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Abstract The describing function approach is a pow-
erful tool for characterizing nonlinear dynamical sys-
tems in the frequency domain. In this paper, we extend
the describing function approach to detect and local-
ize the damage in initially healthy nonlinear systems
with limited measurements. The requirement of com-
plete FRF of the underlying linear systemby describing
function approach is overcome by using a newly devel-
oped nonparametric principal component analysis-
based model. Numerical simulation studies have been
carried out by considering a cantilever beam with mul-
tiple local nonlinear attachments to demonstrate the
localization process of the improved describing func-
tion approach with limited instrumentation. Parametric
estimation of a shear building model is considered as a
second numerical example to demonstrate the capabil-
ity of the proposed approach in identifying the different
types of nonlinearities and as well as combined types
of nonlinearities (i.e. more than one type of nonlinear-
ity). These combined nonlinearities can exist either in
the same or different spatial locations. Experimental
investigations have also been presented in this paper
to complement the numerical investigations to demon-
strate the practical applicability.
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1 Introduction

Structural systems are often referred to as being lin-
ear or nonlinear. However, all real structures are inher-
ently nonlinear. Nonlinear behaviour is observed even
in rather simple structures like plates and beams, as a
result of buckling or large deformation-related effects.
The nonlinear behaviour of a structure may be also
possible due to a local (friction, joint and link flex-
ibility, backlash and clearance, nonlinear contact) or
a global (geometric nonlinearities, nonlinear material
behaviour) nonlinearities [1–7]. Real-life structures
exhibit nonlinearity even in their healthy state due to its
flexible nature, complex joints and interfaces, etc. Sev-
eral engineering structures are constructed with joints,
geometric discontinuities and also built with shock
absorbers, dampers, etc., in order to improve the struc-
tural functionality of the structures. Similarly, enhance-
ment of the stiffness and damping properties of the
structure is made via structural modification through
the addition of strongly nonlinear structural modules
that behave, in essence, as nonlinear energy sinks.
Properly designed nonlinear energy sinks can signif-
icantly alter the stiffness and damping properties of the
structures to which they are attached. Apart from this,
the structures can also have regions undergoing large
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displacements. Such structures exhibit localized non-
linearity while leaving some portions of the structure
largely unaffected. Hence, the dynamics of the actual
structural system is often nonlinear. Further,most of the
nonlinear mechanisms are typically local such that the
number of nonlinear elements is far fewer than the total
number of degrees of freedom (DOF) in the structure.
For an example, for complex structures withmany con-
nections, there are only a few connections contributing
to the nonlinear behaviour of the structure. The scope
of the present work is limited to systems with local
nonlinearities.

For damage detection in initially healthy nonlinear
structures, it is essential to have the reference (identi-
fied) structure in its healthy state, in order to distinguish
the damage features from the nonlinearities exhibited
by the healthy structure. Otherwise, there is a possibil-
ity that the inherent nonlinear effects of the structure
aremistakenly construed as damage. The damage diag-
nostic techniques for this class of structures, exhibit-
ing inherent nonlinearities, are usually attempted using
nonlinear system identification techniques. Nonlinear
system identification is an active area of research, and
a brief review of the earlier works in the relevant areas
can be found in the literature [1–7]. Nonlinear system
identification is a highly challenging inverse engineer-
ing problem. It can be viewed as a succession of three
steps: detection, characterization and parameter esti-
mation. Severalmethods have been developed in the lit-
erature for nonlinear system identification [1–7]. These
methods can be broadly classified as a modal analysis
method [8–16], time domain [17–22], and frequency
domain methods [23–30]. There is not a single tech-
nique available to handle all classes of nonlinear sys-
tems.Most of the nonlinear system identificationmeth-
ods reported in the literature assume lumped nonlinear
components or, in other words, the local nonlinearities
present in the system are assumed to be in the form
of an attachment. Further, these nonlinear attachments
can be grounded or can be attached between themasses.
These local nonlinearities are predominant in structures
subjecting to clearance, impact, dry friction and bolted
connection. The present work focuses only on systems
with local lumped nonlinear attachments either being
grounded or attached between the masses. Therefore,
in the present work, damage detection is proposed for
nonlinear systems with the assumption that nonlinear-
ity is localized and the nonlinearity is a local perturba-
tion of the linear frequency response function matrix.

This may not be true for some complex systems where
these local nonlinearities may affect multiple degrees
of freedoms. Addressing such systems is beyond the
scope of the present investigation.

Extension of linear modal analysis techniques to
nonlinear systems has received considerable attention
in the recent past. Significant research work is reported
in the last few years, and efficient computational tools
have been evolved to carry out theoretical nonlinear
modal analysis. Rosenberg [8] proposed the concept of
normal modes, a generalization of normal vibrations of
linear systems for nonlinear systems. He defined non-
linear normal modes (NNMs) as a motion in which
all points of the system vibrate with the same phase.
Later, Shaw–Pierre [9] and Vakakis [10] investigated
and defined nonlinear normal modes through the con-
cept of an invariant manifold. They represented NNMs
as surfaces in a phase plane and as a nonlinear con-
tinuation of the subspaces of linear normal modes into
invariant manifolds that locally graph over those sub-
spaces.

Haller and Ponsioen [11] then define a spectral sub-
manifold (SSM) as the smoothest invariant manifold
tangent to a spectral subbundle along an NNM. For a
trivial NNM (equilibrium), a spectral subbundle is a
modal subspace of the linearized system at the equilib-
rium, and hence an SSM is the smoothest Shaw–Pierre-
type invariant manifold tangent to this modal subspace.

Platten et al. [12] proposed the nonlinear resonant
decay method (NLRDM) to identify the nonlineari-
ties in the modal domain. This method represents sys-
tem equations in modal coordinates with the nonlinear
modal force to incorporate nonlinearities.

Most of the theories of nonlinear modal analysis dis-
cussed above depend on demanding algebra or detailed
and intensive numerical computation based on equa-
tions of motion. Recently machine learning techniques
have been explored by utilizing only experimentalmea-
surements to compute nonlinear normal modes. Wor-
den et al. [13] proposed a new approach to nonlinear
modal analysis based on a generalization of the prin-
cipal orthogonal decomposition (POD). It is based on
optimizing a nonlinear transformation from the physi-
cal coordinates to a frame in which the coordinate vari-
ables are statistically independent. Kallas et al. [14]
investigated kernel principal component analysis (ker-
nel PCA) for nonlinear dynamic analysis; however, the
selection of hyperparameters of kernels needs to be
optimized for the problem on hand for robust perfor-
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mance. Later, independent component analysis (ICA)
has been investigated by Kerschen et al. [15] to over-
come the restriction of the distribution of the sources to
be Gaussian in PCA and to capture the structure of the
data better even if the data points lie in a nonlinearman-
ifold instead of a linear subspace. Recently, Dervilis
et al. [16] used kernel independent component analy-
sis and locally linear-embedding analysis for nonlinear
modal analysis. In thismachine learning approach, they
exploited the idea of independence of principal com-
ponents from the linear theory by learning the nonlin-
ear manifold between the variables for dynamic anal-
ysis of nonlinear systems. Apart from this, they also
extended the approach for model reduction of nonlin-
ear systems. The major issue with machine learning
is a generalization as it is only applicable to the opera-
tional range considered during training. Generalization
will be an issue even with analytical methods also; if
an approximate form for the transformation is used,
similar to the polynomial form in the original Shaw–
Pierre paper on nonlinear normal modes (NNMs), then
the mapping may also be input dependent. The issue of
generalization is also going to affect the computation
of the inverse modal transformation in the data-based
approach proposed. Even though several recent meth-
ods without much complex post-processing are now
available to compute nonlinear normal modes, in their
present form, they can only be used for characteriz-
ing the nonlinear systems. They have not yet reached
the stage, where we can use these NNMs for damage
diagnosis of initially healthy nonlinear systems.

