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Abstract This article investigates the exponential
ultimate boundedness of fractional-order differential
systems via periodically intermittent control. By uti-
lizing the Lyapunov function method and the mono-
tonicity of the Mittag-Leffler function along with the
periodically intermittent controller, several sufficient
conditions ensuring the exponential ultimate bounded-
ness of the addressed systems are obtained.An example
is given to explain the obtained results.

Keywords Boundedness · Fractional-order ·
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1 Introduction

Differential systems arise from a lot of applications
such as commerce, finance, medicine, neural networks
[1–4]. Among these applications, boundedness is an
essential and useful characteristic to analyze their
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dynamic behavior. Notably, it provides an effective tool
to estimate the asymptotical controllability and thus
plays an indispensable role in nonlinear control sys-
tems. Thus, the boundedness research of differential
systems becomes a hot topic and develops rapidly (see,
e.g., [5–11]).

Meanwhile, there are also developed many useful
control methods to measure the boundedness of non-
linear control systems, such as impulsive control [12–
14], fuzzy control [15,16], dissipative control [17,18]
and intermittent control [19–21] and so on. Intermittent
control, which was first proposed by Deissenberg [17]
to achieve optimal control of linear economic models,
has been used for a wide variety of applications such as
mechanics, neural networks, chaotic control and secure
communication. For example, the intermittent control
offers an impressive way to tackle the signal-loss prob-
lemswhichmayoccur during the transmission and even
the chaotic phenomena due to sensitive dependence
on initial conditions. As is well known, the intermit-
tent control and the impulsive control are regarded as
the discontinuous control methods. Compared with the
continuous control methods, the discontinuous control
methods have main advantages in saving working time
and reducing the control cost. Furthermore, compared
with the impulsive control, the periodically intermittent
control has the advantage of easier operation due to it
has a nonzero control time. Therefore, a large num-
ber of important results in terms of intermittent control
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(for example [17–22]) have been reported in the last
decade.

On the other hand, as an extension of the classical
integer-order calculus, fractional calculus [23,24] has
gained considerable popularity and importance inmany
different fields, such as physics, chemistry, control
systems, aerodynamics, biological networks, coelastic
materials and thermo-elasticity. Because the fractional-
order differential operator has the memory and heredi-
tary properties, the fractional-order differential systems
can more exactly describe the actual phenomena than
the integer-order ones. On the other side, as we know,
the standard Lyapunov function method plays a key
role in the stability analysis of integer-order differential
systems. However, for arbitrary 0 < q < 1, the Leib-
niz chain rule with Caputo fractional-order derivatives
C
t0D

q
t ( f g) = (Ct0D

q
t g) f + (Ct0D

q
t f )g cannot be derived

[25], in which a counterexample has been given. In
addition, the most difficulty that we have to overcome
is to construct a suitable Lyapunov function(al) and cal-
culate its fractional-order derivative, which is also the
main reason that there is not many practical studies on
this subject. Although some effective control methods
have been developed to investigate the stability, stabi-
lization, synchronization and quasi-synchronization of
the fractional-order differential systems (see for exam-
ple [26–31]), the problem of the intermittent control
for the boundedness of the fractional-order differential
systems is more complicated and still open.

Motivated by the above discussion, our main pur-
pose is to fill this gap in this paper. Firstly, we pro-
pose a class of fractional-order differential systems and
present two new lemmas about the monotonicity of the
Mittag-Leffler function. Based on these lemmas, and
utilizing the Lyapunov function and the periodically
intermittent controller, several related sufficient condi-
tions ensuring the exponential ultimate boundedness of
the addressed fractional-order differential systems are
derived. From our results, we shall see that the inter-
mittent controller can make the unstable system into
the stable one. Moreover, the obtained results on the
boundedness of the addressed systems still hold even
q = 1.

The main contributions of this paper can be summa-
rized as follows: (i) the periodically intermittent control
is introduced for the first time to the boundedness anal-
ysis of the fractional-order differential systems; (ii) the
monotonicity of the function H(t) = tq Eq,q+1(atq) is
discussed; (iii) some sufficient conditions are derived

to ensure the exponential ultimate boundedness of the
considered systems.

