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Abstract In this study, the solution to the kinemati-
cally optimal control problem of the mobile manipula-
tors is proposed. Both dynamic equations are assumed
to be uncertain, and globally unbounded disturbances
are allowed to act on the mobile manipulator when
tracking the trajectory by the end effector. We propose
a computationally efficient class of cascaded control
algorithms, which are based on an extended Jacobian
transposematrix. Our controllers involve two new non-
singular terminal sliding mode manifolds defined by
nonlinear integral equalities of both the second order
with respect to the task space tracking error and the
first order with respect to reduced mobile manipulator
acceleration. Using the Lyapunov stability theory, we
prove that the proposed Jacobian transpose cascaded
control schemes are finite time stable provided that
some practically reasonable assumptions are fulfilled
during the mobile manipulator movement. The numer-
ical examples carried out formobilemanipulators [con-
sisting of a non-holonomic platform of type (2, 0) and
holonomic manipulators of 2 and 3 revolute kinematic
pairs], which operate in two-dimensional and three-
dimensional work spaces, respectively, illustrate both
the trajectory tracking performance of the proposed
control schemes and simultaneously their minimising
property for some practically useful objective function.
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1 Introduction

Mobile manipulators are robotic systems, for which
the range in the work space of the non-holonomic
mobile platforms is, in fact, unbounded. The holo-
nomic manipulator, rigidly attached to the platform,
makes it possible to accomplish different manipula-
tion tasks by the end effector, e.g. tracking a desired
trajectory given in the task space. Modern control sys-
tems for such mechanisms require both extremely high
precision and stability of the trajectory tracking. On
account of the fact that desired trajectories are most
often expressed in task (Cartesian) coordinates, the
application of the joint space control techniques first
requires solving the inverse kinematics problem. The
process of kinematic inversion is both time-consuming
(there does not exist, in general, an analytic form of
inverse mapping) and becomes very complicated when
the Cartesian trajectory generates kinematic and/or
algorithmic singularities [1]. Thus, controllers to be
designed should accurately track desired end effector
trajectory despite possible singularities met on this tra-
jectory, uncertain dynamic equations, unknown pay-
load to be transferred by the end effector and external
disturbances. On account of the fact that mobilemanip-
ulators become usually redundant mechanisms when
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accomplishing the end effector tasks, designed control
algorithms should also provide steering signals opti-
mising some useful goals (singularity and/or collision
avoidance, posture control, etc.). Moreover, in order to
avoid undesirable effect of chattering, such controllers
have to generate at least absolutely continuous con-
trol signals (torques). Due to the challenges posed to
modern controllers in the context of their design, many
researchers have proposed different approaches to the
control problem of mobile manipulators. Among them,
we mainly focus on the three major ones.

Thefirst approach, analysed inworks [2–13], utilises
the formulation of extended (augmented) task space
(including also input–output linearisation techniques)
in the inverse kinematics problem. It is based on extend-
ing the dimension of the task space by incorporating
as many additional constraints as the degree of the
redundancy. These additional constraints are obtained
based on, e.g. various types of optimisation crite-
ria. Consequently, the resulting system becomes non-
redundant. The control formulations based on the aug-
mented task space technique have some disadvantages.
The controllers proposed in [2–8] require inverse of the
extended Jacobianmatrix that can potentially consist of
algorithmic and/or kinematic singularities [1] and as a
consequence can produce the control inputs to become
unbounded even though the mobile manipulator is not
in a singular configuration. Moreover, the dimension-
ality of the inverse kinematics problem associated with
the extended Jacobian matrix increases. Furthermore,
control algorithms from [2–8] require full knowledge
of the dynamic equations. The controllers offered in
[9–14] need the knowledge of desired trajectories for
both the end effector and non-holonomic platform and
are not optimal in any sense. Steering signals gener-
ated inworks [10–14] are discontinuous and require the
knowledge of the holonomic manipulator and platform
velocities. Using both fuzzy logic system to compen-
sate for modelling uncertainties and a robust term to
ensure system stability, a trajectory tracking controller
has been proposed in work [12], which, however, gen-
erates also discontinuous steering signals. An adaptive
robust trajectory tracking controller for a mecanum-
wheeledmobile robot has been offered in [13]. Tomake
the system robust, the authors in [13] have designed a
second-order sliding mode law providing also discon-
tinuous steering signals.

The second approach, discussed in the works [15–
26], is based on the application of the (generalised)

pseudo-inverse of the mobile manipulator Jacobian
matrix in the control formulation. Control algorithms
developed from the pseudo-inverse of the Jacobian
matrix are attractive and further examined by many
researchers; they also have some disadvantages. That
is to say, the controls thus obtained supply only sub-
optimal (and not optimal) solutions. The adaptive con-
trol law proposed in [25] needs the knowledge of both
holonomic manipulator and platform velocities. The
control scheme from [25] involves all the adaptive
terms multiplied by the regression matrix that seems
to be complex to implement and very time-consuming.
In the basic monograph [26], the authors have pro-
posed an adaptive robust control of mobile manipu-
lators. Nevertheless, the control laws from [26] require
an explicit form of the inverse/pseudo-inverse of the
Jacobian matrix as well as desired trajectories of both
the end effector and the mobile platform. Moreover,
generated torques/forces belong only to a class of
bounded mappings which tend in a limit to discon-
tinuous functions. As was shown in works [27,28],
pseudo-inverse control strategies are not, in general,
repeatable. This inconvenience prevents accomplish-
ment of an important class of cyclic technological oper-
ations (cyclic kinematic tasks) by this approach. More-
over, due to explicit inverse matrix operations, compu-
tation of the pseudo-inverses of the Jacobian matrix
is computationally time-consuming. A technique of
damped least squares has been proposed in works
[29,30] to tackle the singular configurations in lieu of
the pseudo-inverses. Nonetheless, this technique gen-
erates the tracking errors due to a long-term numerical
integration drift. Furthermore, the control algorithms
mentioned before give only at most asymptotic stabil-
ity which may be insufficient for completing the tasks
that require the extremely high precision.

The third approach presented in several papers [31–
33] is based on the use of the gradient of some potential
function. Algorithms from [31–33] solve a regulation
problem in a task space. Involving a Filippov solution,
works [31–33] may result in discontinuous right-hand
side of motion equations, which may induce the unde-
sirable effect of chattering.

From the literature survey focusing on the mobile
manipulator control, one follows that almost all con-
trol schemes demand inverse or pseudo-inverse of a
Jacobian matrix. This significant inconvenience may
cause numerical instabilities of the control algorithms
due to (possible) kinematic and/or algorithmic singu-
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Optimal cascaded control of mobile manipulators 1369

larities, which may be met on the mobile manipulator
trajectory.Moreover, all those algorithms are not able to
generate continuous controls resulting in finite-time
stability when dynamic equations are uncertain and
(globally unbounded) disturbances act on the mobile
manipulator.

This paper presents a significant generalisation of
the results previously published in works [34–37].
Namely, works [34–37] solve the finite-time control
problem in the task (Cartesian) space for only holo-
nomic uncertain dynamic systems, in particular, for
stationary robotic manipulators. On the other hand,
the present study introduces a new class of controllers
being finite time stable for mobile manipulators (with
uncertain dynamics) whose mobile platforms are sub-
ject to non-holonomic constraints. In order to elimi-
nate the shortcomings of the control algorithms known
from the literature, two kinds of non-singular terminal
sliding manifolds are introduced in this paper. They
are defined by nonlinear integral equalities of the sec-
ond order with respect to the task tracking errors and
the first order with respect to reduced mobile manip-
ulator acceleration, respectively. The manifolds intro-
duced make it possible to simultaneously join the first-
order sliding mode, possessing the ability of the finite-
time control, with the second-order sliding techniques
generating at least absolutely continuous steering sig-
nals. The controller proposed in the paper has a cas-
caded structure consisting of the two sub-controllers
which utilise the introduced integral manifolds. The
task of the first sub-controller, using the transpose Jaco-
bian matrix, is to track the desired end effector tra-
jectory with simultaneous minimisation of some crite-
rion function reflecting a given kinematic characteris-
tics. In turn, the task of the second sub-system, which
takes into account uncertain dynamics and unknown
disturbances, is a dynamic compensation of the error
appearing between the actual reduced acceleration of
the mobile manipulator and the reference acceleration
obtained from the first sub-controller. Both controllers
use (also introduced in the paper) a new dynamic ver-
sion of the classic (static) computed torque known
from the literature [38,39]. By fulfilment of reasonable
assumption regarding the rank of the Jacobian matrix,
the proposed combined control scheme is shown to be
finite time stable. Moreover, it generates at least abso-
lutely continuous controls (torques/forces) thus avoid-
ing the undesirable chattering effects. Furthermore, this
study is an essential generalisation of the result given

in [40] which only deals with kinematics of the mobile
manipulator subject to non-holonomic constraints. It
is also worth to note that our transpose Jacobian con-
troller is able to stably attain the origin in a finite time.
The remainder of the study is organised as follows.
Section 2 formulates the kinematically optimal finite-
time trajectory tracking control problem. A new class
of kinematically optimal cascaded controllers, which
solve the trajectory tracking problem in a finite time,
is proposed in Sect. 3. Section 4 presents numerical
simulation results carried out for a mobile manipula-
tor (consisting of a non-holonomic platform of type (2,
0) and a holonomic manipulator of two revolute kine-
matic pairs) operating in a two-dimensional work space
whose task is to track a desired end effector trajectory
and simultaneously tominimise somepractically useful
objective function. Finally, some concluding remarks
are drawn in Sect. 5. Throughout this paper, λmin(·),
λmax(·) denote the minimal and maximal eigenvalues
of the matrix (·).

