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Abstract This work aims to develop finite-time sta-
bility property for trajectory tracking control system of
small-scale unmanned helicopter subjected to uncer-
tainties and external disturbances. The added power
integrator method is applied to construct the nominal
feedback control part, such that helicopters’ closed-
loop system possesses highly tracking performance
due to finite-time convergence property. In view of
the existence of strong couplings, approximate feed-
back linearization is initially conducted to simplify and
decouple helicopters’ input–output dynamics. Addi-
tionally, to guarantee robustness, the composite active
disturbance rejection control idea is employed. These
unknown perturbations are estimated using high-order
sliding mode disturbance observers and compensated
for directly in every virtual control law. Finite-time
convergence property of the closed-loop system with
disturbances is proven through Lyapunov stability
theory. Finally, several comparison simulations illus-
trate the effectiveness and superiority of our proposed
methods.
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1 Introduction

Unmanned helicopters have received wide interest in
recent decades because of their capabilities, including
highly agile maneuvering, vertical taking off and land-
ing, and broad envelope of flight [1,2]. Helicopters
have been widely applied into rescue, surveillance,
supervision, defense, and other areas. In most of the
practical application scenes, helicopters are required
to quickly and accurately track a prescribed trajectory.
However, controlling unmanned helicopters, especially
small-scale ones, is not an easy task due to their com-
plex aerodynamics, strong nonlinearities and dynamic
couplings, and significant parameter and model uncer-
tainties [1–4]. To date, designing a high-performance
controller for helicopters is still an attractive focus.

In the last decades, many meaningful results for
helicopter controls have been proposed. Tradition lin-
ear control method, such as PID [1], linear quadratic
regulation [5], H∞ control theory [4–6], and gain-
scheduling controllers [7], is based on the model lin-
earized around the trim points that may utilize syn-
thesis techniques. These techniques are convenient for
engineering application. However, guaranteeing satis-
fying performances of the whole system in full enve-
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lope is difficult. Nonlinear control technique, includ-
ing backstepping [8–12], nonlinear dynamic inversion
[13], sliding mode (SM) [14], nonlinear model predic-
tive control [15], and output regulation [16], is applied
to conquer this main defect.

Robustness becomes one of the main performance
indexes of helicopter given the presence of model
uncertainties and external perturbations in its oper-
ational environment [1,4]. Traditional robust control
strategies, including H∞ control, SM, and adaptive
control, are applied to “inactively” attenuate the effect
of disturbance at the cost of sacrificing their nominal
performance [17]. Recently, an alternative approach
called “active” disturbance reject control (ADRC),
which provides a compound controller composed of a
nominal feedback control part and a disturbance com-
pensation part, is proposed [17,18]. The nominal feed-
back control part guarantees basic stability and closed-
loop performance, and the other part provides strong
robustness in large-range operation. The compensation
part is often designed based on disturbance observer
(DO) idea, where the lumped unknown disturbances
are estimated by a DO and counteracted online. The
disturbances in helicopter dynamics satisfy the mis-
matched condition, which increases the difficulties in
designing a robust controller. Recently, some litera-
tures have applied the ADRC technique to deal with
helicopters’ control problem. In [10], the composite
backstepping controller combined with nonlinear DO
is applied to ensure robust and highly trajectory track-
ing. [12] adopts extend DO to estimate and compen-
sate for the unknown disturbances, as well as dynamic
surface control to guarantee the nominal performance.
Nonlinear MPC is combined with DO in [15] to realize
highly tracking performance subjected to the perturba-
tions.

To further improve tracking performance, our work
aims to develop finite-time (FT) convergence prop-
erty to helicopter control system. The FT system pro-
vides rapid convergent speed around the equilibrium
point remarkable disturbance rejection performance,
which is an attractive property of a controller design
[19,20]. There are twomain theory frameworks to com-
plete finite-time stability analysis, including homoge-
nous method and Lyapunov-based method [20]. Our
work adopts homogeneous domination framework to
achieve FT convergence of tracking errors. The added
power integrator method [21–23] is applied to design
the nominal feedback control part,which ensures nomi-

nal control performance and possesses FT convergence
property of the closed-loop system. Additionally, in
the recursive design procedure, disturbances are esti-
mated via high-order SMDO (HOSMDO) [24–26] and
then feed-forwardly counteracted in virtual control law
design of every step. HOSMDO has many excellent
properties, such as insensitivity to disturbances and FT
convergence. This novel ADRC design guarantees that
the tracking error of the closed-loop system converges
to zero in FT under disturbances.

The helicopter is a typical multi-input multi-output
(MIMO) system, where strong dynamic couplings
exist. By approximate feedback linearization, the heli-
copters’ input–output dynamics enable to be decou-
pled and simplified [27]. Due to the properties of heli-
copter model, there exist two subsystems to consist of
the decoupled helicopter dynamics, including position
system and yaw angle system. Then, the composite FT
control strategy is applied to force helicopter’s trajec-
tory to track reference trajectory under internal and
external perturbations. The main contributions of our
work are summarized as follows:

(a) FT control strategy based on added power integra-
tor method is applied to deal with trajectory track-
ing problem of small-scale unmanned helicopters
subjected to unknown perturbations. Our proposed
FT controller enjoys speed and improved robust-
ness.

(b) The composite FT control law based onHOSMDO
and added power integrator method, which guar-
antees FT convergence under disturbances, is pro-
posed. Our work develops FT output regulation
technique onMIMOsystemby combiningwith the
approximate input–output linearization technique.

(c) FT convergence property of tracking errors in the
closed-loop system is proven through Lyapunov
theory. Comparison simulation results show that
the proposed controller features superior perfor-
mance in trajectory tracking and disturbance rejec-
tion.

The configuration of this paper is arranged as fol-
lows. Section 2 presents the dynamics of a small-scale
helicopter and its linearized model that is obtained by
approximated feedback linearization. Section 3 pro-
poses the composite control method, provides the FT
stability analysis, and produces practical helicopter
control signals. Section 4 discusses the simulations
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conducted in this work. Section 5 draws the conclu-
sions.

2 Small-scale helicopter model

2.1 Small-scale helicopter dynamics

The helicopter is considered a six-degree-of-freedom
rigid body model with simplified force and moment
generation process. Firstly, two reference frames are
defined: the earth reference frame (ERF) I = {Oxyz},
which is fixed to the earth, and the body reference frame
(BRF) B = {Obxbybzb} whose origin is located at
the helicopter’s center of gravity (c.g.) [3,4]. Figure 1
shows the definition of the two reference frames.