This paper is organized as follows. We formulate a
class of fractional-order differential systems with peri-
odically intermittent controller and indicate some ele-
mentary notations and definitions in Sect. 2. Four useful
lemmas and several criteria ensuring exponential ulti-
mate boundedness are addressed inSect. 3.Anumerical
simulation illustrated the effectiveness of the derived
bounded results in Sect. 4. Finally, the conclusion of
this paper is drawn in Sect. 5.

2 Preliminaries

Let N be the natural numbers, In be the nth iden-
tity matrix and R

n (Rn×n) be the set of n(n × n)-
dimensional real vectors (matrices). ‖ · ‖ denotes the
Euclidean norm in R

n , R+ = [0,∞). λmax(·) and
λmin(·) denote the maximum and the minimum eigen-
value of the corresponding matrix, respectively. For
convenience, some useful definitions and facts in [32]
are listed here.

Gamma function Γ (z):

Γ (z) =
∫ ∞

0
e−t t z−1dt,

where the real part Re(z) of complex number z satisfies
Re(z) > 0.

Caputo fractional derivative:

C
t0D

q
t y(t) = 1

Γ (n − q)

∫ t

t0

y(n)(s)

(t − s)q+1−n
ds,

n − 1 < q < n. (1)

One-parameter Mittag-Leffler function:

Eα(z) =
∞∑
k=0

zk

Γ (kα + 1)
, (α > 0). (2)

Two-parameter Mittag-Leffler function

Eα,β(z) =
∞∑
k=0

zk

Γ (kα + β)
, (α > 0, β > 0). (3)

Obviously, Eα(z) = Eα,1(z).
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In this paper, we consider the following fractional-
order differential systems:

C
t0D

q
t x(t) = Ax(t) + f (x(t)) + μ(t) + J, t ≥ 0,

x(0) = x0, (4)

where x(t) = (x1(t), . . . , xn(t))T ∈ R
n denotes the

system state. A ∈ R
n×n , f (x(t)) = ( f1(x1(t)), . . . ,

fn(xn(t)))T : R
n → R

n with fi (0) = 0 denotes
the activation function of the system state, i =
1, 2, . . . , n, n is the number of units in a differential
system. 0 < q < 1, and J ∈ R

n is are an external bias
vector. Let μ(t) be an intermittent controller, which is
described by

μ(t) =
{
Kx(t), nT ≤ t < nT + τ,

0, nT + τ ≤ t < (n + 1)T,
(5)

where K ∈ R
n×n is the control gain matrix, T > 0

denotes the control period and τ > 0 is called the con-
trol width. Under control law (5), system (4) can be
rewritten as

C
t0D

q
t x(t) = Ax(t) + f (x(t)) + J + Kx(t),

nT ≤ t < nT + τ,

C
t0D

q
t x(t) = Ax(t) + f (x(t)) + J,

nT + τ ≤ t < (n + 1)T . (6)

This is a classical switched systemwhere the switching
rule only depends on the time.

Definition 1 System (6) is said to be globally exponen-
tially ultimately bounded if there exist constants r > 0,
K > 0 and M ≥ 0 such that for any solution with the
initial condition x0 ∈ R

n , ‖x(t)‖ ≤ K‖x0‖e−r t + M ,
t ≥ 0.

3 Main results

In this section, some useful lemmaswould be presented
at first, then, the global exponential ultimate bound-
edness of the fractional-order differential systems (4)
would be investigated using these lemmas.

Lemma 1 [33] Let y(t) ∈ R
n be a vector of differen-

tiable function. Then for any time constant t ≥ t0, the
following relationship holds

C
t0D

q
t (yT (t)P y(t)) ≤ 2yT (t)PC

t0 D
q
t y(t), (7)

where q ∈ (0, 1), P ∈ R
n×n is a constant, symmetric

and positive definite matrix.

Lemma 2 [34] Let X ∈ R
n,Y ∈ R

n, and a scalar
ξ > 0. Then, it holds that

XT Y + Y T X ≤ ξ XT X + ξ−1Y T Y. (8)

Lemma 3 For any q ∈ (0, 1), a ∈ R and t ∈ R+,
the function H(t) = tq Eq,q+1(atq) is a monotonically
increasing function.

