of Hopf
bifurcation.

Theorem 4 For a choice of η and/or ξ satisfying
−3ωx21 + 2ωγ x1 − 1 = 0, the system always under-
goes non-degenerate Hopf bifurcation at x1 = xH . At
x1 = xL , the system undergoes either non-degenerate
(degenerate) Hopf bifurcation for σ(x1) < 0(> 0).

4.2 Saddle-node bifurcation around interior
equilibrium

As seen from the model analysis, when βξ − δ(1 +
αξ) ≤ 0, β − η(1 + αξ) > 0 and f (xc) < 0,
the considered system exhibits utmost two interior
equilibrium points E1, E2. Further, for f (xc) = 0,
the system admits a unique instantaneous equilibrium
Ec = (xc, yc), formed by the collision of E1, E2.
This instantaneous equilibrium ceases to exist when
f (xc) > 0 through saddle-node bifurcation. The fol-
lowing theorem establishes the conditions for the exis-
tence of saddle-node bifurcation around the instanta-
neous equilibrium Ec.

Theorem 5 System (5, 6)undergoes saddle-nodebifur-
cation at Ec = (xc, yc) with respect to bifurcation
parameter η if

det JEc = β

(
1 − xc

γ

)
(1 + 2ωξ xc)

−(δ + ηx)2ωxc(1 + αξ)

(
1 − xc

γ

)
− ηyc = 0

and

tr JEc = − xc
γ

+ 2ωx2c (1 − xc
γ

)

(ωx2c + 1)
�= 0.

Proof The community matrix evaluated at Ec

JEc =
[
a1 a2
a3 a4

]
,

where

a1 = − xc
γ

+ 2ωx2c (1 − xc
γ

)

(ωx2c + 1)
,

a2 = − xc
(ωx2c + 1)(1 + αξ)

< 0,

a3 = β

(
1 − xc

γ

)
(1 + 2ωξ xc)

−(δ + ηx)2ωxc(1 + αξ)

(
1 − xc

γ

)

−ηyc, a4 = 0.

Now, det JEc = 0 and tr JEc �= 0; thus, the commu-
nity matrix JEc has a zero eigenvalue. The eigenvec-
tors corresponding to zero eigenvalue of J(xc,yc) and

J T(xc,yc) are given by V =
(
1,− a1

a2

)T
andW = (0, 1)T ,

respectively.
Now,


1 = WT [Fη(xc, yc)] = −xc yc �= 0

and


3 = WT [D2F(xc, yc), η, (V, V )]

= W2

(
∂2G

∂x2
+ 2

∂2G

∂x∂y
V2

)

= −xc

(ωx2c + 1)(1 + αξ)

2ωβxc yc(1 + αξ)2

((ωx2c + 1)(1 + αξ))2
(ωx2c − 3) �= 0.

×
(
ωx2c − 3 < 0 at the instance of saddle-node bifurcation

)

Hence, by Sotomayor’s theorem [50] the system
exhibits saddle-node bifurcation around the instanta-
neous equilibrium Ec when the system of parameters
satisfies det JEc = 0 and tr JEc �= 0. 	


4.3 Bogdanov–Takens bifurcation

When the system exhibits the unique instantaneous
equilibrium Ec, we can fine tune the parameter set
(η, ξ) such that det JEc = 0 and tr JEc = 0. In
this situation, the system can undergo Bogdanov–
Takens bifurcation of co-dimension 2. Now, fixing
(β, δ, γ, ω, α) ∈ R

5+ and choosing (η, ξ) such that
det JEc = 0 and tr JEc = 0 we demonstrate the exis-
tence of Bogdanov–Taken bifurcation. Now, tr JEc =
0 implies −3ωx2c + 2ωγ xc − 1 = 0 and that there
exist two critical x ′

cs and accordingly, we obtain pair
of (η, ξ) for which tr JEc = 0. We denote these points
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by BT1, BT2. Now, det JBT1 = 0 and/or det JBT2 = 0
results in a double zero eigenvalues at BT1 and/or
BT2. In this case, the Jordan form of the community
matrix of JEc at BT1 and/or BT2 will be similar to(
0 1
0 0

)
. From the normal form theory [38], the equi-

librium EBTi = (xBTi , yBTi ), i = 1, 2 is a cusp of
co-dimension 2 under certain non-degeneracy condi-
tions. For an appropriate pair of bifurcation param-
eters, system (5, 6) undergoes a Bogdanov–Takens
bifurcation around the instantaneous equilibrium point
EBTi (i = 1, 2). The following theorem establishes the
conditions for Bogdanov–Takens bifurcation.

Theorem 6 If we choose η and ξ as two bifurcation
parameters then system (5, 6) undergoes a Bogdanov–
Takens bifurcation around the instantaneous equilib-
rium point EBTi (i = 1, 2) whenever

tr JBTi = 0 implies − 3ωx2BTi + 2ωγ xBTi − 1 = 0

and

det JBTi = 0 implies β

(
1 − xBTi

γ

)
(1 + 2ωξ xBTi )

−(δ + ηxBTi )2ωxBTi (1 + αξ)

(
1 − xBTi

γ

)

−ηyBTi = 0.

Proof Let us consider the neighbourhood of the bifur-
cation parameters η and ξ around their B-T point
(η + λ1, ξ + λ2) with λi , i = 1, 2 sufficiently small,
substituting these into system (5, 6) is given by

dx

dt
= x

(
1 − x

γ

)
− xy

(wx2 + 1)(1 + α(ξ + λ2))

≡ F(x, y, λ1, λ2),

dy

dt
= β(x + (wx2 + 1)(ξ + λ2))y

(wx2 + 1)(1 + α(ξ + λ2))

−δy − (η + λ1)xy ≡ G(x, y, λ1, λ2), (28)

Substituting m1 = x − xc, and m2 = y − yc, we get

dm1

dt
= F0 + am1 + bm2 + p11m

2
1

+p12m1m2 + H1(m1,m2),

dm2

dt
= G0 + cm1 + dm2 + q11m

2
1

+q12m1m2 + H2(m1,m2), (29)

where

F0 = xc

(
1 − xc

γ

)
− xc yc

(ωx2c + 1)(1 + α(ξ + λ2))
,

a = 1 − 2xc
γ

− yc
(ωx2c + 1)(1 + α(ξ + λ2))

+ 2x2c ycω(1 + α(ξ + λ2))

(ωx2c + 1)(1 + α(ξ + λ2))2
,

b = −
{

xc
(ωx2c + 1)(1 + α(ξ + λ2))

}
,

p11 =
{
− 2

γ
+ 6ωxc yc(1 + α(ξ + λ2))

[(ωx2c + 1)(1 + α(ξ + λ2))]2

− 8ω2x3c yc(1 + α(ξ + λ2))
2

[(ωx2c + 1)(1 + α(ξ + λ2))]3
}

,

p12 =
{
− 1

(ωx2c + 1)(1 + α(ξ + λ2))

+ 2ωx2c (1 + α(ξ + λ2))

[(ωx2c + 1)(1 + α(ξ + λ2))]2
}

,

G0 = βxc yc
(ωx2c + 1)(1 + α(ξ + λ2))

+ β(ξ + λ2)yc
(1 + α(ξ + λ2))

− (η + λ1)xc yc − δyc,

c =
{

βyc
(ωx2c + 1)(1 + α(ξ + λ2))

− 2ωβx2c yc(1 + α(ξ + λ2))