The dynamics of small-scale unmanned helicopter
can be described as follows [3,4]:

Ṗ = V, (1)

V̇ = ge3 + 1

m
R (�) F, (2)

Ṙ (�) = R (�) S (ω) , (3)

J ω̇ = −ω × Jω + M, (4)

where P = [
x y z

]T
and V = [

u v w
]T

refer to heli-
copter’s position and velocity vector in theERF, respec-
tively;m is helicopter’s mass, and g is the gravitational

acceleration; e3 = [
0 0 1

]T
; S (·) is a skew-symmetric

matrix that corresponds to the vector (·) [8,9]; and
J represents the approximate inertia matrix given
as follows:

J =
⎡

⎣
Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

⎤

⎦ . (5)

The rotation matrix from BRF to ERF is

R (�)

=
⎡

⎣
CθCψ SφSθCψ −CφSψ CφSθCψ +SφSψ

Cθ Sψ SφSθ Sψ +CφCψ CφSθ Sψ −SφCψ

−Sθ SφCθ CφCθ

⎤

⎦,

(6)

where S(·) and C(·) denote sin (·) and cos (·), respec-
tively. � = [

φ θ ψ
]T

are the Euler angles, which

include roll, pitch, and yaw angles. ω = [
p q r

]T

denote the angular rates in the BRF. Attitude kinemat-
ics are expressed as follows:

�̇ = � (�)ω

� (Θ) =
⎡

⎣
1 SφCθ CφSθ /Cθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

⎤

⎦ . (7)

In Eqs. (2)–(4), F andM denote the external forces and
torque exerted on helicopter’s fuselage in BRF, respec-
tively.

F = Fb + F	, (8)

M = Mb + M	,

Fig. 1 Simple illustration
of a small-scale helicopter
model
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Fb = m

⎡

⎣
0
0

−g + Zww + Zcolδcol

⎤

⎦ ,

Mb = J (Aω + Buc) , (9)

where uc = [
δcol δlon δlat δped

]T
is helicopter’s con-

trol input vector, whose elements denote the main
rotor’s collective, longitudinal cyclic, lateral cyclic, and
the tail rotor’s collective pitch, respectively. F	 and
M	 represent lumped force and torque disturbance in
BRF, respectively, that involve external perturbations,
parameter variations, and model uncertainties. Con-
stant matrices A and B are expressed as follows [10]:

A =
⎡

⎣
−τ Lb −τ La 0
−τMb −τMa 0

0 0 Nr

⎤

⎦ ,

B =
⎡

⎣
0 L lon L lat 0
0 Mlon Mlat 0

Ncol 0 0 Nped

⎤

⎦ ,

where the coefficients Lb, La ,Mb,Ma , L lon, L lat,Mlon,
Mlat, Ncol, Nr , Nped, Zw, and Zcol depend on the heli-
copter structure, which can be obtained via system
identification technique. Along (8) to (9), helicopter
dynamics (2) and (4) can be reexpressed as follows:

V̇ = ge3 + R (�) e3 (−g + Zww + Zcolδcol) + 	F,

(10)

ω̇ = −J−1 (ω × Jω) + (Aω + Buc) + 	M (11)

where 	F = 1
m R (�) F	, and 	M = J−1M	.

Given the desired smooth trajectory Pd
	=

[
xd yd zd

]T
and yaw angle ψd , this work aims to

develop control signals
[
δcol δlon δlat δped

]T
for a heli-

copter model with uncertainties and external distur-
bances, such that its practical trajectory P and yaw
angle ψ converge to Pd and ψd .

2.2 Approximate feedback linearization

To facilitate controller design and performance analy-
sis, feedback linearization is initially carried out. Tradi-
tional exact input–output linearization fails to feedback
linearize the whole helicopter system and produces
unstable zero dynamics [14,27]. Thus, approximate
feedback linearization is developed to simplify and
decouple helicopters’ dynamics. This method requires
the second-timederivative of themain rotor thrust T̈m as

the new input, where Tm = m (g − Zww − Zcolδcol).
The approximated input–output feedback linearization
procedure is performed as follows:

First, eP1 = P − Pd is obtained. The derivative of
ep1 from (1) is given as follows:

ėP1 = V − Ṗd . (12)

Next, let eP2 = V − Ṗd . Along (10), its derivative is
expressed as follows

ėP2 = ge3 − 1

m
R (�) e3Tm + 	F − P̈d . (13)

Selecting eP3 = ge3+ 1
m R (�) Tm − P̈d , the derivative

of eP3 is derived from (3) as

ėP3 = − 1

m
R (�) S (ω) e3Tm − 1

m
R (�) e3Ṫm − P̈d .

(14)

Define the transition control variables
[
Mφ Mθ Mψ

]T

= −J−1 (ω × Jω) + (Aω + Buc). Let eP4 = − 1
m

R (�) S (ω) Tm− 1
m R (�) Ṫm− ...

Pd , along (11), its time
derivative is obtained as

ėP4 = fPe (t) + uP + 	Mp, (15)

where

fPe (t) = − 1

m
R (�) S2 (ω) e3Tm

− 2

m
R (�) S (ω) e3Ṫm − P(4)

d ,

uP = − 1

m
R (�)

⎡

⎣
TmMθ

−TmMφ

T̈m

⎤

⎦ , and

	Mp = − 1

m
R (�)

⎡

⎣
Tm	M (2)

−Tm	M (1)
0

⎤

⎦ .

The position error subsystem is approximately
feedback-linearized by applying T̈M as input. The
dynamics of yaw angle errors eψ1 = ψ − ψd is
described in Eq. (7) as follows:

ėψ1 = Sφ

Cθ

q + Cφ

Cθ

r − ψ̇d . (16)

Selecting eψ2 = Sφ

Cθ
q+ Cφ

Cθ
r−ψ̇d , its derivative yielded

along (11) is as follows:
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ėψ2 = fψe (t) + uψ + 	Mψ, (17)

where

fψe (t) =
(
Cφφ̇q+SφMθ

)
Cθ +(−Sφφ̇r+CφMψ

)
Cθ +SφqSθ θ̇++Cφr Sθ θ̇

C2
θ

−ψ̈d ,

uψ = Cφ

Cθ
Mψ , and 	Mψ = Sφ

Cθ
	M (2) + Cφ

Cθ
	M (3) .

Combining (12)–(17), the complete input–output feed-
back linearization of helicopter dynamics is given as
follows:

ėP1 = eP2

ėP2 = eP3 + 	F

ėP3 = eP4

ėP4 = fPe (t) + uP + 	Mp

ėψ1 = eψ2

ėψ2 = fψe (t) + uψ + 	Mψ. (18)

where uP and uψ are regarded as new inputs. The
input–output dynamics of helicopters have been decou-
pledvia approximate feedback linearization.Our objec-

tive is changed to design the input
[
uTP uψ

]T
to ensure

that tracking errors of the position and yaw angle will
converge to zeros.

In addition, the following assumptions are consid-
ered to implement the robust controller for helicopter.

Assumption 1 Disturbances 	F , 	Mp, and 	Mψ in
(18) satisfy the following condition
∥∥∥	F (3)

∥∥∥ < �F ,

∥∥∥	M (3)
p

∥∥∥ < �Mp ,
∥
∥∥	M (3)

ψ

∥
∥∥ < �Mψ ,

where �F , �Mp , and �Mψ are the known constant
bound of the third-order time derivative of the distur-
bances.

