
Nonlinear Dyn (2019) 96:1511–1530
https://doi.org/10.1007/s11071-019-04868-z

ORIGINAL PAPER

Time delay improves beneficial performance of a novel
hybrid energy harvester

Tao Yang · Qingjie Cao

Received: 15 August 2018 / Accepted: 26 February 2019 / Published online: 6 March 2019
© Springer Nature B.V. 2019

Abstract The performances of an energy harvester
are usually limited. To improve these, the time-delayed
feedback control is used in a novel nonlinear hybrid
energy harvester for different types of external excita-
tion. Based on the generalized harmonic transforma-
tion, the equivalent uncoupled equation, the vibration
response, the harvested power and stochastic resonance
of the hybrid energy harvester with time-delayed con-
trol are analyzed to obtain the standards for appropriate
values of different control parameters. The response
under harmonic excitation exhibits that time-delayed
feedback control technique can stabilize unstable peri-
odic orbits of the attractor to enhance the output power
of electromechanical systems. For harmonic excitation
or stochastic excitation, the value of the averaging har-
vested power of the system without time-delayed feed-
back control is lower than that of the control system,
which plays a great realistic significance in the choose
of the control parameters for improving the perfor-
mance of the hybrid energy harvester. In case of com-
bined harmonic and stochastic excitations, the time-
delayed feedback control also can enhance stochas-
tic resonance phenomenon, which can lead to a large
response and give out a high output power.
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1 Introduction

Over the past few decades, efficient applications of
nonlinear mechanical oscillators with the wide res-
onance frequency band for energy harvesting (EH)
have drawn increasing attention [1–4]. The wideband
nonlinear mechanical oscillators outperform the lin-
ear counterpart in some aspects due to the fact that
they have the ability of widen the usable bandwidth
of effective operation [5,6]. A common method to
design the wideband nonlinear mechanical oscilla-
tor is to combine a snap-through mechanism, which
could cause large amplitude motion and dramatically
increase power generation. Ramlan et al. [7] showed
that more power is harvested by the nonlinear bistable
snap-through system, especially for frequencies lower
than the resonant frequency. Chirp and band-limited
noise excitations are used to confirm the wideband
characteristic of a piezoelectric snap-through EH [8].
Chen et al. [9,10] revealed snap-through EHs outper-
form the linear under Gaussian white noise excitation.
Yang et al. [11] investigated the efficiency of elec-
tromagnetic vibration EH of the snap-through mech-
anism that considered the gravity subjected to har-
monic and stochastic excitations. Meanwhile, multi-
ple transduction techniques used in a single device are
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another method for harvesting wideband power [12–
14]. These important studies have provided many valu-
able insights, yet little work has been directed toward
multiple transduction techniques in the context of snap-
through EH.

Owing to the drawback of the snap-through EH, a
new model of hybrid energy harvester (HEH) com-
bining piezoelectric and electromagnetic transduction
techniques is proposed in this paper. The proposed
HEH consists of a smooth and discontinuous oscilla-
tor, a lumped mass, a piezoelectric ceramics and two
ring permanent magnets. The smooth and discontinu-
ous oscillator is created by the pair of oblique springs
based on the snap-through mechanism and a verti-
cal linear spring [15,16]. Although the snap-through
mechanism can achieve vibration strengthening over a
broad frequency band, complex dynamic phenomena
including bifurcation phenomenon and unstable peri-
odic orbits embedded within a chaotic attractor could
be induced if the nonlinear mechanical systems are not
designed or controlled properly [17]. Hence, different
control devices are introduced to enhance the stabil-
ity and improve EH effectiveness. In particular, the
effect of time-delayed control must be designed and
utilized to make the controller as effective as possi-
ble [18,19]. It is significant to reveal the regularity of
existence of complex dynamic behaviors for HEHwith
time-delayed feedback control.

Due to the benefits of vibration control performance,
time-delayed control has become very popular among
researchers focusing on feedback control [20–23]. If
time delay is actively used, then the structure can return
to stability at a much faster rate [24,25]. Hu et al.
[26] studied the primary resonance and subharmonic
resonance of a harmonically forced Duffing oscilla-
tor with weak nonlinearity and weak delay feedback.
Nayfeh and Baumann [27] showed that time-delayed
feedback controller undergoes a supercritical bifurca-
tion for practical operating ranges and has a signifi-
cant advantage in container cranes applications. Xu et
al. [28,29] studied the optimum value of time delay
of active control used in a nonlinear isolation system
to improve the system robustness and transmissibility
performance. Yang and Cao [30,31] presented analyt-
ical studies of nonlinear transition dynamics and res-
onances of a stiffness nonlinearities oscillator under
displacement and velocity time-delayed feedback con-
trol. Recently, Karami and Inman [32] have established
a unified approximation method to illustrate the effect
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Fig. 1 Schematic of the piezoelectric and electromagneticHEH.
(Color online)

of electromechanical coupling on the performance of
HEHs, and the influence of time-delayed parameters
on the power output of the class systems is studied in
[33]. The authors in [33] explored the advantages of
time-delayed parameters in vibration EH under har-
monic excitation. In our analysis, this paper performs
a detailed study of time-delayed feedback for control
of the novel HEH.

The rest of the paper is organized as follows. In
Sect. 2, we present the model with time-delayed feed-
back control of HEH combining piezoelectric and elec-
tromagnetic transduction. Section 3 derives the har-
vested power and equivalent equation of the HEH. The
nonlinear dynamic characteristics and broadband EH
characteristics of such a HEH under different types
of external excitation are briefly analyzed in Sect. 4.
Finally, some conclusions are drawn in Sect. 5.

