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Abstract Based on a non-classical plate theory, a
nonlinear analyticalmodel is proposed to analyze trans-
verse vibration of thin partially cracked and submerged
orthotropic plate in the presence of thermal environ-
ment. The governing equation for the cracked plate is
derived using the Kirchhoff’s thin plate theory in con-
junction with the strain gradient theory of elasticity.
The effect of centrally located surface crack is deduced
using appropriate crack compliance coefficients based
on the simplified line spring model, whereas the effect
of thermal environment is introduced using moments
and in-plane forces. The influence of fluidic medium
is incorporated in the governing equation in the form
of fluid forces associated with its inertial effects. The
equation has been solved by transforming the lateral
deflection in terms of modal functions. The shift in
primary resonance due to crack, length scale parame-
ter and temperature has also been derived with central
deflection. To demonstrate the accuracy of the present
model, a few comparison studies are carried out with
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the published literature. The variation in fundamental
frequency of the cracked plate is studied considering
various parameters such as crack length, plate thick-
ness, level of submergence, temperature and length
scale parameter. It has been concluded that the fre-
quency is affected by crack length, temperature and
level of submergence. A comparison has also been
made for the results obtained from the classical plate
theory and Strain gradient theory. Furthermore, the
variation in frequency response and peak amplitude of
the cracked plate is studied using method of multiple
scales to show the phenomenon of bending hardening
or softening as affected by level of submergence, tem-
perature, crack length and length scale parameter .

Keywords Vibration · Crack · Temperature · Fluid–
structure interaction · Virtual added mass

1 Introduction

Thin plates or shells are one of the essential structural
components in marine building applications which
expose them to work under fluidic medium of varying
temperature. Thus, the knowledge of dynamic charac-
teristics of such thin structures under fluidic medium
with temperature variation is necessary for reliable
design. It becomes more interesting to understand the
effect of temperature under fluidic medium when these
structures contain various flaws in the form of holes
and cracks. In the literature, a lot of efforts have been
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dedicated on vibrations of intact plates under fluidic
medium and thermal environment individually. How-
ever, a little study on vibration problems of cracked
plates in considering the effect of both surrounding
fluid medium and thermal environment are found in
the relevant literature. Concerning the influence of sur-
rounding fluid medium on vibration analysis of plates,
it is observed that the fluidicmedium essentially dimin-
ishes the fundamental frequency of plate structures in
correlation with those figured in vacuum medium, it is
because of the presence of fluid nearby the plate struc-
tures which causes increment in the kinetic energy of
whole structural system without a relating increment
in the strain energy. Utilizing the Rayleigh’s strategy
Lamb [1] performed for the first time on vibrations
of circular plate coupled with water. The developed
methodwas based on a calculation of the kinetic energy
of water. Kwak [2] proposed an approximate formula
for added virtual mass incremental (AVMI) factor to
determine the fundamental frequency of plate in water
from the frequency of the plate in vacuum. Kwak and
Kim[3] andAmabali et al. [4] investigated the influence
of fluidic medium on axisymmetric vibrations of circu-
lar and annular plate coupled with water. Haddara and
Cao [5] developed an approximate relation for the vir-
tual addedmass to study the vibration response of intact
plates vibrating under fluid. Their results are investi-
gated experimentally as well as analytically for differ-
ent submergence levels and boundary conditions. For
analysis of the plate–fluid interaction problems, Ker-
boua et al. [6] worked on the free vibration problems
of isotropic plate coupled with water and developed a
mathematical model based on the Sander’s shell the-
ory and FEM technique. Recently, Hosseini Hashemi
et al. [7] developed an analytical model for thick hor-
izontal plates partially and totally submerged in fluid.
They used the Mindlin’s plate hypothesis for deriving
the model. Vibration problems of plates considering
the effect of both crack and fluidic medium are found
in few investigations. Liu et al. [8] analyzed the nat-
ural vibration problems of perforated plates using the
finite element method (FEM). They studied the influ-
ence of through crack on the vibration characteristics
of a circular plate coupled with fluid. Recently, Si et
al. [9,10] proposed a computational approach based on
FEM method for vibration analysis of cracked circu-
lar and rectangular plates vibrating under water. They
investigated the effect of fluidic medium and side crack

on fundamental frequency of cracked circular plate for
different modes of vibration.

Similarly, for the effect of thermal environment on
vibration problems of plates, it is seen that the pres-
ence of thermal stress decreases the stiffness of plate
which results in reduction of natural frequency.Murphy
and Ferreira [11] and Yang and Shen [12] studied the
vibration problems of isotropic and FGM rectangular
plates by taking the consideration of thermal environ-
ment. The analysis of vibration problems for function-
ally graded plates subjected to thermal heating is pre-
sented by Li et al.[13]. They utilized three-dimensional
theory of elasticity to model the FGM plates in near-
ness of thermal environment. Kim [14] and Viola et al.
[15] have also worked on vibration analysis of intact
and cracked FGM rectangular plates under thermal
environment using finite element method. Natarajan
et al. [16] performed a detail study on vibration and
buckling analysis of a functionally graded plate con-
taining internal discontinuities in form of cracks using
FEM and first-order shear deformation (FSDT) theory.
They showed the effect of increase in crack length and
temperature gradient the natural frequency of cracked
plate.

In recent literature on study ofmicrostructures, it has
been found that it affects the vibration response of plate
structures [17–20].Different theorieswhich catches the
size effect on the analysis of the gradient elastic plates
are developed in recent works, among them, the strain
gradient theory (SGT) which was proposed byMindlin
and Eshel [21] are found to be efficient one. They [21]
considered a single length scale of microstructure to
catch size effect of plate in their developed theory.
Papargyri-Beskou and Beskos [17] developed a sixth-
order governing equation of gradient elastic plate using
the force and moment equilibrium equations. In their
model, they considered two length scale parameters
to capture size effect and to make the model more
effective. Tsiatas [19] developed a new mathematical
model for micro-plates based on the modified couple
stress theory (MCST). In their study, they used a mate-
rial scale parameter to demonstrate the size effect of
microstructure. By employing the Hamilton’s princi-
ple, Gao and Zhang [22] deduced the new governing
equation ofmotion inwhich they used amaterial length
scale constant to catch the size effect of microstruc-
ture. They also observed that their results for natural
frequency obtained by the non-classical plate model
(MCST) are higher than that of the classical platemodel
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for very thin plates.Most recently,Gupta et al. [23] used
the vibration model of intact micro-plate of Yin et al.
[20] to build up an analytical model for vibration prob-
lem of partially cracked thin isotropic and function-
ally gradedmicro-plate. Further, they demonstrated the
impact of fiber orientation on vibration characteristics
of cracked specially orthotropic micro-plate [24].

Surface cracks are the most widely recognized
imperfection in any sorts of shells and plates; hence-
forth, the issue of free vibration problem of the
crackedplate has beenbroadly considered in the current
decades. It is observed in recent literature that many of
researchers used the Line Spring Model (LSM) to find
an approximate analytical solution of cracked plates
containing a part-through surface crack. This concept
was first introduced by Rice and Levy [25], for inves-
tigating the analytical solution of cracked plates based
on Kirchhoff’s thin plate theory. They represented the
surface crack as persistent line spring with stretch-
ing, bending and twisting compliances. Utilizing the
line spring model, the first approximate mathemati-
cal model for vibration problem of cracked isotropic
plates is suggested by Israr et al. [26]. They studied
the influence of crack length on frequency response of
plate for different boundary conditions (SSSS, CCSS
and CCFF). Ismail and Cartmell [27] extended the pre-
viously developed model of Israr et al. [26] for plate
with variably orientated crack by founding relations for
bending moments and membrane forces. It is observed
from their work that for all the edge conditions, the
frequency of plate is decreased with increase in ori-
entation and crack length. Joshi et al. [28] introduced
the mathematical models for vibration analysis of par-
tially cracked orthotropic plate with two perpendicu-
lar internal and surface cracks located at its center.
Extending their work, they also studied the buckling
and vibration analysis of thin orthotropic [29] cracked
plates taking the consideration of thermal environment.
Recently, Soni et al. [30,31] studied the effect of flu-
idic medium on vibration characteristics of cracked
isotropic [30] and magneto-electro-elastic (MEE) [31]
plates by incorporating the inertial effect of fluids
forces on previously developed models.

On the one hand, it is known from relevant litera-
ture that the microstructure plays an important role in
stiffness of structures. On the other hand, the external
environment such as thermal environment and fluidic
medium cannot be neglected as it affects the dynamics.
Thirdly, recent literature shows the effect of crack on

vibration behavior. The aim of the present work is to
combine the research in these related areas and present
comprehensive effect of microstructure, thermal envi-
ronment, partial crack and surrounding fluid on the
vibration behavior of specially orthotropic plates.

The literature lacks in the outcomes for free vibra-
tion problems of specially cracked and submerged
orthotropic plates thinking about the effect of
microstructure and thermal environment. Thus, to
develop theoretical understanding of influence of sur-
face crack on vibration problem of submerged plate
subjected to thermal environment becomes significant.
The present work fills this gap by proposing a new ana-
lytical model and addresses the following novel points;

1. An analytical model is presented for first time
which is so inclusive that it caters not only to
free and forced vibrations of partially cracked
orthotropic plate, but it considers the presence of
thermal environment, surrounding fluidic medium
and microstructure by employing strain gradient
theory.

2. Another unique contribution of the present work is
that it presents a classical relation for central deflec-
tion for orthotropic plate as affected partial crack,
thermal environment,microstructure and surround-
ing fluid.

3. Parametric study is presented for fundamental fre-
quency of cracked orthotropic plate as a func-
tion of crack length, temperature, length scale of
microstructure, plate thickness and level of submer-
gence.

4. The nonlinearity in frequency response presented
in this work is more expansive; it not only includes
the effect of crack but includes the effect of tem-
perature, microstructure and level of submergence.

5. The presentwork presents a comparison of classical
plate theory and strain gradient theory for nonlinear
vibration of partially cracked orthotropic plate in
the presence of thermal and fluidic environment”

In the present study, an analytical model has been pre-
sented for cracked orthotropic rectangular plate in light
of a non-classical approach. The differential govern-
ing equation of the plate derived using strain gradient
theory is found to be of 6th order rather than the 4th
order found in the classical plate theory. The moment
equilibrium equations for cracked orthotropic plate are
derived by taking the consideration of thermal environ-
ment and microstructure. The effect of crack is intro-
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Fig. 1 Partially cracked
orthotropic plate submerged
in a fluid tank
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duced in the form of additional membrane force and
bendingmoment using the line springmodel. The effect
of fluidic medium is integrated in the model in the form
of added virtual mass with help of Bernoulli’s equation
and velocity potential function. Apart from the mem-
brane forces due to elasticity, the in-plane forces due
to effect of microstructure and thermal environment
are also considered in the present model. Fig. 1 shows
the orthotropic plate configuration with unidirectional
fibers along x axis. The in-plane dimensions of the plate
are taken as l1 and l2 in x and y direction separately.
The plate thickness is denoted by h. 2a is the length of
crack at plate center, and the depth of the crack is less
than the thickness. To study the effect of various param-
eters such as rise in temperature, crack length, length
scale parameter and level of submergence on vibration
characteristics. CCSS (Two adjacent edges clamped
and the other two simply supported) and SSSS (All
sides simply supported), these twoboundary conditions
are considered in present work. Finally, new results
for fundamental frequencies, frequency response and
peak amplitude of the partially cracked and submerged
orthotropic plate are presented. The central deflection
of the cracked plate has also been studied as affected
by length of crack and temperature variation. A com-
parison of these results with the classical plate theory
has also been established.