Assumption 2 Attitude of the helicopter always lies
inside region |φ| < π

2 and |θ (t)| < π
2 .

Remark 1 In (18), 	F , 	Mp, and 	Mψ are lumped
disturbances that act on the helicopter model. 	Mp

and 	Mψ are matched disturbances, whereas 	F is
an unmatched disturbance. The unmatched disturbance
	F significantly affects tracking precision. Given the
existence of unmatched disturbances, various tech-
niques, such as the classic SMC and adaptive control,
are restricted.

Remark 2 Assumption 1 ensures the attitude kinematic
matrix � (Θ) in (7) is not singular. This assumption is
valid in that the helicopter is considered to operate in
hovering or low-velocity flight condition.

2.3 Preliminaries

Preliminary lemmas, which will be used to obtain a FT
composite controller later, are illustrated as follows.

Lemma 1 [21]. Let m be a ratio of positive odd inte-
gers. If 0 < m ≤ 1, the following inequalities hold
∣∣xm − ym

∣∣ ≤ 21−m |x − y|m ,

(|x | + |y|)m ≤ |x |m + |y|m .

��
Lemma 2 [21]. Let c1, c2 be positive real numbers,
and γ (x, y) > 0 be a real-valued function. Then,

|x |c1 |y|c2 ≤ c1
c1 + c2

γ (x, y) |x |c1+c2

+ c2
c1 + c2

γ −c1/c2 (x, y) |y|c1+c2 .

��
Lemma 3 [22]. For xi ∈ R, i = 1, . . . , n, the
inequality (|x1| + · · · + |xn|)cp ≤ |x1|cp + · · · +
|xn|cp holds where cp is a real number that satisfies
0 < cp ≤ 1. ��
Theorem 1 [20]. Considering ẋ = f (x), x ∈ N. Sup-
pose a continuous function V (x) exists such that the
following conditions hold:

(a) V (x) is positive definite.
(b) Real number cv > 0 and α ∈ (0, 1) exist such that

V (x) + cv (V (x))α < 0, x ∈ N\ {0} .

Then, the origin is a FT stable equilibrium. ��

3 Helicopter controller design

This section expresses the design of the proposed heli-
copter’s FT control. First, HOSMDO is applied to esti-
mate lumped force and moment disturbances. Second,
composite control strategy based onDO and FT control
is proposed. At the same time, the FT stability analy-
sis is provided in detail. Finally, the practical control
signals for helicopter are produced directly. Figure 2
depicts the control system structure.
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Fig. 2 FT controller
structure diagram

3.1 HOSMDO

Considering the dynamic system

ẋ j = f j (t) + d j (t) , (19)

where x j ∈ R
n denotes the system state; f j (t) is

the known nonlinear smooth function; d j (t) ∈ R
n

are unknown bounded perturbation terms due to model
uncertainty and external disturbances. Assume that the
disturbance d j (t) owns the bounded r th-order time

derivative, i.e.,
∥
∥∥d(r)

j (t)
∥
∥∥ < L j . To obtain the esti-

mation of disturbance and its high-order derivatives, a
HOSMDO of d j (t) is designed as follows [24].

ż0, j = f j (t) + v0, v0 = z1

−λ0L
1

r+1
j

∣∣z0, j − x j
∣∣

r
r+1 sign

(
z0, j − x j

)

ż1, j = v1, j , v1, j = z2, j

−λ1L
1
r
j

∣∣z1, j − v0, j
∣∣
r−1
r sign

(
z1, j − v0, j

)

...

żr−1, j = vr−1, j , vr−1, j = zr, j

− λr−1L
1
2
j

∣∣zr−1, j − vr−2, j
∣∣
1
2 (20)

sign
(
zr−1, j − vr−2, j

)

żr, j = vr, j , vr, j = −λr L j sign
(
zr, j − vr−1, j

)

where λ0, λ1, . . . , λr−1, λr are the observer parame-
ters. z0, j , z1, j , . . . , zr−1, j , zr, j , j = 1, 2, 3, are the

estimates of x j , d j , . . . , d
(r−2)
j , d(r−1)

j .
Considering that the estimated variables are vec-

tor, the multivariable calculation form is adopted,

such as sign (X) =
[

x1|x1| , . . . , xn|xn |
]
, where X =

[x1, . . . , xn], and |X |l = [|x1|l , . . . , |xn|l
]
. Due to no

existence of coupling in (19), the system’s properties
and analysis process is the same as the scalar system.

Followed from (19)–(20), the observer error dynamics
are then governed by:

σ̇0, j = −λ0L
1

r+1
j

∣∣σ0, j
∣∣

r
r+1 sign

(
σ0, j

)+ σ1, j

σ̇i, j = − λ1L
1
r
j

∣∣σi, j − σ̇i−1, j
∣∣
r−1
r sign

(
σi, j − σ̇i−1, j

)

+ σi+1, j

...

σ̇r, j = −λr L j sign
(
σr, j − σ̇r−1, j

)
(21)

where the observer errors are denoted as σ0, j = z0, j −
x j , σi, j = zi, j − d(i−1)

j , and σr, j = zr, j − d(r−1)
j .

The FT convergence of estimation error is given by the
following theory.

Theorem 2 [24]. The parameters in (20) are properly
selected, and the following equalities are true after a
FT transient process

σ0, j = · · · = σr, j = 0, when t > t j

i.e.,

z0, j = x j , z1, j = v0, j = d j , . . . , zr, j = d(r−1)
j ,

when t > t j . (22)

��
Remark 3 The selection of L j is a trade-off process.
Large parameters L j mean fast convergence rate of
HOSMDO. However, the parameters L j with large
values cannot be selected to avoid excessive transient
peaking in system responses.

Given	F in Eq. (18), applying HOSMDO its value
and high derivatives can be estimated by explicitly
defining x1 = eP2, f1 (t) = eP3, and d1 (t) = 	F .
After FT t1, we have z1, 1 = 	F, z2,1 = 	Ḟ, z3,1 =
	F̈ . Similarly, the disturbances 	Mp 	Mψ can be
observed by selecting x2 = eP4, f2 (t) = fPe (t) ,

d2 (t) = 	Mp, and x3 = eψ2, f3 (t) = fψe (t) , ),
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d3 (t) = 	Mψ . After time max {t2, t3}, z1,2 =
	Mp, z2,2 = 	Ṁp, z3,2 = 	M̈p, and z1,3 =
	Mψ, z2,3 = 	Ṁψ, z3,3 = 	M̈ψ .