2 Hybrid energy harvester with time delay

The proposed HEH is illustrated in Fig. 1 depending on
the designed of snap-throughmechanism. It consists of
a smooth and discontinuous oscillator, a lumped mass
M , a piezoelectric ceramics and two ring permanent
magnets. The smooth and discontinuous oscillator is
created by the pair of oblique springs and a vertical
linear spring. The deformation of the springs induced
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Fig. 2 a Representative mechanical schematic of the HEH with time-delayed feedback control. b Equivalent coupled circuit for
piezoelectric element. c Equivalent circuit for electromagnetic element. (Color online)

the electrical field across the piezoelectric ceramics.
The ring permanent magnets produce a radial magnetic
field Be, and a cylindrical coil connected to the rigid
housing moves up and down to cut the magnetic induc-
tion lines. The energy harvester generates power from
piezoelectric and electromagnetic transducers, which
is referred to as a HEH. The piezoelectric and electro-
magnetic transducers are connected to separate external
resistors, R and Rv , respectively.

Using the Newton’s law and Kirchhoff’s law, the
coupled equations governing the system mechanical
states, the electric current and electric voltage are writ-
ten as

Mẍ + Cẋ + dU (x)

dx
+ Be Ī Lc + κ V̄

= − Mÿ + F(xδ, ẋδ), (1a)

BeLcẋ = Li
˙̄I + (R + Rc) Ī , (1b)

κ ẋ = Cp
˙̄V + V̄

Rv

, (1c)

where C means the coefficient of viscous damping; x ,
Lc and Ī are the displacement, the length of the coil and
the current that flows in the coil, respectively; Li and
Rc are the inductance and resistance of the coil, and κ

is a linear electromechanical coupling coefficient; V̄ is
the voltage measured across Rv;Cp is the piezoelectric
capacitance; ÿ is the input base excitation.

The control signal, in Fig. 2a, is set as F(xδ, ẋδ) =
Λ1x(T − δ) + Λ2 ẋ(T − δ), where Λ1 and Λ2 are
displacement and velocity feedback intensities and δ is
the feedback time delay. The restoring force potential
of the mechanical oscillator can be expressed as

U (x) = 1

2
(Kv + 2Kh)x

2 − 2KhL
√
x2 + l2, (2)

where Kh and Kv are the stiffness of the springs; L is
the free length of oblique springs; l is the length of the
oblique spring compressed in the horizontal direction.

The non-dimensional form of Eq. (1) can be derived
as

q̈ + cq̇ + q + rq

(

1 − 1
√
q2 + α2

)

+ θ I + ρV

= z̈ + g1q(t − τ) + g2q̇(t − τ), (3a)

νq̇ = İ + μI, (3b)

γ q̇ = V̇ + λV, (3c)

by letting q = x/L , z = −y/L , α = l/L , r =
ω2
2/ω

2
1, t =ω1T, ω2

1 = Kv/M, ω2
2 = 2Kh/M, c = C/

(Mω1), I = Ī/L , θ = BeLc/(Mω2
1), μ = (R + Rc)/

Li , ν = BeLcω1/Li , V = V̄ /L , ρ = κ/(Mω2
1), λ =

1/(CpRvω1), γ = κ/Cp, g1 = Λ1/(Mω2
1), g2 =

Λ2/(Mω1), τ = ω1δ. Here, ω1 represents the natu-
ral frequency of the associated linear mechanical sys-
tem, c is the non-dimensional damping coefficient, r
is the non-dimensional nonlinear stiffness coefficient,
α is the non-dimensional geometric coefficient, ρ and
θ are the linear dimensionless electromechanical cou-
pling coefficients, and μ is the ratio between the resis-
tance and inductance constants of the harvester. ν is the
electromagnetic coupling term in the electrical equa-
tion, λ is the reciprocal of the time constant of the
resistive–capacitive circuit, γ is the piezoelectric cou-
pling term in the electrical equation, g1 and g2 are non-
dimensional displacement and velocity feedback inten-
sities, τ is the non-dimensional feedback time delay,
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Table 1 Parameters and symbols of the HEH

Parameters Symbols

Nonlinear stiffness coefficient r

Linear damping coefficient c

Electromechanical coupling coefficients θ, ρ

Resistance–inductance ratio μ

Electromagnetic coupling term ν

Time constant reciprocal λ

Piezoelectric coupling term γ

Natural frequency ω

Geometric coefficient α

Displacement feedback control intensity g1

Velocity feedback control intensity g2

Time delay τ

Environmental base excitation z̈

Displacement amplitude Q

Amplitude of harmonic excitation a

Noise intensity D

Averaging harvested power Pave, est[P]
Probability density pst(Q)

Signal–noise ratio SNR

and z̈ is the input base excitation. The symbols of geo-
metric andphysical parameters are presented inTable 1.
The parameters are set as r = 1, c = 0.15, θ = 0.9,
ρ = 0.8, μ = 0.5, ν = 0.4, λ = 0.5, γ = 0.6, unless
otherwise stated.

3 The harvested power and equivalent system

This section is devoted to derive the harvested power
and equivalent equation of the HEH with time-delayed
feedback control. The total harvested power P(t)
is one of the most important features of the HEH.
Based on the magnetic and piezoelectric circuits, the
non-dimensional harvested powers can be derived as
Pc(t) = μθ I 2(t) and Pv(t) = λρV 2(t). In order to
derive the harvested power and equivalent equation,
the impact of the magnetic and piezoelectric circuits
on the mechanical system should be firstly determined,
i.e., establishing the explicit expressions of the electric
current and voltage to the mechanical states.