2 Problem formulation

Consider a mobile manipulator composed of a non-
holonomic platform and a holonomic manipulator.
Location of the platform is described by the vector
of generalised coordinates x ∈ R

l (platform posture
x1,c x2,c, θ—see Fig. 1, where θ is the orientation
angle of the platform with respect to a global coor-
dinate system Ox1x2; x1,c, x2,c stand for coordinates
of the platform centre; φ1, φ2 are angles of driving
wheels; 2W denotes platform width; 2L is the plat-
form length; R stands for the radius of the wheel; (a, b)
denotes the point at which the holonomic manipula-
tor base is fasten to the platform), where l ≥ 2. The
posture of a holonomic manipulator mounted on the
platform is described by the vector of joint coordi-
nates y = (y1, . . . , yn)T ∈ R

n , where n is the num-
ber of its kinematic pairs. During the operation of the
mobile manipulator in the work space, non-holonomic
constraints related to the platform motion are induced.
They are usually expressed in the so-called Pfaffian
form

A(x)ẋ = 0, (1)

where A(x) stands for the k × l matrix of the full rank
(that is, rank(A(x)) = k) depending on x analytically;
1 ≤ k < l. LetKer(A(x)) denote a linear subspace gen-
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erated by vector fields a1(x), . . . , al−k(x). Hence, the
kinematic constraint (1) can be equivalently described
by an analytic drift-less dynamic system

ẋ = N (x)α, (2)

where N (x) = [a1(x), . . . , al−k(x)]; rank(N (x)) =
l−k andα = (α1, . . . , αl−k)

T stands for quasi-velocity
of the platform (introduced in [41]).

The kinematic equations of the mobile manipulator
relate the position and orientation of the end effector
in the global coordinate system with vector variables x
and y as follows

pe = fe(q), (3)

where q =
(
x
y

)
is the configuration of the mobile

manipulator; pe ∈ R
m denotes the end effector coor-

dinates; fe : R
l × R

n −→ R
m stands for the m-

dimensional mapping (usually nonlinear with respect
to q); and m ≤ n is the dimension of the task space.

The consequence of inequality l + n > m + k (one
can observe that mobile manipulator considered herein
is a redundantmechanism) is the possibility to augment
the end effector conventional trajectory tracking (pri-
mary task) with additional user-specified useful task
coordinates pa ∈ R

l+n−m−k (secondary task) of the
following general form:

pa = fa(q), (4)

where fa : R
l+n −→ R

l+n−m−k stands for a given
at least triply differentiable mapping with respect to
q. It is practically desirable to generate joint trajectory
q = q(t) in such a way as to minimise an objective
(kinematic) function F(q). Based on F(q), which is
assumed to be at least four times differentiable with
respect to q, the general form for fa, proposed, e.g. in
work [1] for holonomic systems and generalised in [8]
for the non-holonomic ones, may be expressed as

fa = N (q)
∂F(q)

∂q
, (5)

where N stands for the (l + n − m − k) × (l + n)

orthogonal complementary matrix to

j (q) =

⎡
⎢⎢⎣

j1(q)

.

.

jm+k(q)

⎤
⎥⎥⎦ =

[
∂ fe(q)

∂q
A 0k×n

]
, (6)

i.e. jN T = 0, 0k×n is the k × n zero matrix. Let us
note that j (q) denotes an auxiliary Jacobian matrix
which is related to necessary condition of minimum of
objective function F subject to both holonomic con-
straints (3) and non-holonomic ones (1) (see [8] for
details). Consequently, fa = N (q)

∂F(q)
∂q = 0 presents

n + l −m − k transversality conditions which together
with (3) and (1) make it possible to uniquely deter-
mine optimal mobile manipulator configuration q cor-
responding to a current end effector location pe.

In further analysis, we shall employ a simple and
practically useful optimisation criterion for redundancy
resolution with a cost function

F(q) = cF
2

〈q − qrest, KF (q − qrest)〉, (7)

where qrest means some rest (preferred) posture; 〈 , 〉
denotes the scalar product of vectors; cF is a positive
constant; KF is a positive definite diagonal weighting
matrix.

Let us observe that, involving criterion function (7)
into optimisation problemwith equality constraints (1),
(3) results in fulfilment of sufficient condition for a local
(in general) optimality of trajectory q = q(t), t ≥ 0. If
this is the case, the Hessian H for F given by (7) and
constraints fe(q)− pe = 0 and A(x)ẋ = 0 equals H =
N
(
cFKF +∑m+k

i=1 li
∂ji (q)

∂q

)
N T, where li denote the

Lagrange multipliers for regular (by assumption) con-
strained optimisation problem (1), (3) and (7), i =
1, . . . ,m + k. Let us note that for sufficiently large
value of cF , matrix cFKF +∑m+k

i=1 li
∂ji (q)

∂q becomes
symmetric and positive definite. Consequently, tak-
ing into account the assumed regularity of constraints
fe(q) − pe = 0, A(x)ẋ = 0 (full rank of matrix j

and hence full rank of N ), we deduce that matrix H
is symmetric and positive definite too, what implies
(local) optimality of trajectory q(t).

Let us notice that for qrest = q(0), minimisation
of (7) avoids sudden changes of configurations and
enables the mobile manipulator to reduce the values
of controls in L2 norm by appropriate weighting of
joints closer to the mobile platform, as the computer
simulations given in Sect. 4 will show.

Differentiating q once and then twice with respect to
time and taking into account (2) result in the following
relations:

q̇ = Cz, q̈ = Cż + Ċz, (8)
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Optimal cascaded control of mobile manipulators 1371

where C =
[
N (x) 0
0 In

]
; z =

(
α

ẏ

)
∈ R

l+n−k is the

vector of reduced velocities; In denotes n × n identity
matrix.

By combining fe(q)with fa(q), one obtains the gen-
eral kinematic and differentialmappings betweenq and

extended task coordinates p =
(
pe
pa

)

p = f (q), ṗ = J z, (9)

where f =
(

fe
fa

)
and J = ∂ f

∂q C is the (l + n − k) ×
(l + n − k) extended Jacobian matrix.

The task of the mobile manipulator is to track both
desired trajectory ped(t) ∈ R

m by the end effector
and simultaneously user-specified trajectory pad (t) ∈
R
l+n−k−m which equals pad (t) = 0 for fa given by

expression (5). Functions ped(·) and pad (·) are assumed
to be at least triply differentiable with respect to time.
By introducing the task tracking error e equal to

e =
(
ee

ea

)
= f (q) − pd(t), where pd =

(
ped
pad

)
,

ee = fe − ped ; e
a = fa − pad , the kinematically optimal

finite-time control problem in the task space may be
formally expressed as follows

lim
t→T

e(t) = 0, lim
t→T

ė(t) = 0,

lim
t→T

ë(t) = 0, (10)

where 0 ≤ T denotes a finite time of convergence of
f (q) to pd(t) and e(t) = ė(t) = ë(t) = 0 for t ≥ T .
Let us observe that the left sided equality of (10), i.e.
fe(q) − ped(t) = 0, N ∂F(q)

∂q = 0, and equality (1)
present for a current t ≥ T the necessary and suffi-
cient condition for constraint regular minimum of cri-
terion function F [see comments regarding necessary
and sufficient condition of minimum between formulas
(6) and (8)]. In the sequel, extended Jacobian matrix J
is assumed to be of the full rank in a (closed) operation
region of the end effector, i.e.

rank(J (q)) = l + n − k. (11)

From (11), it follows that there exists a real number
a > 0 such that

0 < a ≤ λmin(J J
T). (12)

The control scheme, which will be proposed in
next section, may be applicable to non-holonomic
mechanical systems comprising particularly mobile
manipulators analysed in our study. The dynamics of

such mechanisms expressed in reduced coordinates is
given by the following differential equations [21–24]:

M(q)ż + P(q, z)z + G(q) + D(t, q, z) = Bv, (13)

where M denotes the (l + n − k) × (l + n − k) sym-
metric positive definite reduced inertia matrix; P is
the (l + n − k)-dimensional reduced vector represent-
ing centrifugal and Coriolis forces; G stands for the
mobile manipulator reduced gravity forces; D means
the (l+n−k)-dimensional external disturbance signal
whose time derivative Ḋ is (by assumption) a locally
boundedLebesguemeasurablemapping; B denotes the
(l+n−k) × (l+n−k)matrix describing the configu-
ration variables of the platform and holonomic manip-
ulator which are directly driven by the actuators and v

represents the (l + n − k)-dimensional vector of con-
trols (torques/forces). Without loss of generality, ||D||
and ||Ḋ|| are assumed to be upper estimated as follows

||D|| ≤ α0(t, q, z), ||Ḋ|| ≤ α1(t, q, z), (14)

where α0 and α1 stand for the time-dependent known
non-negative and locally bounded Lebesgue measur-
able functions, respectively.