[(ωx2c + 1)(1 + α(ξ + λ2))]2−(η + λ1)yc

}
,

d = βxc
(ωx2c + 1)(1 + α(ξ + λ2))

+ β(ξ + λ2)

(1 + α(ξ + λ2))
− (η + λ1)xc − δ,

q11 = −
{

6βωxc yc(1 + α(ξ + λ2))

[(ωx2c + 1)(1 + α(ξ + λ2))]2

− 8βω2x3c yc(1 + α(ξ + λ2))
2

[(ωx2c + 1)(1 + α(ξ + λ2))]3
}

,

q12 =
{

β

(ωx2c + 1)(1 + α(ξ + λ2))

− 2ωβx2c (1 + α(ξ + λ2))

[(ωx2c + 1)(1 + α(ξ + λ2))]2 − (η + λ1)

}
,

and H1, H2 are power series in m1, m2 with terms
mi

1m
j
2 satisfying i + j ≥ 3. Now using the affine trans-

formation u1 = m1 and u2 = am1 +bm2, then system
(29) gets converted to

du1
dt

= F0 + u2 + l20u
2
1 + l11u1u2 + H̄1(u1, u2),

du2
dt

= k0 + k10u1 + k01u2 + k20u
2
1

+k11u1u2 + H̄2(u1, u2), (30)
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where

l20 =
(
p11 − ap12

b

)
, l11 = p12

b
,

ko = aF0 + bG0, k10 = bc − ad,

k01 = a + d,

k20 =
(
ap11 − a2 p12

b
+ bq11 − aq12

)
,

k11 =
(ap12

b
+ q12

)
,

and H̄1, H̄2 are power series in u1, u2 with terms ui1u
j
2

satisfying i + j ≥ 3. Now using the C∞ change of
coordinates in the neighbourhood of (0, 0): given by

v1 = u1 − p12
2b

u21, v2 = u2 +
(
p11 − ap12

b

)
u21,

system (30) gets modified to

dv1
dt

= F0 + s10v1 + s20v
2
1 + v2 + R1(v1, v2),

dv2
dt

= t0 + t10v1 + t01v2

+ t20v
2
1 + t11v1v2 + R2(v1, v2), (31)

where

s10 = − p12
b

F0, t0 = k0,

t10 = k10 + 2
(
p11 − ap12

b

)
F0,

s20 = −p212
2b2

F0, t01 = k01,

t20 = (bc − ad)
p12
2b

−
(
p11 − ap12

b

)
(a + d)

+ ap11 − a2 p11
b

+ bq11 − aq12

+
(
p11 − ap12

b

) p12
b

F0,

t11 = 2p11 − ap12
b

+ q12,

and R1(v1, v2), R2(v1, v2) are power series with the
terms vi1v

j
2 , i + j ≥ 3. Now, again using c∞ change of

coordinates in the neighbourhood of (0, 0)

z1 = v1 and z2 = F0 + s10v1 + s20v
2
1 + v2,

System (31) gets transformed to:

dz1
dt

= z2 + R̄1(z1, z2),

dz2
dt

= w00 + w10z1 + w01z2

+w20z
2
1 + w11z1z2 + R̄2(z1, z2), (32)

where

w00 = t0 − t01F0, w10 = t10 − t01s10 − t11F0,

w01 = s10 + t01, w20 = t20 − t01s20 − t11s10, w11 = t11 + 2s20,

and R̄1(z1, z2), R̄2(z1, z2) are the power series in
(z1, z2) having terms zi1z

j
2, i+ j ≥ 3. Finally, applying

the following C∞ change of coordinates in the neigh-
bourhood of (0, 0):

n1 = z1 and n2 = z2 + R̄1(z1, z2),

system (32) gets modified to

dn1
dt

= n2,

dn2
dt

= P1(n1, λ1, λ2)

+n2φ1(n1, λ1, λ2) + n22ψ1(n, λ1, λ2), (33)

where P1, φ1, ψ1 ∈ C∞ and

P1(n1, λ1, λ2) = w00 + w10n1 + w20n
2
1 + E1(n1),

φ1(n1, λ1, λ2) = w01 + w11n1 + E2(n1),

ψ1(n, λ1, λ2) = E3(n1, n2).

Here, E1 is the power series in the terms ni1, i ≥ 3 and

E2 is the power series in the terms n j
2, j ≥ 2. E3 is a

power series in the terms (n1, n2) with powers n
k1
1 nk22 ,

k1 + k2 ≥ 1.
Applying the Malgrange Preparation Theorem [9]

to the function P1(n1, λ1, λ2), we have

P1(n1, λ1, λ2)=
(
n21 + w10

w20
n1 + w00

w20

)
B(n1, λ1, λ2),

where B(0, λ1, λ2) = w20 and B is a power series
in n1. Now let û1 = n1, û2 = n2√

B(n1,λ1,λ2)
and T =∫ t

0

√
B(n1(s), λ1, λ2)ds. Then, system (33) transforms

to

dû1
dT

= û2

dû2
dT

= w00

w20
+ w10

w20
û1 + w01√

w20
û2 + û21

+ w11√
w20

û1û2 + Q1(û1, û2, λ1, λ2), (34)
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where Q1(û1, û2, λ1, λ2) is a power series in (û1, û2)
with powers ûi1û

j
2 satisfying i + j ≥ 3 and j ≥ 2.

Applying the transformation

y1 = û1 + w10

2w20
, y2 = û2,

system (34) transforms to
dy1
dT

= y2,

dy2
dT

= μ1(λ1, λ2) + μ2(λ1, λ2)y2 + y21

+ w11√
w20

y1y2 + Q2(y1, y2, λ1, λ2), (35)

where

μ1(λ1, λ2) = w00

w20
−

(
w10

2w20

)2

,

μ2(λ1, λ2) = w01√
w20

− w10w11

2(w20)
3
2

,

and Q2(y1, y2, λ1, λ2) is a power series in y1 and y2
with powers yi1y

j
2 satisfying i + j ≥ 3. System (35)

is topologically equivalent to the normal form of the
Bogdanov–Takens bifurcation [38] given by
dX1

dT
= X2,

dX2

dT
= μ1 + μ2X2 + X2

1 + X1X2, (36)

Now, we establish the non-degeneracy condition for

Bogdanov–Takens bifurcation around EBTi , i = 1, 2
at λ1 = 0 and λ2 = 0.

At the point EBT1 , we have

k20 = ap11 − ap12
b

+ bq11 − aq12

= −xBT1

(ωx2BT1
+ 1)(1 + αξ)

2βωxBT1 yBT1(1 + αξ)2

[(ωx2BT1
+ 1)(1 + αξ)]2 (ωx2BT1

− 3) > 0,

l20 =p11 − ap12
b

= −2

γ

+ 2ωxBT1 yBT1(1 + αξ)2

[(ωx2BT1
+ 1)(1 + αξ)]3 (3 − ωx2BT1

) < 0

k11 =ap12
b

+ q12 = 0.

Thus, l20 + k11 �= 0 and k20 �= 0 and sign(k20(l20 +
k11)) = −1. So, the system undergoes supercritical
Bogdanov–Takens bifurcation at EBT1 .