Compared to the system states, the displacement
amplitude Q, frequency ω, mechanical energy H and
initial phaseΘ(t) are all slow-varying processes. Using

the generalized harmonic transformation [34,35], the
system displacement and velocity can be expressed
as:

q(t) = Q(t) cosφ(t), (4a)

q̇(t) = −Q(t)ω(Q, φ) sin φ(t), (4b)

φ(t) = ψ(t) + Θ(t), (4c)

ω(Q, φ) = dψ(t)/dt. (4d)

After harmonic transformation, the motions with time
delay take the form

q(t − τ) = Q cos[ω(Q, φ)(t − τ) + Θ(t)]
= q(t) cos[ω(Q, φ)τ ]−q̇(t)

sin[ω(Q, φ)τ ]
ω(Q, φ)

,

(5a)

q̇(t − τ) = −Qω(Q, φ) sin[ω(Q, φ)(t − τ) + Θ(t)]
= q(t)ω(Q, φ) sin[ω(Q, φ)τ ]

+ q̇(t) cos[ω(Q, φ)τ ]. (5b)

Integrating Eqs. (3b) and (3c) yields the following
explicit expressions of the electric current and voltage

I (t) = A1e
−λ1t+

∫ t

0
e−λ1t q̇(ts)dts, V (t)= A2e

−λ2t

+
∫ t

0
e−λ2t q̇(ts)dts, (6)

where the general solutions A1e−λ1t and A2e−λ2t are
unknown functions and have negligible influence on
the stationary response due to the exponential decay
nature. Through the integration by parts and the vari-
able transformation s = t − ts , Eq. (6) can be approx-
imated by

I (t) ≈
∫ t

0
e−λ1t q̇(t − s)ds, V (t) ≈

∫ t

0
e−λ2t q̇(t − s)ds.

(7)

Through the relation in Eq. (5b), q̇(t−s) can be approx-
imated as:

q̇(t − s) = q(t)ω(Q, φ) sin[ω(Q, φ)s]
+ q̇(t) cos[ω(Q, φ)s]. (8)

SubstitutingEq. (8) intoEq. (7) and vanishing the expo-
nential decay terms, one obtains

I (t) ≈νω2(Q, φ)

μ2 + ω2 q(t) + νμ

μ2 + ω2(Q, φ)
q̇(t)
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Fig. 3 The equivalent
restoring force potential
U (q) as a function of
displacement q for different
values of geometric
coefficient α and time delay
τ . The parameters are a
g1 = 0, g2 = 0, τ = 0, b
g1 = −0.3, g2 = 0.1, α =
0.2. (Color online)

Displacement

-0.2

0

0.2

0.4

0.6

Po
te

nt
ia

l =0.1
=0.3
=0.5
=0.7

r=0.0

-0.5 0 0.5 -0.5 0 0.5
Displacement

-0.2

-0.15

-0.1

-0.05

Po
te

nt
ia

l

=0.5
=1.0
=1.4
=2.0

(a) (b)

=Q(t)νω(Q, φ)

μ2+ω2(Q, φ)
[ω(Q, φ) cosφ(t)−μ sin φ(t)],

(9a)

V (t) ≈γω2(Q, φ)

λ2 + ω2 q(t) + γ λ

λ2 + ω2(Q, φ)
q̇(t)

=Q(t)γω(Q, φ)

λ2+ω2(Q, φ)
[ω(Q, φ) cosφ(t)−λ sin φ(t)].

(9b)

Owing to

ω(Q, φ) cosφ(t) − μ sin φ(t)

=
√

μ2 + ω2(Q, φ) cos

[
φ(t) + tan−1 μ

ω(Q, φ)

]
,

(10)

the relationship between the displacement amplitude
Q(t), steady-state current amplitude Qc(t) and electric
voltage amplitude Qv(t) can be written as

Qc(t) = νω(Q, φ)
√

μ2 + ω2(Q, φ)
Q(t),

Qv(t) = γω(Q, φ)
√

λ2 + ω2(Q, φ)
Q(t). (11)

Therefore, the total harvested power P(t) can be
expressed as

P(t) = μθ I 2(t) + λρV 2(t)

= μθ

[
νω(Q, φ)

√
μ2 + ω2(Q, φ)

Q(t)

]2

+ λρ

[
γω(Q, φ)

√
λ2 + ω2(Q, φ)

Q(t)

]2
. (12)

Substituting Eqs. (5) and (9) into the mechanical
Eq. (3a) leads to the following equivalent uncoupled
mechanical equation

q̈ + (c + ε + ζ )q̇ + (1 + η + β)q

+ rq

(

1 − 1
√
q2 + α2

)

= z̈, (13)

where

ε = θνμ

μ2 + ω2(Q, φ)
+ ργλ

λ2 + ω2(Q, φ)
, (14a)

η = θνω2(Q, φ)

μ2 + ω2(Q, φ)
+ ργω2(Q, φ)

λ2 + ω2(Q, φ)
, (14b)

ζ = g1
sin[ω(Q, φ)τ ]

ω(Q, φ)
− g2 cos[ω(Q, φ)τ ], (14c)

β = − g1 cos[ω(Q, φ)τ ] − g2ω(Q, φ) sin[ω(Q, φ)τ ].
(14d)

It is obvious that the impacts of the external circuits
and time-delayed feedback control on the mechanical
system are equivalent to damping with ε, ζ , and stiff-
nesswith η,β. The equivalent damping coefficient with
time delay is c + ε + ζ , while the equivalent restoring
force potential with time delay can be expressed as

U (q) = 1

2
(1+η+β+r)(q2+α2)−r

√
q2 + α2. (15)
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Fig. 4 Phase trajectories of
the HEH for different
control parameters g1, g2
and τ . The parameters are
α = 0.2, a = 0.2, ω = 1.1,
a–c g2 = 0.1, τ = 1, d–f
g1 = −0.3, τ = 1, g–i
g1 = −0.3, g2 = 0.1.
(Color online)
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As shown in Fig. 3a, HEHs can now be classified
into three major categories based on the shape of their
potential energy function. The hybrid harvester is lin-
ear mono-stable when r = 0, nonlinear mono-stable
when α ≥ 0.5 and r = 1, and nonlinear bistable when
α < 0.5 and r = 1. Figure 3b shows the impact of time
delay τ on the potential energy.

