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Abstract It is not very clear to understand genesis
and mechanisms for the creation of strange nonchaotic
attractors (SNAs) due to the nonsmooth bifurcations
in the nonsmooth systems. A quasiperiodically forced
piecewise Logistic system is shown to exhibit many
types of routes to the creation of SNAs. We point out
that the truncation of border-collision torus-doubling
bifurcation can lead to different types of SNAs. We
identify and describe the Heagy–Hammel routes, frac-
talization route and intermittent routes after the two
coexisting tori collide at the border and the doubled
torus is interrupted in this system. It has been shown
that there exist two critical tongue-type regions in the
parameter space, where the different mechanisms for
the birth of SNAs are investigated. These SNAs are
identified by the Lyapunov exponents and the phase
sensitivity exponents. Different types of SNAs are
also characterized by the singular-continuous spec-
trum, Fourier transform, rational approximations, dis-
tribution of finite-time Lyapunov exponents and recur-
rence analysis.
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1 Introduction

Strange nonchaotic attractors (SNAs) are found as typi-
cal attractors in quasiperiodically forced nonlinear sys-
tems. SNAs are geometrically strange and the largest
nontrivial Lyapunov exponent is negative, which do not
depend on initial conditions sensitively and imply non-
chaotic dynamics [1–3]. SNAs were firstly discovered
by Grebogi et al. [4] and since then extensively inves-
tigated by theoretical analysis [5–7] and experimental
verification [8–10] in dynamical systems. In particular,
the investigations on their mechanisms and routes have
attracted great interests by a large number of numeri-
cal studies. For example, Heagy–Hammel routes [11],
fractal routes [12–14], symmetry breaking [15], inter-
mittent routes [16–18], crisis route [19–22], blowout
bifurcation [23] and a bubbling route [24]. In 2015,
the existence of strange nonchaotic stars has also been
demonstrated in spaces, which further illustrates the
strange nonchaotic phenomenon [25]. It has important
practical application in field such as secure communi-
cation [26–28], spin dynamics of an anisotropic mag-
netic particle [29] and climate dynamics [30]. There-
fore the existence (or genesis) of SNAs inmore dynam-
ical systems has been a subject of intense further inter-
est.

It is known that the different types of bifurcations
are useful for understanding the mechanism and gene-
sis of SNAs [31,32]. A common observation is that the
truncation of period-doubling can creates SNAs [33].
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The truncation of the doubled torus is usually caused
by the following routes. In the Heagy–Hammel route,
the doubled torus collided with its unstable parent and
the period-2k torus created a SNA [11]. In the fractal-
ization route, the doubled torus became wrinkled and
forms a SNA [12–14]. In type-I intermittency route, the
torus-doubling bifurcation is tamed by a subharmonic
bifurcation so that the torus attractor gives rises to a
SNA [34]. Besides torus-doubling bifurcation, other
types of bifurcations are used to analyze the mecha-
nism for the creation of SNAs. When the torus loses
its transverse stability and blowout bifurcation occurs,
a SNA is created and it exhibits on-off intermittency
[23]. A quasiperiodic analog of a saddle-node bifur-
cation leads to SNAs through the intermittent route
[16]. This type of bifurcation is also called nonsmooth
saddle-node bifurcation of tori, which is widely inves-
tigated theoretically and numerically in skew product
maps [5,31]. In nature, strange nonchaotic attractors
through nonsmooth saddle-node bifurcation can also
be observed by analyzing the phase oscillator model of
glacial-interglacial cycles [31].

In most all the above studies, the SNAs and the
mechanism for bifurcation usually have been explored
in smooth systems. It is well known that nonsmooth
dynamical systems display some special types of bifur-
cations and a wealth of complex dynamical phenom-
ena [35–41]. In recent years, the strange nonchaotic
dynamics has been understood by exploring the nons-
mooth systems. In nonsmooth Chua’s oscillators, some
new routes to SNAs have been identified, e.g., multi-
layered bubbling route [42], formation and merging of
bubbles route [43]. In vibro-impact systems, it is shown
that the coexistence of SNAs can also be observed and
a new intermittency accompanied by symmetry restor-
ing bifurcation occurs in the vibro-impact system [44].
The SNAs can also be observed near a codimension
three bifurcation, and the mechanism for the creation
of SNA is also explored by the collision of doubled
torus with some unstable period orbits [45]. It is natural
to ask whether there exists a relation between the cre-
ation of SNAs and nonsmooth bifurcations. As a spe-
cific feature and anomalous bifurcation in nonsmooth
systems, nonsmooth bifurcations may lead to the unex-
pected change due to the collision of some invariant set
[36–39]. The main goal of this paper is to investigate
the border-collision bifurcation of tori and the creation
of SNAs. In the present work, we consider a quasiperi-
odically driven piecewise Logistic system and show

the genesis and mechanisms for the creation of SNAs
due to the truncation of border-collision torus-doubling
bifurcation (namely, two coexisting tori do not continue
to merge or collide at the border). We identify different
types of SNAs and focus on the two critical tongue-
type regimes in the parameter space. These types of
SNAs are described by the Lyapunov exponents, phase
sensitivity exponents, singular-continuous spectrums,
distribution of finite-time Lyapunov exponents, ratio-
nal approximations and recurrence analysis.

This paper is organized as follow. In Sect. 2, we shall
introduce the quasiperiodically forced model and show
how to identify the SNAs by the Lyapunov exponents
and phase sensitivity exponents. In Sect. 3, we describe
the dynamical regimes (SNAs, Tori andChaos) and dis-
cuss the general mechanism for the creation of SNAs.
In Sect. 4, we investigate different types of SNAs and
give some examples, describing three typical routes by
some measures after the border-collision bifurcations
of tori are interrupted. In Sect. 5, we conclude with a
summary.