3.2 FT controller design

Consider the properties of FT convergence of HOS-
MDO. After time tmax = max {t1, t2, t3}, the dynamics
in (18) can be rewritten as

ėP1 = eP2

ėP2 = eP3 + z1, 1

ėP3 = eP4

ėP4 = fPe (t) + uP + z1, 2

ėψ1 = eψ2

ėψ2 = fψe (t) + uψ + z1, 3 (23)

In this subsection, the compound control strategy
is proposed based on (23) to simplify the control
design. The position error loop in (23) is the vec-
tor form with three components, namely, ePi =
[
ePi,1 ePi,2 ePi,3

]T
, z1, j = [

z1, j,1 z1, j,2 z1, j,3
]T

,

uP = [
uP,1 uP,2 uP,3

]T
, and i = 1, . . . , 4, j =

1, 2, 3. At the same time, mismatched disturbance
exists in the position loop.

Position loop controller design

Step 1 Considering dynamics (23), let a Lyapunov
function be

V1 =
3∑

i=1

∫ eP1,i

0

(
s1/r1

)2−r2
ds, (24)

where r1 = 1, ri = ri−1 + τ , −1/5 < τ < 0. V1 is
positive by selecting the parameter τ as a ratio of even
and odd integers.

The derivative of (24) along (23) is given as

V̇1 ≤
3∑

i=1

e(2−r2)/r1
P1,i · eP2,i . (25)

Applying the concept of backstepping, the virtual con-
trol law is arranged as

e∗
P2,i = −β1e

r2
r1
P1,i , i = 1, 2, 3, (26)

where β1 > 3c + β̃1 > 0, β̃1 > 0 are the designed
controller constant. Introducing (26) into (25)

V̇1 ≤
3∑

i=1

(
− (β1 + 3c) e2/r1P1,i + e(2−r2)/r1

P1,i

· (eP2,i − e∗
P2,i )

)
. (27)

Step 2 In this step, the Lyapunov function is selected
as

V2 = V1 +
3∑

i=1

(∫ eP2,i

e∗
P2,i

(
s

1
r2 − (e∗

P2,i )
1
r2

)2−r3
ds

)

.

(28)

Computing its time derivative along (23), (27), and (28)
yields

V̇2 ≤ −
3∑

i=1

(

−β1e
2
r1
P1,i + e

2−r2
r1

P1,i (eP2,i − e∗
P2,i )

)

+
3∑

i=1

((
ξ2,i
)2−r3 (eP3,i + z1, 1,i

)+ (2 − r3)

×
∫ eP2,i

e∗
P2,i

(
s

1
r2 − (e∗

P2,i )
1
r2

)1−r3
ds

∂(e∗
P2,i )

1
r2

∂eP1,i
ėP1,i

⎞

⎠

(29)

where ξ2,i = (eP2,i )
1
r2 −(e∗

P2,i )
1
r2 , i = 1, 2, 3. The fol-

lowing relationships are established by applying Lem-
mas 1–2 directly.

e
2−r2
r1

P1,i · (eP2,i − e∗
P2,i ) ≤ 21−r2

∣
∣eP1,i

∣
∣
2−r2
r1
∣
∣ξ2,i

∣
∣r2

≤ c

2

∣
∣eP1,i

∣
∣2 + C11

∣
∣ξ2,i

∣
∣2

(2 − r3)
∫ eP2,i

e∗
P2,i

(
s

1
r2 − (e∗

P2,i )
1
r2

)1−r3
ds

∂(e∗
P2,i )

1
r2

∂eP1,i
ėp1,i

≤ (2 − r3)
(
ξ2,i
)1−r3 (eP2,i − e∗

P2,i

) ∂

(
−β1e

r2
r1
P1,i

) 1
r2

∂eP1,i
eP2,i

≤ (−β1)
1/r2 (2 − r3) 2

1−r2
(
ξ2,i
)1−r3 ∣∣ξ2,i

∣
∣r2

×
(∣
∣eP2,i − e∗

P2,i

∣
∣+

∣∣
∣β1e

r2
P1,i

∣∣
∣
)

≤ (−β1)
1/r2 (2 − r3) 2

1−r2
∣
∣ξ2,i

∣
∣1−τ

×
(
21−r2

∣
∣ξ2,i

∣
∣r2 +

∣
∣
∣β1e

r2
P1,i

∣
∣
∣
)

≤ c

2

∣
∣eP1,i

∣
∣2 + C12

∣
∣ξ2,i

∣
∣2

where the constantsC11 > 0 andC12 > 0. Substituting
the following results into (29), we arrive at
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V̇2 ≤
3∑

i=1

(
− (β1 − c) e2P1,i + (C11 + C12)

∣∣ξ2,i
∣∣2

+ (ξ2,i
)2−r3 (eP3,i + z1, 1,i

))
. (30)

The virtual controller is designed as

e∗
P3,i = −β2

(
ξ2,i
)r3 − z1, 1,i , i = 1, 2, 3, (31)

where β2 > C11 +C12 + β̃2 +2c, β̃2 > 0 are selected.
Combining (30) and (31) renders

V̇2 ≤
3∑

i=1

(
−
(
β̃1 + 2c

)
e2P1,i −

(
β̃2 + 2c

) ∣
∣ξ2,i

∣
∣2

+ (ξ2,i
)2−r3 (eP3,i − e∗

P3,i

))
. (32)

Step 3 Lyapunov function is defined as

V3 = V2 +
3∑

i=1

(∫ ēP3,i

ē∗
P3,i

(
s

1
r3 − (ē∗

P3,i )
1
r3

)2−r4
ds

)

,

(33)

where ē∗
P3,i = e∗

P3,i + z1, 1,i = −β2
(
ξ2,i
)r3 , ēP3,i =

eP3,i+z1, 1,i , and i = 1, 2, 3. The derivative is obtained
along (23) and (32)

V̇3 ≤
3∑

i=1

(
− (β1 − c) e2P1,i − β2

∣
∣ξ2,i

∣
∣2

+ (ξ2,i
)2−r3 (eP3,i − e∗

P3,i

))

+
3∑

i=1

⎛

⎜⎜⎜⎜
⎜
⎝

(
ξ3,i
)2−r4 (eP4,i + z2,1,i

)

+ (2 − r4)
∫ ēP3,i
ē∗
P3,i

(
s

1
r3 − (ē∗

P3,i )
1
r3

)1−r4
ds(

∂(ē∗
P3,i )

1
r3

∂eP1,i
ėP1,i

+ ∂(ē∗
P3,i )

1
r3

∂eP2,i
ėP2,i )

⎞

⎟⎟⎟⎟
⎟
⎠

(34)

where ξ3,i = (
ēP3,i

) 1
r3 − (ē∗

P3,i )
1
r3 . To construct a FT

stabilizer, the inequalities are introduced as follows
(
ξ2,i
)2−r3 (eP3,i − e∗

P3,i

) ≤ 21−r3
∣∣ξ2,i

∣∣2−r3 ∣∣ξ3,i
∣∣r3

≤ c

2

∣∣ξ2,i
∣∣2 + C21

∣∣ξ3,i
∣∣2

(2 − r4)
∫ ēP3,i

ē∗
P3,i

(
s

1
r3 − (ē∗

P3,i )
1
r3

)1−r4
ds

×
⎛

⎝
∂(ē∗

P3,i )
1
r3

∂eP1,i
ėP1,i + ∂(ē∗

P3,i )
1
r3

∂eP2,i
ėP2,i

⎞

⎠

≤ (2 − r4) 2
1−r3

∣∣ξ3,i
∣∣1−r4 ∣∣ξ3,i

∣∣r3
⎛

⎝
∂(ē∗

P3,i )
1
r3

∂eP1,i
eP2,i + ∂(ē∗

P3,i )
1
r3

∂eP2,i
ēP3,i

⎞

⎠

where

∂(ē∗
P3,i )