The equivalent uncoupled mechanical Eq. (13) can
be rewritten in the following form as a two-variable
dynamical system

⎧
⎪⎪⎨

⎪⎪⎩

q̇ = �,

�̇ = − (c + ε + ζ ) � − (1 + η + β) q

− rq

(
1 − 1√

q2+α2

)
+ z̈.

(16)

Without excitations and damping, the equilibria of the
system (16) can be written as

q1,2 = ±
√
r2 (1 + η + β + r)−2 − α2 (stable),

qu = 0 (unstable). (17)

By linearizing Eq. (16) at the three singular points
Qs1(q1, 0), Qs2(q2, 0) and Qu(qu, 0), we have the
eigenvalues of the characteristic equation:

⎧
⎨

⎩
ι1,2 = ±

√
− (1+η+β+r)+(1 + η + β + r)3 α2

r2
,

σ1,2 = ±
√

− (1 + η + β + r) + r
α
.

(18)

The effects of time-delayed feedback on EH dynamics
of the HEH are discussed in the following sections for
different types of external excitation.
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4 Role of time-delayed feedback control on EH
dynamics

4.1 The case of harmonic excitation

In this part, we consider a harmonic excitation z̈ =
a cos(ωt), where a andω denote the amplitude and fre-
quency of the harmonic excitation force, respectively.
Numerical simulation and theoretical analysis are car-
ried out to investigate the dynamical responses of the
HEH under base excitation. For numerical analysis, the
governing equations (3) are solved by the Runge–Kutta
method, and the geometric and physical parameters
used are listed in Table 1.

4.1.1 Analysis in the time domain

The phase trajectories of the HEH for different con-
trol parameters g1, g2 and τ are presented in Fig. 4
with α = 0.2, a = 0.2, ω = 1.1. The response is at
period-1 for g1 = −0.3, g2 = 0.1, 0.2, 0.3 and τ = 1
[see Fig. 4c–g]. Then, the response turns to be unstable
periodic attractors for g1 = −0.1,−0.2 and τ = 1.5, 2
[see Fig. 4a, b, h and i], under which electromechanical
system produces a lower power output.

With the geometric and physical parameters listed
in Table 1 and α = 0.2, a = 0.2, ω = 1.1, we can
obtain the harvested voltage histories and phase tra-
jectories of the HEH for different control parameters
g1, g2 and τ . As shown in Figs. 5, 6 and 7, when
the uncontrolled HEH is driven by harmonic excita-
tion force, the system exhibits two unstable periodic
attractors between the two potential wells and yields
the unstable periodic voltage histories, and unstable
periodic displacement and velocity. This leads to two
low-energy intrawellmotions and small harvesting out-
put voltage and current, displacement, and velocity. EH
system exhibits unstable periodic attractor has been
observed, and experimental validation is carried out
to compare and analyze the efficiencies of energy gen-
eration [36]. For the controlled HEH, the system oscil-
lates exhibits a high-energy interwell motionwith large
amplitude periodic oscillation, leading to significant
increases in the displacement, velocity and harvested
voltage, as shown in Figs. 5, 6 and 7 for different con-
trol parameters g1, g2 and τ . The results from Figs. 5, 6
and 7 also indicate the time-delayed feedback control
technique that allows one to stabilize unstable peri-
odic orbits of the attractor. Stabilizing unstable peri-

odic orbits of dynamical systems using time-delayed
feedback control has been shown in different nonlinear
systems [37–41]; however. here stabilization effects of
time delay on the unstable periodic attractorswill effec-
tively enhance the output power of electromechanical
systems.

4.1.2 Analysis in the frequency domain

In this subsection, the amplitude–frequency response
characteristicswill be derived by the averagingmethod.
Based on the generalized harmonic transformation in
equations (4), the HEH (3) will be transformed into the
following equations:

{
Q̇(t) = − 1

ω
Λ(Q,Θ) sin(ωt + Θ),

Θ̇(t) = − 1
Qω

Λ(Q,Θ) cos(ωt + Θ),
(19)

where

Λ(Q,Θ) = Qω2 cos(ωt + Θ)

+ (c + ε + ζ ) Qω sin(ωt + Θ)

− (1 + η + β + r)b cos(ωt + Θ)

+ r Q cos(ωt + Θ)
√
Q2 cos2(ωt + Θ) + α2

+ a cos(ωt).

(20)

Over a period of oscillations from 0 to 2π , we obtain
the following averaging equations for the amplitude Q
and phase Θ

⎧
⎪⎪⎨

⎪⎪⎩

Q̇ = − 1
2ω [Qω(c + ε + ζ ) + a sinΘ] ,

Θ̇ = − 1
2Qω

[
− Q(1 + η + β + r)

+ Qω2 + a cosΘ + Qr
π

Γ (Q)
]
.

(21)

where

Γ (Q) =
∫ 2π

0

cos2(ωt + Θ)
√
Q2 cos2(ωt + Θ) + α2

d(ωt + Θ)

= 4

Q2

⎡

⎣
√
Q2 + α2EllipticE

⎛

⎝

√
Q2

Q2 + α2

⎞

⎠

− α2
√
Q2 + α2

EllipticK

⎛

⎝

√
Q2

Q2 + α2

⎞

⎠

⎤

⎦ .

(22)

EllipticK(∗) andEllipticE(∗) denote the complete ellip-
tic integral of the first kind and the second kind with
their elliptic modulus ∗, respectively.
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Fig. 5 Harvested voltage
histories (left column) and
phase trajectories (right
column) of the HEH for
different displacement
feedback control intensity
g1. Purple lines from the
uncontrolled system. The
parameters are α = 0.2,
a = 0.2, ω = 1.0, g2 = 0.1,
τ = 1. (Color online)
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Let Q̇ = 0 and Θ̇ = 0, and the terms of sinΘ and
cosΘ can be solved. With sin2 Θ + cos2 Θ = 1, the
averaging amplitude–frequency response relationship
under different time-delayed feedback parameters is
derived as the following formula:

[Qω(c + ε + ζ )]2

+
[
−Q(1+η+β+r)+Qω2 + Qr

π
Γ (Q)

]2
= a2.