2 Governing equation

In this section, the differential governing equation for a
partially cracked and submerged orthotropic plate sub-
jected to uniform heating (as shown in Fig. 1) is for-
mulated based on classical plate theory in conjunction
with strain gradient theory of elasticity. The assump-
tions involved in the modeling are: (1) The plate is
presumed as thin, homogenous and impeccably elastic
composed of orthotropic material (2) The mid-plane
stays unstrained consequent to bending, for that rea-
son the normal strain (εz), resulting from transverse
loading, might be discarded. (3) The normal stress (σz)

acting in the lateral direction of plate is neglected from
constitutive relations in the modeling, because its mag-
nitude is thought to be diminutive compared to the other
stress components of model. (4) Effects of shear defor-
mation and rotary inertia are neglected. (5) The tem-
perature variation is thought to be linear all through
the thickness of the plate; T (z) = Tavg + ((�T )z)/2,
where �T = Tt − Tb is the temperature difference
between the top and the bottom surface of the plate and
Tavg = (Tt + Tb)/2 is average temperature.

The constitutive relations for an isotropic intact plate
using the principle of strain gradient theory of elas-
ticity has been obtained in Ref. [17], based on the
above assumptions and accommodating the orthotropic
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Fig. 2 Submerged plate element showing all moments and transverse forces

nature of the plate, the relations in the presence of ther-
mal environment can be written as:

σx = Ex

1 − νxνy
(εx + νyεy)

−g2
Ex

1 − νxνy
∇2(εx + νyεy)

− Ex

1 − νxνy
(αx + νyαy)�T (1)

σy = Ex

1 − νxνy
(εy + νxεx )

−g2
Ex

1 − νxνy
∇2(εy + νxεx )

− Ey

1 − νxνy
(αy + νxαx )�T (2)

τxy = τyx = Gxyγxy − g2Gxy∇2γxy (3)

where g2 is the volumetric gradient coefficient with
g being the internal length scale of the microstructure
of the plate. σx , σy and εx , εy are the normal stresses

and strains in x and y direction respectively. Similarly,
τxy and γxy denotes the shear stress and strain in the

x–y plane and ∇2 =
(

∂2

∂x2
+ ∂2

∂y2

)
. Ex , Ey and νx , νy

represents the modulus of elasticity and Poisson’s ratio
along two principle directions of orthotropy coinciding
with x and y axes. Gxy is the shear modulus. αx and
αy are the thermal expansion coefficients in x and y
direction, respectively. �T is the rise in temperature
above stress free temperature of plate.

Consider a submerged orthotropic plate element
containing a part-through crack of length 2a at its cen-
ter as represented in Fig. 2. The bending moments and
internal forces acting onmiddle surface of the plate due
to volumetric gradient coefficient, thermal environment
and crack are considered according to established clas-
sical thin plate theory. On resolving the internal forces
along z axis and taking moment about x and y axes, one
obtains the required equilibrium equation as,
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∂2Mx

∂x2
+ ∂2Mg

x

∂x2
+ ∂2My

∂y2
+ ∂2Mg

y

∂y2
+ ∂2Mxy

∂x∂y

+∂2Mg
xy

∂x∂y
+ ∂2Myx

∂x∂y
+ ∂2Mg

yx

∂x∂y

+∂2my

∂y2
+ ∂2MTx

∂x2
+ ∂2MTy

∂y2

= ρh
∂2w

∂t2
+ �P − Pz (4)

where Mx , My and Mxy = Myx are the internal bend-
ing and twisting moments, respectively. Similarly, Mg

x ,
Mg

y andM
g
xy = Mg

yx are bending and twistingmoments
due to the microstructure of the plate. MTx and MTy

are the moments due to thermal environment. my rep-
resents additional moment which shows the effect of
crack as deduced in the line spring model [26,27,30].
�P is the fluid dynamic pressure difference between
the upper and lower surface of the plate. ρh ∂2w

∂t2
denotes

the inertia force of vibrating plate. ρ and h are the den-
sity and thickness of plate, and Pz represents the trans-
verse load per unit area.

On expressing the bending moments in form of
transverse deflection (see “Appendix A”), Eq. (4) can
be written as,

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+ Dy

∂4w

∂y4

− g2
{
Dx

∂6w

∂x6
+ Dy

∂6w

∂y6
+ (Dx + 2B)

∂6w

∂x4∂y2

+ (Dy + 2B)
∂6w

∂x2∂y4

}

= −ρh
∂2w

∂t2
− �P + ∂2MTx

∂x2
+ ∂2MTy

∂y2

+ ∂2my

∂y2
+ Pz (5)

where Dx = Exh3

12(1−νxνy)
, Dy = Eyh3

12(1−νxνy)
and Dt =

Gxy
h3
12 represents the flexural and torsional rigidities,

respectively. B = 1
2 (νy Dx +νx Dy +4Dt) is the effec-

tive torsional rigidity.
When the displacements in both x and y direction

of any plate structure being restricted then the pre-
stressing of the plate causes in-plane forces [23]. In this
present study for cracked orthotropic plates, apart from
the in-plane force due to the crack, the in-plane forces
due to effect of microstructure and temperature are also
considered. The literature [27,30] shows that the equi-
librium of forces along z axis for an isotropic plate, for

an arbitrary boundary condition results in a transverse
force (

∑
Fz), to be added to the moment equilibrium

equations.Considering an arbitrary boundary condition
as two adjacent edges free and the other two clamped,
and employing summation of forces along z direction
leads to,
∑

Fz = Rx
∂2w

∂x2
+ Rg

x
∂2w

∂x2
+ RT x

∂2w

∂x2
+ Ry

∂2w

∂y2

+Rg
y
∂2w

∂y2
+ RT y

∂2w

∂y2
+ ry

∂2w

∂y2

+2(Rxy + Rg
xy)

∂2w

∂x∂y
(6)

where Rx , Ry , Rxy = Ryx are the in-plane stretching
forces and Rg

x , R
g
y , R

g
xy = Rg

yx are the in-plane or
membrane forces due to microstructure of plate. RT x

and RT y are the thermal in-plane compressive forces. In
this work, the shear force (RT xy) is neglected because
the temperature variation does not affect the shear stress
[32]. ry represents the additional in-plane force due
to line crack. Israr et. al. [26] in their formulation for
cracked isotropic plate neglected the in-plane forces Ny

and Nxy due to the crack parallel to x axis. In the present
model also due to discontinuity across y direction, the
in-plane forces Ry , R

g
y , Rxy and Rg

xy are neglected for
equilibrium. Equation (6) represents the lateral force to
be added to the required governing equation, Eq. (5).
Thus, the governing equation of a cracked orthotropic
micro-plate becomes,

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+ Dy

∂4w

∂y4

− g2
{
Dx

∂6w

∂x6
+ Dy

∂6w

∂y6
+ (Dx + 2B)

∂6w

∂x4∂y2

+ (Dy + 2B)
∂6w

∂x2∂y4

}
= −ρh

∂2w

∂t2
− �P

+ ∂2MTx

∂x2
+ ∂2MTy

∂y2
+ Rx

∂2w

∂x2
+ Rg

x
∂2w

∂x2

+ RT x
∂2w

∂x2
+ RT y

∂2w

∂y2
+ ∂2my

∂y2
+ ry

∂2w

∂y2
+ Pz

(7)

The crack terms (my and ry) are obtained using sim-
plified line spring model given by Rice and Levy [25].
It gives the relationship between the limiting effect pro-
duced by the net ligament stresses and the bending
and tensile moments at far edges of the plate. Israr et
al. [26] proposed the relationship of tensile and bend-
ing stresses at crack tips and far edges of plate for an
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isotropic plate. These relations were further modified
and applied to a specially orthotropic plate by Joshi
et al. [28]. Recently, Soni et al. [30,31] presented the
above relationship of the bending and tensile loads at
the crack location and at the far sides of the plate in
presence of fluidic medium for the isotropic and MEE
plates. Similar relations for the cracked and submerged
orthotropic plate incorporating the moments and in-
plane forces due to internal microstructure and thermal
environment can be presented as,

ry = − 2a

(6αbt + αtt)(1 − ν2x )h + 2a
(Ry+Rg

y+RT y)

(8)

my = − 2a

3
(

αbt
6 + αbb

)
(3 + νx )(1 − νx )h + 2a

(My + Mg
y + MTy) (9)

where the terms αbb, αtt, αbt = αtb are crack compli-
ance coefficients for bending, stretching and bending-
tensile, respectively. The crack compliance coefficients
depend on the ratio of crack depth to its thickness, and
they can be found in the literature [26]. On employing
Eqs. (8) and (9) in Eq. (7) and expressing the moment
My andM

g
y in formof transverse deflection (“Appendix

A”), one obtains the required governing equation of
motion of cracked orthotropic micro-plate as,

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+ Dy

∂4w

∂y4

− g2
{
Dx

∂6w

∂x6
+ Dy

∂6w

∂y6
+ (Dx + 2B)

∂6w

∂x4∂y2

+ (
Dy + 2B

) ∂6w

∂x2∂y4

}

= −ρh
∂2w

∂t2
− �P

+ 2a

3
(

αbt
6 + αbb

)
(3 + νx )(1 − νx ) h + 2a

[
Dy

{(
∂4w

∂y4
+ νx

∂4w

∂x2∂y2

)
− g2

(
∂6w

∂y6

+ ∂6w

∂x2∂y4
+ νx

(
∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

))}

−∂4MTy

∂y4

]
+ ∂2MTx

∂x2
+ ∂2MTy

∂y2

+Rx
∂2w

∂x2
+ Rg

x
∂2w

∂x2
+ RT x

∂2w

∂x2

+RT y
∂2w

∂y2
− 2a

(6αbt + αtt)
(
1 − ν2x

)
h + 2a

(Ry + Rg
y + RT y)

∂2w

∂y2
+ Pz (10)

When a plate is submerged in a fluid, it is known from
the literature [30] that a thin layer of fluid vibrates along
with the plate which increases the mass of the plate–
fluid system. In this proposed work, fluid forces acting
on plate surface are stated in the form of virtual added
mass accompanying with the inertia of the surrounding
fluid which helps to form the final differential gov-
erning equation of a coupled fluid–plate system. Soni
et al. [30] in their work formulated the fluid forces in
form of virtual added mass using potential flow theory
and presented the influence of fluid medium on vibra-
tion response of cracked isotropic plate. They used the
velocity potential function alongwithBernoulli’s equa-
tion to express the fluid dynamic pressures acting on the
plate. Similar approach has been adopted here to find
the fluid pressure for cracked orthotropic plate with the
following assumptions:

1. The fluid flow is assumed to be small, incompress-
ible, homogeneous and irrotational.

2. The dynamic fluid pressure is normal to the surface
of the plate and shear forces are neglected as the
fluid is inviscid.