2 The forced piecewise Logistic system

The piecewise Logistic system often is used as a repre-
sentative model for analyzing nonsmooth bifurcations.
The model of system is defined as follows [46]:
xn+1 = f (xn, a)

=
⎧
⎨

⎩

fl (xn, a) = axn (1 − xn) if xn < 1/2
fc (xn) = 1/2 if xn = 1/2
fr (xn, a) = axn (xn − 1) + 1 if xn > 1/2

(1)

where x ∈[0,1], a ∈[0,4]. For all parameter values
except for a = 1, the system function f is discon-
tinuous at the point x = 1/2. In order to investigate
the mechanisms for the creation of SNAs, we add an
additional quasiperiodic forcing:

xn+1 = f (xn, a, ε, φn)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fl (xn, a, ε, φn)

= (a + ε cos 2πφn) xn (1 − xn) if xn < 1/2
fc (xn) = 1/2 if xn = 1/2
fr (xn, a, ε, φn)

= (a + ε cos 2πφn) xn (xn − 1) + 1 if xn > 1/2

(2)

φn+1 = φn + ω (mod1) (3)

where x ∈[0,1],φ ∈ S1, the nonlinearity parameter of
the system ω and ε represent the frequency and ampli-
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tude of the quasiperiodic forcing, respectively. The fre-
quency is set to be the reciprocal of the golden mean,
ω = (

√
5− 1)/2. In order to describe the strange non-

chaotic dynamics of system (2), (3), it is useful to char-
acterize the SNAs through both the Lyapunov expo-
nents λx , which is given by

λx = lim
N→∞

1

N

N∑

i=1

ln

∣
∣
∣
∣
∂ f

∂xi

∣
∣
∣
∣ (4)

and the phase sensitivity exponent which can be
obtained by the phase sensitivity function �N [47]. On
a SNA, the function �N grows with the length of the
orbit N , as a power, i.e., �N ∼ Nμ, where μ is the
phase sensitivity exponent [47].

�N (a, ε) = min
x0,φ0

(

max
0≤n≤N

∣
∣
∣
∣
∂xn
∂φ

∣
∣
∣
∣

)

(5)

∂xn
∂φ

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[−2πε sin (2πφn)]
(
xn − x2n

)

+ [a + ε cos (2πφn)] (1 − 2xn)
∂xn
∂φ

if xn < 1
2

0 if xn = 1
2

[−2πε sin (2πφn)]
(
x2n − xn

)

+ [a + ε cos (2πφn)] (2xn − 1) ∂xn
∂φ

if xn > 1
2

(6)

3 SNAs and general mechanism

Figure 1 shows two phase diagrams in the a − ε plane.
Each phase diagram is characterized by both the Lya-
punov exponent λx in the x-direction and the phase
sensitivity exponent μ. The torus attractors have neg-
ative Lyapunov exponents (λx ) and zero phase sensi-
tivity exponent, where regions are denoted by nT and
shown in white. Different tori are denoted by 1T, 2T,
4T and 8T. The largest nonzero (nontrivial) Lyapunov
exponent is denoted by λmax. Chaotic attractors have
positive Lyapunov exponents (λmax >0) and chaotic
regions are shown in gray. Between the regular and
chaotic regions, SNAs have negative Lyapunov expo-
nent λmax and positive phase sensitivity, which are
shown in light gray. The escape regimes are shown
in black. Three codimension two bifurcation curves
(L1, L3 and L5) show quasiperiodic analog of pitch-
fork bifurcations and they are shown in black. Three
red curves (L2, L4 and L6) denote the codimension
two border-collision bifurcations of coexisting tori.
The regimes between the black curves and red curves
are coexisting tori attractors and three regimes are
denoted C-1T (coexisting 1T torus), C-2T (coexisting

Fig. 1 Phase diagrams in the (a − ε) parameter plane for
Eqs. (2), (3). Regular, chaotic, SNAs and divergence regions are
shown in white, gray, light gray and black, respectively. For the
regular attractors, a torus and its doubled tori are denoted by 1T,
2T, 4T and 8T, respectively. The black curves (L1, L3 and L5)
are codimension two bifurcation curves on quasiperiodic ana-
log of pitchfork bifurcation. The red curves (L2, L4 and L6)
are codimension two bifurcation curves on the border-collision
bifurcation of coexisting tori. (Fr), (Int) and (HH) correspond
to different routes, where SNAs are created through the fractal-
izations, intermittencies and Heagy–Hammel, respectively. The
crisis of SNAs is denoted by (Cr). (Color figure online)

2T torus) and C-4T (coexisting 4T torus), respectively.
Box in Fig. 1b illustrates that the 2T tori attractors
are originated from the border-collision bifurcations
of coexisting 1T torus attractors. Two typical tongue-
type regimes are denoted by Tongue I and Tongue II.
(Fr), (Int) and (HH) correspond to the regimes where
SNAs are created through the fractalizations, intermit-
tencies and Heagy–Hammel routes, respectively. The
crisis of SNAs is denoted by (Cr). For lower ε and
any a value, the system exhibits many border-collision
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Fig. 2 Six typical phase diagrams before and after border-collision bifurcations of tori for three critical points (α, β, γ in Fig. 1)
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Fig. 3 Lyapunov exponent diagram inEqs. (2), (3) for ε = 0.001

torus-doubling bifurcations and the truncation of bifur-
cations occurs. In Fig. 1a, the truncation of 8T tori
can be observed and the SNAs are created. On increas-
ing external forcing ε, the 4T tori are interrupted and
the SNAs are created, where there exists a typical
tongue I and the boundaries of tongue I exhibit different
types of transitions to chaos via SNAs, namely inter-
mittency (Int), fractalization (Fr) and Heagy–Hammel
(HH). As ε is increased further (Fig. 1b), the doubled
2T tori do not continue to collide at the border and
2T tori are interrupted, where there is also a tongue-
type region (Tongue II) and several types of mech-
anisms for creation of SNAs, namely 2T tori frac-
talization (2T-Fr), 2T tori intermittency (2T-Int) and
Heagy–Hammel (HH). In the tongue I regions, the
SNAs present a crisis and escape to infinity. Figure 1b
shows these types of SNAs and some critical points
(A, B, C, D, E and F). The routes A (or a) is typi-
cal Heagy–Hammel route to the SNAs. The routes B
and E are illustrated the crisis of chaotic attractors.
The routes C and D show the crisis of SNAs. In the
following, we will focus on the creation of SNAs in
more details, omitting the transition and evolution of
SNAs.