In further considerations, useful properties of kine-
matic equations (9) are given below, which will be
utilised by designing our controllers. For revolute kine-
matic pairs of the holonomic manipulator and function
F given by expression (9), the following inequalities
hold true:

||J ||F ,

∣∣∣∣
∣∣∣∣∂ J∂q

∣∣∣∣
∣∣∣∣
F

,

∣∣∣∣
∣∣∣∣∂

2 J

∂q2

∣∣∣∣
∣∣∣∣
F

≤ w1 + w2||q − qrest||, (15)

where || ||F is the Frobenius (Euclidean) norm of the
matrix; w1 and w2 are known positive scalar coeffi-
cients (construction parameters of the mobile manipu-
lator). The aim is to determine at least absolutely con-
tinuous control vector v, for which the corresponding
trajectory q = q(t) as being the solution of differential
equations (13) accomplishes the control task (10). For
this purpose, let us differentiate both expressions (8),
(13) once with respect to time and the error equation
e = f (q) − pd(t) triply by time thus obtaining the
following system of differential equations:

d3q
dt3

= Cz̈ + 2Ċ ż + C̈z,
d3e
dt3

= J z̈ + 2 J̇ ż + J̈ z − d3 pd
dt3

,

Mz̈ = Bv̇ + Ḃv − Ṁ ż − d
dt (Pz + G + D) .

(16)
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Using the Lyapunov stability theory, expressions (16)
will be used in the next section to the solution of control
problem (10).

3 Cascaded sliding control of the mobile
manipulator

The idea of the proposed control law utilises two
sub-systems cooperating with each other. Both sub-
controllers involve suitable non-singular sliding man-
ifolds introduced in the work which are defined for
the first sub-system by nonlinear integral equation of
the second order with respect to the task tracking error
e and for the second sub-system by integral equation
of the first order with respect to reduced acceleration
ż of the mobile manipulator, respectively. The first
sub-system is a kinematic controller whose task is to
determine reference (desired) acceleration vref satisfy-
ing relations (10). Next, using both vref provided by
the kinematic controller and actual reduced accelera-
tion ż of the mobile manipulator, the task of the sec-
ond (dynamic) sub-system is to compensate (uncertain)
dynamics of the non-holonomicmechanism. This com-
pensation is based on the determination of the controls
v in such a way as to reduce the error between vref and
ż to zero in a finite time.

3.1 Kinematically optimal sub-controller

The proposed first sub-system uses two upper equa-
tions of (16) suitably reformulated to the following
forms:

d3q

dt3
= C v̇ref + 2Ċvref + C̈z,

d3e

dt3
= J v̇ref + 2 J̇vref + J̈ z − d3 pd

dt3
, (17)

where vref = ż denotes reduced reference acceleration
to be determined, for which Eq. (10) is satisfied. In
order to find it, non-singular terminal sliding vector
variable s = (s1, . . . , sl+n−k)

T ∈ R
l+n−k , expressed

in task coordinates, is introduced below

s(t) = ë +
∫ t

0

(
λ2ë

3/5+λ2λ
3/5
1 (ė9/7 + λ

9/7
0 e)1/3

)
dτ,

(18)

where λ0 = diag(λ0,1, . . . , λ0,l+n−k); λ1 = diag(λ1,1,
. . . , λ1,l+n−k); λ2 = diag(λ2,1, . . . , λ2,l+n−k); λi, j

stand for positive coefficients (controller gains); i =
0:2; j = 1:l + n − k. Partly inspired by the methodol-
ogy of dynamically computed torque introduced in our
works [34–36] for stationary robotic manipulators, we
now propose determination of vref from the following
differential equation:

v̇ref = JTuref , (19)

where uref ∈ R
l+n−k is a new reference acceleration to

be found. Inserting the right-hand side of (19) into the
lower equation of (17) results in the task error dynamic
equation which is dependent of uref as follows

d3e

dt3
= J JTuref + 2 J̇vref + J̈ z − d3 pd

dt3
. (20)

In order to find uref and as a consequence to fulfil equal-
ity constraints (10), the following kinematically opti-
mal control law with respect to F given by (7) is pro-
posed below:

uref(t, q, z, vref , e, s) (21)

=
{− c

a
s

||s|| (W + c0) for s �= 0
0 otherwise,

where c and c0 are positive constant controller gains to
be specified further on;W = ||λ2ë3/5 +λ2λ

3/5
1 (ė9/7 +

λ
9/7
0 e)1/3− d3 pd

dt3
||+(w1+w2||q−qrest||)(wk

3||vref ||||z||
+wk

4||z||3); wk
3 and wk

4 denote known positive scalar
coefficients (construction parameters of the mobile
manipulator). Based on (19) and (21), one can deter-
mine vref as being at least absolutely continuous vector
function of time by solving (in the Filippov sense [42]),
the following differential equation:

v̇ref = JTuref(t, q, z, vref , e, s). (22)

The existence of the solution of differential equation
(22)was shown inwork [36].On account of the fact that
the right-hand side of (22) is not a Lipschitz mapping
(it is even a discontinuous one), the solution of (22)
is assumed to be unique in further considerations. The
aim is to give conditions on controller gains λ0, λ1, λ2,
c and c0, which guarantee the fulfilment of equalities
(10).

Theorem 1 If extended Jacobian matrix J fulfils
inequality (12) along desired trajectory pd of the end
effector and λ0, λ1, λ2, c0 > 0, c ≥ 1 then con-
trol scheme (21)–(22) enables the mobile manipulator
stable convergence in a finite time of the task track-
ing errors (e, ė, ë) to the origin, i.e. (e, ė, ë) =
(0, 0, 0). Moreover, controller (21)–(22) is kinemati-
cally (locally) optimal.
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Optimal cascaded control of mobile manipulators 1373

Proof The proof of Theorem 1 is a small modification
of the proof of Theorem 1 from [36]. Therefore, it will
be omitted. 	

Taking into account kinematically optimal control law
(21)–(22) and Theorem 1, a few remarks may be made
below.

– Remark 1Although the proof of Theorem 1 is simi-
lar to that given in work [36], Theorem 1 presents a
significant generalisation of the results published in
[36]. In particular, work [36] deals with the finite-
time control problem for only holonomic uncer-
tain dynamic systems (stationary robotic manipu-
lators). On the other hand, Theorem1 provides con-
ditions on controller gains which guarantee finite-
time stability for mobile manipulators with uncer-
tain dynamics whose platforms are subject to non-
holonomic constraints.

– Remark 2 If the task of the control is only to track
desired end effector trajectory ped (without objec-
tive functionF), thenmobile manipulator becomes
strictly redundant, i.e. l + n > m. If this is the
case, we can define the task space TSM manifold
se as se = ëe+∫ t0 (λ2,e(ëe)3/5+λ2,eλ

3/5
1,e ((ėe)9/7+

λ
9/7
0,e e

e)1/3)dτ , where λ0,e, λ1,e, λ2,e stand for the
controller gains. Thus, control law (21)–(22) may
be expressed in the following form:

v̇eref = B−1( j e)Tueref(t, q, ze, veref , ee), (23)

where j e = ∂ fe
∂q C and

ueref =
{

− ce
ae

se
||se|| (We + ce0) for se �= 0

0 otherwise,
(24)

We = ||λ2,e(ëe)3/5+λ2,eλ
3/5
1,e ((ėe)9/7+λ

9/7
0,e e

e)1/3

− d3 ped
dt3

|| + wk
3||veref ||||z|| + wk

4||z||3; ce > 1 and ce0
are positive constant gains; ae stands for the estima-
tion of the minimal eigenvalue of matrix j e( j e)T.

– Remark 3 Let us note that for a special form of
auxiliary kinematic function fa equal to

fa(q) = W (q)q, (25)

whereW (·) stands for a given (l+n−m−k)×(l+n)

weighting matrix whose elements may (generally)
depend on q, the Frobenius norm of the Jacobian
∂
∂q

(
( fe(q))T, (W (q)q)T

)T
fulfils inequality (14).

Consequently, an auxiliary function (25) provides
the same controller as that given by expressions

(21)–(22) with e =
(

fe(q) − ped(t)
W (q)q − pad (t)

)
.