Proof From the assumptions, we easily get

d

dt

[
tq Eq,q+1(at

q )
]

= d

dt

[
tq

∞∑
k=0

(atq )k

Γ (kq + q + 1)

]

= qtq−1
∞∑
k=0

(atq )k

Γ (kq + q + 1)
+ tq

∞∑
k=0

ak · qk · tqk−1

Γ (kq + q + 1)

= tq−1

[
q

∞∑
k=0

(atq )k

Γ (kq + q + 1)
+ t

∞∑
k=0

ak · qk · tqk−1

Γ (kq + q + 1)

]

= tq−1
∞∑
k=0

(atq )k

Γ (kq + q + 1)
(q + qk)

= tq−1
∞∑
k=0

(atq )k

Γ (kq + q)
= tq−1Eq,q (at

q ) > 0. (9)

Therefore, H(t) is a monotonically increasing func-
tion. �	
Lemma 4 Let 0 < q < 1, h̄(t) is a continuous func-
tion on [t0,+∞), if there exist constants κ1 ∈ R and
κ2 ≥ 0 such that

C
t0D

q
t h̄(t) ≤ κ1h̄(t) + κ2,

h̄(t0) = h̄t0 , (10)

then

h̄(t) ≤ h̄t0Eq(κ1(t − t0)
q)

+ κ2(t − t0)
q Eq,q+1(κ1(t − t0)

q),

t ≥ t0. (11)
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Proof The proof of Lemma 4 is similar to that of
Lemma 3 in [35], so be omitted here. And by the way,
if κ1 < 0, Lemma 4 is exactly Lemma 3 in [35]. �	

Theorem 1 Assume that there exist several positive
constants l f , ξ1, ξ2, γ , α1, β1 and a symmetric pos-
itive definite matrix P ∈ R

n×n such that

(i) for ∀x1, x2 ∈ R
n,

‖ f (x1) − f (x2)‖ ≤ l f ‖x1 − x2‖, (12)

(ii) AT P + KT P + PA + PK + ξ1P
2

+ ξ−1
1 l2f In + ξ2P

2 + α1P ≤ 0, (13)

(iii) AT P + PA + ξ1P
2 + ξ−1

1 l2f In

+ ξ2P
2 − β1P ≤ 0, (14)

(iv) γ = Eq(−α1τ
q)Eq(β1(T − τ)q) < 1. (15)

Then, System (6) is globally exponentially ultimately
bounded and the solution x(t) will exponentially con-
verge to the compact set defined by

S =
⎧⎨
⎩x(t) ∈ R

n |‖x(t)‖

≤
√

λξ−1
2 J T J

λmin(P)

(
2 + λ3 − γ

1 − γ

)⎫⎬
⎭ , (16)

where λ = max{τ q Eq,q+1(β1τ
q), (T − τ)q Eq,q+1

(β1(T − τ)q)} and λ3 = Eq(β1(T − τ)q).

Proof Consider the candidate Lyapunov function

V = xT (t)Px(t). (17)

Obviously, we have

λmin(P)‖x(t)‖2 ≤ V (x(t)) ≤ λmax(P)‖x(t)‖2. (18)

By Lemma 1, we obtain the q-order Caputo derivatives
of V (x(t)) along the trajectories of the first subsys-
tem of system (6) for t ∈ [nT, nT + τ), n ∈ N, as
follows

C
t0D

q
t V ≤ [xT (t)AT + f T (x(t))

+ xT (t)KT + J T ]Px(t)
+ xT (t)P[Ax(t) + f (x(t)) + Kx(t) + J ]

= xT (t)AT Px(t) + f T (x(t))Px(t)

+ xT (t)KT Px(t) + J T Px(t)

+ xT (t)PAx(t)

+ xT (t)P f (x(t)) + xT (t)PK x(t)

+ xT (t)P J

= xT (t)[AT P + KT P + PA + PK ]x(t)
+ f T (x(t))Px(t) + xT (t)P f (x(t))

+ J T Px(t) + xT (t)P J. (19)

Taking into account Lemma 2 and (12)–(14), we obtain

C
t0D

q
t V ≤ xT (t)[AT P + KT P + PA + PK ]x(t)

+ ξ1x
T (t)P2x(t) + ξ−1

1 f T (x(t)) f (x(t))