The popular time domain methods used in non-
linear identification are restoring force surface (RFS)
method,Kalmanfilter andparticle filtermethods.Masri
et al. [17] presented a time domain-based nonpara-
metric identification technique for nonlinear systems
wherein the authors determined the set of orthogo-
nal functions similar to Volterra kernels when a pri-
ori knowledge about the type and order of the non-
linearity is not known. This method can be used with
deterministic or random excitation to identify dynamic
systems with arbitrary nonlinearities, including those
with hysteretic characteristics. This method is shown
to bemore efficient than theVolterra andWeiner-kernel
approach in identifying nonlinear dynamic systems of
the same type considered. Erazo and Nagarajaiah [18]
proposed an output-only approach for Bayesian iden-
tification of stochastic nonlinear systems subjected to
non-stationary inputs using an unscented Kalman fil-

ter. This approach is based on re-parametrization of
the parameters joint posterior distribution and the sys-
tem parameters estimated recursively in a state estima-
tion step bypassing the requirement of state augmen-
tation. Chatzi and Symth [19] compared the unscented
Kalman filter (UKF) and Gaussian mixture particle fil-
ter methods (GMSPPF) for nonlinear structural sys-
tem identification with non-collocated heterogeneous
sensing. They have concluded from the numerical and
experimental studies that the UKF is computation-
ally efficient and has the potential to execute in real
time. It is also concluded that the GMSPPF technique
is more robust. Due to the availability of displace-
ment measurements for the Gaussian mixture particle
filter method (GMSPPT), the identification of states
related to nonlinear functions of displacement is more
accurate. Mariani and Ghisi [20], later exploited the
joint estimation of unknown model parameters and
unobserved state components for stochastic, nonlin-
ear dynamic systems using the unscented Kalman fil-
ter and compared its effectiveness with the extended
Kalman filter. The unscented Kalman filter performs
significantly better in case of softening dynamics. It
is also highlighted by authors that the UKF is also
easier to implement than the EKF, and it does not
require linearization of the state mapping (necessary
for the EKF), which entails lengthy calculations for
irreversible constitutive modelling. Lai and Nagaraja-
iah [21] have recently established the framework of
sparse identification of multi-degree of freedom non-
linear structural system with significant hysteresis and
permanent deformation. It is claimedby the authors that
the proposed framework is capable of discovering the
underlying governing equations of motion from input–
output data. Multiple input and single output (MISO)
system identification for parameter identification of
nonlinear and time-variant oscillators with fractional
derivate terms subject to incomplete non-stationary
data is developed very recently by Kougioumtzoglou
et al. [22]. In this approach, the nonlinear restoring
forces are idealized by as a set of parallel linear sub-
systems. The time- and frequency-dependent wavelet-
based frequency response functions and related oscilla-
tory parameters of the nonlinear and time-variant sys-
tems are realized through wavelet coefficients of the
transformed equivalent MISO system. The identifica-
tion of system parameters using particle filters and var-
ious Kalman filter implementations before and after
damage paves way for the damage diagnosis of non-
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linear systems. Even though these approaches estimate
system parameters with confidence bounds or distribu-
tions, they are highly compute intensive.

Frequency domain methods are widely preferred by
the researchers for nonlinear system identification. Lin
and Ewins [23] used Frequency Response Functions
(FRFs) obtained at different forcing levels to detect
nonlinearities and extended the same with the inverse
FRF to classify the nonlinearity broadly into stiffness
type and damping type. Tanrikulu and Ozguven [24]
used nonlinear restoring force at each degree of free-
dom DOF as an indication of nonlinearity, which is
a frequency domain method as well. The nonlinear
restoring force is separated into a matrix and a nonlin-
ear response vector. The matrix contains nonlinearities
in the formof describing functions (DF). They used this
nonlinearity matrix to characterize the type of nonlin-
earity.Later, a similar approach is implementedbyÖzer
et al. [25] that determines possible locations of nonlin-
earities and identifies their types and parameters using
the describing function. Similarly, the method devel-
oped by Elizalde et al. [26] and Ozer et al. [25] used
nonlinear restoring force at each DOF as an indication
of nonlinearity. A nonzero value of nonlinear restoring
force at any DOF using describing function signifies
the nonlinearity at that DOF. Later, the extension of
the DF approach called DF inversion is developed by
Aykan et al. [27]. The DF inversion approach has the
ability to identify more than one type of nonlinearity
without any prior knowledge of the nonlinearities that
may or may not coexist at the same location.

However, all of these describing function-based
approaches require the complete linear dynamic stiff-
ness of the underlying linear system [23,25,26,26–30].
In most of the practical situations, linear FRF matrices
constructed from experimental measurements will not
be complete. Even though this limitation is later over-
come through theoretical and experimentalmodal anal-
ysis [25–27], there are still somecritical issues that need
to be resolved. For example, the choice of the frequency
band used is crucial in order to obtain an accurate com-
plete FRF matrix using this approach. Apart from this,
it requires dense sensor network in order to identify the
nonlinear locationswhich are not known a priori. Keep-
ing these things in view, in the presentwork,wepropose
an improved describing function approach for nonlin-
ear system identificationwhich overcame the limitation
of the requirement of complete linear FRF and also
works with limited instrumentation.

To the best of authors’ knowledge, till date, no
work has been reported on the extension of describ-
ing function approach to damage detection of struc-
tures which exhibit nonlinearities in their pristine state.
In this paper, we made an effort for the first time to
devise damage detection and localization algorithm for
this class of problems (i.e. structures with nonlineari-
ties in their pristine state) based on describing function
approach.

The major contribution of the present work is the
development of a nonparametricmodel basedonprinci-
pal component analysis (PCA) to compute the complete
linear dynamic stiffness matrix/linear FRF from input–
output measurements alone using the varied response
measurements at varied excitation types and ampli-
tude levels of the nonlinear system. It should be men-
tioned here that PCAhas earlier been used for nonlinear
model updating [31,32]. However, PCA model updat-
ing schemes for nonlinear systems are not as effective
as the PCA is a linear projection and it fails while deal-
ing with strong nonlinearities [31–33]. Once the linear
FRF is constructed using the newly developed nonpara-
metric PCA-basedmodel, nonlinear localization is first
carried out and then nonlinear characterization (type
identification and nonlinear parameter estimation) of
the system is performed simultaneously using the tra-
ditional describing function concept. Later, we extend
the describing function approach to detect and localize
the damage in this class of nonlinear systems (i.e. sys-
tems with nonlinear attachments in their pristine state).
The challenge here lies in distinguishing the effect of
inherent local nonlinearities from the damage features
from the measured system responses.

Numerical simulation studies have been carried
out by considering a cantilever beam with multiple
local nonlinear attachments to demonstrate the local-
ization process of the improved describing function
approach with limited instrumentation. The effective-
ness of the proposed nonparametric PCA-based model
is also demonstrated through this example. A simple
two-storey shear building model is considered as a sec-
ond numerical example to demonstrate the capability
of the proposed approach in identifying the different
types of nonlinearities as well as combined types of
nonlinearities (i.e. more than one type of nonlinear-
ity). These combined nonlinearities can exist either in
the same or different spatial locations. Experimental
investigations have been carried out on a cantilever
beamwith the nonlinearity induced in the set-up similar
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to ECL benchmark [34] to complement the numerical
investigations to demonstrate the practical applicabil-
ity of the proposed approach. The studies presented in
the paper clearly indicate that the proposed approach
has the ability to identify multiple locations of non-
linear attachments with either same or different types
of nonlinearity. Further, the nonlinear coefficients are
estimated with reasonably good accuracy. The dam-
age that occurs subsequently in these initially healthy
nonlinear systems is also located precisely using the
proposed describing function approach.

2 Describing function concept

Thedescribing function has beenused earlier by several
researchers [23–26] for carrying out all the three steps
of the nonlinear system identification (i.e. detection,
characterization and parameter estimation).

2.1 Nonlinearity detection

Frequency response function of a linear system is inde-
pendent of input amplitude (i.e. invariant). This prop-
erty is generally referred to as homogeneity property of
the linear system. In contrast to the linear system, the
FRF of a nonlinear system depends on the amplitude
of excitation and frequency. This property is used for
nonlinear detection.

2.2 Nonlinearity localization

The frequency response function of the nonlinear sys-
tem is given by
[
H̄
] = [Z̄ (ω)

]−1 = ([Z (ω)] + [�(X, ω)])−1 (1)

where Z̄ (ω) and Z (ω) are the dynamic stiffnessmatrix
of the nonlinear system and the underlying linear sys-
tem and H̄ and �(X, ω) indicate the FRF of the non-
linear system and nonlinearity matrix, respectively.

The dynamic stiffness matrix of the linear system is
given by

[Z ] =
[
H−1

]
=
(
−ω2 [M] + iω [C] + [K ]

)
(2)

where K, M and C indicate the stiffness, mass and
damping matrices, respectively, and H is the FRF of
the underlying linear system.

From the above two equations (i.e. Eqs. 1 and 2), the
nonlinearity matrix [�] can be defined as

[�] = [H̄]−1 − [H ]−1 (3)

Post-multiply both sides of Eq. (3) by H̄

[�]
[
H̄
] = [I ] − [Z ]

[
H̄
]

(4)

Equation (4) is used to develop a nonlinearity location
index. The nonlinearity location index (NLI) is formed
by considering the left side of Eq. (4) by taking an i th
column of H̄ and pth row of � as follows

NLIp = �p1 · H̄1i + �p2 · H̄2i + · · · + �pn · H̄ni

(5)

where i can be any coordinate. The right side of Eq. (4)
similar to Eq. (5) can be written as

NLIp = δi p −
[
ZL
p1 ZL

p2 . . . ZL
p1

]

⎡

⎢⎢⎢
⎣

H̄1i

H̄2i
...