– Remark 4 Let us observe that formulas (21)–(22)
describe a transposed Jacobian controller. The use
of the transpose of the Jacobian is a well-known
technique for controlling the robotic systems. In
such a context, there exist a few papers [43–
47] which take into account stability analysis of
the transposed Jacobian controllers. Nevertheless,
works [43–47] deal with stability analysis for the
set point control problems. Alternatively, Theo-
rem 1 provides stability analysis for the trajectory
tracking problems of the non-holonomic dynamic
systems. Moreover, the transposed Jacobian con-
troller (21)–(22) is capable of attaining the stable
equilibrium (e, ė, ë) = (0, 0, 0) in a finite time.
In such a context, it is worth to note the fact that
the authors from works [48,49] were among the
first who have also shown finite-time convergence
of their controller using, however, the inverse of
the Jacobianmatrix. Furthermore, transposed Jaco-
bian controller (21)–(22) provides (locally) optimal
solution using the sliding mode control technique.
In such a context, there are several papers [9–14]
which also involve sliding variables in the control
laws. However, controllers offered in [9–14] are not
optimal in any sense and in most cases provide dis-
continuous steering signals.

3.2 Dynamic sub-controller of the mobile manipulator

The aim of the dynamic sub-system is to compensate
both uncertain dynamics of themobilemanipulator and
unknown external disturbances acting on it in such a
way as to make the origin (E, Ė) = (0, 0) finite time
stable, where tracking errors E , Ė are defined below

E = z −
∫ t

0
vrefdτ,

Ė = ż − vref . (26)

Let us note that tracking errors E , Ė equal identically
zerowhen neglecting themobilemanipulator dynamics
[see equality vref − ż = 0 immediately after formula
(17)]. On the other hand, both the uncertain dynam-
ics and unknown external disturbances acting on the
mobile manipulator when accomplishing its task result
in nonzero errors (26). The task is to find at least abso-
lutely continuous control vector v reducing E , Ė to
zero in finite time. For this purpose, lower equation of
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(16) is reformulated to the following compact form:

z̈ = M−1Bv̇ + R(t, q, z, v), (27)

where R = M−1
(
Ḃv − Ṁ ż − d

dt (Pz + G + D)
)
.

Inspired by the control methodology borrowed from
the theory of holonomic systems (see our recent work
[37]), we propose now the following dynamically com-
puted torque vector v̇ of the form

v̇ = B−1u, (28)

where u ∈ R
l+n−k is a new control to be determined.

Let us note that for the non-holonomic platforms of
the type (2, 0), considered in the study (see Fig. 1),
actuation matrix B in (13) is diagonal with positive
elements. Consequently, B−1 exists, too. Replacing v̇

in (27) by the right-hand side of (28) results in the
expression dependent of u

z̈ = M−1u + R. (29)

Let A be a positive number, which fulfils the follow-
ing inequalities (matrix M−1 is symmetric and positive
definite):

0 < A ≤ λmin(M
−1). (30)

The aim is to find input signal u(t) and the correspond-
ing control v such that vector z of actual reduced veloc-
ity exactly tracks

∫ t
0 vrefdτ after a finite time. There-

fore, error equation E = z − ∫ t0 vrefdτ is twofold dif-
ferentiated with respect to time thus obtaining

Ë = z̈ − v̇ref = z̈ − JTuref . (31)

Replacing z̈ in (31) by the right-hand side of (29) results
in the equation of the error dynamics dependent on u

Ë = M−1u + R − JTuref . (32)

In order to find control law reducing E and Ė to zero in
a finite time, the following non-singular vector sliding
variable S = (S1, . . . , Sl+n−k) ∈ R

l+n−k is introduced
below:

S = Ė +
∫ t

0

(
Λ0E

α1 + Λ1(Ė)α2
)
dτ, (33)

where α1 = n1
n2
; n1 and n2 are odd natural numbers

satisfying the inequalities n1 < n2 < 2n1; Λ0 =
diag(Λ0,1, . . . , Λ0,l+n−k); Λ1 = diag(Λ1,1, . . . ,

Λ1,l+n−k); α2 = 2α1
1+α1

; Λi, j denote positive coeffi-
cients (controller gains); i = 0, 1; j = 1, 2, . . . , l +
n − k. In the sequel, useful result is given [34].

Lemma 1 If S = 0 for t ≥ T ′, where 0 ≤ T ′ < ∞,
then tracking errors (E, Ė) stably converge in a finite
time to the origin (E, Ė) = (0, 0).

Differentiating S in (33) with respect to time and then
replacing Ë by the right-hand side of (32) result in the
expression

Ṡ = M−1u + U(t, q, z, v, uref , E), (34)

whereU = R− JTuref +Λ0Eα1 +Λ1(Ė)α2 . In further
analysis, we find an upper estimate on ||U ||.

For this purpose, R from (27) is reformulated as
follows

R = M−1[Ḃv − Ṁ(M−1Bv

− M−1Pz − M−1G − M−1D)

− (Ṗz + Pż + Ġ + Ḋ)]. (35)

As is known (see, for example, [26]), matrices M−1,
B, P and gravity vector G from dynamic equations
(13) fulfil the following relations: ||M−1||F ≤ Λ,
c1 ≥ || ∂B

∂q C ||F , c2 ≥ || ∂M
∂q C ||F , ||B||F ≤ c3, ||P||F ≤

c4||z||, ||G|| ≤ c5, || ∂P
∂q C ||F ≤ c6||z||, || ∂P

∂z ||F ≤ c7
and || ∂G

∂q C ||F ≤ c8, where Λ, c1, . . . , c8 are posi-
tive coefficients (construction parameters of themobile
manipulator). Moreover, based on the above inequali-
ties, it is easy to show that ||Ṗ||F ≤ c6||z||2 + c7||ż||.
Hence, the norm of R may be upper estimated as fol-
lows

||R|| ≤ Λ[(c1 + Λc2c3)||v||||z|| + (Λc2c4 + c6)||z||3
+ (c4 + c7)||z||||ż||
+ (c2c5 + c2α0 + c8)||z|| + α1]. (36)

By introducing new coefficientsw3, . . . , w7, defined as
follows w3 = Λ(c1 + Λc2c3), w4 = Λ(Λc2c4 + c6),
w5 = Λ(c4+c7),w6 = Λmax{c2c5+c8, c2},w7 = Λ,
we finally obtain the following upper estimation on U :
||U || ≤ χ(t, q, z, v, uref , E), (37)

where χ = w3||v||||z|| + w4||z||3 + w5||z||||ż|| +
w6(||z|| + α0||z||) + w7α1 + ||Λ0Eα1 + Λ1(Ė)α2 −
JTuref ||;w3, . . . , w7 denote positive coefficients (con-
struction parameters of the mobile manipulator). In
order to fulfil equality (E, Ė) = (0, 0) in a finite
time, the following dynamic controller is proposed:

u(t, q, z, uref , v, E, S)

=
{

−Cd

A
S

||S|| (χ + C0) for S �= 0
0 otherwise,

(38)

where Cd and C0 are positive controller gains to be
specified further on. Based on (38) and (28), one can
find absolutely continuous (by time) control vector v
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by solving (in the Filippov sense [42]) the following
differential equation:

v̇ = B−1u(t, q, z, uref , v, E, S). (39)

The aim of further considerations is to give conditions
on controller gainsΛ0,Λ1,Cd , andC0 whichguarantee
fulfilment of equality (E, Ė) = (0, 0) in a finite time.
Applying the Lyapunov stability theory, we offer the
following result.

Theorem 2 If Λ0, Λ1, C0 > 0 and Cd ≥ 1, then
control scheme (38)–(39) provides stable convergence
in a finite time of the tracking errors (E, Ė) to the
origin (E, Ė) = (0, 0).

Proof Consider a Lyapunov function candidate given
below

V = 1

2
〈S, S〉. (40)

Computing the time derivative of (40) along trajectory
(34) results in the expression

V̇ = 〈S, M−1u + U〉. (41)

By inserting the right-hand side of (38) in (41), one
obtains

V̇ =
〈
S, −M−1C

d

A

S

||S|| (χ + C0)

〉
+ 〈S, U〉. (42)

Based on inequalities (30), we get

V̇ ≤ −Cd ||S||(χ + C0) + 〈S, U〉. (43)

The next step is to upper estimate scalar product 〈S, U〉
in (43). On account of inequality (37), we have

〈S, U〉 ≤ ||S||χ. (44)

Hence, applying the assumption Cd ≥ 1 from Theo-
rem 2, it is easy to obtain the following inequalities:

V̇ ≤ −Cd ||S||(χ + C0) + ||S||χ ≤ −CdC0||S||. (45)
Let us notice that CdC0 > 0. Consequently, inequality
(45) proves that TSM manifold S = 0 is stably attain-

able in afinite time less or equal to
√
2V (0)
CdC0

. Finally, from

Lemma 1, it follows that the origin (E, Ė) = (0, 0)
can be achieved in a finite time. 	


Theorems 1 and 2 imply the following result.

Theorem 3 By fulfilment of the assumptions from both
Theorems 1 and 2, control schemes (21)–(22), (38)–
(39) provide stable convergence in a finite time of the
task tracking errors (e, ė, ë) to the origin (e, ė, ë) =
(0, 0, 0).