+ ξ2x
T (t)P2x(t) + ξ−1

2 J T J

≤ xT (t)[AT P + KT P + PA + PK ]x(t)
+ ξ1x

T (t)P2x(t) + ξ−1
1 l2f x

T (t)x(t)

+ ξ2x
T (t)P2x(t) + ξ−1

2 J T J

= xT (t)[AT P + KT P + PA + PK + ξ1P
2

+ ξ−1
1 l2f In

+ ξ2P
2]x(t) + ξ−1

2 J T J

= −α1V + xT (t)[AT P + KT P + PA + PK

+ ξ1P
2 + ξ−1

1 l2f In + ξ2P
2

+ α1P]x(t) + ξ−1
2 J T J

≤ −α1V + ξ−1
2 J T J. (20)

Similarly, when t ∈ [nT + τ, (n + 1)T ), we have

C
t0D

q
t V ≤ [xT (t)AT + f T (x(t)) + J T ]Px(t)

+ xT (t)P[Ax(t) + f (x(t)) + J ]
= xT (t)[AT P + PA]x(t)

+ f T (x(t))Px(t) + xT (t)P f (x(t))

+ xT (t)P J + J T Px(t)

≤ β1V + xT (t)[AT P + PA + ξ1P
2

+ ξ−1
1 l2f In + ξ2P

2 − β1P]x(t) + ξ−1
2 J T J

≤ β1V + ξ−1
2 J T J. (21)
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Next, taking into account (20) and (21), we will esti-
mate V (t). For t ∈ [nT, nT+τ), by (20) andLemma 4,
we have

V (t) ≤ V (nT )Eq(−α1(t − nT )q)

+ ξ−1
2 J T J (t − nT )q Eq,q+1(−α1(t − nT )q). (22)

On the other hand, when t ∈ [nT + τ, (n + 1)T ), by
(21) and Lemma 4, we have

V (t) ≤ V (nT + τ)Eq(β1(t − (nT + τ))q)

+ ξ−1
2 J T J (t − (nT + τ))q Eq,q+1

(β1(t − (nT + τ))q). (23)

From (22), (23), it follows that:
(1) when t ∈ [0, τ ), we obtain

V (t) ≤ V (0)Eq(−α1t
q)

+ ξ−1
2 J T J tq Eq,q+1(−α1t

q), (24)

and

V (τ ) ≤ V (0)Eq(−α1τ
q)

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q); (25)

(2) when t ∈ [τ, T ), we have

V (t) ≤ V (τ )Eq (β1(t − τ)q )

+ ξ−1
2 J T J (t − τ)q Eq,q+1(β1(t − τ)q )

≤ [V (0)Eq (−α1τ
q )

+ ξ−1
2 J T Jτq Eq,q+1(−α1τ

q )]Eq (β1(t − τ)q )

+ ξ−1
2 J T J (t − τ)q Eq,q+1(β1(t − τ)q )

= V (0)Eq (−α1τ
q )Eq (β1(t − τ)q )

+ ξ−1
2 J T Jτq Eq,q+1(−α1τ

q )Eq (β1(t − τ)q )

+ ξ−1
2 J T J (t − τ)q Eq,q+1(β1(t − τ)q ), (26)

V (T ) ≤ V (0)Eq (−α1τ
q )Eq (β1(T − τ)q )

+ ξ−1
2 J T Jτq Eq,q+1(−α1τ

q )Eq (β1(T − τ)q )

+ ξ−1
2 J T J (T − τ)q Eq,q+1(β1(T − τ)q ); (27)

(3) when t ∈ [T, T + τ), we have

V (t) ≤ V (T )Eq (−α1(t − T )q )

+ ξ−1
2 J T J (t − T )q Eq,q+1(−α1(t − T )q )

≤ [V (0)Eq (−α1τ
q )Eq (β1(T − τ)q )

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q )Eq (β1(T − τ)q )

+ ξ−1
2 J T J (T − τ)q Eq,q+1

(β1(T − τ)q )]Eq (−α1(t − T )q )

+ ξ−1
2 J T J (t − T )q Eq,q+1(−α1(t − T )q )

= V (0)Eq (−α1τ
q )Eq

(β1(T − τ)q )Eq (−α1(t − T )q )