In order to discover border-collision bifurcations
of coexisting tori, Fig. 2 gives six typical phase dia-
grams before and after border-collision bifurcations
for three critical points (α, β, γ in Fig. 1). Fig-
ure 2a shows two coexisting 4T torus (red and blue)
for ε = 0.025 and a = 3.4797. Two coexist-
ing 4T torus approach the border x = 0.5 simul-

taneously before the border-collision torus-doubling
bifurcation. Figure 2b shows that an 8T torus attrac-
tor is created after the border-collision torus-doubling
bifurcation for ε = 0.025 and a = 3.4798. Fig-
ure 2c shows that two coexisting 2T torus attractor
(red and blue) will collide at the border x = 0.5
before the border-collision torus-doubling bifurcation
for ε = 0.150, a = 3.1187. After border-collision
torus-doubling bifurcation, Fig. 2d shows that a 4T
torus attractor is created for ε = 0.150, a = 3.1188.
Figure 2e shows that two coexisting 1T torus attrac-
tors (red and blue) will collide at the border x = 0.5
for the ε = 0.600, a = 1.6896. A 2T torus is cre-
ated by the border-collision torus-doubling bifurcation
of coexisting 1T torus (Fig. 2e). In order to discover
further the mechanism for the creation of SNAs, the
truncation of border-collision torus-doubling bifurca-
tion is investigated by the Lyapunov exponent λx as a
representative example ε = 0.001 shown in Fig. 3. The
diagram of the Lyapunov exponent (Fig. 3) shows the
obvious properties with λx = 0 at the quasiperiodic
analog of pitchfork bifurcation point and λx → −∞
at border-collision torus-doubling bifurcation point. It
is noted that the bifurcation is different from the clas-
sical torus-doubling bifurcation scenario. For the clas-
sical torus-doubling bifurcation, the largest Lyapunov
exponent is zero at the bifurcation point. However,
the Lyapunov exponent λx tend to infinity (−∞) at
the border-collision torus-doubling bifurcation point.
Here, the quasiperiodic analog of pitchfork bifurca-
tion can lead to coexisting attractors except for the
torus-doubling bifurcation in a small parameter plane,
where the largest Lyapunov exponent is zero. The
truncation of doubled torus implies that the attractors
are created before their Lyapunov exponents tend to
zero from infinity (−∞). Therefore, it is necessary
for the birth of SNAs with negative Lyapunov expo-
nent λx . Figure 4 shows that the SNAs are created
by the truncation of border-collision torus-doubling
bifurcation for ε = 0.001 as an example. The dou-
bled tori (2T→ 4T→8T→16T→SNA) are shown in
Figs. 4a–e, respectively. Figure 4f shows the phase
sensitivity functions for the 16T torus and the SNA,
which the largest Lyapunov exponentλx approximately
equals to −0.007 and the phase sensitivity exponent μ
approximately equals to 0.886.
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1410 Y. Shen, Y. Zhang

Fig. 4 SNAs are created by truncation of border-collision torus-
doubling bifurcation for ε = 0.001 a A 2T torus for a = 3.100;
b A 4T torus for a = 3.250; c A 8T torus for a = 3.520; d A

16T torus for a = 3.550; e A SNA for a = 3.569; f Two phase
sensitivity functions for a = 3.550 (16T) and a = 3.569 (SNA)
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4 Strange nonchaotic dynamics after the
truncation of border-collision bifurcations of tori

4.1 Methods on characteristics of SNAs

One of the characteristics of the SNAs through dif-
ferent mechanisms is the difference in the distribu-
tion P(t, λ)of finite-time or local Lyapunov expo-
nents because a typical trajectory on a SNA actually
possesses positive Lyapunov exponents in finite-time
intervals [1,33,48]. The finite-time or local Lyapunov
exponents depend on the initial conditions. In fact,
P(t, λ)corresponds to counting the normalized num-
ber of times any one of the λ appears for fixed time
t . In the limit of large t , this distribution will collapse
to a δ function P(N , λ) → δ( − λ). The variance σ

of  is also a useful method to describe the transition
from tori to SNAs [33,48]. In our numerical calcula-
tions,  and its variance are typically computed from
a sample of 50 estimations of step length N = 105.
Namely, we take the distribution P(50, λ) as an exam-
ple. To quantify further the distribution of finite-time
Lyapunov exponents, we use the fraction of positive
local Lyapunov exponents F+(N ) (the fraction of expo-
nents lying above λ = 0, and here the total number
of exponents is 10000) to describe the SNA. For more
details on the computation of P(N , λ),σ, and F+(N ),
see the references, e.g., [1,33,38].

To detect the transition fromquasiperiodicmotion to
SNAs, Ngamga et.al introduced four measures which
are based on the time needed by the system to recur
to a neighborhood of a previous point of the trajec-
tory [49,50]. Here, we used the variance σMRT of the
mean recurrence time to detect the onset of SNAs. From
the previous results, the maximal Lyapunov exponents
and their variances cannot detect the onset of SNAs
by the gradual fractalization route [33,48]. However,
this measure σMRT is able to detect the onset of SNAs
in the Heagy–Hammel route, intermittency route and
the fractalization of a torus. In order to visualize these
recurrences of a given trajectory {xi }Ni=1, one needs to
compute an N × Nmatrix:

Ri, j = �(δ − ∥
∥xi − x j

∥
∥), i, j = 1, . . . , N (7)

where xi ∈ Rn ,δ is a predefined threshold, �(·) is the
Heaviside function, and ‖·‖ denotes a norm (here the
maximum norm).