H̄ni

⎤

⎥⎥⎥
⎦

(6)

Here, δi p indicates the Kronecker delta function and
[ ZL

p1 ZL
p2 . . . ZL

p1 ] indicates the dynamic stiffness
matrix of a particular node pwith the load applied at all
degrees of freedom of system of the underlying linear
system and [ H̄1i H̄2i . . . H̄ni ] indicates the particular
column of frequency response function (FRF) of the
nonlinear system measured due to the load applied at
the i th location. This clearly indicates that complete
FRF is required to estimate dynamic stiffness matrix.
Therefore, in the present work, it is established using
a nonparametric PCA-based model discussed later in
Sect. 3. The nonlinear location index NLIp will be
nonzero at the node where nonlinearity is present. The
proposed NLI also has the ability to determine even the
multiple locations of nonlinear elements present in the
system.

2.2.1 Nonlinearity localization with limited
instrumentation

In most of the situations, with the preliminary exami-
nation of the structure, wemay be able to judge the pos-
sible locations of nonlinearity in the structure (i.e. con-
nections). Based on these observations, we may place
the sensors at the spatial locations where the structure
is expected to have local nonlinearity. The remaining
sensors may be placed at optimal locations indicated
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by effective independence-based optimal sensor place-
ment (EFI-basedOSP) [35–37] in order to obtain linear
information. Several optimal sensor placement tech-
niques are reported in the literature for linear structures
[35–37].

Alternatively, in case if it is not possible to iden-
tify the probable spatial locations of local nonlinearity
present in the system, we can initially place the limited
available sensors at optimal locations probably dictated
by the linear structure. In such instances, we follow
a two-stage philosophy to localize the nonlinearities
present in the system with limited instrumentation.

In the first stage, we will be able to construct the
linear FRF matrix using the limited sensors distributed
optimally on the structure. The linear FRF matrix is
constructed using the proposed PCA-based method
with considered limited sensors only. Using this infor-
mation and describing function approach explained
earlier in Sect. 2.2, we can easily identify the possi-
ble spatial locations at which the structure is exhibiting
the nonlinearity.

In the second stage based on the information
obtained from the first stage, we can relocate the sen-
sors by placing them around the identified nonlinear
locations, i.e. precisely on the left and right sides of
the identified nonlinear locations. With this, we can
have fairly dense sensors placed around the spatial non-
linear locations on the structure. Since we use sweep
sine excitation and we have already constructed lin-
ear FRF matrix in the first stage of investigations, we
can augment the already determined linear FRF matrix
with the relocated instrumentation. Using this new lin-
ear FRF matrices and the describing function approach
discussed earlier, we can precisely locate the nonlin-
ear attachments. In case, if we need more precision in
the identification, we can repeat the second stage with
the knowledge of more precise locations of nonlinear-
ity present in the structure and relocating the sensors
as explained in stage 2 and carry out the identification
process.

2.3 Nonlinearity-type identification and parameter
estimation

Inorder to identify nonlinearities (nonlinear attachment
being grounded or attached between the masses) from
measured data, Eq. (3) has to be solved for the nonlin-
earity matrix, [�], using linear and nonlinear FRFs.

Nonlinear grounded
Assuming single nonlinearity grounded at the j th
degree of freedom, the nonlinearity matrix � can be
written as

[�] =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

· · · o · · ·
...

...
...

...
...

...

o ν o
...

...
...

...
...

...

· · · o · · ·

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

(7)

where ν is the describing function at the j th degree of
freedom. Furthermore, the nonlinearity matrix [�] can
be written as multiplication of two vectors as

[�] = {δ1} {δ2}T (8)

{δ1} = [ 0 . . . ν . . . 0
]T ;

{δ2} = [ 0 . . . 1 . . . 0
]T

(9)

Using Eqs. (1) and (8), the input–output relationship
can be written as

{X} =
[
[Z ] + {δ1} {δ2}T

]−1 {F} = [H̄] {F} (10)

where X and F indicate the output (i.e. response) and
input (i.e. force) of the nonlinear system, respectively.

Using the Sherman–Morrison matrix inversion for-
mula, the FRF of the nonlinear system H̄ can bewritten
as

H̄ = H − [H ] {δ1} {δ2}T [H ]

1 + {δ2}T [H ] {δ1}
(11)

where H = Z−1. The particular element of nonlinear
FRF matrix says j th row and j th column with the non-
linearity grounded at j th DOF using Eq. (11) can be
written as

h̄ pq = h pq − ν
h pj h jq

1 + νh j j
(12)

The extension to multiple grounded nonlinearities is
straightforward. Assuming a total of r grounded non-
linearities present in the system, the nonlinearitymatrix
is then given by

[�] =
r∑

i=1

[
K̄i
]

(13)

where K̄i , i = 1, 2, . . . , r indicates the equivalent lin-
ear stiffness of the i th grounded nonlinear element.
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The identification of describing function or nonlinear-
ity matrix for multiple nonlinearities is a recursive pro-
cess.

The nonlinearity matrix using Eq. (1) for r grounded
nonlinearities is given by
[
H̄ (X, ω)

] = ([Z1 (ω)] + [K̄r (X, ω)
])−1

(14)

where

[Z1] = [Z ] +
r−1∑

i=1

[Ki ] (15)

Z1 is the equivalent dynamic stiffness of the non-
linear system eliminating ‘αr ’th location r th number
grounded nonlinear attachment.

By combining Eqs. (14) and (15), one can obtain

h̄ pq = (h pq
)
1 − k̄r

(
h pαr

)
1

(
hαr q

)
1

1 + k̄r
(
hαrαr

)
1

(16)

Rewriting Eq. (14) for H1, one obtain

[H1] = [Z1]
−1 = ([Z2] + [Kr−1

])−1 (17)

[Z2] = [Z ] +
r−2∑

i=1

[Ki ] (18)

Extending Eq. (16) to H1,
(
h pq
)
1 can be written as

(
h pq
)
1 = (h pq

)
2 − k̄r−1

(
h pαr−1

)
2

(
hαr−1q

)
2

1 + k̄r−1
(
hαr−1αr−1

)
2

(19)

The same procedure needs to be followed for all nonlin-
ear attachments. By repeating n times this procedure,
one may arrive to the following equations

(
h pq
)
n = (h pq

)
n+1 − K̄r−n

(
h pαr−n

)
n+1

(
hαr−nq

)
n+1

1 + K̄r−n
(
hαr−nαr−n

)
n+1

(20)

(
h pq
)
r−2 = (h pq

)
r−1 − K̄2

(
h pα2

)
r−1

(
hα2q

)
r−1

1 + K̄2
(
hα2α2

)
r−1

(21)

(
h pq
)
r−1 = (h pq

)− K̄1
h pα1hα1q

1 + K̄1hα1α1

(22)

where h pq , h pα1 , hα1q and hα1α1 are obtained from the
reference linear system. The subscript n indicates that a
total of n numbers of nonlinear attachments have been
removed from the nonlinear system.

Nonlinearity attached between the masses
Assuming that nonlinearities exist between r th and j th
coordinates, the nonlinearity matrix [�] can be written
as

[�] =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

· · · o · · ·
...

...
...

o

⌈
ν −ν

−ν ν

⌉
o

...
...

...

· · · o · · ·

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(23)

Furthermore, the nonlinearitymatrix [�] can bewritten
as multiplication of two vectors similarly to Eq. 8 as

[�] = {δ1} {δ2}T
where {δ1} = [0 . . . ν −ν . . . 0

]T ;
{δ2} = [0 . . . 1 −1 . . . 0

]T
(24)

The particular element of H̄ , say pth row and qth col-
umn using Eq. (11), can be written as

h̄ pq = h pq −
(
h pr − h pj

) (
hqr − hq j

)
ν

1 + ν
(
hrr − 2hr j + h j j

) (25)

where ν is the describing function or the equivalent
linear stiffness of the nonlinear term. The extension
to multiple nonlinear attachments between the masses
is straightforward similar to the earlier case. Once
the describing function is identified using the above
scheme, the type and coefficients are identified by find-
ing the closest possible function with the available
describing function footprint library through correla-
tion. The describing function footprint libraries for dif-
ferent types of nonlinearities are given in Appendix at
the end of the paper.