(23)

With the constraints of Eq. (12), the dimensionless
total averaging harvested power can then be obtained
as

Pave = μθ I 2ave + λρV 2
ave = μθ

(
νω

√
μ2 + ω2

Qave

)2

+ λρ

(
γω√

λ2 + ω2
Qave

)2
, (24)

where Qave is the amplitude of Q(t) solved from
Eq. (23).

With the geometric and physical parameters listed in
Table 1 and α = 0.4, a = 0.2 , the effects of different

control parameters g1, g2 and τ on frequency responses
of the HEH have been investigated as shown in Figs. 8
and 11, respectively.

Figure 8 shows a typical amplitude–frequency res-
ponse curve for the nonlinear bistable EH system. Ω1

andΩ2 represent the jump-up and jump-down frequen-
cies. The maximum amplitude response is depicted
by Qm , and the frequency when the maximum ampli-
tude response occurs is given by Ωm . When the dis-
placement feedback intensity g1 increases, the maxi-
mum amplitude Qm in resonant regime increases, the
primary resonance phenomenon is enhanced, and the
frequency of the maximum amplitude response shifts
toward higher frequency [see Fig. 8a]. The effect of
velocity feedback intensity g2 and time delay τ on
amplitude–frequency is plotted in Fig. 8b, c. The max-
imum amplitude Qm in resonant regime decreases and
the frequency of the maximum amplitude response
shifts toward lower frequency, the primary resonance
phenomenon is weakened when g2 and τ increase.

Figure 8 also shows that the maximum response
amplitudes in resonant regime are increased compared
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Fig. 6 Harvested voltage
histories (left column) and
phase trajectories (right
column) of the HEH for
different velocity feedback
control intensity g2. Purple
lines from the uncontrolled
system. The parameters are
α = 0.2, a = 0.2, ω = 1.0,
g1 = −0.3, τ = 1. (Color
online)
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to that of the uncontrolled HEH.We note that the maxi-
mal harvested power depends on the amplitude, and the
corresponding amplitude of the displacement is propor-
tional to the amplitude. Namely, increasing the control
parameters is advantageous to strengthen the vibrations
in resonant regime, where vibrational EH is needed.

Similarly, the variations of the total averaging har-
vested voltage of the nonlinear bistable HEH versus the
excitation frequency are presented in Fig. 9 for differ-
ent control parameters g1, g2 and τ . The results show
that the performance of the nonlinear bistable HEH is
also improved in the presence of time-delayed feedback
control.

We calculated the total averaging harvested power of
the nonlinear bistable HEH for different control param-
eters g1, g2 and τ , as shown in Fig. 10. The maxi-
mum amplitude Qm increases with increase in g1 and
decreases with increase in g2 and τ as shown in Fig. 8,
and the maximum total averaging harvested power is
almost same for all cases of amplitude response. The
maximum total averaging harvested power of the sys-
tem without time-delayed feedback control is lower

than that of the control system. We can also observe
that more power is harvested by the HEH, especially
for frequencies lower than the resonant frequency.

Finally, the variations of the total averaging har-
vested power of the nonlinear bistable HEH for dif-
ferent control parameters compared to the case of lin-
ear mono-stable HEH are shown in Fig. 11. It can be
seen that themaximum total averaging harvested power
at the resonant frequency for the nonlinear system is
larger than that of the linear system for different con-
trol parameters. In other words, the nonlinear bistable
HEH can outperform the linear mono-stable harvester.
Meanwhile, the time-delayed feedback control is also
effective for improving the EH performance of linear
system.

4.2 The case of stochastic excitation

A comprehensive analysis of a real HEH must take
account of environmental fluctuations, which always
affect the system by changing its dynamic regime.

123



1520 T. Yang, Q. Cao

Fig. 7 Harvested voltage
histories (left column) and
phase trajectories (right
column) of the HEH for
different time delay τ .
Purple lines from the
uncontrolled system. The
parameters are α = 0.2,
a = 0.2, ω = 1.0,
g1 = −0.3, g2 = 0.1.
(Color online)
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Thus, the deterministic HEH (3) must be modified
by considering the presence of stochastic excitation,
i.e., z̈ = ξ(t), which can be modeled by a Gaussian
white noise process with a very small correlation time.
The stochastic excitation ξ(t) is therefore character-
ized by the well-known statistical properties, such as
〈ξ(t)〉 = 0,

〈
ξ(t)ξ(t ′)

〉 = 2Dδ(t − t ′), where 〈∗〉
denotes the expected value, D is the intensity of Gaus-
sian white noise, and δ is the Dirac-delta function.

4.2.1 Steady-state response

When the excitation is set as z̈ = ξ(t), the solutions of
the HEH (3) with time-delayed feedback control for
different parameters are solved by the stochastic aver-
aging method [34,35]. After dimensionless transfer as
Eq. (4), the equivalent uncoupled Eq. (13) can be writ-
ten as

Q̇(t) = Π1(Q, φ, t) + ς1(Q, φ, t)ξ(t), (25)

Θ̇(t) = Π2(Q, φ, t) + ς2(Q, φ, t)ξ(t), (26)

where Π1,2 and ς1,2 are given by

Π1(Q, φ, t) = 1

ω

[
(c + ε + ζ ) Qω sin2 φ

− (1 + η + β + r)b cosφ sin φ

+ r Q cosφ sin φ
√
Q2 cos2 φ + α2

]

, (27)

Π2(Q, φ, t) = 1

Qω
[(c + ε + ζ ) Qω sin φ cosφ

− (1 + η + β + r)b cos2 φ

+ r Q cos2 φ
√
Q2 cos2 φ + α2

]

, (28)