Proof Application of controller (38)–(39) implies ful-
filment of equalities E = Ė = 0 after a finite time
0 ≤ Td < ∞. Hence, ż = vref for t ≥ Td . As
a result, for t ≥ Td , control law (21)–(22) is imple-
mented, which implies, according to Theorem 1, stable
convergence in finite time 0 ≤ Tk < ∞ of the task
tracking errors (e, ė, ë) to the origin. Consequently,
the tracking errors (e, ė, ë) stably converge to the ori-
gin in a finite time less or equal to the sum of Tk and
Td , i.e. 0 ≤ Tk + Td < ∞. 	


Let us observe that controllers (21)–(22), (38)–(39)
require the knowledge of the following quantities: q,

z =
(

α

ẏ

)
, ż =

(
α̇

ÿ

)
, e, ė and ë, respectively, to gen-

erate suitable torques/forces. Hence, reconstructions
of auxiliary velocity α, auxiliary acceleration α̇, joint
velocity ẏ and joint acceleration ÿ of the holonomic
manipulator, task error e, task error velocity ė, and
task error acceleration ë are needed to apply controllers
(21)–(22), (38)–(39) in practice.Most often in practice,
real mobile manipulators are equipped with encoders
which measure angular displacements of the wheels
of the platform and angles in the kinematic pairs of
the holonomic manipulator. Let us note that for the
mobile platforms belonging to a class of (2, 0), aux-
iliary velocities α are equal to scaled angular veloci-

ties φ̇ =
(

φ̇1

φ̇2

)
of the platform wheels (see Fig. 1),

i.e. α = R
2 φ̇. As a result, z = d

dt

([ R
2 I2 0
0 In

](
φ

y

))
;

ż = d2

dt2

([ R
2 I2 0
0 In

](
φ

y

))
and their reconstruction is

equivalent to reconstruction of φ̇, φ̈, ẏ and ÿ, respec-
tively (φ and y are available from mobile manipu-
lator encoders). Moreover, many commercial sensors
are available for measurement of the end effector posi-
tion pe, such as vision systems, electromagnetic mea-
surement systems, position sensitive detectors, or laser
tracking systems. Consequently, task error e appearing
in the proposed controllers is also assumed to be avail-
able frommeasurements. There exist many approaches
in the literature to reconstruct quantities z, ż, ė, and
ë, respectively (see, for example, our recent works
[35,36], inwhichdifferent kinds of state observerswere
analysed). Although the observers known from the lit-
erature are able to reliably reconstruct mobile manip-
ulator state (both reduced velocity and acceleration)
based onpositionmeasurement, almost all of themhave
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to satisfy the so-called separation principle [50]. Let us
observe that control laws (21)–(22), (38)–(39) are dis-
continuous. Consequently, separation principle is not
fulfilled for our controllers. A computationally efficient
approach based on the uniform robust exact finite-time
differentiation has been recently proposed in works
[51,52] to numerically find derivatives of absolutely
continuous functions. The separation principle is triv-
ially fulfilled for differentiators (model-free observers)
from [51,52]. Assuming that angles φ and y and task
error e are known (measurable), one can exactly recon-
struct reduced velocity z(t), reduced acceleration ż(t),
task error velocity ė(t), and task error acceleration ë(t)
(by neglecting the measurement noise of the devices)
after finite times of transient processes, say T ′

z , T
′
e > 0,

respectively. The second-order uniform robust exact
differentiators for reconstruction of both z, ż and ė,
ë, respectively, take in our case the following forms:

ż0 = z1 − λ̂z
2Lz(t)

1/3
∣∣∣∣
∣∣∣∣z0 −

[ R
2 I2 0
0 In

](
φ

y

)∣∣∣∣
∣∣∣∣
2/3

× sign

(
z0 −

[ R
2 I2 0
0 In

](
φ

y

))
,

ż1 = z2 − λ̂z
1Lz(t)

2/3
∣∣∣∣
∣∣∣∣z0 −

[ R
2 I2 0
0 In

](
φ

y

)∣∣∣∣
∣∣∣∣
1/3

× sign

(
z0 −

[ R
2 I2 0
0 In

](
φ

y

))
,

ż2 = −λ̂z
0Lz(t)

× sign

(
z0 −

[ R
2 I2 0
0 In

](
φ

y

))
(46)

and

η̇0 = η1 − λ̂e2Le(t)1/3||η0 − e||2/3sign(η0 − e),
η̇1 = η2 − λ̂e1Le(t)2/3||η0 − e||1/3sign(η0 − e),
η̇2 = −λ̂e0Le(t)sign(η0 − e),

(47)

where λ̂z
0, λ̂z

1, λ̂z
2, λ̂e0, λ̂e1, λ̂e2 are diagonal matrices

with positive constants whose numerical values were
suggested in [51,52]; z1, z2, η1, η2 denote the out-
puts of differentiators (46)–(47) reconstructing exactly
reduced velocity z(t), reduced acceleration ż(t), task
error velocity ė(t), and task error acceleration ë(t),
respectively, i.e. z(t) = z1(t), ż(t) = z2(t) for t ≥ T ′

z ,
ė(t) = η1(t), ë(t) = η2(t) for t ≥ T ′

e . Lz(t) and
Le(t) stand for positive continuous functions which
take [based on (16), (21) and (38)] the forms Lz(t) =
λmax(M−1)[Cd/A(χ+C0)+w3||v||||z1||+w4||z1||3+
w5||z1||||z2|| + w6(||z1|| + α0||z1||) + w7α1] and

Le(t) = |λmax(J )|Lz(t)+w4||z1||3 +w5||z1||||z2|| +
|| d3 pd

dt3
||. The quantities Lz(t), Le(t) represent phys-

ically upper estimates of the norms of z̈, d3e
dt3

(both
reduced jerk and task error jerk). Let us define concate-
nating control vc = (vc,1, . . . , vc,l+n−k)

T as follows

vc =
{

v′(t), t ∈ [0, max{T ′
z , T ′

e}],
v(t), t ≥ max{T ′

z , T ′
e}, (48)

where v′(t) is arbitrary absolutely continues mapping
of time t (e.g.v′(t) = 0);v(t) is givenby (38)–(39)with
z = z1, ż = z2, ė = η1, ë = η2 for t ≥ max{T ′

z , T ′
e}.

Based on (38)–(39) and (46)–(47), we are now in posi-
tion to give the following theorem.

Theorem 4 If φ, y, e are only available frommeasure-
ments and the assumptions fromTheorem3are fulfilled,
then control scheme (46)–(48) guarantees stable con-
vergence in afinite timeof the task space tracking errors
(e, ė, ë) to the origin (e, ė, ë) = (0, 0, 0).

Proof Inserting v′ into dynamic equations (13) results
in measured angles φ = φ(t), y = y(t) and task errors
e = e(t) which serve as inputs to differentiators (46)–
(47). For t > max{T ′

z , T ′
e}, one obtains z(t) = z1(t),

ż(t) = z2(t), ė(t) = η1(t) and ë(t) = η2(t), respec-
tively. Hence, control v(t) defined by (38)–(39) can
be applied with the initial conditions v(T ′) = v′(T ′),
z(T ′) = z1(T ′), ż(T ′) = z2(T ′), ė(T ′) = η1(T ′) and
ë(T ′) = η2(T ′) to track pd , where T ′ ≥ max{T ′

z , T ′
e}.

Consequently, from Theorem 3, it follows that the ori-
gin (e, ė, ë) = (0, 0, 0) is attained in a finite time
less or equal to 0 ≤ T ′ + Td + Tk < ∞. 	


4 Numerical examples

Based on chosen mobile manipulator tasks, this sec-
tion demonstrates the performance of controllers pro-
posed in the paper. Two different mobile manipulator
structures will be considered herein. The first aim is
to numerically compare the performances of kinemat-
ically optimal controller involving the objective func-
tion F with non-optimal controller which utilises task
coordinates pa to eliminate redundancy of the mobile
manipulator. Therefore, two basic controllers given by
equations (5)–(7), (46)–(48) and (25), (46)–(48) will
be tested further on for the first mobile manipulator
schematically shown in Fig. 1. In all numerical simu-
lations, the SI units of radians, seconds, metres, etc.,
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are used. The holonomic part (a SCARA type sta-
tionary manipulator) with two revolute kinematic pairs
(n = 2) operating for simplicity of computations in
two-dimensional task space (m = 2) is mounted on the
platform which is assumed to be physically driven by
two wheels of angular velocities (φ̇1, φ̇2)

T.
The platform is subject to the following non-

holonomic constraints (k = 3 and l = 5):
sin θ · ẋ1,c − cos θ · ẋ2,c = 0,
cos θ · ẋ1,c + sin θ · ẋ2,c + W θ̇ − R · φ̇1 = 0,
cos θ · ẋ1,c + sin θ · ẋ2,c − W θ̇ − R · φ̇2 = 0.