3 Development of a nonparametric linear model
based on principal component analysis

As mentioned earlier, the basic philosophy of using
PCA-based model here is to construct the complete
linear FRF matrix using few linear response measure-
ments with the force applied at a few selected locations.
Once the model is constructed, the linear response of
the system at any spatial location for any higher levels
of force excitation can be obtained easily and the com-
plete linear FRF and dynamic stiffness matrix can be
built.

Principal component analysis (PCA) is based on
the orthogonal decomposition of the process variables
along the direction that explains the maximum vari-
ation of the data (the components that contain most
of the information) [38,39]. PCA can be accomplished
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by applying the singular value decomposition (SVD) to
discrete packets of sensor data.Using theSVD, a packet
of sensor data (i.e. acceleration time history response)
X (N × n matrix of data, n samples/data points in time
of N different measurements) can be decomposed as

X = U
∑

V T (26)

where U indicates the principal components of size
N ×N and V indicates the principal coordinate history
of size n × n, respectively, which contains the normal-
ized response of the principal directions. The diagonal
matrix � is termed as the singular matrix in which the
elements are arranged in the decreasing order of energy
present in each mode. In order to characterize the sys-
tem, only a first few singular values based on energy
criteria corresponding to 99.5% of total energy [38,39]
will be chosen. The matrices � and V in Eq. (26) can
be multiplied together to form a scaled principal coor-
dinate time history matrix X̄ as follows

X = U
∑

V T =
p∑

k=1

uk x̄k = U X̄ (27)

where p (p < N ) indicates the number of active princi-
pal components contributing to 99.5% energy. By writ-
ing the response of the forced vibration system in the
state-space form, the scaled principal coordinate time
history can be expressed as [40,41]

X̄ (t) =
t∫

0
φ (t − τ) q (τ ) dτ = φ (t) ∗q (t)

qi (t) = uTi f
(28)

where q(t) indicates the force vector in principal com-
ponent space. The square matrix φ(t) is a function of
the state transitionmatrix and can be computed through
Peano–Baker series [42]. The elements of φ(t) can be
interpreted as impulse response functions in principal
component space. In other words, the columns of φ(t)
are continuous forms of the scaled principal coordinate
time histories.

The nonparametric model can be easily developed
for the system under consideration by first computing
the system matrix φ(t) through a deconvolution proce-
dure. Later, the system response to any new force can
be identified directly through the same matrix-vector
convolution.

By writing the i th row of Eq. (28) in time sample
form to express a scaled principal coordinate history as
a sum of convolutions,

X̄i j (t) =
t∫

0

φi j (t − τ) q j (τ ) dτ = φi j (t) ∗q j (t) ;

j = 1, 2, 3, . . . , p; i = 1, 2, . . . , n (29)

where the n vectors φi j and q j are the time-sampled
forms of φi j (t) and q j (t), respectively. The convolution
of φi j and q j in the time domain can be written in the
form of summation as

(
φi j∗q j

)
[ts ] = �t

s∑

p=1

φi j
[
tp
]
q j
[
ts−p+1

]
, s=1, 2 . . . , n

(30)

The summation is performed for all times s =
1, 2, . . ., n, and the convolution is written in the form
of the matrix-vector product as

φi j∗q j = �t

⎡

⎢
⎢⎢⎢
⎣

q j [t1] 0 . . . 0

q j [t2] q j [t1]
. . .

...
...

...
. . . 0

q j [tn] q j
[
tn−1

]
. . . q j [t1]

⎤

⎥
⎥⎥⎥
⎦

×

⎡

⎢⎢⎢
⎣

φi j

φi j
...

φi j

[t1]
[t2]
...

[tn]

⎤

⎥⎥⎥
⎦

= Q j φ̄i j (31)

where the lower triangular Toeplitz matrix Q j is the
convolution matrix for q j . The convolution matrix-
vector product equation for all p principal coordinate
time histories can be written as

X̄i = Q1φ̄i1+Q2φ̄i2+· · ·+Qpφ̄i p; i = 1, 2, 3, . . . p

X̄ = [X̄1 X̄2 . . . X̄ p
] = [Q1Q2 . . . Qp

]

×

⎡

⎢
⎢⎢
⎣

φ̄11 φ̄21 . . . φ̄p1

φ̄12 φ̄22 . . . φ̄p2
...

...
. . .

...

φ̄1p φ̄2p . . . φ̄pp

⎤

⎥
⎥⎥
⎦

= [Q1Q2 . . . Qp
]
φ̄

(32)

where X̄ consists of p principal coordinate time histo-
ries (size n × p) and Q1, Q2, . . ., Qp indicate the p
convolution matrices of p reduced force vectors. The
complete modal force convolution matrix is given by
size nxnp (i.e. np = n× p). Each term of φ̄i j is a vector
of size n×1, and the complete systemmatrix φ̄ is given
by size np × p.

Once the force and responsemeasurements are avail-
able on hand, computation of the state transition matrix
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φ̄, directly through deconvolution, is rather straightfor-
ward. The identification of the state transition matrix
using multiple sets of measurement data reduces errors
due to projection, diagonalization, and deconvolution.
In view of this, it is recommended to use a large num-
ber of input and output measurement datasets, ns (with
ns ≥ p) for computation of φ̄. The deconvolution prob-
lem associated with the computation of φ̄ given in Eq.
(32) can be extended to multiple measurement sets as
⎡

⎢
⎢⎢
⎣

X̄1

X̄2

...

X̄ns

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

Q1
1 Q1

2 . . . Q1
p

Q2
1 Q2

2 . . . Q2
p

...
...

. . .
...

Qns
1 Qns

2 . . . Qns
p

⎤

⎥
⎥⎥
⎦

φ̄ (33)

where Q j
i is the convolution matrix for the i th modal

force vector and the j th load case and X̄ k is the scaled
principal coordinate time history matrix corresponding
to the kth load case.

Once the state transitionmatrix φ̄ given in Eq. (33) is
computed, the principal coordinate time history of the
response to a new force can be obtained using the con-
volution of the corresponding transformed force and φ̄

matrix using Eq. (32). The computed principal coordi-
nate histories are utilized to determine the time history
response due to the new excitation force at any sensor
location. The response computation using nonparamet-
ric PCA-based model is illustrated in Fig. 1.

The crucial element in constructing the nonpara-
metric model is in obtaining the linear response mea-
surements for the nonlinear system on hand at the ini-
tial step. The majority of the nonlinearities present in
the structure are local in nature [43,44]. Local non-
linearities present in the structural system are usually
due to nonlinear stiffness (piecewise stiffness, hard-
ening cubic stiffness, etc.) and/or nonlinear damping
(coulomb friction, quadratic damping, etc.). The under-
lying linear response from the nonlinear systems can
be identified by keeping the vibration regime using a
specific parameter range depending upon the problem.

Smooth nonlinear system (with local nonlinearities
except friction) exhibits linear behaviour under low
amplitude of excitation [43,44]. Therefore, for sys-
tems exhibiting smooth nonlinearities, the amplitude
of excitation is the crucial parameter in deciding the
linear or nonlinear regime of vibration. The upper limit
of the low amplitude of excitation to obtain the linear
response for the smooth nonlinear systems is, however,
problem dependent. In view of this, the concept of FRF

invariance [43,44] and also an index or delta based on
Betti–Maxwell theorem proposed byHerrara et al. [44]
are used.

Betti–Maxwell reciprocal theorem states that for lin-
ear systems, the transverse displacement at a point i
due to a force F at point j is equal to the displacement
at point j due to the same force F at point i. There-
fore, for linear systems, the response at the two points
(i.e. reciprocal points) will be the same, and the differ-
ence between the two responses will be zero. However,
for a nonlinear system, the difference will be nonzero.
Therefore, we can easily establish the state of the struc-
ture, i.e. linear or nonlinear, using a simple index based
on the principle outlined above.Accordingly, the index,
δ proposed by Herrara et al. [44] for identifying the
force amplitude level at which the nonlinear system
behaves linearly is given by

δ =
1
T

T∫

0

(
xi − x j

)2 dt
√√√√ 1

T

T∫

0
(xi )2 dt

√
1
T

T∫

0

(
x j
)2 dt

(34)

where T is the total time duration and xi , x j are the
responses at nodes i and j (i.e. reciprocal positions)
of the system. The integral of the response difference
squared in the numerator of the index provides insight
into the energy level of nonlinearity. The product of
the root mean square of both responses in the denomi-
nator is performed for normalization. Even though the
numerical value of δ is difficult to interpret, its quali-
tative implications are important. It is expected that δ

will be close to zero when the responses obtained are
in the linear regime.