3. Interaction between the cracked plate and fluid and
influence of nonlinearity at plate–fluid interface is
neglected.

4. As theorthotropic plate is considered thin, the effect
of fluid forces is ignored in the derivation of in-
plane forces.

5. The fluid behaves like a thermal reservoir and the
rise in temperature does not affect the fluid proper-
ties.

The fluid–plate coupled system for calculating the fluid
dynamic pressures (Pu and Pl) acting on upper and
lower surface of plate is shown in Fig. 3.

Consider a plate element submerged in fluid hori-
zontally as shown in Fig. 3. Expressing the velocity
potential function in terms ofLaplace equation and then
using Bernoulli’s equation for the dynamic pressure at
fluid–plate interaction in terms of potential function,
applying the method of separation of variables with the
assumption that a permanent contact exists among the
fluid and plate so that the out of plane velocity of fluid is
equal to the instantaneous velocity of plate in the trans-
verse direction, the potential function can be expressed
in terms of plate’s transverse deflection. Applying the
kinematic boundary conditions [30] for fluid free sur-
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Fig. 3 Plate–fluid model
bounded by a rigid wall (A
submerged plate)

0 x
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Fluid dynamic 
pressures 

Direction of fibers 

face and rigid container bottom, the resulting potential
function becomes second order which can be solved for
simply supported boundary condition using the deflec-
tion in form of the modal functions. Thus, the fluid
dynamic pressure acting on the plate’s upper surface
(Pu) can be stated as [30]:

Pu = −ρf

μ

[
1 + Ce2μh1

1 − Ce2μh1

]
∂2w

∂t2
(11)

where C = gaμ−ω2

gaμ−ω2 in which ω denotes the frequency
of wave motion at free surface of fluid and ga is the
acceleration due to gravity. ρf is fluid density per unit
volume and μ is plane wave number which is taken as
independent of boundary condition, and it can be deter-
mined as μ = π

√
1
l21

+ 1
l22
[6,30]. Kerboua et al. [6] in

their formulation, showed that the value of parameterC
tends asymptotically toward −1 to avoid nonlinearity
at fluid–plate interface. This is true for most of the plate
aspect ratios. In the present work, the plate aspect ratio
is taken as 1, for which Kerboua et al. [6] has shown
that the parameter C = −1 and hence, it is assumed
that C = −1. Here, ∂2w

∂t2
represents the inertia of the

surrounding fluid that forces it to oscillate when the
plate vibrates. h1 is height of fluid above the surface
of plate whereas h2 is the level of fluid below the plate
surface. The detailed derivation for fluid modeling can
be referred from “Appendix B”.

Similarly, the fluid dynamic pressure at lower sur-
face of the plate (Pl) can be written as [30]:

Pl = −ρf

μ

[
1 + e−2μh2

1 − e−2μh2

]
∂2w

∂t2
(12)

For fully submerged plate (as shown in Fig. 3.), the
net fluid dynamic pressure can be determined using
above two expressions Eqs. (11) and (12). The resulting
fluid dynamic pressure difference (�P) for the fully
submerged plate can be given as:

�P = Pu − Pl

= −ρf

μ

[
1 + Ce2μh1

1 − Ce2μh1
− 1 + e−2μh2

1 − e−2μh2

]
∂2w

∂t2
(13)

�P = madd
∂2w

∂t2
(14)

wheremadd = −ρf
μ

[
1+Ce2μh1
1−Ce2μh1

− 1+e−2μh2

1−e−2μh2

]
is the addi-

tional virtual mass of submerged plate due to surround-
ing fluid. Thus, for the case of submerged plate vibra-
tions, the mass of the plate is increased due to a layer
of fluid vibrating with the plate. This added mass is
referred to as virtual added mass.

Employing the expression of net dynamic pressure
of fluid (�P) from Eq. (14), the required governing
equation of motion for cracked orthotropic plate in
presence of fluid medium given by Eq. (10) becomes:

123



Vibration and deflection analysis of thin cracked and submerged orthotropic plate 1583

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+ Dy

∂4w

∂y4

−g2
{
Dx

∂6w

∂x6
+ Dy

∂6w

∂y6

+ (Dx + 2B)
∂6w

∂x4∂y2
+ (

Dy + 2B
) ∂6w

∂x2∂y4

}

− 2a

3
(

αbt
6 + αbb

)
(3 + νx )(1 − νx ) h + 2a

[
Dy

{(
∂4w

∂y4
+ νx

∂4w

∂x2∂y2

)
− g2

(
∂6w

∂y6

+ ∂6w

∂x2∂y4
+ νx

(
∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

))}

−∂4MTy

∂y4

]
− ∂2MTx

∂x2
− ∂2MTy

∂y2

= − (ρh + madd)
∂2w

∂t2
+ Rx

∂2w

∂x2

+Rg
x
∂2w

∂x2
+ RT x

∂2w

∂x2

+RT y
∂2w

∂y2
− 2a

(6αbt + αtt)
(
1 − ν2x

)
h + 2a

(Ry + Rg
y + RT y)

∂2w

∂y2
+ Pz (15)

Equation (15) shows the final form of governing equa-
tion of cracked and submerged orthotropic plate in the
presence of thermal environment based on strain gra-
dient theory.

3 General solution for governing equation

The presence of external environment like rise in tem-
perature has been included in the differential govern-
ing equation of cracked and submerged orthotropic
plate in the terms of thermal bending moments and in-
plane compressive forces. The present work restricts
itself to the solution of final governing equation for the
case of uniformly heated plates (MTx = MTy = 0).
Since, inmajority of engineering applications thin plate
structures having good thermal conductivity are used,
there is little temperature gradient along the plate thick-
ness and they can be considered as uniformly heated
plates. The characteristic functions which depends on
the boundary conditions of plates can be selected for
general solution of governing equation as [26–28],

w(x, y, t) =
∞∑

m=1

∞∑
n=1

AmnXmYnψmn(t) (16)

where Xm and Yn are the characteristic functions,
ψmn(t) is time-dependent characteristic modal term
and Amn is arbitrary amplitude of vibration. The char-
acteristic functions Xm and Yn for the two boundary
conditions considered in this work can be found from
the literature [26,32].

It iswell known that the in-plane ormembrane forces
depends on the boundary conditions and they can be
expressed in form of mid-surface strains as found in
the literature [26,28].

Rx = 12Dx

h2

[
∂u

∂x
+ νy

∂v

∂y
+ 1

2

((
∂w

∂x

)2

+νy

(
∂w

∂y

)2
)]

(17)

Ry = 12Dy

h2

[
∂v

∂y
+ νx

∂u

∂x
+ 1

2

((
∂w

∂y

)2

+νx

(
∂w

∂x

)2
)]

(18)

Rg
x = −12Dx

h2
g2∇2

[
∂u

∂x
+ νy

∂v

∂y
+ 1

2

((
∂w

∂x

)2

+νy

(
∂w

∂y

)2
)]

(19)

Rg
y = −12Dy

h2
g2∇2

[
∂v

∂y
+ νx

∂u

∂x
+ 1

2

((
∂w

∂y

)2

+νx

(
∂w

∂x

)2
)]

(20)

RT x = − Exh�T

1 − νxνy
(αx + νyαy) (21)

RT y = − Eyh�T

1 − νxνy
(αy + νxαx ) (22)

where Rx , Ry represent the in-plane forces per unit
length on mid-plane of plate along x and y axis and Rg

x ,
Rg
y are the in-plane forces due to effect of microstruc-

ture. RT x and RT y are in-plane compressive forces
induced due to thermal heating.

Onmultiplying Eqs. (17)–(20) by dxdy and integrat-
ing over the surface of the plate, invoking the conditions
that in-plane deflections u and v vanish at the location
of the crack and at the far sides of the plate due to
symmetry, the in-plane forces can be written as:
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Rx = 6Dx

h2l1l2

∫ l1

0

∫ l2

0

[(
∂w

∂x

)2

+ νy

(
∂w

∂y

)2
]
dx dy

(23)

Ry = 6Dy

h2l1l2

∫ l1

0

∫ l2

0

[(
∂w

∂y

)2

+ νx

(
∂w

∂x

)2
]
dx dy

(24)

Rg
x = − 6Dx

h2l1l2
2g2

∫ l1

0

∫ l2

0

[(
∂2w

∂x2

)2

+
(

∂2w

∂x∂y

)2

+∂w

∂x

(
∂3w

∂x3
+ ∂3w

∂x∂y2

)
+ νy

{(
∂2w

∂y2

)2

+
(

∂2w

∂x∂y

)2

+ ∂w

∂y

(
∂3w

∂y3
+ ∂3w

∂y∂x2

)}]
dx dy

(25)

Rg
y = − 6Dy

h2l1l2
2g2

∫ l1

0

∫ l2

0

[(
∂2w

∂y2

)2

+
(

∂2w

∂x∂y

)2

+∂w

∂y

(
∂3w

∂y3
+ ∂3w

∂y∂x2

)
+ νx

{(
∂2w

∂x2

)2

+
(

∂2w

∂x∂y

)2

+ ∂w

∂x

(
∂3w

∂x3
+ ∂3w

∂x∂y2

)}]
dx dy

(26)

On substitution of the in-plane forces from Eqs. (21)
to (26) into Eq. (15), applying the general solution of
lateral deflection from Eq. (16), multiplying each term
of Eq. (15) by the characteristic functions Xm and Yn ,
and then integrating over the plate area, the required
governing equation can be written as:

(ρh + madd)

∞∑
n=1

∞∑
m=1

Amn

∫ l1

0

∫ l2

0
X2
mY

2
n dx dy

∂2ψmn(t)

∂t2
+

∞∑
n=1

∞∑
m=1

Amnψmn(t)
∫ l1

0

∫ l2

0
{
(Dx X

iv
mYn + 2BX ii

mY
ii
n + DyY

iv
n Xm) − g2(Dx X

vi
mYn + (Dx + 2B)X iv

mY
ii
n + (Dy + 2B)X ii

mY
iv
n

+DyYn
viXm) − 2aDy

{
(νx X ii

mY
ii
n + Y iv

n Xm) − g2
(
X ii
mY

iv
n + XmY vi

n + νx (X iv
mY

ii
n + X ii

mY
iv
n )

)}

3
(

αbt
6 + αbb

)
(3 + νx )(1 − νx )h + 2a

+
(

Exh�T

1 − νxνy
(αx + νyαy)X

ii
mYn + Eyh�T

1 − νxνy
(αy + νxαx )

(1 + 2a)Y ii
n Xm

(6αbt + αtt)(1 − ν2)h + 2a

)}
XmYndx dy

+
∞∑
n=1

∞∑
m=1

A3
mnψmn(t)