+ ξ−1
2 J T J [τ q Eq,q+1(−α1τ

q )Eq (β1(T − τ)q )

+ (T − τ)q Eq,q+1

(β1(T − τ)q )]Eq (−α1(t − T )q )

+ ξ−1
2 J T J (t − T )q Eq,q+1(−α1(t − T )q ),

(28)

V (T + τ) ≤ V (0)Eq (−α1τ
q )Eq

(β1(T − τ)q )Eq (−α1τ
q )

+ ξ−1
2 J T J [τ q Eq,q+1(−α1τ

q )Eq (β1(T − τ)q )

+ (T − τ)q Eq,q+1(β1(T − τ)q )]Eq (−α1τ
q )

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q ); (29)

(4) when t ∈ [T + τ, 2T ), we have

V (t) ≤ V (T + τ)Eq (β1(t − (T + τ))q )

+ ξ−1
2 J T J (t − (T + τ))q Eq,q+1(β1(t − (T + τ))q )

≤ [V (0)Eq (−α1τ
q )Eq (β1(T − τ)q )Eq (−α1τ

q )

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q )Eq

(β1(T − τ)q )Eq (−α1τ
q )

+ ξ−1
2 J T J (T − τ)q Eq,q+1(β1(T − τ)q )Eq (−α1τ

q )

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q )]Eq (β1(t − (T + τ))q )

+ ξ−1
2 J T J (t − (T + τ))q Eq,q+1(β1(t − (T + τ))q )

= V (0)Eq (−α1τ
q )Eq

(β1(T − τ)q )Eq (−α1τ
q )Eq (β1(t − (T + τ))q )

+ ξ−1
2 J T Jτ q Eq,q+1

(−α1τ
q )Eq (β1(T − τ)q )Eq (−α1τ

q )Eq

(β1(t − (T + τ))q )

+ ξ−1
2 J T J (T − τ)q Eq,q+1

(β1(T − τ)q )Eq (−α1τ
q )Eq (β1(t − (T + τ))q )

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q )Eq (β1(t − (T + τ))q )

+ ξ−1
2 J T J (t − (T + τ))q Eq,q+1(β1(t − (T + τ))q ),

(30)

V (2T ) ≤ V (0)Eq (−α1τ
q )Eq

(β1(T − τ)q )Eq (−α1τ
q )Eq (β1(T − τ)q )

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q )Eq (β1(T − τ)q )Eq

(−α1τ
q )Eq (β1(T − τ)q )

+ ξ−1
2 J T J (T − τ)q Eq,q+1
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(β1(T − τ)q )Eq (−α1τ
q )Eq (β1(T − τ)q )

+ ξ−1
2 J T Jτ q Eq,q+1(−α1τ

q )Eq (β1(T − τ)q )

+ ξ−1
2 J T J (T − τ)q Eq,q+1(β1(T − τ)q ). (31)

By induction, we have:
(5) when t ∈ [nT, nT + τ),

V (t) ≤ V (nT )Eq (−α1(t − nT )q )

+ ξ−1
2 J T J tq Eq,q+1(−α1(t − nT )q )

≤ V (0)(Eq (−α1τ
q )

Eq (β1(T − τ)q ))n Eq (−α1(t − nT )q )

+
⎡
⎣ n∑
i=1

(τq Eq,q+1(−α1τ
q )Eq (β1(T − τ)q )

+ (T − τ)q Eq,q+1

(β1(T − τ)q ))(Eq (−α1τ
q )Eq (β1(T − τ)q ))i−1

⎤
⎦

Eq (−α1(t − nT )q )ξ−1
2 J T J

+ ξ−1
2 J T J (t − nT )q Eq,q+1(−α1(t − nT )q );

(32)

(6) when t ∈ [nT + τ, (n + 1)T ), we have

V (t) ≤ V (nT + τ)Eq (β1(t − (nT + τ))q )

+ ξ−1
2 J T J (t − (nT + τ))q Eq,q+1

(β1(t − (nT + τ))q )

≤ V (0)[Eq (−α1τ
q )

Eq (β1(T − τ)q )]n Eq (−α1τ
q )Eq (β1(t − (nT + τ))q )

+ [� + �]ξ−1
2 J T J Eq

(β1(t − (nT + τ))q )