From the recurrence plots [49–51], we evaluate the
frequency distribution Pδ(ω) of the lengths ω of the

white vertical lines. We compute the mean recurrence
time TMRT from the distribution.

TMRT =
N∑

ω=1

ωP(ω)/

N∑

ω=1

P(ω), (8)

The variance σMRT of TMRT is evaluated by dividing
the trajectory into ksegments:

σMRT =
k∑

l=1

(TMRT(l) − T̄MRT)2/k, (9)

where T̄MRT is the mean value of TMRT. Here, we used
σMRT to describe the transition from the torus to SNA.
In our numerical calculations, we use the threshold δ =
0.08, l = 100 and N = 1000 for each segment.

To verify the strangeness of the attractor, we exam-
ine the spectral characteristics of the attractor. The
singular-continuous spectrum technique has been used
to verify the SNAs effectively in some dynamical
systems [1,23,24]. Compute the following Fourier
sum:

X (�, T ) =
T∑

n=1

xne
i2πn�, (10)

where � is proportional to the ratio of two incommen-
surate frequencies of the quasiperiodic driving. It was
demonstrated that for strange nonchaotic attractors, the
following scaling relation |X (�, N )|2 ∼Nβ holds and,
for SNAs the scaling exponent satisfies 1 < β < 2. In
addition, the SNAs can also studied by the method of
a rational approximation, which is based on the fact
that the irrational number can be approximated by an
appropriate rational. For the golden mean irrational,
the adjusting rational can be obtained from the contin-
ued fraction representation of ω, they have the form
ωk = Fk−1/Fk , where Fk = 1, 1, 2, 3, 5, 8, . . . are
the Fibonacci numbers. The irrational rotation number
turns out to be the limit: ω = limk→∞ ωk . We study
the strange nonchaotic behavior of systems where the
irrational frequencyω is replacedby its rational approx-
imate ωk .

4.2 Different mechanisms

In this section, we will describe some different routes
to creation of SNAs after the coexisting tori collide
at the border and they are interrupted. Different meth-
ods are used to describe the SNAs. The details are as
follows.
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4.2.1 Heagy–Hammel route

Now we consider the strange nonchaotic dynamics by
varying the value of ε and a so that the mechanism for
the birth of SNAs is described in detail. A very inter-
esting pattern is the truncation of doubled torus and the
existence of the unstable parent torus,which the route is
called Heagy–Hammel (HH) route. The obvious prop-
erty of HH routes is that a period-2n torus gets wrinkled
and collides with the unstable period-2n−1 torus, bifur-
cating into a strange nonchaotic attractor. We identify
this type of route in the typical two regions. The first
region is within the range of ε, 0.310 < ε < 0.510,
and a values 3.260 < a < 3.430. The second region is
within the range of ε, 0.033< ε <0.075, and a values
3.500< a <3.540. Obviously, when the black curves
keep close to the terminus, two larger regions (light gray
in Fig. 1) marked by A and A’ show the abundance of
SNAs due to the HH routes. It is similar to that of the
previous one in the neighborhood of endpoint of the
black curve. Here, the truncation of border-collision
bifurcation of tori can also generate the SNAs by the
HH routes.

We examine the HH transition from torus to SNA by
the Lyapunov exponent and recurrence time measure
σMRT. The first property has been confirmed through
the calculation of the maximal Lyapunov exponent and
its variance. For the first example, we fix the param-
eter ε at ε = 0.350 and vary a. Figure 5a is a plot
of the maximal Lyapunov exponent as a function of
a and Fig. 5b is a plot of the variances σ of the local
Lyapunov exponent as a function of a. At this transi-
tion, abrupt changes in the Lyapunov exponent as well
as its variance show the characteristic signature of the
Heagy–Hammel route to SNA. It is examined that the
transition (in a sufficiently small neighborhood of the
critical value aHH ≈ 3.2734) is clearly revealed by the
Lyapunov exponent, which varies smoothly in the torus
region (a < aHH)while it varies irregularly in the SNA
region (a > aHH). We can identify this transition point
by examining the variance σ of the Lyapunov exponent
in Fig. 5b, in which the fluctuation is small in the torus
region while it is large in the SNA region. Secondary,
we are able to find a threshold aHH which lead to a
good detection of the transition to SNAs by the recur-
rence timemeasure σMRT (See Fig. 5c).We present two
examples: a torus before the transition (a < aHH) and
a SNA after the transition (a > aHH). For example,
the attractor is a 4T quasiperiodic attractor in Fig. 6a

(a = 3.201), and the attractor exhibits four smooth
curves. As a is increased to a = 3.276, the 4T torus
attractor does not continue to bifurcate and the four
tori become extremely wrinkled because the wrinkled
torus collide with the unstable 2T torus (red curves)
shown in Fig. 6b. For this case, the attractor exhibits a
fractal property but does not depend on the initial con-
ditions sensitively (the maximal Lyapunov exponent is
negative, λmax ≈ − 0.001) and it is indeed a strange
nonchaotic attractor.