1
r3

∂eP1,i
eP2,i ≤ ∂(ē∗

P3,i )
1
r3

∂eP1,i

×
((

21−r2
∣∣ξ2,i

∣∣r2 +
∣∣∣β1e

r2
P1,i

∣∣∣
))

≤ c̃3,1
∂
(
eP1,i

) 1
r1

∂eP1,i

(
21−r2

∣∣ξ2,i
∣∣r2 +

∣∣∣β1e
r2
P1,i

∣∣∣
)

= c̃3,1
(
21−r2

∣∣ξ2,i
∣∣r2 +

∣∣∣β1e
r2
P1,i

∣∣∣
)

∂(ē∗
P3,i )

1
r3

∂eP2,i
ēP3,i ≤ ∂(ē∗

P3,i )
1
r3

∂eP2,i

×
(
21−r3

∣∣ξ3,i
∣∣r3 + (C11 + C12 + β2)

∣∣ξ2,i
∣∣r3
)

≤ c̃3,2
r2

(∣∣ξ2,i
∣∣+ (e∗

P2,i )
1
r2

)1−r2

×
(
21−r3

∣∣ξ3,i
∣∣r3 + β2

∣∣ξ2,i
∣∣r3
)

Combining the aforementioned analysis by applying
Lemma 2 yields

(2 − r4)
∫ ēP3,i

ē∗
P3,i

(
s

1
r3 − (ē∗

P3,i )
1
r3

)1−r4
ds

×
⎛

⎝
∂(ē∗

P3,i )
1
r3

∂eP1,i
ėP1,i + ∂(ē∗

P3,i )
1
r3

∂eP2,i
ėP2,i

⎞

⎠

≤ c
∣∣eP1,i

∣∣2 + c

2

∣∣ξ2,i
∣∣2 + C22

∣∣ξ3,i
∣∣2

Then, substituting the aforementioned results into (34)
renders
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V̇3 ≤
3∑

i=1

(
− (β1 − 2c) e2P1,i − (β2 − c)

∣∣ξ2,i
∣∣2

+ (ξ3,i
)2−r4 (eP4,i + z2,1,i

)

+C21
∣∣ξ3,i

∣∣2 + C22
∣∣ξ3,i

∣∣2
)

. (35)

The virtual control is given as

e∗
P4,i = −β3

(
ξ3,i
)r4 − z2,1,i , i = 1, 2, 3, (36)

where β3 > C21 + C22 + β̃3 + c, β̃3 > 0. Thus, the
corresponding Lyapunov function satisfies

V̇3 ≤
3∑

i=1

(
−
(
β̃1 + c

)
e2P1,i −

(
β̃2 + c

) ∣∣ξ2,i
∣∣2

−
(
β̃3 + c

) ∣∣ξ3,i
∣∣2 + (

ξ3,i
)2−r4 (eP4,i − e∗

P4,i

))

(37)

Step 4 Lyapunov function is selected as

V4 = V3 +
3∑

i=1

(∫ ēP4,i

ē∗
P4,i

(
s

1
r4 − (ē∗

P4,i )
1
r4

)2−r5
ds

)

,

(38)

where ē∗
P4,i = e∗

P4,i + z2,1,i = −β3
(
ξ3,i
)r4 , and

ēP4,i = eP4,i + z2,1,i . Similarly, computing the time
derivative of (38) yields

V̇4 ≤
3∑

i=1

(
− (β1 − 2c) e2P1,i − (β2 − c)

∣∣ξ2,i
∣∣2

−β3
∣
∣ξ3,i

∣
∣2 + ∣

∣ξ3,i
∣
∣2−r4 (eP4,i − e∗

P4,i

))

+
3∑

i=1

(
∣∣ξ4,i

∣∣2−r5 ( fPe,i (t) + uP,i + z1, 2,i

+ z3, 1,i
)+ (2 − r5) ζ4

×
∫ ēP4,i

ē∗
P4,i

(
s

1
r4 − (ē∗

P4,i )
1
r4

)1−r5
ds

)

≤
3∑

i=1

(
− (β1 − 3) e2P1,i − (β2 − 2)

∣∣ξ2,i
∣∣2

− (β3 − 1)
∣∣ξ3,i

∣∣2 + ∣∣ξ4,i
∣∣2−r5 ( fPe,i (t) + uP,i

+ z1, 2,i + z3, 1,i
)+ C31

∣∣ξ4,i
∣∣2 + C32

∣∣ξ4,i
∣∣2
)

(39)

where ζ4 = ∂(ē∗
P4,i )

1
r4

∂eP1,i
ėP1,i + ∂(ē∗

P4,i )
1
r4

∂eP2,i
ėP2,i + ∂(ē∗

P4,i )
1
r4

∂eP3,i

ėP3,i , ξ4,i = (
ēP4,i

) 1
r4 − (ē∗

P4,i )
1
r4 .

The position controller is designed as

uP,i = −β4
(
ξ4,i
)r5 − fPe,i (t) − z1, 2,i − z3, 1,i ,

i = 1, 2, 3, (40)

where β4 > C31 + C32 + β̃4 > 0. Substituting (40)
into (39) introduces

V̇4 ≤
3∑

i=1

(
−β̃1e

2
P1,i − β̃2

∣
∣ξ2,i

∣
∣2

−β̃3
∣∣ξ3,i

∣∣2 − β̃4
∣∣ξ4,i

∣∣2
)

. (41)

Yaw angle loop controller design
Step 1 Define a Lyapunov function

V1ψ =
∫ eψ1

0

(
s1/r1

)2−r2
ds. (42)

Considering (23), the first time derivative is given as

V̇1ψ = e(2−r2)/r1
ψ1 · eψ2. (43)

Design the virtual control as

e∗
ψ2 = −β1ψe

r2/r1
ψ1 , (44)

thus

V̇1ψ = −β1ψe
2
ψ1 + e2−r2

ψ1 · (eψ2 − e∗
ψ2), (45)

where the constant β1ψ > cψ + β̃1ψ > 0, β̃1ψ > 0.