Using the index given above, the upper limits of
excitation levels to obtain the linear response can be
decided for the smooth nonlinear system on hand. This
is as well applicable for combined types of nonlinear-
ities that simultaneously coexist in either the same or
different location. The smooth nonlinear systems with
a combined type of nonlinearities (i.e. more than one
type) exhibit linear behaviour under low amplitude of
excitation. Hence, PCA-based model can be employed
for computing complete linear FRF matrix using the
nonlinear system response measurements under low
amplitude of excitation.

In the case of friction nonlinearity, the higher level
of excitation is used instead of the low excitation level
to obtain linear responses and to construct the non-
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Experimental Data: Time history 
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new scaled principal coordinate history 

Predict new response using 
convolution

Fig. 1 PCA-based nonparametric model construction and validation

parametric PCA model [43,44]. The same procedure
(i.e. FRF invariance and index (i.e. Delta, δ) based on
Betti–Maxwell theorem) can be used to arrive at the
lower limits of the excitation on the nonlinear system
in order to obtain linear responses.

The identification of complete linear FRF using the
proposednonparametric PCA-basedmodel is not appli-
cable to the nonlinear systems with more than one type
of nonlinearity that includes friction.Thenonlinear sys-
tem identification for combined type of nonlinearities
including friction can be handled by pseudo-receptance
difference method based on describing function con-
cept proposed by Canbaloğlu et al. [43]. The pseudo-
receptance difference is suitable only for friction type
of nonlinearity or systemhavingmultiple nonlinearities
with at least one being frictional nonlinearity. Hence,
the proposed improved describing function approach
handles the other class (i.e. combined types of nonlin-
earities without friction).

Once the underlying linear information is obtained
from the nonparametric PCA-based model, nonlinear
characterization (i.e. localization and parameter esti-
mation) can be performed easily using the traditional
describing function concept described in Sect. 2.

4 Extension to damage detection in structures with
inherent local nonlinearities

The describing function concept can be easily extended
to identify the presence and spatial location of the dam-
age in the structure exhibiting nonlinearity even in their
healthy state. For damage detection, we place the sen-
sors optimally as indicated by the optimal sensor place-
ment neglecting the known nonlinear locations identi-
fied already. The same nonlinear location index is used
to detect the spatial location of damage. The FRF (i.e.
particular column) of the nonlinear system (i.e. struc-
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ture exhibiting nonlinearity) in the current state (i.e.
damaged state) and the complete FRF of the healthy
nonlinear system are employed to compute the non-
linearity location index given in Eq. (6). The spatial
location of damage is identified using the peak value of
nonlinearity index. For accurate localization of dam-
age with limited instrumentation, the same two-stage
philosophy used for localization (explained earlier in
Sect. 2.2.1) of nonlinear attachments can be employed.

5 Numerical studies

Numerical simulation studies have been carried out
by considering a cantilever beam with multiple local
nonlinear attachments and as well as on a shear build-
ing model with different types of nonlinearities and as
well as combined types of nonlinearities (i.e. more than
one type of nonlinearity) that may exist simultaneously
either in the same or different location to evaluate the
effectiveness and robustness of the proposed improved
describing function approach.

5.1 Numerical example 1: cantilever beam

The cantilever beam model considered is shown in
Fig. 2. The span of the beam is 6.0m, and the cross-
sectional dimensions are 0.254×0.1905m.Thebeam is
idealized using 20 beam elements, and the size of each
element is 0.3 m. The material properties of the can-
tilever beamunder consideration areYoung’sModulus,
E = 2.5e11 Pa, mass density, ρ = 7850 kg/m3. The
linear damping matrix is constructed using Rayleigh
damping with the damping ratio of 0.015%. The first
five natural frequencies of the underlying linear system
are 4.38, 27.51, 77.03, 150.95 and 214.02 Hz, respec-
tively.

The structure exhibits two different types of non-
linearities which coexist at a different location. Both
types of nonlinear attachments, i.e. nonlinear attach-
ments between themasses and grounded nonlinearities,
are considered in this case. The force versus displace-
ment characteristics of the different types of nonlin-
earity considered in this example are shown in Fig. 3.
A dry friction hysteresis damping nonlinearity attach-
ment between the two nodes (nodes 10 and 11) near the
centre of the beam (between 3 and 3.3 m) and a nonlin-
ear cubic spring attachment at the free end (i.e. at 6 m

corresponding to node 21) are considered for simula-
tion of nonlinear behaviour. The nonlinear parameters
corresponding to the dry friction hysteresis nonlinear-
ity are force = 100 N and stiffness = 500 N/m, and
the stiffness of nonlinear cubic spring at the free end
is around 8.0e22 N/m. A similar type of example was
earlier used by Herrara et al. and Hot et al. [43–45]
for nonlinear simulation. In order to demonstrate the
efficiency of the describing function approach in iden-
tifying damages in initially healthy nonlinear system,
the damage is simulated in the cantilever beam with
nonlinear attachments (shown in Fig. 2) by reducing
the stiffness of the element no. 4 by 15%.

The system is subjected to sweep sine excitation in
the frequency band 1–700Hz on node 21, and the accel-
eration time history data corresponding to only five
(limited number of sensors) translational degrees of
freedom (i.e. nodes 5, 9, 13, 17, 21) are only first com-
puted. These 5 sensor locations are dictated by effective
independence-based optimal sensor placement tech-
nique [35–37]. The time history responses correspond-
ing to these 5 nodes are computed using Newmark’s
time integration scheme combining with the Newton–
Raphson algorithm.Theobtained acceleration timehis-
tory responses are polluted with 10% standard white
Gaussian noise (i.e. SNR = 30) before processing to
test the robustness of the approach in the presence of
noise.

The frequency response functions (FRFs) obtained
under three different levels of excitation (i.e. 0.1 N,
2.5 N and 25 N) corresponding to node 21 are shown
in Fig. 4a. The zoomed plot of the second mode of
Fig. 4a is shown in Fig. 4b. It can be observed from
Fig. 4a that under low amplitudes of excitation, the
beambehaves linearly and at high amplitude, it behaves
nonlinearly. The presence of nonlinearity in the beam
is evident from the increase in the resonant frequency
as well as jump (i.e. shifting up of frequency) corre-
sponding to the response under 25N.A clear-cut obser-
vation of these phenomena is illustrated in the zoomed
plot of second mode response in Fig. 4b. The increase
and shift in the resonant frequencies are due to harden-
ing behaviour introduced by means of nonlinear cubic
spring at the free end. A slight reduction in amplitude
of the response is observed for first and thirdmodes due
to dry friction hysteresis damping nonlinearity present
in the structure.
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Fig. 2 Cantilever beam

Fig. 3 Force vs
displacement characteristics
a cubic stiffness b
hysteresis damping

(a) (b)

Fig. 4 Cantilever beam:
frequency response function
a full FRF b zoomed plot
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PCA-based model for constructing complete linear
FRF
In order to use describing function concept for non-
linear localization, we need to have the underlying
complete linear FRF matrix. As mentioned earlier,
it is accomplished through nonparametric PCA-based

model. Before demonstrating the describing function
approach, the efficiency of the PCA-based model is
demonstrated.

Thevalues of δ (for different i and j locations) for dif-
ferent low forcing levels (i.e. ranging from 2 to 0.25 N
in decrements of 0.25 N) are computed, and the results
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are furnished in Table 1. Additionally, δ for the high
amplitude of excitation of about 25 N is also consid-
ered. It can be clearly observed from Table 1 that the
values of δ are below 0.1 for the responses below 2 N
excitation, and the FRFs are also found to be invariant.
The value of δ is found to be 2.5 for input excitation
amplitude of 25N. This clearly signifies that the system
is in nonlinear regime of vibration at input excitation
amplitude of 25 N. In the present work, the responses
corresponding to forcing level below 1 N (i.e. linear)
are used for developing PCA-based model.

Once the nonparametric PCA model is constructed,
the accuracy of the PCA-based model is evaluated by
comparing it with the FRFmatrix obtained analytically.
Instead of comparing the complete FRF of the linear
system, it is proposed to compare the responses of the
system obtained using the proposed PCA-based model
with the numerically estimated responses, for varied
magnitudes of excitation applied at a different location.
For this purpose, the following test cases are consid-
ered.

i. 12 N sweep sine force excitation at the 13th node
and 40 N force excitation at the 21st node. For
sweep sine excitation, the structure is excited in
the frequency band 1–500Hz.

ii. 25 N sweep sine excitation at 17th node
iii. 12.5 NRMS random excitation at the 9th node

The following error index is used to compare themodel-
predicted response (xmodel(t)) and the actual response
(xactual(t)),

Error index = max(mean relative error(xi ));
i = 1, 2, 3, . . . , N

mean relative error(xi )

= 1

mt

∑

t=1,2,...mt

∣∣∣∣∣
xactuali (t) − xmodel

i (t)

xactuali (t)

∣∣∣∣∣
(35)

where mt and N indicate the number of samples and
number of sensors kept spatially across the structure,
respectively. Themaximum error index percentage val-
ues recorded for test case 1, test case 2 and test case 3,
respectively, are worked out to be 0.69%, 0.13% and
0.42%.