3

l1∫

0

∫ l2

0

{
2aB2mnY ii

n Yn X
2
m

(6αbt + αtt)(1 − ν2x )h + 2a
− B1mnX

ii
mXmY

2
n

}
dx dy

=
∫ l1

0

∫ l2

0
Pz XmYndx dy (27)

where

B1mn = 6Dx

h2l1l2

∞∑
n=1

∞∑
m=1

∫ l1

0

∫ l2

0

[(
X i
mYn

)2

+νy

(
Y i
n Xm

)2 − 2g2
{(

X ii
mYn

)2

+
(
X i
mY

i
n

)2 + X i
mYn

(
X iii
m Yn + X i

mY
ii
n

)

+νy

((
XmY

ii
n

)2 +
(
X i
mY

i
n

)2

+XmY
i
n

(
XmY

iii
n + X ii

mY
i
n

))} ]
dx dy

B2mn = 6Dy

h2l1l2

∞∑
n=1

∞∑
m=1

∫ l1

0

∫ l2

0

[(
Y i
n Xm

)2

+νx

(
X i
mYn

)2 − 2g2
{(

XmY
ii
n

)2

+
(
X i
mY

i
n

)2 + XmY
i
n

(
XmY

iii
n + X ii

mY
i
n

)

+νx

((
X ii
mYn

)2 +
(
X i
mY

i
n

)2

+X i
mYn

(
X iii
m Yn + X i

mY
ii
n

) )}]
dx dy

Based on the application of the appropriate delta
function, the lateral load Pz can be readily expressed
as [26],

Pz = P0(t)δ(x − x0)δ(y − y0) (28)

where P0(t) denotes the time-dependent lateral load
and (x0, y0) is the position coordinate of load.
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On substituting Pz from Eq. (28) into Eq. (27), the
force term of Eq. (27) can be expressed as:

Pmn = P0(t)
∫ l1

0

∫ l2

0
δ(x − x0)δ(y − y0)XmYndx dy

Pmn = P0(t)Xm(x0)Yn(y0)

Pmn = P0(t)Qmn (29)

where Qmn = Xm(x0)Yn(y0) shows the position of lat-
eral load (P0(t)) on plate for different boundary con-
ditions.

Using Eq. (29), the governing equation Eq. (27) con-
taining nonlinear term can be expressed as.

(Mmn + Madd)
∂2ψmn(t)

∂t2
+ Kmnψmn(t) + Gmnψmn(t)

3

= Pmn (30)

where

Mmn = ρh
∞∑
n=1

∞∑
m=1

Amn

∫ l1

0

∫ l2

0
X2
mY

2
n dx dy (31)

Madd = madd

∞∑
n=1

∞∑
m=1

Amn

∫ l1

0

∫ l2

0
X2
mY

2
n dx dy (32)

Kmn =
∞∑
n=1

∞∑
m=1

Amn

∫ l1

0

∫ l2

0

{
(Dx X

iv
mYn + 2BX ii

mY
ii
n + DyYn

ivXm). − g2(Dx X
vi
mYn + (Dx + 2B)X iv

mY
ii
n + (Dy

+ 2B)X ii
mY

iv
n +DyYn

viXm)−2aDy
{
(νx X ii

mY
ii
n +Y iv

n Xm)−g2(X ii
mY

iv
n + XmY vi

n +νx (X iv
mY

ii
n + X ii

mY
iv
n ))

}

3(αbt
6 + αbb)(3 + νx )(1 − νx )h + 2a

+
(

Exh�T

1 − νxνy
(αx + νyαy)X

ii
mYn + Eyh�T

1 − νxνy
(αy+νxαx )

(1 + 2a)Y ii
n Xm

(6αbt+αtt)(1 − ν2)h+2a

)}
XmYndx dy (33)

Gmn =
∞∑
n=1

∞∑
m=1

A3
mn

l1∫

0

∫ l2

0

{
2aB2mnY ii

n Yn X
2
m

(6αbt + αtt)(1 − ν2x )h + 2a
− B1mnX

ii
mXmY

2
n

}
dx dy (34)

Mmn and Madd represent the actual and virtual mass of
cracked plate. Kmn denotes the plate stiffness and Gmn

represents the nonlinear term of governing equation
[26,32].

Damping of plate structures submerged in fluid is yet
another area of research. In the recent work of Luo and
Karney [33], he determined the damping ratios for plate
structure submerged in fluid. In the present work, the
fluid–plate system is assumed to be affected by linear
viscous damping (μo). For such condition of classical
damping occurs due to the fluidic medium, the differ-
ential governing equation [Eq. (30)] can be expressed
as:

∂2ψmn(t)

∂t2
+ 2μo

∂ψmn(t)

∂t
+ ω2

mnψmn(t)

+ Gmn

(Mmn + Madd)
ψmn(t)

3 = Qmn P0(t)

(Mmn + Madd)
(35)

whereωmn represents the natural frequency of partially
cracked and submerged orthotropic plate subjected to
thermal environment and it can be given by,

ω2
mn = Kmn

(Mmn + Madd)
(36)

In the above equation [Eq.(36)], the virtual added
mass (Madd) clearly shows the effect of surround-
ing fluid medium on the natural frequency of cracked
orthotropic plate.

4 Frequency response and peak amplitude

In the present work, a perturbation technique, namely
Method of Multiple Scales, is employed for determin-
ing the approximated solution of nonlinear governing
equation [Eq. (35)]. In the literature, this method is
used by many researchers [26–28] to find the approxi-
mate solutions for partially cracked rectangular plates
in vacuum. Here, this approach is modified to incor-
porate the influence of fluid medium for better under-
standing of the nonlinear behavior of cracked and sub-
merged orthotropic plate. The detailed derivation can
be referred fromRef. [28,30]. The final relation for fre-
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quency response of cracked and submerged orthotropic
plate can be written as:

emn = 3Gmn

8(Mmn + Madd)ωmn
J 2

+
√(

Q2
mn

4(Mmn + Madd)2ω2
mn J

2 P
2
0 − μ2

o

)
(37)

where emn denotes the detuning parameter, Po and J
represents the amplitude of external excitation force
and the amplitude of frequency response, respectively.
The peak amplitude of frequency response can be given
by [30],

JP = Qmn

2(Mmn + Madd)ωmnμo
P0 (38)

The new term Madd in the nonlinear part(
3Gmn

8(Mmn+Madd)ωmn
J 2

)
of Eq. (37) shows the influence

of fluidic medium on the frequency response of the
partially cracked orthotropic plate. Similarly, in case
of the peak amplitude [Eq. (38)], it is seen that it is also
affected by the surrounding fluid medium.

5 Relation for central deflection of plate

Consider a cracked orthotropic plate with all sides sim-
ply supported, subjected to a lateral uniformly dis-
tributed dynamic load (Pz) harmonically varying with
time. For a plate in the absence of thermal moments
(MTx = MTy = 0) and the presence of constant in-
plane forces (RT x and RT y) due to thermal environ-
ment only [Eqs. (21 and 22)], the governing equation
[Eq. (15)] becomes

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+ Dy

∂4w

∂y4

− g2
{
Dx

∂6w

∂x6
+ Dy

∂6w

∂y6

+ (Dx + 2B)
∂6w

∂x4∂y2
+ (Dy + 2B)

∂6w

∂x2∂y4

}

− 2a

3
(

αbt
6 + αbb

)
(3 + νx )(1 − νx ) h + 2a

Dy

{(
∂4w

∂y4
+ νx

∂4w

∂x2∂y2

)
− g2

(
∂6w

∂y6

+ ∂6w

∂x2∂y4
+ νx

(
∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

))}

+ Ex�Th

1 − νxνy

(
αx + νyαy

) ∂2w

∂x2

+
(
1 + 2a

(6αbt + αtt)
(
1 − ν2x

)
h + 2a

)

Ey�Th

1 − νxνy

(
αy + νxαx

) ∂2w

∂y2

+ (ρh + madd)
∂2w

∂t2
= Pz (39)

Assuming the solution for lateral deflection as,

w(x, y, t) = Wmnsin

(
mπx

l1

)
sin

(
nπy

l2

)
sin(ωt)

(40)

whereω is the vibrational frequency. The above expres-
sion is only applicable for the classical case with very
week nonlinear effects. Now for the case of forced
vibrations, the applied lateral dynamic load Pz =
Pz(x, y, t) can be expressed as

Pz(x, y, t) = Pmnsin

(
mπx

l1

)
sin

(
nπy

l2

)
sin(∅t)

(41)

With ∅ being the forcing frequency of the load. Sub-
stituting the general solution of lateral deflection (w)

from Eq. (40) with ω being replaced by ∅ and the lat-
eral dynamic load (Pz) from Eq. (41) into the gov-
erning equation [Eq. (39)] results in an expression for
Wmn . Thus, the classical relation for central deflection
of cracked and submerged orthotropic plate subjected
to uniform heating can be proposed as:
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Wmn = Pmn

π4
(
Dx

(
m
l1

)4 + 2B
(
m
l1

)2 (
n
l2

)2 + Dy

(
n
l2

)4)

+π6g2
(
Dx

(
m
l1

)6 + (Dx + 2B)
(
m
l1

)4 (
n
l2

)2 + Dy

(
n
l2

)6 + (Dy + 2B)
(
m
l1

)2 (
n
l2

)4)

− 2a
H2

π4Dy

[(
n
l2

)4 + νx

(
m
l1

)2 (
n
l2

)2 + π2g2
{(

n
l2

)6 + νx

(
m
l1

)4 (
n
l2

)2 + (1 + νx )
(
m
l1

)2 (
n
l2

)4}]

−π2
[
Ex�Th
1−νxνy

(
αx + νyαy

) (
m
l1

)2 +
(
1 + 2a

H1

)
Ey�Th
1−νxνy

(
αy + νxαx

) (
n
l2

)2] − ∅
2 (ρh + madd)

(42)

where

H2 = 3
(αbt

6
+ αbb

)
(3 + νx )(1 − νx )h + 2a

H1 = (6αbt + αtt)(1 − ν2x )h + 2a

For a special case of a square plate with side l1 and
m = n = 1, the central deflection W11 takes the form
which clearly shows the presence of crack and temper-
ature terms.