At the point EBT2 , we have

k20 =ap11 − ap12
b

+ bq11 − aq12

= −xBT2

(ωx2BT2
+ 1)(1 + αξ)

2βωxBT2 yBT2(1 + αξ)2

[(ωx2BT2
+ 1)(1 + αξ)]2 (ωx2BT2

− 3) > 0,

l20 =p11 − ap12
b

= −2

γ

+ 2ωxBT2 yBT2(1 + αξ)2

[(ωx2BT2
+ 1)(1 + αξ)]3 (3 − ωx2BT2

) > 0

k11 =ap12
b

+ q12 = 0.

Now, l20 + k11 �= 0 and k20 �= 0 and sign(k20(l20 +
k11)) = +1. So, the system undergoes subcritical
Bogdanov–Takens bifurcation at EBT2 . 	


4.4 Numerical simulations for local and global
bifurcation analysis

Here, we illustrate the existence of Hopf bifurcation
(both degenerate and non-degenerate) at the interior
equilibrium E1, as well as Saddle-node bifurcation,
Bogdanov–Takens bifurcations occurring at the instan-
taneous equilibrium Ec numerically.

4.4.1 Numerical illustration for existence of
degenerate and non-degenerate Hopf
bifurcation

Example #1We first demonstrate the existence of non-
degenerate and degenerate Hopf bifurcation in the case
of system exhibiting unique interior equilibrium E1.
For this, we fix the parameter set as β = 0.5, δ =
0.4, ω = 0.3, α = 0.5, η = 0.01. Now, fixing γ = 3.2,
we have xL = 0.9034 and xH = 1.23. Now, choosing
ξ = 0.1563 we obtain E1 = (0.9034, 0.9632) and
σ(xL) = −0.7240 < 0. Thus, the system undergoes
non-degenerate Hopf bifurcation around E1 which
is pictured in frame I of Fig. 3. For γ = 4, we
obtain (xL , xH ) = (0.5168, 2.1498) and σ(xL) =
0.1868 > 0. For this set of parameter values, the
system undergoes degenerate Hopf bifurcation around
E1 = (0.5168, 1.2028) for ξ = 0.55788. This scenario
is presented in Frame II of Fig. 3.
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Fig. 3 Numerical simulations depicting the existence of non-
degenerate and degenerate Hopf bifurcation when the system
exhibits unique interior equilibrium. The parameter values cho-
sen for this example are β = 0.5, δ = 0.4, ω = 0.3, α = 0.5

and η = 0.01. Frame I presents the situation where the sys-
tem exhibits non-degenerate Hopf bifurcation for γ = 3.2 and
ξ = 0.1563. Frame II depicts the degenerate Hopf bifurcation
scenario when γ = 4 and ξ = 0.55788

Fig. 4 Numerical simulation depicting the existence of non-
degenerate Hopf bifurcation in the case where the system admits
two coexistence states. The ecosystem parameters chosen in this
case are: γ = 3.2, β = 0.5, δ = 0.4, ω = 0.3. η = 0.04

and α = 0.5. Frame I presents the existence of non-degenerate
bifurcation at x1 = xH for ξ = 0.095114. Frame II depicts the
occurrence of non-degenerate Hopf bifurcation at x1 = xL for
ξ = 0.259935

Example #2Wenow demonstrate the existence of Hopf
bifurcation (both non-degenerate anddegenerate) in the
case of existence of two equilibria E1 = (x1, y1) and
E2 = (x2, y2) with E2 being the saddle. This situation
is more interesting than the previous one as in this case
the system exhibits complex dynamics in the form of
homoclinic orbit existence.

At first, we fix the ecosystem parameters as β =
0.5, δ = 0.4, ω = 0.3, α = 0.5. Choosing γ =
3.2 and for a fixed η = 0.04, the system exhibits
two interior equilibria for ξ ∈ (0, 1.3333). For
this choice of parameters, we have (xL , xH ) =
(0.9034, 1.23). Now, for the critical value of ξ =

0.095114, we get E1 = (1.23, 0.9376) with x1 =
xH and σ(xH ) = −0.7955 < 0. Thus, the sys-
tem undergoes non-degenerate Hopf bifurcation at E1.
This scenario is depicted in the frame I of Fig. 4.
Now, varying ξ and choosing ξ = 0.259935, we get
E1 = (0.9034, 1.0095) with x1 = xL and σ(x1) =
−0.8062 < 0, establishing the existence of non-
degenerate Hopf bifurcation at E1. This case is pre-
sented in Frame II of Fig. 4.

Now, choosing γ = 3.4 and for a fixed η = 0.072,
the system exhibits two interior equilibria for ξ ∈
(0.2404, 1.3333). For this choice of parameters, we
have (xL , xH ) = (0.7170, 1.5497). Now, for the crit-
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Fig. 5 Numerical simulation illustrating the existence of degen-
erate Hopf bifurcation and homoclinic orbit when the system
exhibits two coexistence states. Fixing, β = 0.5, δ = 0.4, ω =
0.3, γ = 3.4, α = 0.5 and η = 0.072 and, increasing ξ from
zero, the system at first exhibits homoclinic orbit, which is later
shrinks to a stable limit cycle around for further increase in ξ .
Frames I and II, respectively, present these two scenarios. Fur-

ther, increase in ξ system exhibits a degenerate Hopf bifurcation
because of which interior equilibrium is surrounded by two limit
cycles. The inner limit cycle being unstable, and outer being
stable in nature. This case is presented in Frame III. Further,
increase in ξ results in a semi-stable limit cycle around E1, which
is formed by the collision of both the above stable and unstable
limit cycles. Frame IV depicts this scenario

ical value of ξ = 0.45343085, the unstable manifold
of E2 meets the stable manifold of E2, thus forming a
homoclinic loop surrounding E1 = (0.7952, 1.1180).
Increasing ξ to 0.48, the interior equilibrium E1 =
(0.7598, 1.1296) turns into unstable and surrounded by

a limit cycle. Further, increasing ξ , ξ = 0.51434201,
the lower prey coexistence E1 = (0.7170, 1.1450)
turns into stable through degenerate Hopf bifurcation.
Here, the system exhibits multiple limit cycles around
the equilibrium E1, due to degenerate Hopf bifurca-
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Fig. 6 Graphical illustration of the casewhere the system under-
goes saddle-node bifurcation around the instantaneous equilib-
rium. The system parameters are: β = 0.5, ω = 0.3, α = 0.5,
δ = 0.4, γ = 3.3, ξ = 0.6 and η = 0.12835819906151

tion at x1 = xL . For ξ = 0.5355 the interior equi-
librium E1 = (0.6924, 1.1545) surrounded by semi-
stable limit cycle arises through saddle-node bifurca-
tion for limit cycle. This is illustrated graphically in
Frames I–IV of Fig. 5.

4.4.2 Numerical illustration for saddle-node
bifurcation

We now numerically establish the existence of saddle-
node bifurcation at the instantaneous equilibrium Ec as
result of collision of E1 and E2. For thiswe choose,β =
0.5, ω = 0.3, α = 0.5, δ = 0.4, γ = 3.3 and fix ξ =
0.6. For this choice of parameters from Theorem 5, we
obtain η = 0.12835819906151. For this value of η, one
can verify that det JEc ≈ 0. Thus, the system exhibits
an instantaneous equilibrium Ec = (1.1134, 1.1817),
atwhich the systemundergoes saddle-node bifurcation.
This scenario is presented graphically in Fig. 6.