ς1(Q, φ, t) = − sin φ

ω
, (29)

ς2(Q, φ, t) = −cosφ

Qω
. (30)

Based on the theorem proposed by Khasminskii
[42], (Q,Θ) can be considered as two-dimensional dif-
fusive Markov processes approximately. Then, the Itô
stochastic differential equations of (25) and (26) are in
the form
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Fig. 8 Amplitude–
frequency responses of the
HEH for different control
parameters g1, g2 and τ .
The parameters are α = 0.4,
a = 0.2, a g2 = 0.1, τ = 1,
b g1 = −0.3, τ = 1, c
g1 = −0.3, g2 = 0.1.
(Color online)
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Qm

dQ(t) = a1(Q, φ, t) + b1(Q, φ, t)dW (t), (31)

dΘ = a2(Q, φ, t) + b2(Q, φ, t)dW (t), (32)

where

a1(Q, φ, t) = Π1(Q, φ, t) + 1

2
b1

∂b1
∂Q

+ 1

2
b2

∂b1
∂φ

,

a2(Q, φ, t) = Π2(Q, φ, t) + 1

2
b1

∂b2
∂Q

+ 1

2
b2

∂b2
∂φ

,

b1(Q, φ, t) =
√
2Dς2

1 (Q, φ, t),

b2(Q, φ, t) =
√
2Dς2

2 (Q, φ, t),

and the standard Wiener process W (t) is the diffusion
process with a null drift coefficient and a unit diffusion
coefficient.

By applying the stochastic averaging method to
Eqs. (31) and (32), we can obtain the following stochas-
tic equations:

ā1(Q) = 1

2π

∫ 2π

0
a1(Q, φ, t)dφ,

ā2(Q) = 1

2π

∫ 2π

0
a2(Q, φ, t)dφ,

b̄1(Q) =
√

1

2π

∫ 2π

0
b21(Q, φ, t)dφ,

b̄2(Q) =
√

1

2π

∫ 2π

0
b22(Q, φ, t)dφ.

Then, the Fokker–Planck–Kolmogorov equation of
the amplitude Q corresponding to Eq. (31) can be given
by [43]
∂p(Q, t)

∂t
= − ∂

∂Q
[ā1(Q)] p(Q, t)

+1

2

∂2

∂Q2

[
b̄21(Q)p(Q, t)

]
, (33)

where p(Q, t) is the transition probability density
function of displacement amplitude Q, ā1(Q) =
(c+ε+ζ )

2 Q − D
2Q , b̄

2
1(Q) = D. The initial condition

of Eq. (33) is taken as p = δ(a − a0), t = 0. Thus, the
stationary solution of Eq. (33) for HEH (3) considering
the presence of stochastic excitation is the following
form:
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Fig. 9 Harvested
voltage–frequency response
of the HEH for different
control parameters g1, g2
and τ . The parameters are
α = 0.4, a = 0.2, a
g2 = 0.1, τ = 1, b
g1 = −0.3, τ = 1, c
g1 = −0.3, g2 = 0.1.
(Color online)
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pst(Q) = N exp

[
− (c + ε + ζ )

Q2

2D
+ 1

2
ln Q

]
.

(34)

where pst(Q) is the stationary probability density func-
tion of displacement amplitude Q and N is a normaliza-
tion constant. Then, the stationary averaging amplitude
est[Q] can be obtained as follows:

est[Q] =
∫ +∞

0
Qpst(Q)dQ. (35)

With the geometric and physical parameters listed
in Table 1, the effects of different control parameters
g1, g2, τ and noise intensity D on the stationary proba-
bility density pst(Q) of the displacement amplitude Q
can be seen in Fig. 12 through Eq. (34), respectively.
It is observed from Fig. 12 that the stationary proba-
bility density as a function of displacement amplitude
Q exhibits one peak. In all cases in Fig. 12, the peak
of the probability distribution of the system without
time-delayed feedback control is higher than that of
the control system. When the noise intensity D is fixed

to 0.1, with increase in the values of g1 and g2, the peak
becomes lower and the position of the peak shifts to a
larger value of displacement amplitude Q [see Fig. 12a,
b]. On the contrary, the peak becomes higher and the
position of the peak shifts to a smaller value of dis-
placement amplitude Q with increasing time delay τ ,
as shown in Fig. 12c. When the control parameters g1,
g2 and τ are fixed, the peak becomes lower and the posi-
tion of the peak shifts to a larger value of displacement
amplitude Q with increasing noise intensity D.

In order to get a deep understanding of the observed
dynamics and the influences of different control param-
eters g1, g2, τ and noise intensity D, we can compute
the stationary averaging amplitude est[Q]. In all cases
in Fig. 13, the stationary averaging amplitude est[Q]
increases with increasing noise intensity D, leading
to the higher response of the system, which is very
beneficial to the improvement of EH performance. In
Fig. 13a, b, the stationary averaging amplitude est[Q]
increases as the values of g1 and g2 increase. However,
the stationary averaging amplitude est[Q] decreases as
the values of τ increase.
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Fig. 10 Harvested
power–frequency response
of the HEH for different
control parameters g1, g2
and τ . The parameters are
α = 0.4, a = 0.2, a
g2 = 0.1, τ = 1, b
g1 = −0.3, τ = 1, c
g1 = −0.3, g2 = 0.1.
(Color online)
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4.2.2 Averaging harvested power

Through the relation in Eq. (11), the averaging square
values of the electric current and voltage take the fol-
lowing general from:

est[I 2] = est[Q2
c] = ν2

μ2 + 1
est[Q2]

= ν2

μ2 + 1

∫ +∞

0
Q2 pst(Q)dQ, (36)

est[V 2] = est[Q2
v] = γ 2

λ2 + 1
est[Q2]

= γ 2

λ2 + 1

∫ +∞

0
Q2 pst(Q)dQ. (37)

Thus, the total stationary averaging harvested power
can be expression as

est[P] = est[Pc] + est[Pv] = μθest[I 2] + λρest[V 2].
(38)