W11 = P11

π4

l41

[(
1 + 2π2

(
g
l1

)2) {
(Dx + 2B + Dy) − 2a

H2
Dy(1 + νx )

}]

−π2

l21

{
Ex�Th
1−νxνy

(αx + νyαy) +
(
1 + 2a

H1

)
Ey�Th
1−νxνy

(αy + νxαx )
}

− ∅
2(ρh + madd)

(43)

The results for central deflectionof a crackedorthotropic
plate without influence of thermal environment (�T =
0), Eq. (43) can be expressed as:

W cracked
11 = P11

π4

l41

[(
1 + 2π2

(
g
l1

)2) {
(Dx + 2B + Dy) − 2a

H2
Dy(1 + νx )

}]
− ∅2(ρh + madd)

(44)

Similarly, the result for central deflection of a uni-
formly heated intact orthotropic platewithout influence
of any crack (a = 0), Eq. (43) can be expressed as:

W heated
11 = P11

π4

l41

[(
1 + 2π2

(
g
l1

)2) (
Dx + 2B + Dy

)]

−π2

l21

{
Ex�Th
1−νxνy

(
αx + νyαy

) + Ey�Th
1−νxνy

(αy + νxαx )
}

− ∅
2(ρh + madd)

(45)

The result for central deflection of an intact sub-
merged orthotropic platewithout influence of any crack
(a = 0) and thermal environment (�T = 0), Eq. (43)
can be expressed as:

W SGT
11 or W intact

11

= P11

π4

l41

[(
1 + 2π2

(
g
l1

)2)
(Dx + 2B + Dy)

]
− ∅2 (ρh + madd)

(46)
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Similarly, the central deflection of an intact submerged
orthotropic plate without influence of any crack, tem-
perature and length scale parameter (a = 0,�T = 0
and g = 0) can be expressed as:

WCPT
11 = P11

π4

l41

[
(Dx + 2B + Dy)

] − ∅2(ρh + madd)

(47)

The central deflection ratio W cracked
11 /W intact

11 can be
obtained by dividing Eqs. (44) and (46) as:

W cracked
11

W intact
11

=
π4

l41

[(
1 + 2π2

(
g
l1

)2)
(Dx + 2B + Dy)

]
− ∅

2(ρh + madd)

π4

l41

[(
1 + 2π2

(
g
l1

)2) {
(Dx + 2B + Dy) − 2a

H2
Dy(1 + νx )

}]
− ∅2(ρh + madd)

(48)

Or

W cracked
11

W intact
11

= 1 − (∅/ωSGT
11 )2

1 −
2a
H2

Dy(1+νx )

(Dx+2B+Dy)
− (∅/ωSGT

11 )2
(49)

where ωSGT
11 =

√
π4

l41

[(
1+2π2

(
g
l1

)2)
(Dx+2B+Dy)

]

(ρh+madd)
is the

natural frequency of intact submerged orthotropic plate
based on strain gradient theory.

Similarly, the central deflection ratioW heated
11 /W intact

11
can be obtained by dividing Eqs. (45) and (46) as;

W heated
11

W intact
11

= 1 − (
∅/ωSGT

11

)2

1 −
l21
π2

{
Ex�Th
1−νx νy

(αx+νyαy)+ Ey�Th
1−νx νy

(αy+νxαx )
}

[(
1+2π2

(
g
l1

)2)
(Dx+2B+Dy)

] − (
∅/ωSGT

11

)2
(50)

The central deflection ratio W SGT
11 /WCPT

11 can be
obtained by dividing Eqs. (46) and (47) as,

W SGT
11

WCPT
11

=
π4

l41

[
(Dx + 2B + Dy)

] − ∅
2(ρh + madd)

π4

l41

[(
1 + 2π2

(
g
l1

)2)
(Dx + 2B + Dy)

]
− ∅2(ρh + madd)

(51)

Or

W SGT
11

WCPT
11

= 1 − (∅/ωCPT
11 )2

1 + 2π2
(
g
l1

)2 − (∅/ωCPT
11 )2

(52)

where ωCPT
11 =

√
π4

l41
[(Dx+2B+Dy)]
(ρh+madd)

is the natural fre-

quency of intact submerged orthotropic plate based on
classical plate theory.

6 Results and discussions

In this section, the analytical results for vibration char-
acteristics and central deflection for partially cracked
and submerged orthotropic rectangular plate subjected
to thermal heating are presented and discussed for
the two boundary conditions. As per the author’s
knowledge, the literature lacks in analytical results
for cracked and submerged orthotropic plate consid-
ering the effect of temperature variation and hence
new results for vibration characteristics of cracked
orthotropic plate are presented as a function crack
length (a/ l1), rise in temperature (�T ), length scale
parameter (g/ l1), fluid level (h1/ l1) and plate

thickness (h). The literature [30] shows the results
for isotropic plate as affected by crack and submer-
gence level in the absence of any temperature varia-

123



Vibration and deflection analysis of thin cracked and submerged orthotropic plate 1589

Table 1 Non-dimensional frequency parameter for intact and cracked orthotropic plate in vacuum (m = n = 1, g = 0, �T = 0)

Crack length a/ l1 Boundary conditions

SSSS CCFF CCSS

Present Ref. [28] Present Ref. [28] Present Ref. [28]

Frequency parameter (F = ωmnl21
√

ρh/Dx )

0 10.995 10.995 3.687 3.687 17.179 17.179

0.01 10.916 10.916 3.662 3.662 17.058 17.058

0.05 10.751 10.751 3.610 3.610 16.807 16.807

0.1 10.665 10.665 3.584 3.584 16.678 16.678

Table 2 Comparison of fundamental frequency parameter (ωmnl21
√

ρh/D) for cracked isotropic plate as a function of fluid level and
half crack length (g = 0, �T = 0)

B.C. Half Crack length (a) (m) Horizontally submerged in water
h1
l1

= 0.1 h1
l1

= 0.2 h1
l1

= 0.3

Present Ref. [30] Present Ref. [30] Present Ref. [30]

SSSS a = 0.00 8.773 8.773 8.123 8.123 7.826 7.826

a = 0.01 8.554 8.554 7.921 7.921 7.631 7.631

a = 0.05 8.073 8.073 7.475 7.475 7.201 7.201

a = 0.10 7.806 7.806 7.228 7.228 6.963 6.963

CCSS a = 0.00 12.598 12.598 11.666 11.666 11.239 11.239

a = 0.01 12.243 12.243 11.337 11.337 10.922 10.922

a = 0.05 11.455 11.455 10.607 10.607 10.219 10.219

a = 0.10 11.016 11.016 10.200 10.200 9.827 9.827

tion, whereas the effect of crack on natural frequency
of orthotropic plate in vacuum is also known [28].
Therefore, for validation of the present results, they are
compared with these results of the literature [28,30].
Table 1 represents the comparison of natural frequency
of an intact and cracked orthotropic plate for different
crack length and different boundary conditions, in vac-
uum medium, neglecting the effect of strain gradient
and temperature. The material constants of orthotropic
plate for this validation table are used from Ref. [28].
From Table 1, it is seen that the proposed results are in
exact agreement with the published one which verifies
the correctness of our proposed model.

To compare the effect of level of submergence and
thermal environment, the present model is applied to a
partially cracked isotropic plate and the results for fun-
damental frequency parameter are shown in Tables 2
and 3. The material constants and plate dimensions
are taken from Ref [30] for Table 2 and Ref. [34] for
Table 3. Again here the exact agreement of the pro-

posed and existing results indicates that the proposed
model deduces to the model developed in Ref [30] and
Ref. [34] when the model is applied for isotropic plate.

For the results presented in Tables 1, 2 and 3,
the effect of length scale parameter (g/ l1) has been
neglected and to show its effect on fundamental fre-
quency, a comparison is presented in Fig. 4. It shows
exact agreement as the material and geometric proper-
ties for comparison are taken from Ref. [17]. Thus, it
is known that the length scale parameter increases the
frequencies of intact isotropic plate.

New results for non-dimensional frequency param-
eter (F = ωmnl21

√
ρh/Dx ) of cracked orthotropic

plate considering the level of submergence (h1/ l1),
thermal environment (�T ), crack length (a/ l1) and
length scale parameter (g/ l1) are presented here. The
material considered is Boron–Epoxy with properties
as: Young’s modulus Ex = 208GPa, Ey = 18.9GPa,
Shear modulus Gxy = 5.7Gpa, material density ρ =
2000 kg-m−3, Poisson’s ratio νx = 0.23, νy = 0.0208,
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Table 3 Comparison of non-dimensional frequency parameter (ωmnl21
√

ρh/D) for cracked isotropic CCSS plate in vacuum as a
function of temperature and half crack length (m = n = 1, l1/ l2 = 1, g = 0)

T* Intact plate Cracked plate

a = 0.01m a = 0.05m a = 0.1m

Present Ref. [34] Present Ref. [34] Present Ref. [34] Present Ref. [34]

0 28.35 28.35 27.50 27.50 25.47 25.47 24.48 24.48

0.1 26.89 26.89 26.00 26.00 24.17 24.17 23.23 23.23

0.2 25.35 25.35 24.51 24.51 22.78 22.78 21.90 21.90

0.3 23.72 23.72 22.93 22.93 21.31 21.31 20.48 20.48

0.4 21.96 21.96 21.23 21.23 19.73 19.73 18.97 18.97

0.5 20.05 20.05 19.38 19.38 18.01 18.01 17.31 17.31

T* = Tc/Tbcr (Tc is the rise in temperature above stress free temperature and Tbcr is critical buckling temperature)

Fig. 4 Comparison of natural frequency (ω11/ω
c
11) as a function

of length scale parameter (g/ l1) for intact isotropic SSSS plate

l1 = 1m, l2 = 1m and thickness h = 0.01m.
The coefficients of thermal expansion are taken αx =
7.10e−06/◦C and αy = 2.3e−05/◦C. The fluid den-
sity is 1000 kgm−3. The dimensions of reservoir tank
is assumed as 5m × 5m × 5m. The depth of crack
is taken 6 mm, and thickness of plate is taken 10 mm
throughout the work. A lateral load of 30 N, acting
at point xo, yo = 0.375, 0.75 is used for calculation
of peak amplitude and frequency response. The influ-
ence of fluidmediumon fundamental frequencies of the
plate is analyzed by placing the plate horizontally in a
fluid tank with various depth of submergence (h1/ l1).

By employing the strain gradient theory, results
for frequency parameter as a function of fluid level
(h1/ l1 = 0.1 to 0.5), crack length (a/ l1 = 0 to 0.1)
and length scale parameter (g/ l1 = 0 to 0.3) are pre-
sented in Tables 4 and 5 for SSSS and CCSS bound-
ary conditions in the absence of thermal environment.
It is observed from both the tables that for a given
length of crack and length scale parameter, as the plate
goes deeper into the fluid tank with increase in depth
of submergence, the frequency of the plate decreases
for both intact and cracked plate. This is because of
increase in virtual added mass which increases with
h1/ l1. The increase in virtual added mass is indepen-
dent of boundary conditions and hence the decrease
in frequency parameter is same for both the SSSS and
CCSS boundary conditions. Such phenomenon of vari-
ation in frequency is also found in the literature Refs.
[7,30] for intact and cracked isotropic plate respec-
tively. Similarly, it is also observed that for a given level
of submergence and length scale parameter, as the crack
length increases, the frequency parameter decreases for
both the boundary conditions. This is due to reduction
in stiffness of plate seen from Eq. (33). Thus, here, we
can be concluded that the presence of crack in decreases
the frequency and this decrease is augmented by the
submergence level.