4.4.3 Numerical illustration for Bogdanov–Takens
bifurcation

Here, we provide a numerical simulation for support-
ing the arguments presented in Theorem 6 for the
establishment of Bogdanov–Takens bifurcation at Ec.
Fixing the ecosystem as β = 0.5, ω = 0.3, δ =
0.4, γ = 3.3, α = 0.5, and following the arguments
presented in Theorem 6, we obtain two control parame-
ter sets BT1 = (η1, ξ1) = (0.054, 0.1280860431) and
BT2 = (η2, ξ2) = (0.1812, 0.918107668) at which

det JEc = tr JEc = 0. For the choice of parame-
ters BT1, the system exhibits instantaneous equilib-
rium point EBT1 = (1.5021, 0.9721). Further, at BT1

we have sign(k20(l20 + k11)) = −1. Thus, the sys-
tem exhibits supercritical Bogdanov–Takens bifurca-
tion around EBT1 (cf. frame I of Fig. 7). For the sec-
ond control parameter set BT2, we have sign(k20(l20 +
k11)) = 1 and that the system undergoes subcritical
Bogdanov–Takens bifurcation around EBT2 (cf. frames
II of Fig. 7).

5 Global dynamics

The present section deals with the global dynamics
and controllability aspects of the predator–prey sys-
tem with anti-predator behaviour in prey in the pres-
ence of additional food to predators. From the sys-
tem analysis presented in the previous sections, it can
be noted that the quality (α), quantity (ξ ) of the sup-
plied food along with the strength of the anti-predator
behaviour (η) in prey influences the system dynamics.
Theoretical/experimental analysis done in the direc-
tion of providing additional/alternative foods to preda-
tors reveals that the availability of fixed quality with
varying quantity plays a vital role in the develop-
ment, conservation and sustainability of the species
[2,3,61,67,78,82,83,88]. Hence, in the current study,
we fix the quality and treat the quantity and anti-
predatory behaviour in prey as control parameters.
Accordingly, we study the global dynamics in (η, ξ)

control parameter space treating β, δ, γ, ω as ecosys-
tem parameters and α as a fixed control parameter,
which is maintained by the eco-managers.

From the analysis presented in Sect. 4, we infer that
the global dynamics of the system are better understood
by using the following bifurcation curves.

−ηωγ 3(1 + αξ) + ωγ 2(βξ − δ(1 + αξ))

+γ (β − η(1 + αξ)) + (βξ − δ(1 + αξ)) = 0, (37)

βξ − δ(1 + αξ) = 0, (38)

−ηωx3c (1 + αξ) + ωx2c (βξ − δ(1 + αξ))

+xc(β − η(1 + αξ)) + (βξ − δ(1 + αξ)) = 0, (39)

−3ωx21 + 2ωγ x1 − 1 = 0. (40)

Curves (37) and (38) represent the transcritical bifur-
cation at Eγ and E0, respectively. The saddle-node
bifurcation at Ec and the Hopf bifurcation at E1 are
described by curves (39) and (40), respectively.
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Fig. 7 Numerical simulation illustrating the existence of
Bogdanov–Takens bifurcation. For the fixed ecosystem param-
eters β = 0.5, ω = 0.3, δ = 0.4, γ = 3.3, α = 0.5, the
system exhibits supercritical Bogdanov–Takens bifurcation for

(η, ξ) = (0.054, 0.1280860431). This scenario is depicted in
Frame I. Frame II shows the existence of subcritical Bogdanov–
Takens bifurcation for (η2, ξ2) = (0.1812, 0.918107668)

From Eq. (38), one can observe that the system
exhibits transcritical bifurcation at E0 only when α <
β
δ
. In this case, curves (37) and (38) intersect in the

positive (η, ξ) space at
(

β−δα

ωγ 2+1
, δ

β−δα

)
. Thus, the line

α = β
δ
plays a crucial role in the system dynamics. Fur-

ther, we have that the system exhibits Hopf bifurcation
around the interior equilibrium E1 when ωγ 2 −3 ≥ 0.
Accordingly,we discuss the global behaviour of the tra-
jectories of the systemand its controllability by plotting
the above four bifurcation curves in the (η, ξ) space
under the following four conditions:

ωγ 2 − 3 < 0 and α <
β

δ
, (41)

ωγ 2 − 3 < 0 and α >
β

δ
, (42)

ωγ 2 − 3 ≥ 0 and α <
β

δ
, (43)

ωγ 2 − 3 ≥ 0 and α >
β

δ
. (44)

Now, at first, we discuss the global dynamics of the
system under the condition ωγ 2 − 3 < 0. In this case,
we have that the interior equilibrium E1 = (x1, y1)
with lower prey population (if it exists) is always sta-
ble. Figure 8 describes the dynamics associated in this
situation. Frame I of 8 presents the dynamics in the case
β − δα > 0, and Frame II of 8 presents the dynam-
ics in the case where β − δα < 0. As the system
undergoes transcritical bifurcation at (0, 0) along the
line ξ = δ

β−δα
, we divide the ξ limits into two: (i)

Fig. 8 Figure presenting the various regions formed by the inter-
section of curves (37)–(40) when the system parameters, γ , ω

and α, satisfy conditions (41) and (42)

0 ≤ ξ < δ
β−δα

and (ii) ξ > δ
β−δα

. In the case (i) i.e.,

0 < ξ < δ
β−δα

, for a fixed η > 0, we enter into the
region C1. In this region, the system admits a unique
interior equilibrium E1, which is asymptotically stable,
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Fig. 9 Figure presenting the various regions formed by the inter-
section of curves (37)–(40) when the system parameters, γ , ω

and α, satisfy conditions (43) and (44). The BT1 and BT2 points
in Frame I are the Bogdanov–Takens bifurcation points, formed
by the intersection points of the saddle-node bifurcation curve
and Hopf bifurcation curve

which attracts all the solutions of the system. Further
increase in η, we enter into region B1 from C1. Due
to this crossing of regions, the system undergoes tran-
scritical bifurcation at (γ, 0), which leads to the emer-
gence of another interior equilibrium E2 with saddle
in nature. As a consequence of the existence of E2, the
state space of the system is divided into two regions, of
which one contains the region of attraction of E1 and
another that of γ . In this region, the coexisting axial
and trivial equilibria are, respectively, stable and sad-
dle in nature. For further changes in η, we move into
the region A from B1. This passage is accompanied
by the collision of the two interior equilibrium E1 and
E2 and disappearance of both equilibria through the
saddle-node bifurcation. Due to the vanishing of inte-
rior equilibria, all the trajectories of the system will
be attracted by (γ, 0) making the system prey domi-
nant. Fixing now ξ > δ

β−δα
and choosing η such that

(η, ξ) belongs to the region D, the system admits a
unique interior equilibrium, which is saddle in nature.

The coexisting equilibria E0 = (0, 0) and Eγ = (γ, 0)
are unstable and stable in nature, respectively. Thus, all
the solutions originating in the region of attraction of
(γ, 0) will be driven to predator-free state. Solutions
originating in the other side of this region of attraction
will be driven to predator axis, eliminating prey from
the ecosystem. Finally, for (η, ξ) ∈ E , (γ, 0) turns into
a saddle due to a transcritical bifurcation. All the solu-
tions that are originating in this region will be driven
to predator axis.