Step 2 The Lyapunov function is selected as

V2ψ = V1ψ +
∫ eψ2

e∗
ψ2

(
s

1
r2 − (e∗

ψ2)
1
r2

)2−r3
ds. (46)

Calculating its derivative yields

V̇2ψ = − β1ψe
2
ψ1 + e2−r2

ψ1 · (eψ2 − e∗
ψ2)

+ (ξ2ψ
)2−r3 ( fψe (t) + uψ + z1, 3

)

+ (2 − r3)
∫ eψ2

e∗
ψ2

(
s

1
r2 − (e∗

ψ2)
1
r2

)1−r3
ds

∂(e∗
ψ2)

1
r2

∂eψ1
ėψ1
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≤ − (β1ψ − 1
)
e2ψ1 + (

C1ψ + C2ψ
) ∣∣ξ2ψ

∣∣2

+ (ξ2ψ
)2−r3 ( fψe (t) + uψ + z1, 3

)
(47)

where ξ2ψ = (
eψ2

) 1
r2 − (e∗

ψ2)
1
r2 . Selecting

uψ = −β2ψ
(
ξ2ψ

)r3 − fψe (t) − z1, 3, (48)

where the control constant β2ψ > C1ψ +C2ψ + β̃2ψ >

0, β̃2ψ > 0 yields

V̇2ψ ≤ −β̃1ψe
2
ψ1 − β̃2ψ

∣∣ξ2ψ
∣∣2. (49)

3.3 Proof of FT stability

Based on the FT Lyapunov theory, FT stability of the
whole system is proven. The detailed proof is given in
appendix.

Theorem 3 Consider that the simplified helicopter
dynamic system satisfies Assumptions 1 and 2. Pro-
posed controller (40) and (48) can guarantee that the
closed-loop system is FT stable. ��

Remark 4 In the position controller uP and yaw angle
controller uψ , the control design parameters include τ ,
β1,β2,β3,β4,β1ψ , andβ2ψ .Deciding the value of these
parameter is a trade-off process. Larger values mean
faster closed-loop system state convergence. However,
large values cause excessive inputs and overshoot. For
our problem, the principle for selecting parameters
depends on the dynamic characteristic of small-scale
helicopters.

3.4 Practical helicopter control signal

The practical control signals for helicopter can be cal-
culated from uP in (40) and uψ in (48). According to
their definitions, one has
⎡

⎣
Mφ

Mθ

T̈m

⎤

⎦ = −m ·
⎡

⎣
0 Tm 0

−Tm 0 0
0 0 1

⎤

⎦ · R−1 (�) · uP , (50)

Mψ = Cθ

Cφ

uψ. (51)

Following that, the control commands
[
δcol δlon δlat δped

]T
can be obtained according to the

definition of
[
Mφ Mθ Mψ

]T
and TM = ∫ ∫ t

0 T̈mdt .

δcol = −
(
Tm
m

− g + Zww

)
/Zcol, (52)

⎡

⎣
δlon
δlat
δped

⎤

⎦=
⎡

⎣
Mφ

Mθ

Mψ

⎤

⎦+ J−1 (ω × Jω)−Aω−B (1) δcol,

(53)

where B (1) is the first column of matrix B.
The following result is given directly by applying

Theorem 3.

Theorem 4 Consider helicopter dynamic models (1)–
(4) under Assumptions 1 and 2. If the controller is
designed as (52)–(53), then tracking errors of the posi-
tion and yaw angle FT converge to zero with distur-
bances. ��

4 Simulation analysis

Numerical simulations are shown to demonstrate the
effectiveness of our proposed FT controller. Table 1

Table 1 Parameters of the
helicopter

Symbol Description Value

m Mass of unmanned helicopter 8.2 kg

g Acceleration of gravity 9.8m/s2

J The moment of inertia of helicopter diag(0.18 0.34 0.28) kg m2

Zw Linkage gain ratio of Tm to w −0.7615 s−1

Zcol Linkage gain ratio of Tm to δcol −131.4125m/(rad s2)

A Coefficient matrix of � in (9) diag(−48.1757 − 25.5048 − 0.9808) s−1

B Coefficient matrix of u in (9)

⎡

⎣
0 0 1689.5 0
0 894.5 0 0

−0.3705 0 0 135.8

⎤

⎦ s−2
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summarizes the correspondinghelicoptermodel param-
eters [10,28].

Following [10], the lumped disturbances in (10)–
(11) are introduced in the simulation. These distur-
bances include model uncertainties and external dis-
turbances.

[
	F
	M

]
= 	 ·

⎡

⎣
V
�

ω

⎤

⎦+ Bwinddwind, (54)

where constant matrix 	 ∈ R6×9 represents model
uncertainty, and Bwind denotes the transformation
matrix from airspeed to force and moment. All ele-
ments of 	 are pseudorandomly generated within the
open interval (−0.5 0.5). Matrices 	 and Bwind are
given as follows:

	 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

−0.239 0.164 −0.055 0.456 0.013 −0.362 −0.096 0.071 −0.185
0.203 0.351 0.419 0.351 −0.135 0.342 0.491 −0.359 −0.387
0.035 0165 0.232 0.265 −0.384 0.254 −0.044 0.357 0.031
0.311 0.045 0.369 −0.250 −0.303 −0.368 −0.352 0.012 −0.011

−0.055 −0.465 0.062 0.290 0.048 −0.451 0.426 −0.454 0.209
0.267 −0.409 −0.088 −0.482 0.057 0.459 0.138 −0.028 0.343

⎤

⎥⎥⎥⎥⎥
⎥
⎦

Bwind = m ·

⎡

⎢⎢⎢⎢⎢⎢
⎣

−0.0505 0
0 −0.151
0 0

−0.144 0.143
−0.0561 −0.0585

0 0.0301

⎤

⎥⎥⎥⎥⎥⎥
⎦

Wind disturbance dw is assumed to possess wind com-
ponents along

[
xb yb

]
in BRF. This variable is com-

posed of constant and random components, i.e., dw =
dc + dr . The constant component is set as

[
5 5
]T

(m/s). Stochastic wind disturbance is modeled as
follows [6]:

ḋr =
[
ḋu
ḋv

]
=
[−1/τc 0

0 −1/τc

] [
du
dv

]
+ ρ

[
qu
qv

]
,

where τc = 3.2 s is the time constant; qu and qv (σqu =
σqv = 3.6576m/s) are independent with zero mean;
ρ = 1/2. Figure 3 shows the wind disturbance dw used
in the helicopter’ simulation.

Additionally, the flapping dynamics model is con-
sidered to provide sufficient fidelity for the simulation
process. Flapping dynamics are equivalent to the addi-
tional dynamics in the servo loop [28]:

τ f
˙̄δlon = −τ f q − δ̄lon + δlon

τ f
˙̄δlat = −τ f p − δ̄lat + δlat, (55)

where δ̄lon and δ̄lat are longitudinal and lateral applied
control signals, respectively, and τ f = 0.1 is the main
rotor’s dynamics time constant.

According to the flight characteristic of small-scale
helicopters, the parameters of FT controller combined
with DO (FT+DO) are selected properly, where τ =
−2/31, β1 = 2, β2 = 5, β3 = 20, β4 = 50, β1ψ = 20,
and β2ψ = 50. The fourth-order SM DO is adopted,
and the corresponding parameters are given as L1 =
L2 = 10 and L3 = 20.