Comparing the results obtained from CPT (g = 0)
and SGT (g �= 0), it is observed that as the length
scale parameter increases from g/ l1 = 0 to 0.3, the
natural frequency increases due to increase in stiffness
owing to the strain gradients of elasticity . This type
of variation is observed in the literature Ref. [17] for
intact plate without any influence of surrounding fluid
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Table 4 Fundamental frequency parameter for cracked orthotropic plate as a function of fluid level, length scale parameter and crack
length for SSSS boundary condition (�T = 0)

Length scale parameter (g/ l1) Crack length (a/ l1) In vacuum Horizontally submerged in water
h1
l1

= 0 h1
l1

= 0.1 h1
l1

= 0.2 h1
l1

= 0.3 h1
l1

= 0.4 h1
l1

= 0.5

Frequency parameter (F = ωmnl21
√

ρh/Dx )

g/ l1 = 0 0.00 10.998 3.142 2.672 2.444 2.342 2.299 2.281

(CPT) 0.01 10.918 3.120 2.652 2.426 2.325 2.282 2.264

0.05 10.753 3.072 2.612 2.390 2.290 2.248 2.230

0.10 10.668 3.048 2.592 2.371 2.272 2.230 2.213

g/ l1 = 0.1 0.00 12.034 3.438 2.923 2.674 2.563 2.516 2.496

0.01 11.947 3.413 2.902 2.655 2.545 2.498 2.478

0.05 11.766 3.362 2.858 2.615 2.506 2.460 2.440

0.10 11.673 3.335 2.836 2.594 2.486 2.440 2.421

g/ l1 = 0.2 0.00 14.712 4.203 3.574 3.269 3.134 3.076 3.051

0.01 14.605 4.173 3.548 3.246 3.111 3.053 3.029

0.05 14.385 4.110 3.494 3.197 3.064 3.007 2.984

0.10 14.271 4.077 3.467 3.171 3.040 2.983 2.960

g/ l1 = 0.3 0.00 18.325 5.235 4.451 4.072 3.903 3.831 3.801

0.01 18.192 5.197 4.419 4.043 3.875 3.803 3.773

0.05 17.917 5.119 4.352 3.982 3.816 3.746 3.716

0.10 17.775 5.078 4.318 3.950 3.786 3.716 3.687

Table 5 Fundamental frequency parameter for cracked orthotropic plate as a function of fluid level, length scale parameter and crack
length for CCSS boundary condition (�T = 0)

Length scale parameter (g/ l1) Crack length (a/ l1) In vacuum Horizontally submerged in water
h1
l1

= 0 h1
l1

= 0.1 h1
l1

= 0.2 h1
l1

= 0.3 h1
l1

= 0.4 h1
l1

= 0.5

Frequency parameter (F = ωmnl21
√

ρh/Dx )

g/ l1 = 0 0.00 17.183 4.909 4.174 3.818 3.660 3.592 3.564

(CPT) 0.01 17.061 4.874 4.144 3.791 3.634 3.567 3.539

0.05 16.811 4.803 4.084 3.736 3.581 3.514 3.487

0.10 16.681 4.766 4.052 3.707 3.553 3.487 3.460

g/ l1 = 0.1 0.00 19.948 5.699 4.846 4.433 4.249 4.170 4.137

0.01 19.807 5.659 4.811 4.401 4.219 4.141 4.108

0.05 19.515 5.575 4.741 4.337 4.157 4.080 4.048

0.10 19.365 5.532 4.704 4.303 4.124 4.048 4.016

g/ l1 = 0.2 0.00 26.571 7.591 6.454 5.904 5.659 5.555 5.511

0.01 26.382 7.537 6.408 5.863 5.619 5.515 5.472

0.05 25.993 7.426 6.314 5.776 5.536 5.434 5.391

0.10 25.791 7.368 6.265 5.731 5.493 5.392 5.349

g/ l1 = 0.3 0.00 34.921 9.976 8.482 7.760 7.438 7.300 7.243

0.01 34.673 9.905 8.422 7.705 7.385 7.248 7.191

0.05 34.160 9.759 8.298 7.591 7.276 7.141 7.085

0.10 33.895 9.683 8.233 7.532 7.219 7.086 7.030

123



1592 S. Soni et al.

Table 6 Fundamental frequency parameter for SSSS cracked orthotropic plate subjected to temperature rise (h1/ l1 = 0.1)

Length scale parameter (g/ l1) Crack length (a/ l1) Rise in temperature (�T )◦C
�T = 0 �T = 2 �T = 4 �T = 6 �T = 8

Frequency parameter
(
F = ωmnl21

√
ρh/Dx

)

g/ l1 = 0 0.00 2.672 2.401 2.096 1.738 1.284

(CPT) 0.01 2.652 2.372 2.053 1.674 1.181

0.05 2.612 2.307 1.955 1.524 0.907

0.10 2.591 2.272 1.899 1.433 0.707

g/ l1 = 0.1 0.00 2.923 2.678 2.409 2.105 1.749

0.01 2.902 2.648 2.367 2.047 1.668

0.05 2.858 2.583 2.274 1.915 1.473

0.10 2.836 2.547 2.221 1.838 1.351

g/ l1 = 0.2 0.00 3.574 3.376 3.167 2.942 2.699

0.01 3.548 3.343 3.125 2.891 2.636

0.05 3.494 3.273 3.035 2.776 2.492

0.10 3.467 3.235 2.985 2.712 2.408

g/ l1 = 0.3 0.00 4.451 4.295 4.132 3.962 3.785

0.01 4.419 4.257 4.088 3.911 3.727

0.05 4.352 4.176 3.993 3.800 3.597

0.10 4.318 4.134 3.941 3.739 3.525

medium. Tables 4 and 5 show that such variation is
observed to be valid in case of partially cracked and
submerged orthotropic plate also. Thus, the considera-
tion of effect of microstructure in form of length scale
parameter is significant. It is important to mention that
the frequency decreases due to the presence of crack,
whereas it increases for the internal length scale param-
eter. The effect of internal scale parameter depends on
the boundary condition and is more pronounced in case
of CCSS boundary condition than SSSS.

For a given level of submergence, the variation in
frequency for cracked orthotropic plate with uniform
temperature rise (�T = 0 to 8 ◦C) for both the bound-
ary conditions is shown in Tables 6 and 7. It is known
that the rise in temperature of isotropic plate reduces the
frequencies [34]. Such a reduction in frequency due to
decrease in stiffness is observed to be valid for cracked
orthotropic plate. Again it is observed that the increase
in length of crack and temperature decreases the fre-
quency, whereas the length scale parameter increases
it. In order to understand the combined effect of crack
length, change in length scale parameter and temper-
ature on the natural frequency of plate, some results
from Tables 4 and 6 are rearranged as shown in Fig. 5.
It shows that for all values of ‘a/ l1’ and ‘�T ’, the

increase in length scale parameter increases the fre-
quency, while for all values of g/ l1, the increase in
length of crack and rise in temperature decreases the
frequency.

From Fig. 5a, b, it is observed that the effect of inter-
nal length scale parameter is same for submerged plate
than for the plate vibrating in vacuum. Similarly, from
Fig. 5c, d, it is seen that the effect of variation in internal
length scale parameter and temperature on fundamen-
tal frequency for a given crack length is also same for
submerged plate and plate in vacuum. This is due to
the assumption that the internal length scale parameter
and rise in temperature do not affect the virtual added
mass. Again for higher values of length scale parameter
(g/ l1 = 0.3), the effect of increase in temperature on
frequency decreases owing to the substantial contribu-
tion of internal scale parameter to the stiffness. Com-
paring the decrease in frequency for the two boundary
conditions from Tables 6 and 7, it is concluded that the
CCSS plate is more vulnerable to rise in temperature
than theSSSSplate. The rise in temperature gives rise to
in-plane compressive forces which are more for CCSS
boundary condition, thus making it more prone to rise
in temperature. The dependence of in-plane forces on
boundary conditions canbevisualized from the fact that
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Table 7 Frequency parameter for CCSS cracked orthotropic plate subjected to temperature rise (h1/ l1 = 0.1)

Length scale parameter (g/ l1) Crack length (a/ l1) Rise in temperature (�T )◦C
�T = 0 �T = 2 �T = 4 �T = 6 �T = 8

Frequency parameter
(
F = ωmnl21

√
ρh/Dx

)

g/ l1 = 0 0.00 4.174 3.963 3.740 3.504 3.250

(CPT) 0.01 4.144 3.926 3.695 3.448 3.182

0.05 4.083 3.847 3.595 3.324 3.029

0.10 4.052 3.805 3.540 3.254 2.941

g/ l1 = 0.1 0.00 4.846 4.665 4.478 4.282 4.077

0.01 4.811 4.624 4.430 4.226 4.012

0.05 4.740 4.538 4.327 4.104 3.869

0.10 4.704 4.493 4.271 4.037 3.789

g/ l1 = 0.2 0.00 6.454 6.320 6.183 6.042 5.899

0.01 6.408 6.269 6.127 5.982 5.832

0.05 6.314 6.163 6.009 5.851 5.689

0.10 6.265 6.108 5.947 5.781 5.611

g/ l1 = 0.3 0.00 8.482 8.381 8.278 8.173 8.068

0.01 8.422 8.317 8.210 8.102 7.993

0.05 8.298 8.184 8.068 7.951 7.832

0.10 8.233 8.114 7.994 7.871 7.747

for samemaximum lateral deflection, the deflected sur-
face length is more in case of CCSS plate than SSSS
plate, resulting in higher magnitude of in-plane forces.

The results for fundamental frequency in vacuum
as affected of plate thickness, using the classical plate
theory and the Strain gradient theory are compared in
Fig. 6 for l1/h = 100. It captures the size effect and
the significance of internal scale parameter. Figure 6a
shows such variation for intact isotropic plate, whereas
Fig. 6b shows the variation for intact orthotropic plate.
For an isotropic plate, the outcomes of natural fre-
quency as affected by plate thickness and internal
scale parameter are shown in the literature [23]. The
presentmodel when applied for an intact isotropic plate
in absence of thermal environment and fluid medium
deduces to the model developed by Gupta et al. [23].
It is established in the literature [23] that the effect of
length scale of microstructure is more significant for
very thin plates and as the plate thickness increases
this effect reduces, this observation is observed to be
valid for orthotropic plate using the strain gradient the-
ory as seen from Fig. 6. To study the dependence of
fundamental frequency on plate thickness in the pres-
ence of crack, thermal environment and surrounding
fluid medium, results are presented in Fig. 7a–f for

l1/h = 100. It is seen from that for all values of
plate thickness, the increase in length of crack, depth
of submergence (fluid level) and rise in temperature
decreases the frequency. Figure 7a, b shows that the
classical thin plate theory cannot capture the size effect
for the cracked plate and the effect of microstructure
is very well incorporated by the length scale parameter
for very thin plates. Thus, it is concluded that as the
cracked plate becomes smaller in size, it is important
to consider the effect of microstructure. Similarly, the
effect of level of submergence and rise in temperature
on size effect is shown in Fig 7c–f. It is interesting to
know that consideration of themicrostructure increases
the frequency for submerged plate under thermal envi-
ronment. Thus, it can be concluded that the presence
of fluidmedium, thermal environment and partial crack
affects the frequency and the size effect can be captured
by the length scale parameter.