(49)

The corresponding matrix N (x) equals

N (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ cos θ

sin θ sin θ

1
W − 1

W
2
R 0

0 2
R

⎤
⎥⎥⎥⎥⎥⎥⎦

, (50)

where x = (x1,c, x2,c, θ, φ1, φ2)
T. The kinematic

equations of the mobile manipulator equal

fe(q)

=
(
cθ (a + l1cy1 + l2cy12) − sθ (b + l1sy1 + l2sy12) + x1,c
sθ (a + l1cy1 + l2cy12) + cθ (b + l1sy1 + l2sy12) + x2,c

)
,

(51)

where cθ = cos θ , sθ = sin θ , cy1 = cos y1, cy12 =
cos(y1 + y2), sy1 = sin y1, sy12 = sin(y1 + y2), l1 =
0.4 = l2 stand for the link lengths of its holonomic
part; a = 0.85, b = 0.2; 2W = 0.5; 2L = 1.8; y1, y2
denote joint coordinates of the holonomic manipulator.
Hence, vector q of the generalised coordinates takes the
form q = (x1,c, x2,c, θ, φ1, φ2, y1, y2

)T. Matrix C
is equal to

C =
[
N (x) 0
0 I2

]
; (52)

reduced velocity z equals z = (α1 α2 ẏ1, ẏ2)T and
control v = (v1, . . . , v4)

T, respectively. The task of the
mobile manipulator is to make the end effector follow
desired circle trajectory ped = (2+cos(t), 3+sin(t))T

(see the solid circle in Fig. 1). On account of the fact
that l+n−m−k = 2, themobilemanipulator becomes
redundant mechanism. Auxiliary matrix j (q) takes the
following form for the mobile manipulator from Fig. 1:

j =

⎡
⎢⎢⎢⎢⎣

1 0 j13 0 0 j14 j15
0 1 j23 0 0 j24 j25

−sθ cθ 0 0 0 0 0
cθ sθ W − R 0 0 0
cθ sθ − W 0 − R 0 0

⎤
⎥⎥⎥⎥⎦ , (53)

Fig. 1 A kinematic scheme of the mobile manipulator in the
absolute coordinate system and the tracking task to be accom-
plished

where j13 = −sθ(a+ l1cy1+ l2cy12)−cθ(b+ l1sy1+
l2sy12); j14 = cθ(−l1sy1 − l2sy12) − sθ(l1cy1 +
l2cy12); j15 = cθ(−l2sy12) − sθl2cy12; j23 = cθ(a +
l1cy1 + l2cy12) − sθ(b + l1sy1 + l2sy12); j24 =
sθ(−l1sy1 − l2sy12) + cθ(l1cy1 + l2cy12); j25 =
sθ(−l2sy12) + cθl2cy12.

Hence, the corresponding orthogonal complemen-
tary matrixN may be expressed after time-consuming
but simple calculations in the form given below

N = [N1(q) N2(q)]T, (54)

whereN1=(N11, . . . ,N17)
T;N2 = (N21, . . . ,N27)

T;
N11 = 0; N12 = 0; N14 = 0; N15 = 0;⎛
⎝N13

N16

N17

⎞
⎠ =

⎛
⎝ j13

j14
j15

⎞
⎠ ×

⎛
⎝ j23

j24
j25

⎞
⎠; × denotes vector

product;

(N21

N22

)
=
(
cθ
sθ

)
· det(MMT); M =[−j13 −j14 −j15

−j23 −j24 −j25

]
; N24 = N25 = det(MMT)

R ;
⎛
⎝N23

N26

N27

⎞
⎠ = MTadj(MMT)

(
cθ
sθ

)
; adj(·) stands for

adjoint matrix of (·). Consequently, the user-specified
function fa(q) equals

fa = cF [N1(q) N2(q)]TKF (q − qrest). (55)

123



1378 M. Galicki

The components of the nominal dynamic equations of
the mobile manipulator take the following values: plat-
form mass mp = 94; wheel mass mw = 5; platform
moment of inertia Ip = 6.609; the masses of the links
of the holonomic manipulator equal m1 = m2 = 4,
respectively, and G(q) = 0. Initial configuration q(0),
reduced velocity z(0), and control v(0) equal q(0) =
(−0.4 0 0 0 0 0 0)T; z(0) = (0 0 0 0)T, v(0) =
(0 0 0 0)T, respectively, in all the simulations. More-
over, qrest takes the form qrest = (0 0 0 0 0 π/4 π/4)T.
The non-singular actuation matrix B is equal to

B =

⎡
⎢⎢⎣

2
R 0 0 0
0 2

R 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (56)

The estimates of the constants w1, . . . , w7 which
depend only on configuration q can be determined
based both on the numerical solution of the following
system of algebraic and differential equations:⎛
⎜⎜⎜⎜⎝

fe(q) − ped(t)
fa(q) − pad (t)

sin θ · ẋ1,c − cos θ · ẋ2,c
cos θ · ẋ1,c + sin θ · ẋ2,c + W θ̇ − R · φ̇1

cos θ · ẋ1,c + sin θ · ẋ2,c − W θ̇ − R · φ̇2

⎞
⎟⎟⎟⎟⎠ = 0

(57)

and the knowledge of the components of the nominal
dynamic equations. Nevertheless, in order to simplify
the computations, rough conservative estimates of a,
A, wi , i = 1, . . . , 7, wk

3 and wk
4 have been assumed

for controllers (5)–(7), (46)–(48) and (25), (46)–(48).
Hence, they were chosen as follows a = A = 0.1;
w1 = 1.5; w2 = 0.001; w3 = wk

3 = 2; w4 = wk
4 =

3; w5 = 0.001; w6 = 4; w7 = 0; λmax(M−1) =
64. In order to observe the effects of acting both the
discontinuous disturbing signal andmeasurement noise
on the performance of the proposed controllers as well
as to attain the convergence of task errors ee less or
equal to 10−3 in approximately the same time, possibly
small numeric value of control gainCd has been chosen
in the simulations. Therefore, the numeric values of
gain coefficients for both controllers are assumed to
be equal to: c = Cd = 2; c0 = C0 = 1; λ0 = 1;
λ1 = 11; λ2 = 6; Λ0 = 11; Λ1 = 6; cF = 1.;
KF = diag(0.01 0.01 0.01 0.01 1.5).

To speed up the convergence process of differen-
tiators (46)–(47), we have chosen good initial guesses
z1(0), z2(0), η0(0), η1(0), η2(0) in the numerical exam-

Fig. 2 Euclidean norm of task errors ee for controller (25), (46)–
(48) versus time

ples (which imply relation T ′ � max{T ′
z , T ′

e} � 0—
see the proof of Theorem 4) based on the nominal
values of our dynamic model. Consequently, differ-
entiators (46)–(47) were run with the following ini-
tial values: z1(0) = z(0) = 0, z2(0) = 0, η0(0) =
(−1.75, −2.8, 0.18, 0.15)T, η1(0) = (0, 1, 0, 0)T,
η2(0) = (1, 0, 0, 0)T , v(0) = (0, 0, 0, 0)T

and parameters λ̂e0 = 156; λ̂e1 = 40.5; λ̂e2 = 10.8;
λ̂z
0 = 71.5; λ̂z

1 = 22.6; λ̂z
2 = 5.1, respectively. Due

to conservative nature of estimates Lz and Le in (46)–
(47), they are assumed for simplicity of computations
to be equal, i.e. Le(t) = Lz(t) in all the simulations.

The first task is to track ped by means of non-optimal
controller (25), (46)–(48) with fa = Wq, where

W =
[
0 0 0 0 0 1 0
0 0 0 0 0 0 1

]
and pad (t) = (π/4, π/4)T

(see Remark 2). The mobile manipulator is assumed
not to be disturbed in this simulation, i.e. D = 0 and
hence α0 = α1 = 0. The results of the first simulation
are depicted in Figs. 2, 3, 4, 5, 6 and 7 which show
finite-time convergence of the errors ee and ea to the
origin (Figs. 2 and 3). Moreover, as shown in Figs. 4,
5, 6 and 7, controller (25), (46)–(48) generates at least
absolutely continuous steering signals vc with the inte-
gral norm ||vc|| = 55.2 (defined in L2[0, 6] norm as

||vc|| =
√∫ 6

0 〈vc, vc〉dt).
In the second task, the same desired trajectory

ped is tracked. However, controller (5)–(7), (46)–(48)
involves now auxiliary function fa given by eqn (55).
Mobile manipulator is also not disturbed in this sim-
ulation, i.e. α0 = α1 = 0. The results of the second
simulation are given in Figs. 8, 9, 10, 11, 12 and 13
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Fig. 3 Euclidean norm of task errors ea for controller (25), (46)–
(48) versus time

Fig. 4 Torque vc,1 for controller (25), (46)–(48) versus time

Fig. 5 Torque vc,2 for controller (25), (46)–(48) versus time

which show finite-time convergence of ee and ea to the
origin (see Figs. 8 and 9).