To verify our controller’s superiority, the proposed
controller is compared with BS and FT controller with-
out DO. All the parameters of the FT controller are the
same as that of FT+DO.BS controller has the following
form

eP2d,bs = −k1,bseP1

eP3d,bs = −k2,bs
(
eP2 − eP2d,bs

)

Fig. 3 Wind disturbance
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Fig. 4 Trajectory tracking
responses of the helicopter

Fig. 5 Velocity response of
the helicopter
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Fig. 6 Angular response of
the helicopter

Fig. 7 Angular rate
response of the helicopter

eP4d,bs = −k3,bs
(
eP3 − ep3d,bs

)

u p = − fPe (t) − k4,bs
(
ep4 − ep4d,bs

)

eψ2d,bs = −k1ψ,bseψ1

uψ = − fψe (t) − k2ψ,bs
(
eψ2 − eψ2d,bs

)

where k1,bs = 2, k2,bs = 5, k3,bs = k1ψ,bs = 20,
and k4,bs = k2ψ,bs = 50. The comparison of BS con-
troller highlights the benefits of FTmethod, which pro-

vides rapid convergent speed and improved disturbance
rejection performance.

The desired “8-shape” reference trajectory is
described as:

Pd (t) = [
0 0 −7

(
1 − e−0.3t

) ]T
for t ≤ 7s

Pd (t) =
⎡

⎣
20
(
1 − cos

( 2π
23 (t − 7)

))

10 sin
( 4π
23 (t − 7)

)

−7
(
1 − e−0.3t

)

⎤

⎦ for t > 7s
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Fig. 8 Control commands of the helicopter

ψd = 0 (56)

Firstly, the helicopter vertically climbs for 7s to
simulate the takeoff stage. Then, it follows an “8-
shaped” path while continuing to lift. Helicopter’s
lift, sideslip, and forward performances are evaluated
comprehensively through the moderately aggressive
maneuver.

The simulation results are illustrated in Figs. 4, 5,
6, 7, and 8. Figure 4 gives the position response curves
of helicopter’s closed-loop system based on the three
methods. To quantitatively analyze the tracking perfor-
mance, the integrated time absolute error (ITAEdefined
as
∫ t
0 t‖e‖dt) of three methods is listed in Table 2. Our

proposed FT+DO controller tracks the reference tra-
jectory more accurately under model uncertainties and
external disturbances than other controllers. Moreover,
the comparison of BS and FT control shows that FT
stability property not only enjoys convergence speed
but also improves robustness of the closed-loop sys-
tem. Figure 4 also gives the 3D position trajectory
intuitively, and the results agree with this analysis. DO
plays a significantly important role in the tracking accu-
racy of the closed-loop system. It attenuates the effect
of perturbations and recurve nominal performance of
the control system.

The velocity, angle, and angular rate responses are
shown in Figs. 5, 6, and 7. The state responses are a lit-
tle chattering due to the existence of perturbations and
fast tracking the maneuver trajectory. The responses
of FT+DO fluctuate heavily to eliminate disturbances
rapidly. Violent chattering exists at t = 7 s due to the
switching of reference trajectory. Additionally, Fig. 8
displays the curves of controller commands. One can

Table 2 Average error of position tracking

Axis X (m) Y (m) Z (m)

FT+DO 0.0186 0.0724 0.0104

FT 0.0301 0.1093 0.0165

BS 0.1009 0.2642 0.0379

find that the control signals of FT+DO method have
smaller vibration than the other at the time of switch-
ing of the desired trajectory.

5 Conclusion

We design a composite FT control law for helicopter.
The helicopter dynamics are simplified and decou-
pled by approximate feedback linearization. ADRC
technique is utilized to realize the accurate trajectory
tracking under matched and mismatched disturbances.
The disturbances are estimated by HOSMDO and then
feed-forwardly compensated for. The FT feedback part
is designed via added power integrator method. The
compound control law guarantees FT convergence of
the tracking errors. Numerical simulation demonstrates
that with this obtained FT controller in our work,
a small-scale unmanned helicopter exhibits excellent
tracking performance with disturbances.
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Appendix

Proof of Theorem 3

The proving course of finite-time (FT) stability is
divided into two stages. First, FT stability is established
when t > tmax. Second, the states of the whole system
are proven to not escape in any FT interval.

a) According to (41) and (49), V̇4 + V̇2ψ ≤
−βmax

[
3∑

i=1

(
e2P1,i + (

ξ2,i
)2 + (

ξ3,i
)2 + (

ξ4,i
)2) +

e2ψ1 + (
ξ2ψ

)2
]

≤ 0

where βmax = max
{
β̃1 β̃2 β̃3 β̃4 β̃1ψ β̃2ψ

}
. In addi-

tion, considering the definition of the Lyapunov func-
tion, constant L > 0 exists such that

0 ≤ V4 + V2ψ ≤ L

[
3∑

i=1

(
e2−τ
P1,i

+ (ξ2,i
)2−τ + (

ξ3,i
)2−τ + (

ξ4,i
)2−τ

)

+e2−τ
ψ1 + (

ξ2ψ
)2−τ

]

Select λ = βmax/2L
2

2−τ . The use of Lemma 3 produces
(
V4 + V2ψ

)′ + λ
(
V4 + V2ψ

) 2
2−τ

≤ −βmax

[
3∑

i=1

(
e2P1,i + (

ξ2,i
)2 + (

ξ3,i
)2

+ (ξ4,i
)2)+ e2ψ1 + (

ξ2ψ
)2]

+ λL
2

2−τ

[
3∑

i=1

(
e2P1,i + (

ξ2,i
)2 + (

ξ3,i
)2

+ (ξ4,i
)2)+ e2ψ1 + (

ξ2ψ
)2]

≤ 0

By applying Theorem 1, we conclude that the state
vector will converge on zero in FT.

b) In this step, proof that the helicopter’s state does
not escape to infinite in any FT interval is provided.
Combining simplified helicopter dynamic system (18),
DO (20), and controllers (40) and (48), the following
closed-loop dynamics are introduced

ėP1 = eP2

ξ̇2,i = 1

r2
(eP2,i )

1
r2

−1 (
ēP3,i − σ1,1,i

)+ (β1)
1
r2 eP2,i

ξ̇3,i = 1

r3

(
ēP3,i

) 1
r3

−1 (
ēP4,i − σ2,1,i

)+ (β2)
1
r3 ξ̇2

ξ̇4,i = 1

r4

(
ēP4,i

) 1
r4

−1 (−β4
(
ξ4,i
)r5 − σ3,1,i − σ1,2,i

)

+(β3)
1
r4 ξ̇3

ėψ1 = eψ2

ξ̇2ψ = 1

r2

(
eψ2

) 1
r2

−1 (−β2ψ
(
ξ2ψ

)r3 − σ3,1
)