The linear response and model-predicted response
of node 21 (i.e. the free end of the beam) for 12.5NRMS
random excitation (i.e. load case 3) are shown in Fig. 5.
A very good agreement between the two responses can
be observed from Fig. 5. This ensures that the pro-
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Fig. 5 PCA-based nonparametric model validation for load case
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Fig. 6 Cantilever beam: NLI with limited instrumentation (sen-
sors at nodes: 5, 9, 13, 17, 21)

posed nonparametric model works well even for ran-
dom load and for combined types of nonlinearity which
may coexist either at the same or different location.
From this, it can be concluded that the nonparametric
model based on principal component analysis has the
ability to predict the response to any input excitation at
any spatial location. The complete FRF of the underly-
ing linear system can be constructed reliably through
this nonparametric PCA-based model.

Describing function approach—localization
Once the complete linear FRF is constructed using the
PCA-basedmodel, the dynamic stiffnessmatrix is com-
puted using its inverse with the initial limited measure-
ments (i.e. with five sensor set). Nonlinear localization
process for the present problem is carried out using the
describing function with five sensors dictated by EFI-
based OSP technique (i.e. nodes 5, 9, 13, 17 and 21) as
it is presumed that spatial locations of nonlinear attach-
ments are not known a priori. The sensor locations are
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Table 1 Index based on Betti–Maxwell reciprocity theorem

Excitation amplitude 25 2.0 1.75 1.5 1.25 1 0.75 0.5 0.25

δ values 2.5 0.825 0.561 0.185 0.103 0.092 0.069 0.046 0.0023
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Fig. 7 NLI with limited instrumentation (relocated sensors
nodes: 7, 8, 10, 11, 20)

not placed at the nonlinear locations to demonstrate the
robustness of the proposed algorithm.

The nonlinear location index is evaluated using Eq.
(6) at two amplitudes of excitation (i.e. about 25 N and
40 N) with the load applied at the free end. The average
of the nonlinear location index values of these two load
cases is shown in Fig. 6. The nonlinear location index
(NLI) is estimated under two different load cases to
ascertain that the higher peak in NLI is due to the non-
linearity of the structure and not due to measurement
errors or any other uncertainties. It can be observed
that the NLI exhibits high magnitude at node 9 and
node 21 among the five sensor measurements spatially
across the structure. These investigations confirm that
the nonlinearity is present around this region (i.e. nodes
9 and 21).

As mentioned earlier in Sect. 2.2.1, we now relo-
cate the initial sensor set by moving to the locations of
higher NLI index values (i.e. nodes 9 and 21). Since
we do not have an idea on the nonlinear attachment,
whether it is to the left or right side of the identified pos-
sible nonlinear location (i.e. left or right side of nodes
9 and 21), we relocate the sensors to nodes 7, 8, 10,
11 and 19. Now with the FRF measurement at the new
locations and as well as at the old locations, the under-
lying complete linear FRF matrix is then constructed
using PCA-based model with sensor information at ten

spatial locations and the nonlinear location index is
estimated for localization process using the describing
function. The average value of the nonlinear location
index estimated at two different amplitudes of excita-
tion with an updated sensor network is shown in Fig. 7.
It can be observed from Fig. 7 that NLI exhibits higher
magnitudes at nodes 10, 11 and 21. These numerical
investigations clearly demonstrate the effectiveness of
the proposed improved describing function approach in
localizing nonlinearity with limited instrumentation.

Describing function approach—nonlinearity type and
parameter estimation
The describing function at the identified nonlinear
location is then estimated using the procedure out-
lined in Sect. 2.3. The obtained describing function is
compared with the existing footprint library (given in
“Appendix”) to identify the type of nonlinearity. The
closest possible describing function and its parameters
are identified through correlation. The describing func-
tion is estimated as a function of relative displacement
between the nodes 10 and 11 assuming that the nonlin-
ear attachment is in between the masses (i.e. between
nodes 10 and 11) and as well as a function of indi-
vidual nodal displacement assuming grounded non-
linear attachments at nodes 10 and 11 individually. It
has been found that there exists the closest correlation
with the available describing function in the footprint
library (given in the “Appendix”) corresponding to the
dry friction hysteresis damping nonlinearity when the
describing function is estimated with the assumption
that the nonlinear attachment is between nodes 10 and
11. Similar sort of exercise is repeated with node 21
(the other identified spatial nonlinear location) to iden-
tify that it is a grounded nonlinear attachment. Hence,
from this investigation, it is understood that there are
two local nonlinear attachments; one is a local attach-
ment between the nodes 10 and 11, another one being
grounded at node 21.

The describing function curve fitted for cubic stiff-
ness function at node 21 and the dry friction hysteresis
damping between nodes 10 and 11 is shown in Fig. 8.
The corresponding nonlinear coefficients are estimated

123



Damage detection in nonlinear systems using an improved function approach 1461

0.00 0.04 0.08 0.12 0.16 0.20
0.0

5.0x102

1.0x103

1.5x103

2.0x103

2.5x103

3.0x103

 True Cubic Stiffness
 Estimating Cubic Stiffness
 True Damping Nonlinearity
 Estiamted Damping Nonlinearity

Displacement (m)

De
sc

rib
in

g 
Fu

nc
tio

n

2.0x1011

4.0x1011

6.0x1011

8.0x1011

1.0x1012

1.2x1012

1.4x1012

1.6x1012

1.8x1012

2.0x1012

Fig. 8 Cantilever beam: curve fitting of describing function

and given in Table 2. It can be observed from Table 2
that the estimated values compare with the true values
even with noisy measurements.

Describing function approach—random excitation
In the present work, the describing function approach is
investigated in detail for the nonlinear system subjected
to sweep sine excitation; the extension of the approach
to system subjected to random excitation is straightfor-
ward. The linear FRF should be estimated correspond-
ing to the same random excitation applied in the case
of the nonlinear system. The proposed nonparametric
PCA-based model for the underlying linear FRF paves
way for it, and it has been already demonstrated in the
earlier section. The equivalent describing function for
various kinds of nonlinearity for the system subjected
to random load (i.e. usually assumed to be Gaussian)
is determined using the following equation [30]

Nz(σ, b) = 1
∑

∞∫

−∞
z f (z)p(z)dz (36)

where
∑

indicates variance, f (z) indicates the non-
linear term, and p(z) indicates the probability density
function of the random load. The random input describ-
ing function for systems exhibiting different kinds of

nonlinearity and subjected to random load following
various distribution is given in Van der Valde [30].

For a random load following Gaussian distribution,
the above equation (i.e. Eq. 36) becomes

Nz(σ, b) = 1√
2πσ 3

n

∞∫

−∞
z f (z) exp

(
− (z − b)2

2σ 2
n

)
dz

(37)

For cubic nonlinearity, f (z) = Kz3, the equivalent
describing function becomes 3Kσ 2

n .
The result of the fitting the above given describing

function curve for the above-solved numerical exam-
ple exhibiting cubic stiffness function at node 21 with
respect to the system subjected to gaussian load is
presented in Table 3. We have considered noise-free
measurements and actual measurements being polluted
with 10% noise level as well.

Describing function approach—damage in an initially
healthy nonlinear system
For damage detection of structures exhibiting nonlinear
behaviour in the pristine state itself, we place the sensor
optimally as dictated by the optimal sensor placement
techniquewithout giving attention to the alreadyknown
nonlinear locations in the structure and currently hav-
ing damage. The sensors are kept at nodes 5, 9, 13, 17
and 20. The subsequent damage in this healthy non-
linear system is identified using Eq. (6) with the same
describing function concept.