Figure 8 shows the variation of ratio of deflection
of cracked plate to intact orthotropic plate. In order
to investigate the primary resonance, the ratio of forc-
ing frequency to fundamental frequency of intact plate
based on strain gradient theory is varied from 0.92
to 1.04. It is interesting to know that the presence of
crack shifts the primary resonance and it takes place
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Fig. 5 Fundamental
frequency parameter as a
function of crack length
(a/ l1), temperature (�T )

and length scale parameter
(g/ l1) for SSSS boundary
condition (for in fluid,
h1/ l1 = 0.1)

Fig. 6 Fundamental
frequency (ω) as a function
of plate thickness (h) and
length scale parameter (g)
for l1/h = 100, a/ l1 = 0
and �T = 0, in vacuum
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Fig. 7 Natural frequency (ω) as a function of plate thickness (h) and length scale parameter (g) for l1/h = 100
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Fig. 8 Central deflection ratio W cracked
11 /W intact

11 versus the nor-
malized operational frequency (∅/ωSGT

11 )2 for various values of
crack length (a/ l1), SSSS

well below ∅/ωSGT
11 = 1. This is due to reduction in

stiffness of plate due to centrally located crack. The
results for variation of deflection ratio of intact plate
with and without temperature rise are shown in Fig. 9.
With the rise in temperature of plate, it is known that the
fundamental frequencies decrease, such a fact seen in
the literature is validated from the results in Fig. 9. As
expected, the rise of temperature decreases fundamen-
tal frequency of plate, thereby increasing the deflec-
tion. The shift in primary resonance can be attributed
to the reduction in stiffness due to temperature rise.
Figure 10 shows the ratio of deflections W SGT

11 /WCPT
11

versus (∅/ωCPT
11 )2 for different values of length scale

parameter (g/ l1). It is seen that increasing values of
g result in shifting the primary resonance position of
the classical case (∅/ωCPT

11 = 1) to higher values
of (∅/ωCPT

11 ). The shift in primary resonance can be
attributed to the increase in stiffness due to length scale
parameter. Thus, it can be concluded that the primary
resonance occurs at higher values of forcing frequency
(∅). Figures 8, 9 and 10 along with Eqs. (42)–(52)
represents the effect of temperature, crack length and
length scale parameter on deflection and primary reso-
nance of cracked and submerged orthotropic plate.

The results for peak amplitude (Jp) of uniformly
heated cracked orthotropic plate vibrating under fluid
medium are evaluated in the present study. Tables 8
and 9 show the results of peak amplitude as affected by
various fluid level (h1/ l1), crack length (a/ l1), temper-
ature (�T ) and length scale parameter (g/ l1) for the

Fig. 9 Central deflection ratio W heated
11 /W intact

11 versus the nor-
malized operational frequency (∅/ωSGT

11 )2 for various values of
rise in temperature (‘�T ’ in ◦C), SSSS

Fig. 10 Central deflection ratio W SGT
11 /WCPT

11 versus the nor-
malized operational frequency (∅/ωCPT

11 )2 for various values of
length scale parameter (g/ l1), SSSS

submerged orthotropic plate. It is seen from Table 8
that for the cracked orthotropic plate in the absence
of temperature variation, the peak amplitude increases
with the increase in length of crack. This corresponds
to the decrease in frequency as shown in Tables 4, 5,
6 and 7 which satisfies one’s physical understanding.
Also as the length scale parameter increases, the peak
amplitude of vibration decreases owing to increase in
fundamental frequency as seen from Tables 4 and 5.

It is seen from Table 4 that as the level of submer-
gence increases, the fundamental frequency decreases.
FromTable 8, it is interesting to know thatwith increase
in the submergence level, the peak amplitude also
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Table 8 Peak amplitude (mm) for simply supported cracked and submerged orthotropic plate (�T = 0)

Length scale parameter (g/ l1) Crack length (a/ l1) Fluid level(h1/ l1)
h1
l1

= 0 h1
l1

= 0.1 h1
l1

= 0.2 h1
l1

= 0.3 h1
l1

= 0.4 h1
l1

= 0.5

Peak amplitude (mm)

g/ l1 = 0 0.00 31.372 26.673 24.400 23.386 22.954 22.773

(CPT) 0.01 31.601 26.868 24.578 23.557 23.121 22.939

0.05 32.086 27.280 24.955 23.918 23.476 23.291

0.10 32.343 27.498 25.155 24.110 23.664 23.478

g/ l1 = 0.1 0.00 28.668 24.375 22.298 21.372 20.976 20.811

0.01 28.878 24.553 22.461 21.528 21.130 20.963

0.05 29.321 24.930 22.805 21.858 21.454 21.285

0.10 29.556 25.129 22.988 22.033 21.625 21.455

g/ l1 = 0.2 0.00 23.449 19.938 18.239 17.481 17.158 17.023

0.01 23.621 20.083 18.372 17.609 17.284 17.148

0.05 23.983 20.392 18.654 17.879 17.549 17.411

0.10 24.175 20.555 18.803 18.022 17.689 17.550

g/ l1 = 0.3 0.00 18.825 16.006 14.643 14.035 13.775 13.667

0.01 18.963 16.123 14.750 14.137 13.876 13.767

0.05 19.254 16.371 14.976 14.354 14.089 13.978

0.10 19.407 16.501 15.096 14.469 14.201 14.090

decreases. Thus, as the plate goes deep into the fluid,
both the peak amplitude and fundamental frequency
decreases. This is due to increase in virtual added mass
and the resistance offered by the surrounding fluid to
the vibration of the plate. This phenomenon is unlike
the vibration in vacuum and has been presented in the
recent work by Soni et al. [30] on submerged isotropic
plate. It is important to mention here that this is the
first attempt to model peak amplitude and fundamen-
tal frequency of cracked and submerged orthotropic
plate, thereby modeling the fluid–structure interaction.
The effect of increase in temperature, crack length and
length scale parameter for a given level of submergence
on the peak amplitude is shown in Table 9. It is seen
that as the temperature of the plate increases, the peak
amplitude of vibration increases owing to decrease
in fundamental frequency as seen from Table 6. This
increase in peak amplitude is arrested by the increase in
internal scale parameter which increases the stiffness
of the cracked plate.

To study the nonlinear behavior of the coupledplate–
fluid system, the response curves are plotted as per
the frequency response relation proposed in Eq. (37)
and are shown in Fig. 11. The geometrically nonlinear

( Gmn
(Mmn+Madd)

< 0, soft spring and Gmn
(Mmn+Madd)

> 0,
hard spring) response curves of a cracked and sub-
merged orthotropic plate subjected to temperature rise
are figured for given damping (μo = 0.061 for fluid
and μo = 0.05 for vacuum [33] and excitation of
30N acting at (x0, y0). The concept of bending harden-
ing/bending softening is studied for various length scale
parameter, crack length and temperature in two differ-
ent surrounding environments (Vacuum and fluid).

Figure 11b shows the nonlinear frequency response
curves for simply supported boundary condition, for
a fixed length scale parameter (g/ l1 = 0.1), tempera-
ture (�T = 0) and fluid level (h1/ l1 = 0.1). Response
curves plotted for vacuum (Fig. 11a) are also given for
comparison. The curves show a nonlinear phenomenon
of bending hardening in submerged plate due to pres-
ence of crack, such a hard spring behavior is evident in
recent literature [30] for plate vibrating in vacuum. But
this nonlinearity is less in fluid as compared to vac-
uum due to the virtual added mass which appears in
the cubic nonlinear term as seen from Eq. (35). Thus,
it leads to the conclusion that hard spring softens due
to the presence of fluidic medium.
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Table 9 Peak amplitude (mm) for simply supported cracked and submergedorthotropic plate subjected to temperature rise (h1/ l1 = 0.1)

Length scale parameter (g/ l1) Crack length (a/ l1) Rise in temperature (�T )◦C
�T = 0 �T = 2 �T = 4 �T = 6 �T = 8

Peak amplitude (mm)

g/ l1 = 0 0.00 26.672 29.678 34.00 41.005 55.519

(CPT) 0.01 26.867 30.049 34.718 42.572 60.420

0.05 27.280 30.888 36.454 46.784 78.745

0.10 27.498 31.368 37.526 49.756 101.150

g/ l1 = 0.1 0.00 24.374 26.604 29.584 33.859 40.758

0.01 24.553 26.909 30.108 34.809 42.740

0.05 24.929 27.593 31.345 37.211 48.417

0.10 25.129 27.979 32.087 38.773 52.789

g/ l1 = 0.2 0.00 19.937 21.103 22.501 24.219 26.402

0.01 20.083 21.31 22.800 24.649 27.037

0.05 20.391 21.773 23.481 25.665 28.600

0.10 20.554 22.028 23.873 26.276 29.589

g/ l1 = 0.3 0.00 16.006 16.590 17.244 17.982 18.824

0.01 16.123 16.738 17.431 18.217 19.119

0.05 16.370 17.060 17.845 18.749 19.806

0.10 16.501 17.235 18.077 19.055 20.212

Figure 11c, d shows the nonlinear response curves
for a given temperature (�T = 0), fluid level (h1/ l1 =
0.1) and crack length (a/ l1 = 0.01) as affected by
length scale parameter. It is observed that the increase in
length scale parameter reduces the nonlinearity for both
in vacuum and in fluid. Such phenomenon of reduction
in nonlinearity is also evident in recent literature [23]
for cracked isotropic plate vibrating in vacuum.

The effect of rise in temperature on the frequency
response of the fluid–plate interaction system is shown
in Fig. 11e, f for a given fluid level, crack length and
length scale parameter. It is seen from Fig. 11a–d that
the increase in length of crack and length scale param-
eter decreases the nonlinearity but with the rise in tem-
perature the hardening increases as seen from Fig. 11e,
f. The nonlinearity (hardening) is seen to be more in
plate at�T = 4 ◦Cas compared to plate at�T = 0 ◦C.
This is because of decrease in frequency due to rise in
temperature. It is important to mention that the nonlin-
ear term [Gmn (Eq. (34)] is not affected by the tem-
perature rise but affects the stiffness. Again as per the
authors’ knowledge, this is the first attempt to investi-
gate the effect of rise in temperature on the hardening
behavior of submerged plate.

7 Experimental validations

In order to verify the trend in analytical results, exper-
imental measurements are carried out in this section to
estimate the effect of partial crack, temperature, level of
submergence. The experimental setup consists of a FFT
(fast Fourier transform) analyzer, heavy boundary con-
dition foundation, water tank, heating coil, thermome-
ter, excitation hammer, accelerometer and plate spec-
imens for testing. In this work, two different bound-
ary conditions SSSS (all sides simply supported) and
CCSS (two adjacent sides clamped and other two sides
simply supported) are chosen. A computer connected
with the fast Fourier transform (FFT) analyzer is used
to analyze the frequency spectrum. In order to raise
the temperature of plate specimen uniformly, two plate
heaters are placed on the top and bottom surfaces of
the plate. When a steady state desired temperature is
achieved, the heaters are removed and accelerometer is
place for measurements.

Jute fiber reinforced epoxy plate specimens having
dimension 200 × 200× 5mmare taken for experimen-
tal analysis as shown in Fig. 12. Thematerial properties
of plate specimen are Ex = 8.94GPa, Ey = 3.5GPa,
Shear modulus Gxy = 0.805Gpa, material density
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Fig. 11 Nonlinear response curves for cracked orthotropic plate with varying crack length, length scale parameter and temperature for
simply supported boundary conditions. (For in fluid h1/ l1 = 0.1), (dashed line) stable branch, (solid line) unstable branch
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Fig. 12 Plate specimens

Fig. 13 The experimental
setup
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ρ = 1337.5 kg-m−3, Poisson’s ratio νx = 0.264,
νy = 0.021. A crack of depth 3 mm and width 1 mm is
generated by Laser BeamMachining. The volume frac-
tion of fibers is considered while selecting the above
properties.