We now shift our focus on the system dynamics
when the parameters of the system followωγ 2−3 > 0.
The division of (η, ξ) space in this case by the bifur-
cation curves (37)–(40) is presented in Fig. 9. Fix-

ing ξ ∈
(
0, δ

β−δα

)
and choosing η > 0 such that

(η, ξ) ∈ C1 ∪ C2, the system admits unique inte-
rior equilibrium (E1) along the trivial (E0) and axial
(Eγ ) equilibria. The nature of trivial and axial equilib-
ria is saddle. The interior equilibrium is stable for the
(η, ξ) ∈ C1. As we move from C1 into C2, the system
experiences Hopf bifurcation, due to which the interior
equilibrium point is surrounded by a limit cycle. Now
moving from C1 ∪ C2, to B1 ∪ B2, the system under-
goes transcritical bifurcation at (γ, 0), as a result there
will be an emergence of second coexistence equilib-
rium, E2 with higher prey component, which is saddle
in nature. In this region, Eγ = (γ, 0) turns into sta-
ble and the nature of E0 = (0, 0) remains unchanged.
The nature of E1 is stable (unstable) for (η, ξ) ∈ B1

((η, ξ) ∈ B2). The system experiences Hopf bifurca-
tion while crossing the regions B1 and B2. The Hopf
bifurcation experienced by the system will be either
non-degenerate or degenerate depending on whether
σ(x1) < 0 or σ(x1) > 0. The system even experiences
homoclinic bifurcation for a critical pair of (η, ξ) ∈ B2.
Moving into the region A from B1 ∪ B2, the two inte-
rior equilibria collidewith each other and disappear in a
saddle-node bifurcation. This qualitative change in the
system drives all the solutions to the prey dominated
state (γ, 0). At the instance of saddle-node bifurca-
tion, the system also exhibits Bogdanov–Takens bifur-
cations at two decisive pairs of (η, ξ). The dynamics
of the system for (η, ξ) which belongs to the regions
either D or E are similar to the dynamics described in
the above case ωγ 2 − 3 < 0.

Table 2 presents the existence of various equilibria
in each of the regions depicted in Figs. 8 and 9 along
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Table 2 Table describing the equilibrium admitted by system (5, 6) in various regions in Figs. 8 and 9

Region(s) Equilibria Nature

A E0, Eγ E0 is saddle and Eγ is stable

B1 E0, Eγ , E1, E2 E0, E2 are saddles and Eγ , E1 are stables

B2 E0, Eγ , E1, E2 E0, E2 are saddles, Eγ is stable and E1 is unstable

C1 E0, Eγ , E1 E0, Eγ are saddles and E1 is stable

C2 E0, Eγ , E1 E0, Eγ are saddles and E1 is unstable

D E0, Eγ , E2 E0 is unstable, Eγ is stable and E2 is saddle

E E0, Eγ E0 is unstable and Eγ is saddle

with stability nature of each of these equilibria and thus
summarises the global dynamics of the system.

6 Consequences of providing additional food to
predators

In the present section, we discuss the effect of the pro-
vision of additional food to predators and its outcomes
on the dynamics of the predator–prey systemwith anti-
predator behaviour in prey. From the discussions pre-
sented in Sects. 4 and 5, we conclude that the qual-
ity of additional food plays a vital role in the system
dynamics.When the system is supplementedwith addi-
tional food quality satisfying α < β/δ, it is evident that
the system exhibits very rich dynamics. On the other
hand, providing an additional food of quality α > β/δ,
we observe that the system tends to prey dominance.
Accordingly,we term the additional food as high (nutri-
tious) quality if α <

β
δ
and it is of low (nutritious) qual-

ity when α <
β
δ
similar to the arguments presented in

[52,53,65–67].
In the absence of additional food, curves (37), (39)

intersect the η-axis at η = η̄0 and η = η̄1, respec-

tively. Here, η̄0 = βγ−δ(wγ 2+1)
γ (wγ 2+1)

. The expression for η̄1

is complex to express analytically but can be evaluated
numerically using software packages such as MAPLE,
MATLAB.We now discuss the consequences of provi-
sion of additional food in three distinct cases that arose
due to the division of η line into three regions given by
R1 : (0, η̄0], R2 : (η̄0, η̄1] and R3 : η > η̄1.

In the case of providing low (nutritious) quality addi-
tional food, the final state of the system is dominated
either completely (or) partially by prey species depend-
ing on the strength of anti-predator behaviour of prey
and quantity of food that is supplied. For a fixed anti-

predator behaviour of prey, η, belonging to region R1,
providing the predatorswith additional food of quantity

ξ ∈
(
0, (ωγ 2+1)(ηγ+δ)−βγ

(ωγ 2+1)[β−(ηγ+δ)α]
]
, the system exhibits sta-

ble predator–prey coexistence. Proving additional food

with quantity ξ >
(ωγ 2+1)(ηγ+δ)−βγ

(ωγ 2+1)[β−(ηγ+δ)α] , the system can
exhibit two coexistence states, in which the state with
lower prey population is stable/unstable and the other
is saddle in nature. This coexistence of multiple states
divides state space of the system into two regions. The
trajectories originating the region of attraction of the
lower prey population state converges to this state or
oscillate around it. The solutions initiating in the other
region will be driven to Eγ = (γ, 0). In this case, it
can be interesting to observe that, as ξ crosses a thresh-
old value (characterised by the system parameters), the
system is entirely dominated by prey species, causing
the solutions to reach the prey carrying capacity. Thus,
we cannot achieve the successful biological control in
this scenario. For a choice of η in regions, R2 or R3,
the dynamics of the system are similar to the case dis-
cussed above with only exception that the system will
be attracted to the predator-free state with a small vari-
ation in the quantity.

In the case, where the predators are provided with
high (nutritious) quality food, the system dynamics are
much more interesting with a possibility to drive the
system to the predator axis in a finite time. In this
case, we observe that curves (37) and (38), intersect

at (ηc, ξc) =
(

β−δα

ωγ 2+1
, δ

β−δα

)
.

For η < ηc, increasing the quantity ξ from 0 to
δ

β−δα
, we observe that the system which is prey dom-

inated initially, gets attracted to a stable state domi-
nated by a predator as ξ reaches the critical value ξc. As
the quantity of supplemental food crosses the thresh-
old value ξc, the system becomes pest-free, and all the
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solutions will be driven to predator axis. In this case,
the predator population exhibit unbounded growth and
are solely maintained by the additional food supply. A
cut-off in the additional food supply drives the preda-
tors to extinct. The unbounded growth observed in this
case is because the considered model does not account
for the competition between predators.

Choosing η > ηc, and providing additional food

ξ ∈
(
0, δ

β−δα

)
, the system exhibits two coexistence

states, one of which is (un)stable and other is of sad-
dle in nature. The existence of saddle coexistence state
divides the state space into two regions, of which one
contains the region of attraction of coexistence state
with low prey component and the other has a basin of
attraction of prey carrying capacity. Now, increasing
the food supply beyond the critical value ξc, the divi-
sion of state space into two regions continues but with
the exception that the basin of attraction for the first
region shifts to the predator axis. All the solutions ini-
tiating in this region will be driven to a pest-free state
with unlimited growth in predators. The solutions start-
ing in the other region will converge to (γ, 0). Thus,
in this case, the achieving of successful biological con-
trol depends on the initial starting state.We can employ
some external control strategies such as culling of the
pest species to bring the state to the region of attraction
of predator axis in the case, where the initial state is in
the (γ, 0) region of attraction.