In addition, in order to distinguish the quasiperi-
odic attractor and the strange nonchaotic attractor, we
can examine the attractor by the phase sensitivity func-
tion �N and the distribution of finite-time exponents
P(50, λ). We calculate the phase sensitivity exponent
μ ≈ 2.229 and show this geometrically strange prop-
erty for this SNA. Figure 7a shows that the phase sen-
sitivity function �N of the SNA grows unboundedly
with the power-law relation�N ∼ Nμ, μ ≈ 2.229 and
the torus attractor is bounded. Figure 7b is the distribu-
tion for P(50, λ)across the transition discussed above,
namely on the torus (in blue) and the corresponding
SNA (in red). A feature is that the distribution P(50, λ)

picks up a tailwhich extends into theλ > 0 regionwhen
the attractor is a SNA. This tail directly correlates with
the enhanced fluctuation in the Lyapunov exponent and
its variance on SNAs (see Fig. 5a, b). On the HH SNA,
the actual shapes of the distribution on the torus and the
SNA are different. Furthermore, we use the fraction of
positive local Lyapunov exponents F+(N ) (the frac-
tion of exponents lying above λ = 0) to describe the
SNA. It has been found that on the HH SNA, the quan-
tity shows the large N behavior F+(N ) ∼ exp(−γ N ).
The exponent γ is dependent strongly on the parame-
ters of the system. For example, a resulting exponen-
tial decay with γ ≈ − 0.004 for F+(N ) has been
observed in Fig. 7c. We note that the spectrum of
this SNA is singular-continuous (Fig. 7d). To pro-
vide more solid evidence for the singular-continuous
nature of the spectrum,we compute the time-dependent
Fourier transform |X (�, N )|. This behavior is shown
in Fig. 7e, where we observe a relatively robust power-
law behavior with β ≈ 1.3. Finally, we study the SNA
(a = 3.276) by a rational approximation, where the
irrational frequencyω is replacedby its rational approx-
imate ωk = 610/987 (Fig. 7f). It can be seen that
Figs. 6b and 7f exhibits a similar fractal property.

For the second example, we fix the parameter ε

at ε = 0.050 and vary a. For a = 3.520, the 8T
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Fig. 5 Heagy–Hammel mechanism for ε = 0.35: a crucial tran-
sition point aHH ≈ 3.2734 can be observed. a the maximal Lya-
punov exponent λx as a function of a; b the variance (σ) of the
local Lyapunov exponents as a function of a and small changes

in torus and large changes in SNA. Abrupt increase at the transi-
tion point; c recurrence analysis: variance of themean recurrence
time TMRT from a distribution

torus attractor become wrinkle (Fig. 8a) and the 8T
torus attractor is originated from the border-collision
bifurcations of coexisting 4T torus attractors (Fig. 1a).
As the parameter a is increased to a = 3.524, the
attractor has also fractal structure but is not chaotic
(λmax ≈ − 0.019), see Fig. 8b. It is similar to the above
case, which the 8T torus collides with the unstable 4T
torus and a SNA is created. In order to distinguish
the quasiperiodic attractor and the strange nonchaotic
attractor, we can examine the phase sensitivity func-
tion �N for every attractor. For 8T torus attractor, the
phase function �N is bounded and the phase sensitiv-
ity exponent is zero. For a = 3.524, the phase function

�N grows unboundedly with the power-low relation
with μ ≈ 1.197, see Fig. 8c. We also investigate the
power spectrum for the SNA and find that it exhibits the
singular-continuous nature of the spectrum (Fig. 8d).
For the time-dependent Fourier transform |X (�, N )|,
we observe a relatively robust power-law behavior with
β ≈ 1.15 shown in Fig. 8e. These properties provide
more solid evidences for this SNA. Similarly, we use
a rational approximation ωk = 987/1597 to describe
the SNA (Fig. 8f). It can be seen that the approximated
attractor (Fig. 8f) exhibits a similar nature like Fig. 8b.
We have done a lot of numerical experiments and found
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Fig. 6 Attractors through Heagy–Hammel route of 4T torus for ε = 0.350. a A 4T torus for a = 3.201; b A SNA for a = 3.276

that the HHmechanisms in Fig. 1 are common and this
type of SNAs can exhibit some similar properties.

4.2.2 Fractalization route

Fractalization route is both the most common and
the most intriguing transition to SNAs, which the
quasiperiodic torus suddenly gets increasingly wrin-
kled and loses its original smoothness with the change
of parameters, which does not collide with the unsta-
ble orbits. Such a route has been identified in a larger
parameter region within the range of ε values, 0.540 <

ε < 1.380, and a values, 2.620< a <3.160. For clar-
ity, we only give a magnified window near the tongue
II region in Fig. 1b (e.g., the arrow F shows a typical
fractalization route). In this regime, the 2T tori are orig-
inated from the truncation of border-collision bifurca-
tions of coexisting 1T tori attractors. However, the 2T
torus attractors do not continue to bifurcate. Here, a 2T
torus gradually becomes fractal and forms a SNA.

Now we examine the fractalization transition from
torus to SNAby the Lyapunov exponent and recurrence
time measure σMRT. For example, we fix the parameter
ε at ε = 0.600 and vary a. In the gradual fractaliza-
tion route, the Lyapunov exponent and the variance σ

of the Lyapunov exponent vary only slowly, as shown
in Fig. 9a, and there are no significant changes in its
variance (see Fig. 9b). We cannot identify this tran-
sition point by examining the largest Lyapunov expo-
nent and the variance σ. The fractalization appears as
a gradual change in the structure of the attractor, and

it is difficult to detect a precise bifurcation. However,
there is a drastic jump followed by irregular fluctua-
tions of the recurrence time measure σMRT at the crit-
ical value of the bifurcation parameter aF ≈ 3.0295.
It can be seen that the attractor varies slightly in the
torus region (a < aF ) and at the critical value there
is a drastic jump, after which, some oscillations varies
irregularly in the SNA region (a > aF ). In the torus
region (a < aF ), an example is given as a 2T quasiperi-
odic attractor (Fig. 10a) for a = 2.970. In the SNA
region (a > aF ), we take a = 3.050 (Fig. 10b) as an
example, which the attractor loses the smoothness and
becomes a SNA with the largest Lyapunov exponent
λmax ≈ − 0.106. As the parameter a is increased to
a = 3.100 (Fig. 10c), the attractor looks like a chaotic
attractor, but it is also indeed a SNAwith negative Lya-
punov exponent λmax ≈ − 0.002.