From Figs. 8–9, it is also seen that for t ≥ 4 con-
troller (5)–(7), (46)–(48) generates kinematically opti-

Fig. 6 Torque vc,3 for controller (25), (46)–(48) versus time

Fig. 7 Torque vc,4 for controller (25), (46)–(48) versus time

Fig. 8 Euclidean norm of task errors ee for kinematically opti-
mal controller (5)–(7), (46)–(48)

mal absolutely continuous torques (see Figs. 10, 11,
12 and 13). The integral torque norm ||vc|| equals in
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Fig. 9 Euclidean norm of task errors ea for kinematically opti-
mal controller (5)–(7), (46)–(48)

Fig. 10 Torque vc,1 for kinematically optimal controller (5)–(7),
(46)–(48)

Fig. 11 Torque vc,2 for kinematically optimal controller (5)–(7),
(46)–(48)

this case ||vc|| = 47.1 and is clearly smaller than that
obtained in the first experiment.

Fig. 12 Torque vc,3 for kinematically optimal controller (5)–(7),
(46)–(48)

Fig. 13 Torque vc,4 for kinematically optimal controller (5)–(7),
(46)–(48)

The aim of the next two simulations is to numeri-
cally show that non-optimal controller (25), (46)–(48)
and the kinematically optimal one (5)–(7), (46)–(48)
are robust against both disturbance signal D �= 0
and a measurement noise. For this purpose, nonlin-
ear discontinuous friction term of the form D =
2z+5sign(z)+5 exp(−0.2||z||2sign(z) exhibiting vis-
cous, the Coulomb and Stribeck effects [53,54] has
been added to mobile manipulator dynamic equations.
The numerical coefficients at the discontinuous terms
were chosen as relatively large to show the effects
of the performance of the controllers under the con-
ditions of discontinuity. Let us note that Ḋ is not
locally bounded Lebesgue measurable function. Con-
sequently, the same control laws as those from the first
and second experiments with the same controller gains
have been applied in the next two simulations. More-
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Fig. 14 Euclidean norm of task errors ee for controller (25),
(46)–(48) with both disturbance signal and measurement noise

over, both measured angles φ and y and task error ee

obtained from encoders have been additionally con-
taminated by a measurement noise ζi (t)with relatively
large normalised magnitude of a Brownian motion of
the form dζi (t) = 10−5√t X (t)dt ; X (t) ∼ N (0, 1),
i = 1, 2, 3, 4, 5, 6.

The third task is also to track ped bymeans of the non-
optimal controller (25), (46)–(48) under the conditions
of acting both disturbance signal D and measurement
noise ζi , i = 1, 2, 3, 4, 5, 6 on the mobile manipula-
tor. The results of this simulation are given in Figs. 14,
15, 16, 17, 18 and 19 which indicate a good tracking
performance of controller (25), (46)–(48) (see Figs. 14
and 15). As was expected, the measurement noise with
greater normalisedmagnitude (which is proportional to√
t) generates greater norms of task errors for greater

time moments (see Figs. 14 and 15). The correspond-
ing torques vc are depicted in Figs. 16, 17, 18 and 19.
Sudden increases or decreases in vc,3 and vc,4 in the
time interval [4.2, 4.9] are a result of the Coulomb and
Stribeck discontinuous friction term D (see Figs. 18
and 19). Nevertheless, transient impetuous variations
in vc in neighbourhood of zero reduced velocity z still
present absolutely continuous functions of time. More-
over, controller (25), (46)–(48) provides ||vc|| equal to
||vc|| = 93.7.

The aim of the fourth simulation is to numerically
show that controller (5)–(7), (46)–(48) is both robust
against disturbance signal D �= 0 and themeasurement
noise and also provides optimal solution. The results
of the fourth simulation are given in Figs. 20, 21, 22,
23, 24, and 25 which seem to indicate better tracking

Fig. 15 Euclidean norm of task errors ea for controller (25),
(46)–(48) with both disturbance signal and measurement noise

Fig. 16 Torque vc,1 for controller (25), (46)–(48) with both dis-
turbance signal and measurement noise

Fig. 17 Torque vc,2 for controller (25), (46)–(48) with both dis-
turbance signal and measurement noise

performance of controller (5)–(7), (46)–(48) as com-
pared with that given by (25), (46)–(48) (see Figs. 14–
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Fig. 18 Torque vc,3 for controller (25), (46)–(48) with both dis-
turbance signal and measurement noise

Fig. 19 Torque vc,4 for controller (25), (46)–(48) with both dis-
turbance signal and measurement noise

15 and 20–21). The corresponding absolutely contin-
uous torques vc are presented in Figs. 22, 23, 24 and
25 with the norm ||vc|| equal to ||vc|| = 82.1, which is
also clearly smaller than that obtained in the third sim-
ulation. Sudden increases and decreases in vc,4 in time
interval [0, 1.4] (see Fig. 25) are result of discontinu-
ous friction term D. Similarly, rapid variations in vc,3
and vc,4 in time interval [3, 6] (see Figs. 24 and 25) are
result of both friction term D and measurement noise
ζi . Nevertheless, vc,3 and vc,4 still present absolutely
continuous functions of time.

The aim of the fifth simulation is to show that a
slight increase only of the controller gain Cd practi-
cally reduces the task errors ee, ea (caused by the mea-
surement noise and disturbance signal—see Figs. 20
and 21 for t ≥ 4.7) to zero and simultaneously sig-
nificantly decreases the L2 norm of vc as compared to

Fig. 20 Euclidean norm of task errors ee for kinematically opti-
mal controller (5)–(7), (46)–(48) with both disturbance signal
and measurement noise

Fig. 21 Euclidean norm of task errors ea for kinematically opti-
mal controller (5)–(7), (46)–(48) with both disturbance signal
and measurement noise

Fig. 22 Torque vc,1 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise
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Fig. 23 Torque vc,2 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise

Fig. 24 Torque vc,3 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise

Fig. 25 Torque vc,4 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise

the previous experiment. For this purpose, we increase
nowCd to value equal toCd = 20. All other controller

Fig. 26 Euclidean norm of task errors ee for kinematically opti-
mal controller (5)–(7), (46)–(48) with both disturbance signal
and measurement noise as well as increased C

Fig. 27 Euclidean norm of task errors ea for kinematically opti-
mal controller (5)–(7), (46)–(48) with both disturbance signal
and measurement noise as well as increased C

gains remain unchanged in this simulation. The results
of the fifth simulation are presented in Figs. 26, 27,
28, 29, 30 and 31 which indicate accurate finite-time
convergence of ee and ea to the origin (see Figs. 26
and 27). Absolutely continuous steering signals vc are
depicted in Figs. 26, 27, 28, 29, 30 and 31. The L2 norm
of vc equals in this case ||vc|| = 51 and is significantly
smaller than that obtained in the previous simulation.

Finally, we have carried out additional computations
in conditions closely related to the experiment (the sec-
ond aim of this section). For this purpose, the second
mobile manipulator operating in a three-dimensional
work space and shown inFig. 32has beenutilised in this
‘real case’. Kinematic and dynamic data correspond to
KUKAyouBotmobile platform and holonomicmanip-
ulator. However, in the computations carried out herein,
the platform is assumed to be of the non-holonomic
(2, 0) type (the same as that considered in the previ-
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Fig. 28 Torque vc,1 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise
as well as increased C

Fig. 29 Torque vc,2 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise
as well as increased C

Fig. 30 Torque vc,3 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise
as well as increased C

ous computations) and the holonomic manipulator has
only three revolute kinematic pairs (n = 3) (the last
three links of the original KUKA holonomic arm form

Fig. 31 Torque vc,4 for kinematically optimal controller (5)–(7),
(46)–(48) with both disturbance signal and measurement noise
as well as increased C

the single link of the manipulator utilised in the com-
putations). Consequently, kinematic equations of the
mobile manipulator from Fig. 32 take the form

fe(q) =
⎛
⎝ acθ + l1cθ1 + l2

2 cθ12 + l3
2 cθ123 + x1,c

asθ − l1sθ1 − l2
2 sθ12 − l3

2 sθ123 + x2,c
c − l2sy2 − l3sy23 + x3,c

⎞
⎠ ,

(58)

where (x1,c, x2,c, x3,c)T stand for coordinates of the
platform centre, cθ1 = cos(−θ+y1), cθ12 = cos(−θ+
y1 + y2) + cos(θ − y1 + y2), cθ123 = cos(−θ + y1 +
y2 + y3)+ cos(θ − y1 + y2 + y3), sθ1 = sin(−θ + y1),
sθ12 = sin(−θ + y1 + y2) − sin(θ − y1 + y2), sθ123 =
sin(−θ + y1 + y2 + y3) − sin(θ − y1 + y2 + y3),
(a, 0, c)T denotes the point at which the holonomic
manipulator is fasten to the platform; l1, l2, l3 are
the lengths of the arm. Hence, vector q equals q =
(x1,c, x2,c, θ, φ1, φ2, y1, y2, y3)T. Taking into
account the above assumptions and the KUKA youBot
documentation [55], the kinematic parameters of the
mobile manipulator from Fig. 32 take the following
numeric values: (a, 0, c)T = (0.167, 0, 0.161)T,
x3,c = 0.084, l1 = 0.033, l2 = 0.155, l3 = 0.342,
W = 0.158, and R = 0.05, respectively.