+ ξ−1
2 J T J (t − (nT + τ))q Eq,q+1

(β1(t − (nT + τ))q ), (33)

where � = ∑n
i=0 τ q Eq,q+1(−α1τ

q)[Eq(−α1τ
q)Eq

(β1(T −τ)q)]i and� =∑n
i=1(T −τ)q Eq,q+1(β1(T −

τ)q)Eq(−α1τ
q)[Eq(−α1τ

q)Eq(β1(T − τ)q)]i−1.
By Lemma 3, we have

(t − nT )q Eq,q+1(−α1(t − nT )q ) < τq Eq,q+1(−α1τ
q ),

t ∈ [nT, nT + τ) (34)

and

(t − (nT + τ))q Eq,q+1(β1(t − (nT + τ))q)

< (T − τ)q Eq,q+1(β1(T − τ)q),

t ∈ [nT + τ, (n + 1)T ). (35)

From (32)–(35) and the fact that 0 < Eq(x) ≤ 1 for
0 < q < 1 and x ≤ 0, we have

V (t) ≤ V (0)(Eq(−α1τ
q)Eq(β1(T − τ)q))n

+ λξ−1
2 J T J(

1 − γ n

1 − γ
(1 + Eq(β1(T − τ)q)) + 1

)
,

t ∈ [nT, nT + τ), (36)

and

V (t) ≤ V (0)[Eq(−α1τ
q)Eq(β1(T − τ)q)]n

Eq(β1(t − (nT + τ))q)

+ λξ−1
2 J T J(

1 − γ n+1

1 − γ
+ 1 − γ n+1

1 − γ
Eq(β1(T − τ)q))

)
,

t ∈ [nT + τ, (n + 1)T ). (37)

Combining (36) and (37), we obtain

V (t) ≤ V (0)[Eq(−α1τ
q)Eq(β1(T − τ)q)]nλ1

+ λξ−1
2 J T J

(
1 − γ n

1 − γ
+ 1 + 1 − γ n+1

1 − γ
λ3

)
,

t ∈ [nT, (n + 1)T ), (38)

where λ1 = max{λ2, 1}, λ2 = maxθ∈[0,T−τ ] Eq(β1θ
q)

and λ3 = Eq(β1(T − τ)q). Therefore, for any t ≥ t0,

V (t) ≤ V (0)[Eq(−α1τ
q)Eq(β1(T − τ)q)] t

T −1λ1

+ λξ−1
2 J T J(

1 − γ
t
T

1 − γ
+ 1 + 1 − γ

t
T +1

1 − γ
λ3

)
. (39)

By (18) and (39), we have
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‖x(t)‖ ≤
√√√√λmax(P)

λmin(P)
‖x(0)‖2γ t

T −1λ1 + λξ−1
2 J T J

λmin(P)

(
1 − γ

t
T

1 − γ
+ 1 + 1 − γ

t
T +1

1 − γ
λ3

)

≤
√

λ1λmax(P)

γ λmin(P)
‖x(0)‖e ln γ

2T t +
√

λξ−1
2 J T J

λmin(P)

(
2 + λ3 − γ

1 − γ

)
, (40)

which concludes the proof. �	
Corollary 1 Suppose that all conditions in Theorem 1
hold. Then, System (6) with J = 0 is globally expo-
nentially stable with the exponential convergence rate
r = − ln γ

2T .

Remark 1 As Li et al. point out in [19], the periodic
feedback will reduce to the general continuous feed-
back when τ → T . In this case, Conditions (i) and
(ii) in the theorem are enough for ensuring the glob-
ally exponential ultimate boundedness of the system (4)
with the continuous feedback controlμ(t) = Kx(t) for
any τ ≥ 0. In fact, τ → T , Condition (iii) is otiose, and
Condition (iv) holds obviously since Eq(−α1T q) < 1
and Eq(0) = 1.

Replacing K ∈ R
n×n by k ∈ R in (5), we obtain the

following special intermittent controller

μ(t) =
{
kx(t), nT ≤ t < nT + τ

0, nT + τ ≤ t < (n + 1)T
(41)

where k ∈ R.