7 Numerical simulations for controllability

The global dynamics and stability analysis presented
in the previous sections, with the help of (η, ξ) control
parameter space division shown in Figs. 8 and 9, pro-
vide us with the control strategies to drive the system
from one point to another. The key findings pertain-
ing to the controllability of the system are illustrated
through numerical simulations in this section.

At first, we demonstrate the controllability aspects
of system (5, 6) in the case where in the absence of
additional food admits a unique stable coexistence.
For this, we fix the ecosystem parameters to be β =
0.5, δ = 0.4, ω = 0.3, γ = 3 and η = 0.014.
With this parameter choice, the solutions of the sys-
tem will be driven to (1.1828, 0.8600) asymptotically.
We now provide predators with additional food of
high (nutritious) quality, α = 0.5 after a time gap
of t = 200 units and investigate the controllability

aspects by varying the quantity. At first, taking quantity
ξ = 0.5, we observe that the trajectories of the sys-
tem will be driven asymptotically to the stable coexis-
tence (0.5708, 1.1111). The frame I of Fig. 10 presents
this situation. Increasing quantity further and cross-
ing the threshold value ξ = 1.335, we observe the
prey gets eradicated from the system, and the preda-
tor populations will be driven to predator axis with
unlimited growth. Frame II of Fig. 10 depicts this sce-
nario. Now, providing low (nutritious) quality addi-
tional food with α = 1.5 and quantity ξ = 0.1, we
observe that the system will be driven asymptotically
to the stable coexistence (1.2958, 0.9827) with higher
prey component (cf. Frame III of Fig. 10). Further
increase in quantity with ξ = 0.24, crossing the thresh-
old value ξc = 0.2317, the solutions will be driven to
(γ, 0) = (3, 0), a predator-free statemaking the system
completely prey dominant. This scenario is pictured in
Frame IV of Fig. 10.

The simulations presented in Fig. 11 depict control-
lability aspects of the system when the original system
(in the absence of additional food) admits an unstable
predator–prey coexistence. The ecosystem parameters
chosen to be β = 0.5, δ = 0.4, ω = 0.25, γ = 3.5 and
η = 0.0036. For this parameters set, the system admits
an unstable coexistence E1 = (1.0154, 0.8929). Now
the solutions originating at the initial state (1, 1) will
oscillate around E1. Let us now provide predators with
some additional food after a time gap of t = 200 units.
Providing (high-quality) additional food with α = 0.5
and quantity ξ = 0.04, we observe that the system
admits an interior equilibrium E1 = (0.9656, 0.9108),
which is unstable in nature, and thus, the oscillations
continue to exist, but the amplitude of the oscillations
will reduce (cf. Frame I of Fig. 11). Fixing quality and
increasing ξ to 0.5, the oscillations in the system are
eliminated and the solutions will reach asymptotically
to the equilibrium point (0.5419, 1.1340). This situa-
tion is pictured in Frame II of Fig. 11. Further increase
in ξ and crossing the threshold value ξc = 1.34, we
observe that the prey gets eradicated from the ecosys-
tem and the solutions will be driven to predator axis.
The simulations presented in Frame III of Fig. 11
illustrate this phenomenon of complete biological con-
trol. Now, providing low-quality additional food with
α = 1.5, and varying quantity ξ between 0 to 0.748,
we observe that, the oscillations in the system increase
for ξ = 0.2 and solutions get driven to prey carrying
capacity for ξ = 0.8. Frames IV andV of Fig. 11 depict
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Fig. 10 Numerical simulation illustrating the controllability
aspects of system (5, 6) with provision of high-quality and low-
quality additional food, when the system in the absence of addi-

tional food exhibits unique stable coexistence. The ecosystem
parameters chosen for this simulation are:β = 0.5, δ = 0.4, ω =
0.3, γ = 3 and η = 0.014

these two scenarios and illustrate the consequences of
providing low-quality additional food.

Finally,we illustrate the controllability aspectswhen
the provision of additional food brings in two coexis-
tence states. In this case, the system behaviour becomes
very dynamic and interesting. This example illustrates
the vital role played by the time of the release of
additional food in controllability of the system. The
ecosystem parameters are taken to be β = 0.5, δ =
0.3, ω = 0.3, γ = 3.4 and η = 0.05. For this
choice of parameters, the original system (with out
additional food) has two coexistence states given by
E1 = (0.8192, 0.9119) and E2 = (2.5936, 0.7158)
with their nature being unstable and saddle, respec-
tively. Existence of saddle coexistence divides the state
space in to two regions. The solutions initiating in the
region of attraction of E1 will oscillate around the state

E1. The solutions originating outside of the regions of
attraction of E1 will be driven to (γ, 0) (cf. Frame I of
Fig. 12). Now, fixing initial population level at (2, 2)
(which is in the region of attraction of (γ, 0)) and pro-
viding additional food with quality α = 0.5 and quan-
tity ξ = 0.3 after a time gap of t = 20 units. For
this choice of additional food, the system admits two
coexisting states E1 = (0.4746, 1.0563) (unstable) and
E2 = (3.3162, 0.1219) (saddle). Further, at the time of
release, the population level is at (3.08796, 0.32001),
which is in the region of attraction of E1. So, the solu-
tion of the additional food provided predator–prey sys-
tem converges to a limit cycle surrounding the interior
equilibrium (0.4746, 1.0563) (cf. Frame II of Fig. 12).
If we provide same quality and quantity of additional
but after a time gap of t = 40 units, the population level
at this moment is (3.33151, 0.07952), which is outside
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Fig. 11 Numerical simulation illustrating the controllability
aspects of system (5, 6) with provision of high-quality and
low-quality additional food, when the system in the absence

of additional food exhibits unstable predator–prey coexistence.
The ecosystem parameter values chosen for this simulation are:
β = 0.5, δ = 0.4, ω = 0.25, γ = 3.5 and η = 0.0036

of the region of attraction of E1. Thus, the solution
of the system with this initial state will reach to (γ, 0)
asymptotically (cf. Frame III of Fig. 12) deviating from
the biological control target. This example cautions the

eco-managers not only about the quality and quantity
of the additional food that is being supplied but also on
the time of the release of additional food and the initial
population levels.
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Fig. 12 Numerical simulation illustrating the importance of ini-
tial population levels and the time of the release of additional
food. Frame I, depicts the scenario wherein, the trajectories of
the system starting at (2, 2) in the absence of additional food will
be driven to (γ, 0). Now providing additional food with quality
α = 0.5 and quantity ξ = 0.3 after t = 20 units of time, the

solutions of the systemwill be driven to a stable coexistence with
low prey population. Frame II graphically illustrates this situa-
tion. When predators are provided with the same quality and
quantity of additional food, but at t = 40 units of time, the solu-
tions of the system will be driven to predator-free state. Frame
III presents this scenario

8 Discussion and conclusions

Asignificant portion of the theoreticalmodellingworks
done in the direction of biological control assumes
pest as prey and natural enemies as predators. The
relationship between these prey and predator is then
modelled using differential/difference equations to
study the dynamics in continuous/discrete time domain
[4,16,37,42,54]. Some prominent studies carried out
in modelling pest, natural enemy interactions, high-
lights several interesting phenomena that are respon-
sible for the control of economically damaging agri-
cultural insect pests and weeds [13,14,17,31,47,68].
The empirical works in the biological control disci-
pline establish that, many natural enemies are omniv-
orous in nature and depend on non-prey food sources
such as pollen, nectar, etc. [5,15,36,43,44,77,81,86].
These non-prey food sources many times deviate the
predators from the goals of biological control. Thus,
over the last few decades, the environmentalists and
theoretical ecologists have been studying the conse-
quences of providing non-pest additional food to preda-

tors to gain valuable insights for developing best bio-
logical pest control strategies [44,47,52,65]. Both the-
oretically and empirically, it is well established that,
the quality, quantity of additional food plays a crucial
role in controlling the economically damaging species
[52,53,65,80,81,83,86].