Figure13 shows the experimental setup consisting
of the FFT analyzer and a sensitive accelerometer. Care
has been taken so that the vibrations of the boundary
condition structure and other ambient vibrations do not
interfere in the measurements. On triggering the vibra-
tion of plate using excitation hammer, one obtains a
frequency spectrum and corresponding to the first peak
of the spectrum, first mode frequency is measured as
shown in Fig.14. For each plate specimen, multiple
readings are taken for a position of accelerometer and

the first peak in the spectrum is noted for the funda-
mental frequency. Averaging of these readings is done
to arrive at a single value of frequency. This procedure
is repeated for different positions of the accelerome-
ter. Finally, averaging of the averaged reading is taken
as the fundamental frequency. Readings for both intact
and cracked plates are obtained in this way.

The comparison of results obtained using the present
analytical model and the experimental work are shown
in Table 10. It is observed that the experimental results
are lower than the analytical; this is due to ambi-
ent vibrations of the setup and unavoidable-inherent
geometric distortion of the specimen and micro-burs
formed during machining of the crack would have
played a role. Another probable reason is that the
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Fig. 14 Frequency spectrum for partially cracked and sub-
merged plate under thermal environment (h1/ l1 = 0.1, a =
0.01m, �T = 20 ◦C); a SSSS, b CCSS

analytical model neglects the nonlinear fluid–structure
interaction. Considering these facts the comparison
shows good agreement between the theoretical and
experimental results with maximum error in predic-
tion of about 7.93% in SSSS boundary condition and
8.80 % in CCSS boundary condition. The frequency
spectrums obtained for cracked plate with crack length
a = 0.01m, fluid level h1/ l1 = 0.1 and rise in tem-
perature �T = 20 ◦C are shown in Fig. 14 for two
different boundary conditions.

8 Conclusions

In the present work, an analytical fluid–structure–
temperature interaction model is presented for vibra-
tion analysis of a partially cracked and submerged
orthotropic plate subjected to uniform heating, based
on strain gradient theory of elasticity. It is established
that the fundamental frequency of plate decreases by
the presence of crack and thermal environment and
this decrease in frequency is further augmented by the
presence of surrounding fluid medium in present study.
It has been established that the length scale parame-
ter has a significant effect for micro-plates. A classi-
cal relation for central deflection of cracked and sub-
merged orthotropic plate is also proposed. The effect
of varying forcing frequency, crack length, length scale
parameter and change in temperature on deflection has
been established which shows a shift in primary res-
onance. The rise in temperature and increase in crack
length shift the resonance to lower values of forcing fre-
quency, whereas the internal scale parameter shift the

Table 10 Comparison between the experimental and theoretical results for the fundamental frequency of cracked and submerged
orthotropic plate under thermal environment (h1/ l1 = 0.1, g/ l1 = 0)

Boundary condition Rise in temperature (�T ) Half crack length (a) (m) Frequency (Hz) Error (%)

Experimental Theoretical

SSSS �T = 0 ◦C a = 0 58.71 61.97 5.29

a = 0.01 56.61 59.62 5.85

�T = 20 ◦C a = 0 52.77 56.63 6.87

a = 0.01 49.50 53.80 7.93

CCSS �T = 0 ◦C a = 0 87.95 94.12 6.55

a = 0.01 84.13 90.45 6.98

�T = 20 ◦C a = 0 83.34 89.82 7.21

a = 0.01 78.26 85.76 8.80
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resonance to higher values. Another important conclu-
sion is that as the level of submergence of the plate
increases, both the fundamental frequency and peak
amplitude decrease. The nonlinear frequency response
curves shows that the presence of crack, increase in
length scale parameter and fluid level decreases the
bending hardening. Out of these three factors which
affect the hardening, it is concluded that the level of
submergence decreases the nonlinearity more. It is also
concluded that the rise in temperature increases the
bending hardening. To the best of the authors’ knowl-
edge, this is the first attempt to model fluid–structure
interaction vibrations of a cracked orthotropic plate
in the presence of thermal environment, and hence, it
would be instructive to formulate the model based on
some higher-order theory.
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Appendix A

On the basis of Kirchhoff’s thin classical plate theory,
the mid-surface strains (εx , εy and γxy) can be given in
terms of transverse deflection (w) as,

εx = −z
∂2w

∂x2

εy = −z
∂2w

∂y2

γxy = −2z
∂2w

∂x∂y
(A1)

Using the constitutive relations [Eqs. (1)–(3)] and
Eq. (A1), the expressions for bendingmoment become,

M∗
x =

∫ + h
2

− h
2

σx zdz

= Mx + Mg
x + MTx (A2)

M∗
y =

∫ + h
2

− h
2

σyzdz

= My + Mg
y + MTy (A3)

M∗
xy =

∫ + h
2

− h
2

τxy zdz

= Mxy + Mg
xy

Mx = −Dx

(
∂2w

∂x2
+ νy

∂2w

∂y2

)

Mg
x = g2Dx

(
∂4w

∂x4
+ νy

∂4w

∂y4
+ (

1 + νy
) ∂4w

∂x2∂y2

)

My = −Dy

(
∂2w

∂y2
+ νx

∂2w

∂x2

)

Mg
y = g2Dy

(
∂4w

∂y4
+ νx

∂4w

∂x4
+ (1 + νx )

∂4w

∂x2∂y2

)

Mxy = −2Dt

(
∂2w

∂x∂y

)

Mg
xy = g22Dt

(
∂4w

∂x3∂y
+ ∂4w

∂x∂y3

)

MTx = − Ex

1 − νxνy
(αx + νyαy)

∫ −h/2

h/2
(�T )zdz

MT y = − Ey

1 − νxνy
(αy + νxαx )

∫ −h/2

h/2
(�T )zdz

(A4)

where Mx , My and Mxy = Myx are the internal bend-
ing and twisting moments respectively. Similarly, Mg

x ,
Mg

y andM
g
xy = Mg

yx are bending and twistingmoments
due to the microstructure of the plate. MTx and MTy

are the moments due to thermal environment.

Appendix B

The velocity potential function φ(x, y, z, t) satisfying
the Laplace’s equation can be expressed in the Carte-
sian coordinate system as:

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 (B1)

Using Bernoulli’s equation, the fluid dynamic pressure
at any point of plate–fluid boundary can be given by:

Pu = Pz=0 = −ρf

(
∂φ

∂t

)

z=0
(B2)

Pl = Pz=−h = −ρf

(
∂φ

∂t

)

z=−h
(B3)

where ρf is fluid density per unit volume.
Assuming φ be the function of two discrete vari-

ables.

φ(x, y, z, t) = F(z)S(x, y, t) (B4)

where S(x, y, t) and F(z) are the two discrete func-
tions.
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For the assumption of a permanent contact between
the surfaceof plate andfluid layer, the kinematic bound-
ary conditions at the fluid–plate interface can bewritten
as [30],
(

∂φ

∂z

)

z=0
= ∂w

∂t
(B5)

(
∂φ

∂z

)

z=−h
= ∂w

∂t
(B6)

On introducing Eqs. (B4), (B5) and (B6), we get

S(x, y, t) = 1

(dF(z)/dz) z=0

∂w

∂t
(B7)

S(x, y, t) = 1

(dF(z)/dz) z=−h

∂w

∂t
(B8)

By substituting Eqs. (B7) and (B8) in Eq. (B4), theφ

on fluid–plate interfaces (i.e., upper and lower surface
of plate) can be stated as

φ(x, y, z, t) = F(z)

(dF(z)/dz)z=0

∂w

∂t
(B9)

φ(x, y, z, t) = F(z)

(dF(z)/dz)z=−h

∂w

∂t
(B10)

The following differential equation of 2nd order can
be obtained by putting above Eqs. (B9) or (B10) into
Eq. (B1).

d2F(z)

dz2
− μ2F(z) = 0 (B11)

where μ represents wave number, which can be deter-
mined by μ = π

√
1
l21

+ 1
l22
[6]

The general solution for the differential equation
[Eq. (B11)] can be expressed as:

F(z) = Aeμz + Be−μz (B12)

On substituting Eq. (B12) into Eqs. (B9) and (B10),
we get an expression for φ on plate- fluid interface as
shown:

φ(x, y, z, t) = Aeμz + Be−μz

(dF(z)/dz)z=0

∂w

∂t
(B13)

φ(x, y, z, t) = Aeμz + Be−μz

(dF(z)/dz)z=−h

∂w

∂t
(B14)

Here, A and B denote the unknown constants which
can be resolved utilizing two extreme limit conditions
at plate–fluid interface and at fluid extremity surfaces
z = h1 and z = (h + h2).

Assuming the disturbance because of free surface
wave motion of liquid is irrelevant, the accompanying

boundary condition can be applied for velocity poten-
tial at the free surface of liquid [6], see Fig. 4.
(

∂φ

∂z

)

z=h1

= − 1

ga

(
∂2φ

∂t2

)

z=h1

(B15)

where ‘ga’ denotes the gravity acceleration. Substitu-
tion of Eq. (B13) into the above Eqs. (B15) and (B5)
gives the expression for velocity potential φ as,

φ(x, y, z, t) = 1

μ

[
eμz + Ce−μ(z−2h1)

1 − Ce2μh1

]
∂w

∂t
(B16)

where C = gaμ−ω2

gaμ−ω2 and ω represents wave motion fre-
quency at free surface of fluid.

Thefluid pressure acting onplate’s upper surface can
be obtained by substituting above Eq. (B16) of velocity
potential into Eq. (B2) as:

Pu = −ρf

μ

[
1 + Ce2μh1

1 − Ce2μh1

]
∂2w

∂t2
(B17)

The boundary condition at the rigid base of tank repre-
sented in Fig. 5 is referred as null-frequency condition
and can be written as:(

∂φ

∂z

)

z=−(h+h2)
= 0 (B18)

On substituting Eq. (B14) into Eqs. (B18) and (B6),
the expression for φ is obtained as

φ(x, y, z, t) = 1

μ

[
eμz + e−2μ(h+h2)e−μz

e−μh − e−2μ(h+h2)eμh

]
∂w

∂t

(B19)

From Eqs. (B19) and Eq. (B3), the fluid pressure at
plate’s lower surface can be expressed as

Pl = −ρf

μ

[
1 + e−2μh2

1 − e−2μh2

]
∂2w

∂t2
(B20)

The resulting fluid dynamic pressure for the plate
fully submerged in fluid is written as:

�P = Pu − Pl

= −ρf

μ

[
1 + Ce2μh1

1 − Ce2μh1
− 1 + e−2μh2

1 − e−2μh2

]
∂2w

∂t2

(B21)

�P = madd
∂2w

∂t2
(B22)

where madd = −ρf
μ

[
1+Ce2μh1
1−Ce2μh1

− 1+e−2μh2

1−e−2μh2

]
represents

the virtual added mass of submerged plate.
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