Corollary 2 If all the conditions in Theorem 1 hold,
except that Condition (ii) is replaced by

(ii)′ α1 + β1 + 2k ≤ 0. (42)

Then, System (4) under the controller (41) is globally
exponentially ultimately bounded and the solution x(t)
will exponentially converge to the compact set defined
by

S =
⎧⎨
⎩x(t) ∈ R

n |‖x(t)‖

≤
√

λξ−1
2 J T J

λmin(P)

(
2 + λ3 − γ

1 − γ

)⎫⎬
⎭ , (43)

where λ = max{τ q Eq,q+1(β1τ
q), (T − τ)q Eq,q+1

(β1(T − τ)q)} and λ3 = Eq(β1(T − τ)q).

Proof The proof is similar to that of Theorem 1 and
then omitted.

If fractional-order q = 1, the fractional-order dif-
ferential system (6) turns to the following integer-order
differential systems

ẋ(t) = Ax(t) + f (x(t)) + J + Kx(t),

nT ≤ t < nT + τ,

ẋ(t) = Ax(t) + f (x(t)) + J,

nT + τ ≤ t < (n + 1)T, (44)

where K ∈ R
n×n . �	

Remark 2 When q = 1, Lemma 3 still holds. In fact,
when q = 1, H(t) = tq Eq,q+1(atq) = eat−1

a . So,
Ḣ(t) = eat > 0, and Lemma 3 still holds for q = 1.

With the help of Remark 2, we can know that the
above results and their proofs still hold for q = 1.
Therefore, the following results are valid.

Theorem 2 If all the conditions in Theorem 1 hold,
except that Condition (iv) is replaced by

(iv)′ β1T − (α1 + β1)τ < 0. (45)

Then, System (44) is globally exponentially ultimately
bounded and the solution x(t) will exponentially con-
verge to the compact set defined by

S =
⎧⎨
⎩x(t) ∈ R

n |‖x(t)‖

≤
√

λξ−1
2 J T J

λmin(P)

(
2 + λ3 − γ

1 − γ

)⎫⎬
⎭ , (46)

whereλ = max{ eβ1τ −1
β1

, eβ1(T−τ )−1
β1

}andλ3 = eβ1(T−τ).
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Corollary 3 Suppose that all conditions in Theorem 2
hold. Then, System (44) with J = 0 is globally expo-
nentially stable.

Remark 3 The linear matrix inequalities may help us
to verify the negative definiteness of the left of (13) and
(14). In fact, according to the theory of the Schur com-
plement, one can know that the following inequalities
(47) and (48) imply (13) and (14), respectively.

⎛
⎝ G

(√
ξ1 + ξ2P + 1√

ξ1+ξ2
K
)T

(√
ξ1 + ξ2P + 1√

ξ1+ξ2
K
)

−In

⎞
⎠ < 0,

(47)(
AT P + PA + ξ−1

1 l2f In − β1P
√

ξ1 + ξ2P√
ξ1 + ξ2P −In

)
< 0, (48)

where G = AT P+PA+ξ−1
1 l2f In+α1P+ 1

ξ1+ξ2
(In−

KT − K ).

Remark 4 Though some interesting results concerning
the intermittent control problem of the fractional-order
differential systems have been reported [36–38], these
results are limited to the stability. Obviously, these
results are not appropriate for the exponential ultimate
boundedness of fractional-order differential systems.
Therefore, techniques and methods for the bounded-
ness of fractional-order differential systems with inter-
mittent control should be developed and explored. In
order to prove our theory, a new fractional-order dif-
ferential inequality needs to be introduced, the mono-
tonicity of the function H(t) = tq Eq,q+1(atq) needs to
be discussed, and the upper bound of ‖x(t)‖ should be
estimated, which lead to a more difficult and complex
proof process than the one in [36–38].

4 Illustrative example

The following illustrative examplewill demonstrate the
effectiveness of our results.

Example 1 Consider system (6) with the following
parameters

A =
(
0.3 −0.1
0.1 0.2

)
, J =

(
1
2

)
, K =

( −1 0.1
−0.2 −1

)
,

f (t, x(t)) = 0.1 ∗ (tanh(x1), tanh(x2))
T ,

T = 2, τ = 1.5, q = 0.7

Taking

P =
(
1 0
0 1

)
,

ξ1 = ξ2 = 0.1, ξ−1
1 = ξ−1

2 = 10, α1 = β1 = 1.