To measure the averaging harvested power obtained
in (38), the effects of different control parameters g1,
g2, τ and noise intensity D on the performance of
the HEH are illustrated in Fig. 14. In all cases in
Fig. 14, it is seen that the averaging harvested power
est[P] increases with the increase in noise intensity
D. The increase in averaging harvested power present
in Fig. 14 has been observed in other different types
of energy harvester under stochastic excitation [9–
11,44,45]. Meanwhile, the value of the averaging har-
vested power est[P]of the systemwithout time-delayed
feedback control is lower than that of the control sys-
tem, which plays a great realistic significance in the
choose of the control parameters for improving the
performance of the HEH. In Fig. 14a, b, the averag-
ing harvested power est[P] increases as the values of
g1 and g2 increase. However, the averaging harvested
power est[P] decreases as the values of τ increase. The
above results also indicate that the time-delayed feed-
back control is effective for improving the performance
of the HEH under stochastic excitation.
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Fig. 11 Harvested
power–frequency response
of the HEH for different
control parameters g1, g2
and τ . The parameters are
r = 1, α = 0.4 for
nonlinear system, r = 0 for
linear system, a = 0.2, a
g2 = 0.1, τ = 2, b
g1 = −0.1, τ = 2, c
g1 = −0.1, g2 = 0.1.
(Color online)
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4.3 The case of combined harmonic and stochastic
excitations

In the above study, the HEH is a nonlinear bistable
system driven by a harvestable harmonic or stochas-
tic excitation. In addition, to analyze in more detail the
effect of the excitations on the performance ofHEH,we
will consider the simultaneous action of harmonic and
stochastic excitations, i.e., z̈ = a cos(ωt) + ξ(t), for
the HEH located in certain zone. Therefore, three basic
ingredients are simultaneously satisfied: (i) nonlinear
bistable systemwith a double potential, (ii) aweak peri-
odic signal a cos(ωt) and (iii) an inherent noise ξ(t).
Stochastic resonance is a major physical phenomenon
for meeting these conditions, which should be sought
for the application to improve vibrational EH.

4.3.1 Stochastic resonance for EH strategy

To quantitatively characterize the stochastic resonance
for EH, one can calculate the signal-to-noise ratio
(SNR) using the output power spectra of the signal
S1(ω̄d) and the output power spectra of noise S2(ω̄d)

[46]. To do so, the output SNR of the HEH can be
defined as the ratio of the output power spectra:

SNR =
∫∞
0 S1(ω̄d)dω̄d

S2(ω̄d = ω)
. (39)

In order to get the expression of the SNR, one can
firstly calculate the mean escape time (MET1,2) of the
process q(t) to reach the state q1,2 with initial condition
q2,1. Applying the steepest descent method [47], the
MET1,2 is given by the Kramers-like formula
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Fig. 12 The stationary
probability density pst(Q)

of amplitude Q for different
control parameters g1, g2, τ
and noise intensity D. The
parameters are ω = 1.0, a
g2 = 0.1, τ = 1, D = 0.1,
b g1 = −0.3, τ = 1, D =
0.1, c g1 = −0.3, g2 =
0.1, D = 0.1, d g1 =
−0.3, g2 = 0.1, τ = 1.
(Color online)
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Fig. 13 The stationary
averaging amplitude est[Q]
as a function of noise
intensity D for different
control parameters g1, g2
and τ . The parameters are
ω = 1.0, a
g2 = 0.1, τ = 1.5, b
g1 = −0.3, τ = 1.5, c
g1 = −0.3, g2 = 0.1.
(Color online)
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Fig. 14 The averaging
harvested power est[P] as a
function of noise intensity
D for different control
parameters g1, g2 and τ .
The parameters are ω = 1.0,
a g2 = 0.1, τ = 1.5, b
g1 = −0.3, τ = 1.5, c
g1 = −0.3, g2 = 0.1.
(Color online)
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MET1,2 = METq2,1→q1,2

= 2π√
ι1ι2

√
−σ2

σ1
exp
[
Ue(qu, t) −Ue(q1,2, t)

]
,

(40)

whereUe(q, t) is the effective potential energy function
and ι1,2 and σ1,2 are given by Eq. (18), respectively.
When the HEH (3) is under the simultaneous action
of harmonic and stochastic excitations, the effective
potential energy Ue(q, t) can be solved as

Ue(q, t) = 1

D
(c + ε + ζ )

[
1

2
� 2 + 1

2
(1 + η + β + r) q2

− r
√
q2 + α2 − qa cos(ωt)

]
. (41)

In addition, the mean escape time MET1,2 ulti-
mately leads to the escape rate ER1,2 for ER1,2 =
1/MET1,2. Substituting Eq. (41) into Eq. (40), the
escape rate ER1,2 can be further obtained as:

ER1,2 =
√

ι1ι2

2π

√
−σ1

σ2

exp

[
Υ1

(
Υ2q

2
1,2 − r

√
q21,2 + α2

− q1,2a cos(ωt) − rα

)]
, (42)

with

Υ1 = 1

D
(c + ε + ζ ) , Υ2 = 1

2
(1 + η + β + r) .

(43)

Equation (42) can be expanded using a Taylor series
as:

ER1,2 = ER0

[
1 ∓ q1,2a cos(ωt) + 1

2
q21,2a

2 cos2(ωt) ± · · ·
]

,

(44)

where

ER0 =
√

ι1ι2

2π

√
−σ1

σ2

exp

[
Υ1

(
Υ2|q1,2|2−r

√
|q1,2|2+α2 − rα

)]
.