In the ecological world, the interactions between
prey and predators are complex in nature, and can
incorporate various phenomenon such as cannibal-
ism [23,24], Allee effect [29], refuge [12,49,73,91],
parental care [51,71], etc. Two other important phe-
nomena exhibited by prey to avoid predation pres-
sure that has direct consequences for the success
of biological control programmes are group defence
[21,25,26,28] and anti-predator behaviour (role rever-
sals between prey and predator) [8,22,35,40,41,45,
57]. The group defence formation by prey to over-
come the predation pressure can sometimes lead to
predator extinction. The adoption of anti-predator
behaviour by prey as a counterattacking technique, to
safeguard the young prey species from the future pre-
dation pressure, results in killing of juveniles/eggs of
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predator [7,55,56]. A few experimental studies carried
out in this direction reveal that in few situations the anti-
predator behaviour is detrimental to the natural enemies
[33,34]. In few others cases, it is found that in spite of
anti-predator behaviour pest, predators when exhibit
generalist nature, can achieve the targets of biologi-
cal control [80,81]. This dual outcome of anti-predator
behaviour calls for better understanding of the mecha-
nisms and interactions between the prey and predator.

Avery few theoreticalmodels have studied the effect
of anti-predator behaviour in prey [32,70]. It estab-
lished there that, an increase in anti-predator behaviour,
decreases the predator population and increases the
abundanceof theprey.Thus, the anti-predator behaviour
of prey can have adverse effects on the successful
biological control programmes. One of the ways to
enhance the biological control is to overcome the
diminish in the predator numbers by supplementing
the predators with some additional/alternative food
[11,44,81,84,86]. Theoretical works carried out in
this direction establish that food supplementation can
not only aid the pest control but also annihilate the
predators [52,65]. The above theoretical studies do
not account for the group defence and anti-predator
behaviour in prey. In recent experimental research car-
ried out by Vangansbeke et al. [75], studying the com-
bined effects of anti-predator behaviour and additional
food supply to predators, reports that the availability of
nutritional food supplementation increases the efficacy
of predator in controlling the pest species. This increase
in the efficacy is controlled by the quality and quantity
of the food supplementation. As a consequence, it is
concluded that few more investigations are required to
determine the type and level of food supplementation
(i.e., quality and quantity) to be used for better suppres-
sion of pest species by natural enemies. These conclu-
sions motivated us to undertake a theoretical investiga-
tion, to characterise the type and level of food supple-
mentations that are to be provided to predators to con-
trol the prey with anti-predator behaviour. This study
is taken up with an intention to bridge the gap between
theoretical and experimental works, aid the experimen-
talists in identifying the proper food supplementation
and developing the control strategies for the success of
pest control programmes.

The model presented in this work assumes Holling
type IV functional response from incorporating the
group defence in prey in the presence of additional
food. Assuming that the prey adopts anti-predator

behaviour as a counterattacking technique, the loss in
predator species is modelled using mass action for-
mula. In general, the anti-predator behaviour in prey
calls for a stage structure in predators. But, in the cur-
rent model, we have ignored the internal stage structure
mechanism of the predators as we are primarily inter-
ested in accessing the consequence of additional food
in the presence of anti-predator behaviour prey. Fol-
lowing the work of [65], we characterise the additional
food to be high (nutritious) quality if the proportion of
handling time between additional food and prey is less
than the ratio of maximum predator growth rate and its
starvation rate (α < β/δ). Additional food is termed
as of low (nutritious) quality if the above inequality
reverses (α > β/δ).

The model analysis reveals several interesting phe-
nomena such as the existence of two coexistence states
with one being saddle in nature. The considered system
admits various bifurcations such as Hopf (degenerate,
non-degenerate), homoclinic orbit, saddle-node and
Bogdanov–Takens (super/subcritical) concerning the
variations in the quantity and anti-predator behaviour
and treating quality as a constant control parameter.
Control strategies are derived for driving the system
to a pest-free state. It is observed that, the presence of
saddle equilibrium leading to degenerate Hopf bifurca-
tion, saddle-node bifurcation, Bogdanov–Takens bifur-
cation effects the biological control outcomes. It worth
noting that, the presence of degenerate Hopf bifurca-
tion and existence of homoclinic orbit divide the entire
state space into two regions. The solutions originating
inside the homoclinic loop will be driven to coexis-
tence state, whereas the solutions beginning outside of
the homoclinic cycle converge to predator-free state
and thus depriving targets of biological pest control.
These outcomes highlight the vital role of the quantity,
quality of the additional food supplied to predators and
anti-predator behaviour of prey in accomplishing the
biological control targets. It is even possible to drive
the system trajectories to a pest-free state (with unlim-
ited growth in predators) by providing highly nutritious
additional food sufficient quantities.

Recent theoretical works investigating the prey–
predator interactions guided by the anti-predator
behaviour in prey [69,70] establish that the behavioural
strategies of prey in adopting the anti-predator behaviour
could inhibit the growth rate of predators and prove
to be beneficial to prey growth rate. Our study fur-
ther strengths these observations and discusses the
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use of supplementary foods in overcoming the nega-
tive effects caused by prey adaption of anti-predator
behaviour. We observe that supplementing predators
with high nutritional food (relative to anti-predator
behaviour of prey), predators canmaintain the pest pop-
ulation below a threshold value or even annihilate the
pest from the ecosystem. A critical outcome of this
study that cautions eco-managers is that; it is not only
relevant to provide suitable additional food of superior
quality with appropriate quantity but also the time of
release is vital for the success of biological control pro-
grammes. The observations of this study are in accor-
dancewith the experimental work done in this direction
by Leman and Messelink [39] and Vangansbeke et al.
[75], wherein the study points out that not only the pro-
viding type and quantity of additional food but also the
way in which the food is distributed in the environment
plays a vital role in controlling pests.

The presentmodel can further be improved by incor-
porating stage structure in predator populations and
even competition between predators for food resources
to limit the unlimited growth in predators. Also, the
model presented here does not account for the spa-
tial variations and time delay. Inspired by the theoret-
ical works done on the diffusive predator–prey with
anti-predator behaviour and time delay [90] in biolog-
ical context, it will be fascinating to investigate prey–
predator dynamics in the presence of additional food
by incorporating the above effects. We aim take up this
study this in future.
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AppendixABoundedness of the solutions of the pro-
posed system

Lemma A.1 If βξ − δ(1+ αξ) ≤ 0, then all the solu-
tions of system (5, 6) initiating in the interior of the
positive quadrant of the state space are bounded.

Proof We define W = x + 1
β
y. Now, for any K > 0,

we consider,

dW

dt
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+ 1
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(
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4
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(
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y (as x > 0).

Choosing sufficiently small K (< δ) and βξ − δ(1 +
αξ) ≤ 0, we get

dW

dt
+ KW ≤ M

(
= γ (1 + K )2

4

)
.