By simple computation, we have l f = 0.1,

AT P+KT P+PA+PK+ξ1P
2 + ξ−1

1 l2f I2 + ξ2P
2

+ α1P =
(−0.1 −0.1

−0.1 −0.3

)
≤ 0,

AT P + PA + ξ1P
2 + ξ−1

1 l2f I2 + ξ2P
2

− β1P =
(−0.05 0.05

0.05 −0.3

)
≤ 0.

γ = Eq(−α1τ
q)Eq(β1(T − τ)q)

= E0.7(−1.50.7)E0.7(0.5
0.7) = 0.6536 < 1,

λ = max{τ q Eq,q+1(β1τ
q),

(T − τ)q Eq,q+1(β1(T − τ)q)}
= max{1.50.7E0.7,1.7(1.5

0.7), 0.50.7E0.7,1.7(0.5
0.7)}

= max{5.2789, 1.1289} = 5.2789,

λ3 = Eq(β1(T − τ)q) = E0.7(0.5
0.7) = 2.1289.

It follows from Theorem 1 that System (6) is globally
exponentially ultimately bounded and the solution x(t)
will exponentially converge to the compact set defined
by
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Fig. 1 State trajectories of Sys. (6) with the initial values
(x1(0),x2(0))T = (1.5,−1.5)T , (9.5,−2.5)T , (−1.5, 3.5)T ,
(−9, 4)T , (−5, 2)T
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Fig. 2 State trajectories of the Sys. (6) without intermittent con-
troller, with the initial values (y1(0), y2(0))

T = (1.5,−1.5)T ,
(9.5,−2.5)T , (−1.5, 3.5)T , (−9, 4)T , (−5, 2)T
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Fig. 3 State trajectories of Sys. (6) with J = (0, 0)T and
the initial values (x1(0), x2(0))T = (1.5,−1.5)T , (9.5,−2.5)T ,
(−1.5, 3.5)T , (−9, 4)T , (−5, 2)T

S =
⎧⎨
⎩x(t) ∈ R

n |‖x(t)‖

≤
√

λξ−1
2 J T J

λmin(P)

(
2 + λ3 − γ

1 − γ

)
= 51.4593

⎫⎬
⎭ . (49)

The numerical simulation of the periodically inter-
mittent control system (6) is shown in Fig. 1, and the
corresponding original system is shown in Fig. 2. From
Figs. 1 and 2, we see that intermittent controller can
make the unbounded system into the bounded one.
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Fig. 4 State trajectories of the Sys. (6) without intermittent con-
troller, with J = (0, 0)T and the initial values (x1(0), x2(0))T =
(1.5,−1.5)T , (9.5,−2.5)T , (−1.5, 3.5)T , (−9, 4)T , (−5, 2)T

Remark 5 If J = (0, 0)T and all other parameters are
the same as that of Example 1. It follows from Corol-
lary 1 that system (6) is globally exponentially stable.
The numerical simulation of the periodically intermit-
tent control system (6) with J = (0, 0)T is shown
in Fig. 3 and the corresponding original system with
J = (0, 0)T is shown in Fig. 4. From Figs. 3 and 4, we
see that intermittent controller can make the unstable
system into the stable one.

5 Conclusion

In this paper, we have investigated the exponential ulti-
mate boundedness for a class of fractional-order dif-
ferential systems by means of periodically intermittent
control. By utilizing theLyapunov functionmethod and
the monotonicity of the Mittag-Leffler function along
with the periodically intermittent controller, sufficient
conditions ensuring the exponential ultimate bound-
edness of the addressed systems have been derived.
Both theoretical and numerical analysis have shown
the effectiveness of the contributed results.

Although the problem of the intermittent control
for the boundedness of the fractional-order differen-
tial systems has been discussed in this paper, the time
delays were ignored in the addressed systems. As is
well known, time delays are usually inevitable in many
practical systems. They can deteriorate the control per-
formance and can even destroy the stability and the
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boundedness of the systems. Therefore, it is significant
to investigate the boundedness of fractional-order delay
differential systems. How to extend the current results
to the delay case is still a challenge, which is our future
research topic.
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