Furthermore, in order to identify the quasiperiodic
attractor and the strange nonchaotic attractor, we can
also examine the attractor by the phase sensitivity
function �N and the distribution of finite-time expo-
nents P(N , λ). We calculate two phase sensitivity
exponents μ ≈ 0.904 (for a = 3.050 in Fig. 10b)
and μ ≈ 2.929 (a = 3.100 in Fig. 10c), showing
this geometrically strange property. Figure 11a shows
that the phase sensitivity function �N of the attractor
(a = 3.100) grows unboundedly with the power-law
relation �N ∼ Nμ, μ ≈ 2.929 and the torus attrac-
tor (a = 2.97) is bounded. Figure 11b is the distribu-
tion for P(50, λ)across the transition discussed above,
namely on the tori (in blue) and the corresponding
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Fig. 7 Heagy–Hammel route for ε = 0.350. a phase sensitivity
functions; b distribution of finite-time Lyapunov exponents. A
torus for a = 3.201 (blue) and a SNA for a = 3.276 (red); c
variation of F+(N ) for the SNA (a = 3.276), showing an expo-

nential decay; d power spectrum of the SNA for a = 3.276; e
Singular-continuous spectrum analysis: log10 |X (�, T )|2 versus
logT10. We have |X (�, T )|2 ∼ T 1.3; f A rational approximation
to a SNA (a = 3.276). (Color figure online)
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Fig. 8 Heagy–Hammel route of 8T torus for ε = 0.050. a A 4T
torus for a = 3.520; b A SNA for a = 3.524; c phase sensi-
tivity functions; d power spectrum of the SNA for a = 3.524; e

singular-continuous spectrum analysis: log10 |X (�, T )|2 versus
logT10. We have |X (�, T )|2 ∼ T 1.15; f a rational approximation
to a SNA (a = 3.524)
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Fig. 9 Fractalization mechanism for fixed ε = 0.6. a The max-
imal Lyapunov exponent λx as a function of a and no significant
changes; b the variance (σ) of the local Lyapunov exponents as a

function of a and no significant changes; c recurrence analysis:
variance of the mean recurrence time TMRT from a distribution.
A crucial transition point aF ≈ 3.0295 can be observed

SNA (a = 3.100, in red). On the fractalized SNA,
the distribution shifts continuously to larger positive
Lyapunov exponents, but the shape remains the same
for torus regions as well as SNA regions, while on
the HH routes, the shapes of the distribution on the
torus and the SNA are different. These positive local
Lyapunov exponents directly correlate with the change
of Lyapunov exponents on SNAs (see Fig. 9a, b, no
obvious changes). Furthermore, we also use the frac-
tion of positive local Lyapunov exponents F+(N ) to
describe the SNA (a = 3.100). It has been found
that on the fractalized SNA, the quantity shows the
large N behavior F+(N ) ∼ exp(−γ N ). The expo-

nent γ are also dependent strongly on the parameters
of the system. For example, a resulting exponential
decay with γ ≈ − 0.018 (a = 3.100) for F+(N ) has
been observed in Fig. 11c. We have also investigate
that the spectrum of this SNA (a = 3.100) is singular-
continuous (Fig. 11d). Simultaneously, we compute the
time-dependent Fourier transform |X (�, N )|, which
is shown a relatively robust power-law behavior with
β ≈ 1.25 in Fig. 11e. Finally, we study the SNA
(a = 3.1) by a rational approximation, where the irra-
tional frequency ω is replaced by its rational approxi-
mate ωk = 2584/4181 (Fig. 11f). It can be seen that
Figs. 10c and 11f exhibits a similar fractal property.
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Fig. 10 Attractors through fractalization routes of 2T torus for ε = 0.600. a A 2T torus for a = 2.970; b a SNA for a = 3.050; c a
SNA for a = 3.100

Wehave also investigated 4T torus fractalization and
8T torus fractalization shown in Fig. 1a. The fractaliza-
tion of 4T torus occurs between the red curve L4 and
black curve L5, where 4T tori are originated from the
truncation of border-collision bifurcations of coexist-
ing 2T torus attractors. For example, we fix the param-
eter ε at ε = 0.250 and vary a. For a = 3.250, a 4T
torus attractor begins to get wrinkled (Fig. 12a) and
the attractor becomes extremely wrinkled (Fig. 12b)
for a = 3.265. We examine the phase sensitivity func-
tion �N and the largest Lyapunov exponent (λmax ≈
− 0.003) for the attractor (a = 3.265). The �N grows
unboundedly with the power-low relation �N ∼ Nμ,
μ ≈ 1.580 (Fig. 12c). Figure 12d shows that the spec-
trum of the SNA is singular-continuous. The time-

dependent Fourier transform |X (�, N )| is also a rel-
atively robust power-law behavior with β ≈ 1.25 in
Fig. 12e. TheSNA is also obtained by a rational approx-
imate ωk = 4181/6765 (Fig. 12f).