The nonlinearity index estimated from the responses
in the current damaged state with the sensors placed
at nodes 5, 9, 13, 17 and 20 is shown in Fig. 9a. It
can be observed from Fig. 9 that the nonlinearity index
exhibits a peak value at node 5. This clearly indicates
that the damage is near node 5 (i.e. element no. 4).
This compares well with the actual location of the dam-
age. However, the instrumentation relocation strategy
explained in earlier Sect. 2.2.1 of localization of non-
linear attachments can be followed for accurate local-
ization of damage. Therefore, the proposed improved

Table 2 Nonlinear coefficients—cantilever beam

Nonlinearity Node Actual Estimated value

Without noise With 10% noise

Cubic stiffness 21 8e22 8.101e22+ i4.38e16 8.0801e22+ i6.238e18

Hysteresis
damping

9 and 10 Force = 100 N;
Stiffness = 500N/m

Force = 99 N
Stiffness = 498.5 N/m

Force = 99 N,
Stiffness = 497.8 N/m
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Table 3 Nonlinear coefficients—cantilever beam-random input

Nonlinearity Node Actual Estimated value

Without noise With 10% noise

Cubic stiffness 21 8e22 8.14e22 + i6.438e16 7.9801e22 + i8.18e18
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Fig. 9 Nonlinear location index—damage in an initially healthy
nonlinear system

describing function approach has the ability to detect
and localize the damage in the structure with the non-
linearities present even in the pristine state.

5.2 Numerical example 2: two-DOF shear building
model

A two-storey shear building model with different types
of local nonlinearities is considered as the second
numerical example. The two-storey building masses
are m1 = 1 kg; m2 = 0.75 kg and its correspond-
ing stiffnesses are k1 = 2000N/m; k2 = 850N/m.
The natural frequencies of the underlying linear sys-
tem are 26.23 and 57.41 Hz, respectively. Nonlinearity
is induced in the systembymeans of a grounded nonlin-
ear attachment or as a localized attachment between the
masses 1 and 2. Different types of nonlinearity which
can coexist between the masses are also considered in
this example, and these details are furnished in Table 4.

The system is subjected to sweep sine excitation in
the frequency band, i.e. 0 to 200 Hz. The time history
responses are computed using Newmark’s time inte-
gration scheme combined with the Newton–Raphson
algorithm. We have considered this two-DOF system
to demonstrate the identification of nonlinearity type

Table 4 Various cases considering different types of nonlinearity

Case Type of nonlinearity Location Parameters

1a Cubic nonlinearity Between the masses 1 and 2 − 1e5

1b Mass 1 alone grounded

2 Velocity-squared damping Between masses 1 and 2 5

3 Coloumb friction Between masses 1 and 2 100

4 Dry friction (hysteretic) Between masses 1 and 2 k1 = 500; muN = 100

5a Piecewise linear stiffness Between masses 1 and 2 k1 = 100; k2 = 1000; d = 0.1

5b Mass 2 grounded

6 Gap nonlinearity Between masses 1 and 2 k1 = 500; d = 0.1

7 Cubic stiffness and gap
nonlinearity

Both the nonlinearities
located between masses 1
and 2

Kc=1e5 & K1 = 500; d = 0.1

8 Cubic stiffness and
velocity-squared damping

Grounded cubic stiffness
spring at mass 1 and
velocity-squared damping
nonlinearity between the
masses 1 and 2

Kc= − 1e5 and Cs=5
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Fig. 10 a Softening cubic
stiffness, b velocity-squared
damping
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Fig. 11 a Coloumb friction,
b hysteresis damping
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Fig. 12 a Piecewise linear
stiffness, b gap nonlinearity
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andparameter estimation using the describing function.
The effectiveness of the proposed nonparametric PCA-
based model in estimating the complete linear FRF and
describing function approach to accurately localize the
nonlinearities present in the system is already demon-
strated using the earlier example.

The FRFs under low and high amplitudes of excita-
tion (i.e. linear and nonlinear states of the structures)
obtained for case 1 and case 2 are shown in Fig. 10a,
b, respectively. We can observe a downward shift in

the resonant frequency, for cubic softening nonlinearity
type as shown in Fig. 10a. It is irrespective of whether
it is attached either to mass 1 or 2 or in between the
masses. We can also observe a reduction in the ampli-
tude of the FRF corresponding to the first mode and an
increase in the second mode.

For velocity-squared damping type of nonlinearity,
the FRF amplitude reduces for both the modes and is
evident from Fig. 10b. It can be observed from Fig. 11a
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Fig. 13 a Combined cubic
stiffness and gap
nonlinearity, b combined
cubic stiffness and damping
nonlinearity
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Table 5 Parameter estimation

Case Type of nonlinearity Parameters Estimated without noise With 10% noise

1a Cubic nonlinearity − 1e5 − 0.98e5 + i(0.23e4) −0.98e5 + i(0.23e4)

1b − 0.98e5 + i(0.23e4) − 0.98e5 + i(0.23e4)

2 Velocity-squared damping 5 4.8i 5.1i

3 Coloumb friction 100 98.25 99.2

4 Dry friction (hysteretic) k1 = 500; muN = 100 F = 100.25 N/m
K1 = 492.3 N/m

F = 102.25 N/m
K1 = 497.3 N/m

5a Piecewise linear stiffness k1 = 100; k2 = 1000;
d = 0.1

k1 = 101.25 + 4i;
k2 = 1002.6 + 0.8i;
d = 0.092

k1 = 100.08 + 0.45i;
k2 = 1000.8 + 0.33i;
d = 0.1085

5b k1 = 101.8; k2 = 1000.2;
d = 0.1

k1 = 104.97; k2 = 992.35;
d = 0.1

6 Gap nonlinearity k1 = 500; d = 0.1 k1 = 500; d = 0.1 k1 = 500; d = 0.1

7 Cubic stiffness and gap
nonlinearity

Kc = 1e5 and K1 = 500;
d = 0.1

Kc = 1.1e5 + 2.4e4i and
K1 = 500.2; d = 0.1

Kc = 1e5 + 1.8e4i and
K1 = 497.8; d = 0.1

8 Cubic stiffness and
velocity-squared damping

Kc = − 1e5 and Cs = 5 Kc = − 1e5 +4e4i and
Cs = 5.2i

Kc = − 1.02e5+8e4i and
Cs = 4.93i

that there are slight shift and reduction in FRF ampli-
tude for Coulomb Friction nonlinearity.

For dry friction nonlinearity, we can observe the sig-
nificant amplitude reduction in FRF and a slight shift of
resonant frequencies (towards left side) from Fig. 11b.
From the plots shown in Fig. 12a, b corresponding to
piecewise Linear stiffness and gap nonlinearity respec-
tively, we can observe the discontinuity in response
amplitudes around the resonant zone. For piecewise
stiffness nonlinearity shown in Fig. 12a, we can also
observe the change in FRF amplitude when compared
to the linear state response (i.e. measured under low
amplitude of excitation). For the cases 7 and 8 (i.e. com-
bined nonlinearity cases) shown inTable 4, the resonant
frequency shifts up due to cubic stiffness in both cases

as shown in Fig. 13. The FRF amplitude is reduced for
case 8 alone around resonant frequency zone.

With the nonlinear location known earlier, the non-
linearity type and parameters are identified by finding
the closest available describing function in the footprint
library. Using Eq. (25) and the procedure outlined in
Sect. 2.3, the describing function is estimated at the
first stage. By using the least square fit, for the prob-
lem at hand, the describing function curve is fitted and
the nonlinear coefficients are estimated. The results are
furnished in Table 5. It can be observed from Table 5
that the estimated value compares well with the true
value even with noisy measurements. The numerical
investigations carried out on this model clearly demon-
strate that the proposed improved describing function
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Fig. 14 Nonlinear
beam—experimental set-up

Fig. 15 FRF—
experimental beam a full
plot b zoomed plot
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approach has the ability to identify more than one type
of nonlinearity present in the system either at the same
or different location. The proposed approach is also
suitable for local nonlinear attachments either located
between the masses or grounded to the base.

6 Experimental investigations

Experimental studies have been carried out on a nonlin-
ear cantilever beam to test the effectiveness of the pro-
posed parametric nonlinear system identification tech-
nique based on improved describing function approach,
and also in identifying the damage in a beam that
exhibits nonlinear behaviour in its pristine state and
undergoes damage subsequently.

The experimental set-up considered here is simi-
lar to the ECL Benchmark [34]. The set-up is com-
posed of a main cantilever steel beam with dimen-

sions of 0.7 m × 0.016 m × 0.016 m. The free end
is connected to a thin steel beam with dimensions of
0.0185 m × 0.016 m × 0.003 m. The other side of the
thin beam is clamped as shown inFig. 14.Abolt and nut
are provided at 0.35m from the fixed end (i.e. at centre).
The nut can be loosened, or the bolt can be removed in
order to simulate different levels of damage. The mea-
sured natural frequencies of the underlying linear beam
are 27.1 Hz, 169.8 Hz, 475.4 Hz, and 9356.3 Hz.