(45)
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Fig. 15 The output SNR as
a function of noise intensity
D for different control
parameters g1, g2 and τ .
The parameters are a = 0.2,
ω = 1.0, a
g2 = 0.2, τ = 1.5, b
g1 = −0.3, τ = 1.5, c
g1 = −0.3, g2 = 0.2.
(Color online)
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Fig. 16 The output SNR as
a function of noise intensity
D for different harmonic
excitation parameters a and
ω. The parameters are
α = 0.3, g1 = −0.2, g2 =
0.2, τ = 1.5. (Color online)
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Subsequently, the output spectrum of system can be
expressed as S(ω̄d) = S1(ω̄d) + S2(ω̄d). One defines
ER1Ξ = ER0Υ1|x1,2|a. Then, S1(ω̄d) and S2(ω̄d) can
be written as

⎧
⎪⎪⎨

⎪⎪⎩

S1(ω̄d) = πq21,2(ER1Ξ)2

2(ER2
0+ω2)

[δ(ω̄d − ω) + δ(ω̄d + ω)],

S2(ω̄d) =
[
1 − (ER1Ξ)2

2(ER2
0+ω2)

]
2q21,2ER0

ER2
0+ω̄2

d
.

(46)

Thus, the output SNR can be finally obtained as:

SNR = π(ER0Υ1|q1,2|a)2(ER2
0 + ω2)

4ER0(ER2
0 + ω2) − 2ER0D2(ER0Υ1|q1,2|a)2

.

(47)

The occurrence of the stochastic resonance is defined
as the ratio of the peak height of the power spectral
intensity to the height of the noisy background at the
same frequency. Given its nature, stochastic resonance
appears very suitable for the current application as ran-
dom and periodic vibrations often exist simultaneously
in HEHs.

4.3.2 Delay-enhanced stochastic resonance strategy

For the HEH proposed in this paper, the snap-through
mechanism creates the double-well potential neces-
sary for stochastic resonance. When excited by har-
monic and stochastic excitation, the lumped mass will
undergo large amplitude vibration due to stochastic
resonance with transitions between the two potential
wells. For improving the performance of energy har-
vester, the phenomena of stochastic resonance have
been used efficiently [48–50], but the development of
practical methods for the precise control of stochastic
resonance is a further challenge to overcome. To over-
come this, we propose a novel EH strategy that par-
ticularly suits bistable or multistable energy harvester,
which takes advantage of stochastic resonance by using
time-delayed feedback control.

By virtue of the expressions of the output SNR (47),
the resulting dependence of the output SNR on noise
intensity D is presented in Fig. 15 for different control
parameters g1, g2, τ . There exhibits a maximum in the
output SNR,which is the so-called stochastic resonance
phenomenon [46,51,52]. In Fig. 15a, the maximum of

the output SNR decreases as the value of g1 increases.
However, the maximum of the output SNR increases
as the value of g2 or τ increases, as shown in Fig. 15b,
c. That is, time-delayed feedback control can enhance
stochastic resonance phenomenon, which is beneficial
for improving the performance of HEH.

For the control parameters that are fixed, Fig. 16
shows the output SNR as a function of noise inten-
sity D for different harmonic excitation parameters a
and ω. From Fig. 16, it can be seen that the stochas-
tic resonance phenomenon of the system without time-
delayed feedback control is weaker than that of the
control system, in three different cases of harmonic
excitation parameters a and ω. Consequently, the con-
trol is beneficial for increasing amplitude, which has
significant applications in many fields of EH. The phe-
nomena of delay-enhanced stochastic resonance have
been shown in other nonlinear systems; however, here
the delay-enhanced stochastic resonance strategy exists
in the HEH. It should be noted that experiments have
validated that active power can be increased at stochas-
tic resonance [53,54], showing that the response can
indeed be amplified, and indicate that the available
power generated under stochastic resonance is notice-
ably higher than the power that can be collected under
other harvesting conditions [55,56]. It is believed that
delay-enhanced stochastic resonance EH strategy may
be significant in practice and will be pursued through
further analytical and experimental investigation.

5 Conclusions

This paper investigated the influence of time-delayed
feedback control on nonlinear HEH for different types
of excitation, and its electromechanical equations are
derived and solved. The nonlinear dynamic characteris-
tics and broadband EH characteristics including vibra-
tion responses for harmonic excitation and steady-state
response for stochastic excitation are considered as the
optimization standards. Based on these properties, this
research provides the guidance for designing the time-
delayed feedback control parameters and the optimiza-
tion standards for different types of external excita-
tion to improve the performance of HEH. The time-
delayed feedback control technique allows one to stabi-
lize unstable periodic orbits of the attractor, which will
effectively enhance the output power of electromechan-
ical systems. The maximum total averaging harvested
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power of the system without time-delayed feedback
control is lower than that of the control system; that is,
the control strategy is effective for improving the EH
performance of the HEH under harmonic excitation.
In case of stochastic excitation, the stationary averag-
ing amplitude increases with increasing noise intensity,
leading to the higher response of the system, which
is very beneficial to the improvement of EH perfor-
mance. The stationary averaging amplitude increases
as the values of g1 and g2 increase, and decreases as
the values of τ increase. Meanwhile, the value of the
averaging harvested power of the system without time-
delayed feedback control is lower than that of the con-
trol system, which plays a great realistic significance
in the choose of the control parameters for improv-
ing the performance of the HEH. In case of combined
harmonic and stochastic excitations, the time-delayed
feedback control also can enhance stochastic resonance
phenomenon, which can lead to a large response and
give out a high output power. The stochastic resonance
phenomenon of the system without time-delayed feed-
back control is weaker than that of the control system.

The biggest challenge of time-delay feedback con-
trol of EH is the automatic supply of electrical energy to
the control system. The power consumed by the control
system should be less than the actual increase, so that
the control of the EH has practical significance. In the
future, the control parameters can be optimized accord-
ing to the required power. In addition, the time-delay
feedback control requires current input, and the control
strategy can be introduced to tune the current online,
thus reducing the energy consumption and improving
the beneficial performance.
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