The fractalization of 8T torus appears in the right
region of red curve L6, where 8T tori are originated
from the truncation of border-collision bifurcations of
coexisting 4T torus attractors. For example, we fix ε

at ε = 0.010 and vary a. For a = 3.540, a 8T torus
exhibits the quasiperiodic motion with zero phase sen-
sitivity exponent (Fig. 13a, c). As the parameter a
is increased to a = 3.552, the fractalization of 8T
occurs and �N grows unboundedly with the power-
low relation �N ∼ Nμ, μ ≈ 0.682 (Fig. 13b, c).
However, the attractor has negative Lyapunov exponent
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Fig. 11 Fractalization routes of 2T torus for ε = 0.600. a
Phase sensitivity functions; b distribution of finite-time Lya-
punov exponents. A torus (blue) and a SNA (red); c varia-
tion of F+(N ) for the SNA(a = 3.1), showing an exponential

decay; d power spectrum of the SNA for a = 3.1; e singular-
continuous spectrum analysis: log10 |X (�, T )|2 versus logT10.
We have |X (�, T )|2 ∼ T 1.25; f a rational approximation to
a SNA (a = 3.1). (Color figure online)
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Fig. 12 Fractalization routes of 4T torus for ε = 0.250. a a 4T
torus for a = 3.250; b a SNA for a = 3.265; c phase sensitiv-
ity functions; d power spectrum of the SNA for a = 3.265; e

singular-continuous spectrum analysis: log10 |X (�, T )|2 versus
logT10. We have |X (�, T )|2 ∼ T 1.25; f a rational approximation
to a SNA (a = 3.265)
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Fig. 13 Fractalization routes of 8T torus for ε = 0.010. a A 8T
torus for a = 3.540; b a SNA for a = 3.552; c phase sensitiv-
ity functions; d power spectrum of the SNA for a = 3.552; e

singular-continuous spectrum analysis: log10 |X (�, T )|2 versus
logT10. We have |X (�, T )|2 ∼ T 1.25; f a rational approximation
to a SNA (a = 3.552)
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Fig. 14 Type-I intermittency mechanism for fixed a = 3.29:
A crucial transition point εI ≈ 0.55519496 can be observed. a
The maximal Lyapunov exponent λx as a function of ε; b the
variance (σ) as a function of ε and small changes in torus and

large changes in SNA; Abrupt changes at the transition point; c
recurrence analysis: Variance of the mean recurrence time TMRT
from a distribution

λmax ≈ − 0.007, and it is indeed a strange nonchaotic
attractor. Figure 13d shows a singular-continuous spec-
trum for the SNA. The time-dependent Fourier trans-
form |X (�, N )| is also a relatively robust power-law
behavior with β ≈ 1.25 in Fig. 13e. The SNA is also
obtained by a rational approximate ωk = 4181/6765
(Fig. 13f). Therefore, the truncation of border-collision
torus-doubling bifurcation (L2, L4 and L6) can lead to
the fractalization of different tori (2T, 4T and 8T).

4.2.3 Intermittent route

The predominant routes that lie in the upper regimes
of tongues (tongue I and tongue II) are type-I inter-
mittent routes. The first region of this route has been
identified within the range of a, 3.320< a <3.510 and

on increasing the value of ε, 0.150< ε <0.180, as
shown in Fig. 1a. In this region, the type-I intermit-
tency of 4T torus is created by the quasiperiodic ana-
log of saddle-node bifurcation, which the 4T torus is
originated from the truncation of the border-collision
bifurcations of coexisting 2T torus attractors (L4 is the
bifurcation curve). The second region of the intermit-
tent route has also been identified within the range of
a, 3.11< a <3.42 and on increasing the value of ε,
0.53< ε <0.58, which the type-I intermittency of 2T
torus is created by the quasiperiodic analog of saddle-
node bifurcation. In this region, the 2T torus is origi-
nated from the truncation of the border-collision bifur-
cations of coexisting 1T torus attractors (L2 is the bifur-
cation curve).
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Fig. 15 Attractors through type-I intermittent route of 2T torus for a = 3.290. aA2T torus for ε = 0.555193;b a SNA for ε = 0.555196

Now we examine the intermittent transition from
torus to SNAby the Lyapunov exponent and recurrence
time measure σMRT. For Type-I intermittent routes,
these methods can find a bifurcation point. To under-
stand more about this route, we consider the specific
parameter value a = 3.290 and vary ε in the tongue II
region (e.g., the route H). The first property has been
confirmed through the calculation of the maximal Lya-
punov exponent and its variance. Figure 14a, b are two
plots of the maximal Lyapunov exponent and the vari-
ances σ as a function of ε. At this transition, two abrupt
changes at the same bifurcation point in the Lyapunov
exponent as well as its variance show the characteristic
signature of the Type-I intermittency route to SNA. A
crucial transition point ε0 ≈ 0.555195 can be observed.
Unlike the case of fractalization routes, there is no dis-
tinctive abrupt signature in the λx and σ. When we
examined the transition in a sufficiently small neighbor-
hood of ε0, it is clearly revealed: on the torus, λx and σ

vary smoothly, but on the SNA, the variations are rather
irregular and the crossover between these twobehaviors
is abrupt. It is also possible to identify the precise tran-
sition point εI ≈ 0.55519496 from the examination of
recurrence time measure σMRT, shown in Fig. 14c: in
the torus region, ε < εI , the fluctuations in σMRT are
very small, while for ε > εI , the fluctuations are large
and depend irregularly on the function of the control
parameter ε. Here, we give two representative attrac-
tors before and after the transition. For example, the
attractor is a 2T quasiperiodic attractor (ε = 0.555193,

Fig. 15a). As ε is increased to ε = 0.555196, the 2T
torus attractor exhibits intermittency and its Lyapunov
exponent isλmax ≈ − 0.003 (Fig. 15b).