The beam is tightly clamped using C-clamp which
is solidly fixed to a steel test bench as shown in Fig. 14.
The beam is excited at the free end using modal shaker
of 200 N sine peak force capacity. Data acquisition is
carried out using the computer-controlled high-speed
MGC plus data acquisition system (using the four
accelerometer channels kept spatially across the struc-
ture).
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Fig. 16 Experimental
cantilever beam: NLI a
initial 4 sensors b updated 8
sensors
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The nonlinear behaviour of the structure (i.e. geo-
metric nonlinearity) may be enabled by the thin beam
when large displacements occur during the test with
high amplitude loading. Due to the clamping action of
the thin beam, the structure exhibits nonlinearity when
large displacements occur at the free end under external
loading due to hardening effect. The FRFs obtained at
different amplitudes of excitation at the free end (i.e.
0.2 N 0.5 N, 2 N, 40 N) are shown in Fig. 15. The
sampling frequency is chosen as 2400 HZ.

We can observe the hardening effect from Fig. 15
that there is a frequency shift under high amplitude
of excitation. This clearly indicates that the system
exhibits nonlinear behaviour even in its healthy state.
The response corresponding to the excitation ampli-
tude of 0.5 N is taken as the linear reference data. This
is confirmed by the fact that the FRFs measured at the
excitation amplitude of 0.5 N or below (i.e. 0.2 N) are
found to be invariant. The value of δ computed based on
Betti–Maxwell reciprocal theorem is also found to be
less than 0.1. This clearly confirms that the responses
at 0.5 N can be taken as reference linear data for the
nonparametric PCA model.

Once the complete linear FRF matrix is constructed
using the nonparametric PCA model, nonlinear local-
ization and characterization are carried out using the
describing function concept. The nonlinear FRF is
obtained by applying a high excitation amplitude of
40 N at the free end. Figure 16a shows the nonlinear
location index computed using Eq. (6). We have con-
sidered the response measurements obtained at 4 loca-
tions (i.e. at 100 mm, 300 mm, 500 mm and 700 mm
from the fixed end) spatially across the beam. We can
clearly observe a significant peak at the 4th node (i.e.
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Fig. 17 Experimental example: describing function

close to the free end) from Fig. 16, clearly reflecting
the exact spatial location of nonlinearity. We now relo-
cate the available four sensors to the latter half of the
beam close to the free end (i.e. at 200 mm, 350 mm,
400 mm, 600 mm). The nonlinear location index (NLI)
under two different excitation amplitudes for a dense
sensor network is estimated, and the result in the form
of average NLI of two excitations is shown in Fig. 16b.
It can be observed from Fig. 16b that the nonlinear
location index still exhibits a single maximum value at
the free end. Therefore, the significant peak at the last
node in both cases reflects the exact spatial location of
nonlinearity.

The corresponding coefficients are identified by fit-
ting the experimentally obtained describing function
to a polynomial form of nonlinearity. From this curve
fitting, the coefficients related to cubic stiffness and
quadratic stiffness are estimated as 8e9 and −1.05e2
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Fig. 18 Experimental
example: NLI—a bolt
loosened partially—case 1 b
bolt loosened
partially—case 2 c bolt
completely removed
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respectively. The details related to the experimentally
obtained describing function with a polynomial form
of nonlinearity are shown in Fig. 17.

For damage detection of structures exhibiting non-
linear behaviour in the pristine state itself, we place
the sensors optimally as dictated by the optimal sen-
sor placement technique without giving attention to the
already known nonlinear locations in the structure and
currently undergone damage. The damage is simulated
in the experimental cantilever beam by removing or
loosening the nut bolt arrangement near the centre of
the beam. Two damage states of partial loosening of
bolts and complete removal of bolts have been consid-
ered in the present work.

The damage in the nonlinear system is identified
using Eq. (6) with the same describing function con-
cept. We have placed the sensors initially at 100 mm;
300 mm, 500 mm and 600 mm. We have not observed
any significant peak in the estimated Nonlinear Loca-
tion index corresponding to the damaged stage and pris-
tine state of the nonlinear system. Therefore, for accu-

rate localization of damage, the sensors are relocated
with respect to the availablemeasurements correspond-
ing to the healthy state neglecting the identified nonlin-
ear locations following the relocation instrumentation
strategy explained earlier in Sect. 2.2.1. With the relo-
cation, we have themeasurements at 100mm, 200mm,
300 mm, 350 mm, 400 mm, 500 mm and 600 mm from
the fixed end. The corresponding positions or nodes are
numbered as 1–7, respectively. The bolt–nut assembly
(i.e. damage zone) is between sensor 4 and sensor 5.
The nonlinearity location index plot corresponding to
the three different damaged states (i.e. two cases of
bolt loosening and one case of complete removal of
bolts) with the updated sensor information is shown in
Fig. 18a–c, respectively.

The presence of a significantly higher peak at sensor
4 in the plots shown in Fig. 18 clearly confirms the
presence of damage. It can also be observed that the
nonlinearity index value of sensor 4 in the plot shown
in Fig. 18c ( i.e. corresponding to the complete removal
of the bolt) is higher in magnitude when compared to
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the other two partial bolt removal cases, i.e. Fig. 18a,
b. This clearly indicates that there is a higher stiffness
reduction in the third case due to the complete removal
of the bolt when compared to the other two cases. This
experimental study clearly demonstrates the capability
of the improved describing function approach and its
applicability to practical problems.

7 Summary

In this paper, a nonlinear parametric identification algo-
rithm with limited instrumentation based on improved
describing function technique combining with PCA-
based model is proposed. The describing function
approach characterizes the nonlinearity present in the
system using an equivalent linear stiffness as the differ-
ence between the FRF of the nonlinear and underlying
linear system.The proposed nonparametric PCA-based
model overcomes the major limitation of the require-
ment of complete linear FRF matrix associated with
the traditional describing function approach. Numeri-
cal and experimental simulation studies have been car-
ried out to demonstrate the nonlinear system identi-
fication process using the proposed approach and its
extension to damage detection of nonlinear systems.
Based on the investigations, the following conclusions
can be drawn.

i. The proposed PCA-based nonparametric model
can be effectively used to compute complete lin-
ear FRF matrix using input–output measurements
alone. The significant advantage of the nonpara-
metric model is that it has the ability to predict
the linear system response due to different input
excitations at varied spatial locations with minimal
error avoiding elaborate experimentation. The error
index evaluated using the predicted and the actual
response of the underlying linear system works out
to be less than 1% for various input excitations.

ii. The nonlinear location index proposed for nonlin-
ear localization can be applied to any multiple-

input and multiple-output (MIMO) system, and it
does not require the identification of finite element
model.

iii. From the numerical and experimental investiga-
tions presented in this paper, it can be concluded
that the nonlinear location index correctly identi-
fiesmultiple local nonlinear elements present in the
system, even when the nonlinear spatial location is
far away from the input excitation point and also
works with limited instrumentation.

iv. Numerical and experimental studies clearly con-
firm that both the type and the corresponding non-
linear coefficient of the nonlinearity present in the
system can be determinedwith the help of the avail-
able describing function footprint library for differ-
ent types of nonlinearity.

v. The proposed nonlinear location index based on
describing function (DF) has been extended to
damage detection in structures exhibiting nonlin-
earity in its pristine state. However, we need to
first identify the nonlinear locations using the pro-
posed describing function approach using the pris-
tine data.

vii. The magnitude of the nonlinear location index esti-
mated between different damaged states helps in
characterizing the severity of the damage present
in the initially healthy nonlinear system.
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Appendix

See Table 6.
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Table 6 Describing function for different types of nonlinearity

Nonlinearity type Describing function

Cubic stiffness 0.75kcY 2

Velocity-squared damping i(8csY/3π)

Piecewise stiffness

⎧
⎨

⎩

k1 Y ≤ d
2(k1−k2)

π

(
arcsin

( d
Y

)+ d
Y

√
1 − ( dY

)2
)

+ k2 Y > d

Friction-controlled backlash 1
2

(
1 + 2

π

(
arcsin

(
1 − b

A

)− (1 − b
A

)− (1 − b
A

)√
1 − (1 − b

A

)2
))

i 1
π

(
2b
A − ( bA

)2)

Coulomb friction i(4F/πY )

Friction Stick region: kY
π

(θi − sin θi cos θi ); slip region: −4F
π

(
1 − F

kY

) ; θi = arccos
(
1 − 2F

kY

)

Hysteresis damping 4F
πY

√
1 − ( F

kY

)2
)

− i
(

4F2

πkY 2

)

Polynomial type with order n and
corresponding coefficient kn

kn
n(n−2)(n−4)...(3)

(n+1)(n−1)(n−3)...(4)Y
n−1 n is odd integer, > 1

kn
n(n−2)(n−4)···(2)

π(n+1)(n−1)(n−3)...(3)Y
n−1 n is even integer,> 0
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