+(β1)
1
r2 eψ2 (a1)

A Lyapunov function is selected as follows:

L = 1

2

3∑

i=1

[
(eP1)

2 + (
ξ2,i
)2 + (

ξ3,i
)2 + (

ξ4,i
)2]

+1

2

[(
eψ1

)2 + (
ξ2ψ

)2] (a2)

Its derivative is expressed as follows:

L̇ = eP1ėP1 + ξ2ξ̇2 + ξ3ξ̇3 + ξ4ξ̇4

=
3∑

i=1

[
eP1,i eP2,i

]

+
3∑

i=1

[
ξ2,i

(
1

r2
(eP2,i )

1
r2

−1 (
ēP3,i − σ1,1,i

)

+ (β1)
1
r2 eP2,i

)]

+
3∑

i=1

[
ξ3,i

(
1

r3

(
ēP3,i

) 1
r3

−1 (
ēP4,i − σ2,1,i

)

+ (β2)
1
r3 ξ̇2

)]

+
3∑

i=1

[
ξ4,i

(
1

r4

(
ēP4,i

) 1
r4

−1 (−β4
(
ξ4,i
)r5

− σ3,1,i − σ1,2,i
)+ (β3)

1
r4
(
ξ̇3
))]

+ eψ2eψ2 + ξ2ψ

(
1

r2

(
eψ2

) 1
r2

−1 (−β2ψ
(
ξ2ψ

)r3

− σ3,1
)+ (β1)

1
r2 eψ2

)

To simplify the analysis, the following inequalities are
obtained using Lemmas 1–2.

eP1,i eP2,i ≤ eP1,i
(∣∣eP2,i − e∗

P2,i

∣∣+
∣∣∣β1e

r2
P1,i

∣∣∣
)

≤ ∣∣eP1,i
∣∣2+τ + l1

∣∣ξ2,i
∣∣2+τ

ξ2,i

(
1

r2
(eP2,i )

1
r2

−1 (
ēP3,i − σ1,1,i

))

≤ 1

r2
ξ2,i

(∣∣eP2,i − e∗
P2,i

∣∣+
∣∣∣β1e

r2
P1,i

∣∣∣
) 1

r2
−1
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(∣∣eP3,i − e∗
P3,i

∣∣+ ∣∣β2
(
ξ2,i
)r3 ∣∣− σ1,1,i

)

≤ ∣∣eP1,i
∣∣2+τ + l21

∣∣ξ2,i
∣∣2+τ + l22

∣∣ξ3,i
∣∣2+τ

+ l23
∣
∣σ1,1,i

∣
∣
(
|eP1|2−r2 + ∣

∣ξ2,i
∣
∣2−r2

)

ξ2,i (β1)
1
r2 eP2,i ≤ l24 |eP1|2+τ + l25

∣
∣ξ2,i

∣
∣2+τ

Similarly,

ξ3,i

(
1

r3

(
ēP3,i

) 1
r3

−1 (
ēP4,i − σ2,1,i

)+ (β2)
1
r3 ξ̇2

)

≤ ξ3,i

(
1

r3

(∣∣eP3,i − e∗
P3,i

∣∣+ ∣∣β2
(
ξ2,i
)r3 ∣∣)

1
r3

−1

(
ēP4,i − σ2,1,i

)+ (β2)
1
r3 ξ̇2

)

≤ ∣∣eP1,i
∣∣2+τ + l31

∣∣ξ2,i
∣∣2+τ + l32

∣∣ξ3,i
∣∣2+τ

+ l33
∣∣ξ3,i

∣∣2+τ + l34
∣∣ξ4,i

∣∣2+τ

+ l35
∣
∣σ2,1,i

∣
∣
(∣
∣ξ2,i

∣
∣2−r3 + ∣

∣ξ3,i
∣
∣2−r3

)

+ l36
∣∣σ1,1,i

∣∣
(∣∣eP1,i

∣∣2−r2 + ∣∣ξ2,i
∣∣2−r2 + ∣∣ξ3,i

∣∣2−r2
)

ξ4,i

(
1

r4

(
ēP4,i

) 1
r4

−1 (−β4
(
ξ4,i
)r5 − σ3,1,i − σ1,2,i

)

+ (β3)
1
r4
(
ξ̇3
)
)

≤ ∣∣eP1,i
∣∣2+τ + l41

∣∣ξ2,i
∣∣2+τ + l42

∣∣ξ3,i
∣∣2+τ

+ l43
∣
∣ξ3,i

∣
∣2+τ + l44

∣
∣ξ4,i

∣
∣2+τ

+ l45
∣∣σ2,1,i + σ1,2,i

∣∣
(∣∣ξ3,i

∣∣2−r4 + ∣∣ξ4,i
∣∣2−r4

)

+ l46
∣∣σ2,1,i

∣∣
(∣∣ξ2,i

∣∣2−r3 + ∣∣ξ3,i
∣∣2−r3 + ∣∣ξ4,i

∣∣2+τ
)

+ l47
∣
∣σ1,1,i

∣
∣
(∣
∣eP1,i

∣
∣2−r2 + ∣

∣ξ2,i
∣
∣2−r2

+ ∣∣ξ3,i
∣∣2−r2 + ∣∣ξ4,i

∣∣2−r2
)

eψ2eψ2 + ξ2ψ

(
1

r2

(
eψ2

) 1
r2

−1 (−β2ψ
(
ξ2ψ

)r3 − σ3,1
)

+ (β1)
1
r2 eψ2

)

≤ l1ψ
∣∣eψ2

∣∣2+τ + l2ψ
∣∣ξ2ψ

∣∣2+τ + l3ψ
∣∣σ1,3

∣∣
(∣∣eψ2

∣∣2−r2 + ∣∣ξ2ψ
∣∣2−r2

)

where li, j > 0 is the bounded constant.
The control loop has no effects on the DO loop.

When t > tmax, the estimation errors of distur-
bances converge to zero. Therefore, the errors σi, j
are bounded. If max

{∣∣eP1,i
∣∣ ,
∣∣ξ2,i

∣∣ ,
∣∣ξ3,i

∣∣ ,
∣∣ξ4,i

∣∣ ,

∣∣eψ2
∣∣ ,
∣∣ξ2ψ

∣∣} ≤ 1, then L̇ ≤ B, where B is a bounded
constant. If max

{∣∣eP1,i
∣∣ ,
∣∣ξ2,i

∣∣ ,
∣∣ξ3,i

∣∣ ,
∣∣ξ4,i

∣∣ ,
∣∣eψ2

∣∣ ,∣∣ξ2ψ
∣∣} > 1 because 2 + τ < 2 and 2 − r2 < 2, then

L̇ ≤ K L + B, where K is a bounded constant. Thus,

L̇ ≤ K L + B. (a3)

Reference [29] proves that the system state in (a2)
will not escape to infinite in any FT.

According to the two stages of analysis, the proof of
the FT stability is completed. ��
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