Next we describe the SNA (Fig. 15b) by the dif-
ferent methods. Figures 16a, b show the phase sensi-
tivity function �N and the distribution of finite-time
exponents P(N , λ) for the torus (ε = 0.555193)
and the SNA (ε = 0.555196). The phase sensitiv-
ity function �N grows unboundedly with the power-
law relation �N ∼ Nμ, μ ≈ 3.274 and the torus
attractor is bounded. Figure 16b is the distribution for
P(50, λ)across the transition discussed above, namely
on the tori (in blue) and corresponding SNAs (in red).
One of the most obvious features is that the distri-
bution P(50, λ) picks up a tail which extends into
the λ > 0 region when the attractor is a SNA. This
tail directly correlates with the enhanced fluctuation in
the Lyapunov exponents on SNAs (see Figs. 14a, b).
One remarkable feature of intermittent SNAs is that
the positive tail in the distribution decays very slowly.
To quantify further the distribution of finite-time Lya-
punov exponents, we have shown that on the intermit-
tent SNA, these quantities show the large N behavior
F+(N ) ∼ N−β , here β ≈ 0.28 (ε = 0.555196) in
Fig. 16c, while for the fractalized or HH SNAs, the
approach is exponentially fast, F+(N ) ∼ exp(−γ N ).
It is investigated that the spectrum of this SNA (ε =
0.555196) is singular-continuous (Fig. 16d) and the
time-dependent Fourier transform |X (�, N )| is shown
a relatively robust power-law behavior with β ≈ 1.75
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Fig. 16 Type-I intermittent route of 2T torus for a = 3.290. a
Twophase sensitivity functions;bDistributionoffinite-timeLya-
punov exponents. A torus (blue) and a SNA (red) for three routes;
c variation of F+(N ) for the SNA, showing a power-law decay

withβ ≈ 0.28;dpower spectrumof theSNAfor ε = 0.555196; e
singular-continuous spectrum analysis: log10 |X (�, T )|2 versus
logT10. We have |X (�, T )|2 ∼ T 1.75; f a rational approximation
to a SNA (ε = 0.555196). (Color figure online)
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Fig. 17 Type-I intermittent route of 4T torus for a = 3.450. a
A 4T torus for ε = 0.162; b a SNA for ε = 0.163; c phase sensi-
tivity functions; d power spectrum of the SNA for ε = 0.163; e

singular-continuous spectrum analysis: log10 |X (�, T )|2 versus
logT10. We have |X (�, T )|2 ∼ T 1.38; f a rational approximation
to a SNA (ε = 0.163)
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in Fig. 16e. Finally, we study the SNA by a ratio-
nal approximationωk = 1597/2584 (Fig. 16f), which
exhibits a similar fractal property.

For another example, we consider the parameter
value a = 3.450 and vary ε in the tongue I region
(e.g., the route d in Fig. 1a). For ε = 0.162, the attrac-
tor is a 4T torus attractor (Fig. 17a) with zero phase
sensitivity exponent. As ε is increased to ε = 0.163,
the 4T torus attractor exhibits the intermittent signa-
ture, but it is nonchaotic because its Lyapunov expo-
nent λmax ≈ − 0.021 is negative (Fig. 17b). It is found
that the phase sensitivity function �N ∼ Nμ grows
unboundedlywith the power-lawμ ≈ 3.178 (Fig. 17c),
and thus, it is indeed a SNA. It is also investigated
that the spectrum of this SNA is singular-continuous
(Fig. 17d) and |X (�, N )| is shown a relatively robust
power-law behavior with β ≈ 1.38 in Fig. 17e. Finally,
we study the SNA by a rational approximationωk =
6765/10946 (Fig. 17f), which exhibits intermittency
like Fig. 15b. Usually, the regions of SNAs are rare by
the type-I intermittency and the SNAs easily become
the chaotic attractors (gray region in Fig. 1). There
exists a narrow region (e.g., the route C and the route
D), where the SNAs are also created by the type-I inter-
mittency and the SNAs disappear suddenly due to the
boundary crisis of SNAs but not the boundary crisis
of chaotic attractors (e.g., the route B and the route E
in Fig. 1).

5 Conclusions

While the SNAs have been studied for more than three
decades, one interesting topic focused on the bifurca-
tion and the creation of SNAs, which most works have
paid attention to the smooth systems in different fields.
In this paper, we have investigated the relation between
the border-collision bifurcations of tori and the creation
of SNAs in the nonsmooth system. We found that the
coexisting torus attractors (1T torus, 2T torus and 4T
torus) collided at the border and a finite sequence of
torus-doubling appeared in a quasiperiodically driven
system with nonsmooth factors, which was called the
truncation of border-collision torus-doubling bifurca-
tion. It was the first to demonstrate that the trunca-
tion of border-collision bifurcation of tori can gener-
ate strange nonchaotic dynamics. We have identified
the different types of SNAs through different routes
and mechanisms in a nonsmooth system, namely the

quasiperiodically driven piecewise Logistic map. This
system is a representative model for quasiperiodically
driven border-collision period-doubling system. These
SNAs have been identified in a two parameter (a − ε)

phase diagram and the SNAs are abundant.
In order to distinguish different mechanisms for the

creation of SNAs, we have described Heagy–Hammel
routes (e.g., 4T torus and 8T torus), gradual fractaliza-
tion (e.g., 2T torus, 4T torus and 8T torus) and type-I
intermittency (2T torus and 4T torus), whose routes
are explored through the truncation of border-collision
bifurcations of tori. In particular, we found that the
routes to strange nonchaotic dynamics aremore diverse
in two tongue-type regions. Besides the above routes,
the crisis of SNAs occurs in the tongue-type regime.We
havepresented anumber of examples anddescribeddif-
ferent routes and mechanisms. To distinguish the type
of attractors and verify the SNAs, we have examined
the maximal Lyapunov exponent and phase sensitiv-
ity exponent. For three routes (Heagy–Hammel, Type-I
intermittency and fractalization), we detect the transi-
tions from quasiperiodic motions to SNAs by differ-
ent measures (the maximal Lyapunov exponent, the
variance of local Lyapunov exponents and the recur-
rence time variance measure). Three types of SNAs
are also characterized by the singular-continuous spec-
trum,Fourier transformand the rational approximation.
We expect that these results are common in more non-
smooth systems.
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