Then, the applications of Gronwall’s inequality, we get

0 ≤ W (t) ≤ M

K
(1 − e−Kt ) + W (0)e−Kt .

Therefore, 0 < W (t) ≤ M
K as t → ∞ 	
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M., Bartoň, D., Mrkvička, T., Kubečka, J.: Early life-history
predator–prey reversal in two cyprinid fishes. Sci. Rep. 7(1),
6924 (2017)

64. Smith, T.M., Stratton, G.W.: Effects of synthetic pyrethroid
insecticides on nontarget organisms. In: Gunther, F.A. (ed.)
Residue Reviews, pp. 93–120. Springer, New York (1986)

65. Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Bio-
logical control through provision of additional food to preda-
tors: a theoretical study. Theor. Popul. Biol. 72(1), 111–120
(2007)

66. Srinivasu, P.D.N., Prasad, B.S.R.V.: Time optimal control
of an additional food provided predator–prey system with
applications to pest management and biological conserva-
tion. J. Math. Biol. 60(4), 591–613 (2010)

67. Srinivasu, P.D.N., Prasad,B.S.R.V.:Role of quantity of addi-
tional food to predators as a control in predator–prey systems
with relevance to pest management and biological conser-
vation. Bull. Math. Biol. 73(10), 2249–2276 (2011)

68. Stirling, G.R.: Biological control of plant-parasitic nema-
todes. In: Poinar Jr., G.O., Jansson, H.B. (eds.) Diseases of
Nematodes. CRC Press, Boca Raton (2017)

69. Sun, X., Li, Y., Xiao, Y.: A predator–prey model with prey
population guided anti-predator behavior. Int. J. Bifurc.
Chaos 27(07), 1750099 (2017)

70. Tang, B., Xiao, Y.: Bifurcation analysis of a predator–prey
model with anti-predator behaviour. Chaos, Solitons Frac-
tals 70, 58–68 (2015)

71. Tallamy, D.W.: Insect parental care. BioScience 34(1), 20–
24 (1984)

72. Tayeh, A., Estoup, A., Lombaert, E., Guillemaud, T.,
Kirichenko, N., Lawson-Handley, L., De Clercq, P., Facon,
B.: Cannibalism in invasive, native and biocontrol popu-
lations of the harlequin ladybird. BMC Evol. Biol. 14, 15
(2014)

73. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis
of a prey–predator model with Beddington–DeAngelis type
function response incorporating a prey refuge. Nonlinear
Dyn. 80(1–2), 177–196 (2015)

74. Turnbull, H.W.: Theory of Equations. InterScience Publish-
ers, New York (1947)

75. Vangansbeke, D., Nguyen, D.T., Audenaert, J., Verhoeven,
R., Gobin, B., Tirry, L., DeClercq, P.: Food supplementation
affects interactions between a phytoseiid predator and its
omnivorous prey. Biol. Control 76, 95–100 (2014)

76. Vangansbeke, D., Nguyen, D.T., Audenaert, J., Verhoeven,
R., Deforce, K., Gobin, B., Tirry, L., De Clercq, P.: Diet-
dependent cannibalism in the omnivorous phytoseiid mite
Amblydromalus limonicus. Biol. Control 74, 30–35 (2014b)

77. van Baalen, M., Krivan, V., van Rijn, P.C., Sabelis, M.W.:
Alternative food, switching predators, and the persistence of
predator–prey systems. Am. Nat. 157(5), 512–524 (2001)

78. Vandekerkhove, B., De Clercq, P.: Pollen as an alternative
or supplementary food for the mirid predator Macrolophus
pygmaeus. Biol. Control 53(2), 238–242 (2010)

79. van denBosch, F., DeRoos, A.M., Gabriel,W.: Cannibalism
as a life boat mechanism. J. Math. Biol. 26, 619–633 (1988)

80. van Rijn, P.C., Van Houten, Y.M., Sabelis, M.W.: Pollen
improves thrips control with predatory mites. IOBC/wprs
Bull 22(1), 209–212 (1999)

81. van Rijn, P.C., vanHouten, Y.M., Sabelis,M.W.: How plants
benefit from providing food to predators even when it is also
edible to herbivores. Ecology 83(10), 2664–2679 (2002)

82. Wäckers, F.L.: Assessing the suitability of flowering herbs
as parasitoid food sources: flower attractiveness and nectar
accessibility. Biol. Control 29(3), 307–314 (2004)

83. Wäckers, F.L., van Rijn, P.C.J., Bruin, J. (eds.): Plant-
Provided Food for Carnivorous Insects: A Protective Mutu-

123



Qualitative analysis of additional food provided predator–prey system 1793

alism and Its Applications. Cambridge University Press,
Cambridge (2005)

84. Wäckers, F.L., Romeis, J., van Rijn, P.: Nectar and pollen
feeding by insect herbivores and implications for mul-
titrophic interactions. Annu. Rev. Entomol. 52, 301–323
(2007)

85. Wäckers, F.L., Van Rijn, P.C., Heimpel, G.E.: Honeydew as
a food source for natural enemies: making the best of a bad
meal? Biol. Control 45(2), 176–184 (2008)

86. Wade, M.R., Zalucki, M.P., Wratten, S.D., Robinson, K.A.:
Conservation biological control of arthropods using artifi-
cial food sprays: current status and future challenges. Biol.
Control 45(2), 185–199 (2008)

87. Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey
system involving group defence. SIAMJ.Appl.Math. 48(3),
592–606 (1988)

88. Wu, H., Ling, M., Baoping, L.: Effects of feeding frequency
and sugar concentrations on lifetime reproductive success of
Meteorus pulchricornis (Hymenoptera: Braconidae). Biol.
Control 45(3), 353–359 (2008)

89. Xiao, D., Zhu, H.: Multiple focus and Hopf bifurcations
in a predator–prey system with nonmonotonic functional
response. SIAM J. Appl. Math. 66(3), 802–819 (2006)

90. Yang, R., Ma, J.: Analysis of a diffusive predator–prey
system with anti-predator behaviour and maturation delay.
Chaos, Solitons Fractals 109, 128–139 (2018)

91. Yang, R., Zhang, C.: Dynamics in a diffusive predator–prey
system with a constant prey refuge and delay. Nonlinear
Anal. Real World Appl. 31, 1–22 (2016)

92. Zhu,H.,Campbell, S.A.,Wolkowicz,G.S.:Bifurcation anal-
ysis of a predator–prey system with nonmonotonic func-
tional response. SIAMJ.Appl.Math. 63(2), 636–682 (2003)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Qualitative analysis of additional food provided predator–prey system with anti-predator behaviour in prey
	Abstract
	1 Introduction
	2 The model
	3 The model analysis
	3.1 Stability analysis

	4 Bifurcation analysis
	4.1 Hopf bifurcation around interior equilibrium E1
	4.2 Saddle-node bifurcation around interior equilibrium
	4.3 Bogdanov–Takens bifurcation
	4.4 Numerical simulations for local and global bifurcation analysis
	4.4.1 Numerical illustration for existence of degenerate and non-degenerate Hopf bifurcation
	4.4.2 Numerical illustration for saddle-node bifurcation
	4.4.3 Numerical illustration for Bogdanov–Takens bifurcation


	5 Global dynamics
	6 Consequences of providing additional food to predators
	7 Numerical simulations for controllability
	8 Discussion and conclusions
	Acknowledgements
	Appendix A Boundedness of the solutions of the proposed system
	References