Matrix C is equal to

C =
[
N (x) 0
0 I3

]
, (59)

where N (x) is given by formula (50). The task is both
to track the end effector desired trajectory ped = (2 +
cos(t), 3+sin(t), 0.35)T and to fulfil equality y2(t)−
π
9 = 0, respectively, t ≥ T (m = 4). Hence, l + n −
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Fig. 32 A kinematic
scheme of the youBot
mobile manipulator with
platform of (2, 0) type in
the absolute coordinate
system and the tracking task
to be accomplished

m − k = 1 and auxiliary matrix j (q) equals

j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 j13 0 0 j14 j15 j16
0 1 j23 0 0 j24 j25 j26
0 0 0 0 0 0 j35 j36
0 0 0 0 0 0 1 0

−sθ cθ 0 0 0 0 0 0
cθ sθ 0 −R 0 0 0 0
cθ sθ 0 0 −R 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (60)

where j13 = −asθ + l1sθ1 + l2
2 sθ12 + l3

2 sθ123; j14 =
−l1sθ1 − l2

2 sθ12 − l3
2 sθ123; j15 = l2

2 (− sin(−θ + y1 +
y2) − sin(θ − y1 + y2)) + l3

2 (− sin(−θ + y1 + y2 +
y3)−sin(θ − y1+ y2+ y3)); j16 = l3

2 (− sin(−θ + y1+
y2 + y3)− sin(θ − y1 + y2 + y3)); j23 = acθ + l1cθ1 +
l2
2 cθ12 + l3

2 cθ123; j24 = −l1sθ1 − l2
2 cθ12 − l3

2 cθ123;

j25 = − l2
2 (cos(−θ + y1 + y2) − cos(θ − y1 + y2)) −

l3
2 (cos(−θ + y1 + y2 + y3) − cos(θ − y1 + y2 + y3));

j26 = l3
2 (cos(−θ + y1 + y2 + y3) − cos(θ − y1 +

y2 + y3)); j35 = −l2cy2 − l3cy23; j36 = −l3cy23. The
corresponding orthonormal complementary vector N
is given below

N = (N1, . . . ,N8)
T, (61)

where N7 = 0, N8 = 0, N3 = −(sθj13 − cθj23),
N6 = sθj13 − cθj23, N1 = −N3j13 − N6j14,
N2 = −N3j23 − N6j24, N4 = cθN1+sθN2

R and N5 =
− cθN1+sθN2

R . Consequently, fa(q) takes the form

fa = cF 〈N , KF (q − qrest)〉, (62)

with cF = 5 and KF = diag(0.0002, 0.0002, 0.0002,
1, 1, 0.0002, 0.2, 0.2), respectively. The components

of the nominal dynamic equations are equal to: platform
mass mp = 19.803; wheel mass mw = 1.4; masses
of the holonomic manipulator links equal m1 = 1.39,
m2 = 1.318 and m3 = 2.496, respectively. The
remaining dynamic parameters of the robot are taken
from KUKA youBot documentation [55]. In order to
obtain more realistic conditions of computations, the
following friction term is adopted: D = 0.002sgn(z)+
0.2z. Consequently, α0 = 0.202. On account of the
fact that Ḋ is not locally bounded Lebesgue measur-
able function, we assume α1 = 0 in controller (5)–(7),
(46)–(48). Nevertheless, disturbing term D is added to
dynamic equations of mobile manipulator. Moreover,
measured quantitiesφ, y and ee obtained fromencoders
have been additionally contaminated by a measure-
ment noise ζi (t) with relatively large normalised mag-
nitude of a Brownian motion of the form dζi (t) =
10−5√t X (t)dt ; X (t) ∼ N (0, 1), i = 1, . . . , 8. Ini-
tial reduced velocity, control, and configuration equal
z(0) = (0, 0, 0, 0, 0)T, v(0) = (0, 0, 0, 0, 0)T,
q(0) = (−0.4, 0, 0, 0, 0, 0,− π

18 ,
π
9 )T, respectively.

Moreover, qrest = q(0). Actuation matrix B takes the
following form:

B =

⎡
⎢⎢⎢⎢⎣

2
R 0 0 0 0
0 2

R 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (63)

In order to simplify the computations, rough conserva-
tive estimates of a, wk

3, wk
4, A and wi , i = 1, . . . , 7
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have been assumed for controller (5)–(7), (46)–(48).
They were chosen as follows a = A = 0.2; w1 = 1.5;
w2 = 0.001; wk

3 = 2; wk
4 = 3; w3 = 24; w4 = 36;

w5 = 24; w6 = 48; w7 = 1100. To observe the effect
of acting both the discontinuous disturbing signal D
and measurement noise on the performance of the con-
trollers, possibly small numeric value of Cd has been
chosen in the computations. Therefore, the values of
gain coefficients for both controllers are assumed to be
equal to: c = 2, Cd = 20, c0 = C0 = 1, λ0 = 1;
λ1 = 11; λ2 = 6; Λ0 = 11; Λ1 = 6. In order to accel-
erate the convergence process of differentiators (46)–
(47), we have chosen good initial guesses z1(0), z2(0),
η0(0), η1(0), η2(0), based on the nominal values of our
dynamic model. Consequently, differentiators (46)–
(47) were run with the following initial values: z1(0) =
z(0) = 0, z2(0) = (−0.08, −0.08, 0, 70, −70)T,
η0(0) = (−2.75, −3., −0.14, 0., 0)T, η1(0) =
(0, −1, 0, 0, 0)T, η2(0) = (2.75, 0, −10, 0, 70)T

and parameters λ̂e0 = 55; λ̂e1 = 20.4; λ̂e2 = 7.6;
λ̂z
0 = diag(22, 22, 2200, 2200, 2200); λ̂z

1 =
diag(11, 11, 237, 237, 237); λ̂z

2 = diag(5.6, 5.6, 26,
26, 26), respectively. Due to conservative nature of
estimates Lz and Le in (46)–(47), they are assumed to
be equal in this ‘real case’, i.e. Le(t) = Lz(t).

The results for this ‘real case’ are given in Figs.
33, 34, 35, 36, 37, 38 and 39, which indicate a good
tracking performance of kinematically optimal con-
troller (5)–(7), (46)–(48) (see Figs. 33 and 34). As was
expected, both disturbing signal D and measurement
noises ζi with greater magnitude generate greater task
error norms for greater time moments. Let us observe
(Figs. 33 and 34) that for t ≥ 4 mobile manipulator
accomplishes (locally) optimal movement. The corre-
sponding torques vc are depicted in Figs. 35, 36, 37, 38
and 39. Rapid variations in vc in time interval [0.5, 7]
(see Figs. 37, 38 and 39) are result of both friction term
D andmeasurement noises ζi . Nevertheless, torques vc
are still absolutely continuous functions of time.

Although finite-time controllers (5)–(7), (46)–(48)
provide, at least theoretically, zero tracking errors and
generated trajectories are also (locally) optimal, the
practical implementation of control laws (5)–(7), (46)–
(48) to an actual system does not seem to be a trivial
task. The reason is that the right-hand sides of Eqs.
(22) and (39) are locally boundedLebesguemeasurable
functions. Numerical integration of such class of map-
pings by using standard Runge–Kutta solvers of the 45

Fig. 33 Euclidean norm of task errors ee for kinematically opti-
mal controller (5)–(7), (46)–(48) of youBot robot with both dis-
turbance signal and measurement noise

Fig. 34 Euclidean norm of task errors ea for kinematically opti-
mal controller (5)–(7), (46)–(48) of youBot robot with both dis-
turbance signal and measurement noise

order requires a small value of integration step (whom a
high sampling frequency corresponds) to obtain finite-
time stability of the control law (5)–(7), (46)–(48). In
practice, the integration step should take the values in
interval [10−5, 10−4] what forces fast computations
in real time. Otherwise, greater values of integration
step may lead to unstable work of controller (5)–(7),
(46)–(48). Our computations carried out with integra-
tion step equal to 10−3 have led to unstable work of
controllers (5)–(7), (46)–(48). Moreover, on account
of finite integration step corresponding to a finite sam-
pling frequency in computations by solving differential
equations (22), (39), task errors e, ė and ë do not equal
(theoretically) zero for t ≥ T but take very small values
(of the order of 10−4).
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Fig. 35 Torque vc,1 for kinematically optimal controller (5)–
(7), (46)–(48) of youBot robot with both disturbance signal and
measurement noise

Fig. 36 Torque vc,2 for kinematically optimal controller (5)–
(7), (46)–(48) of youBot robot with both disturbance signal and
measurement noise

Fig. 37 Torque vc,3 for kinematically optimal controller (5)–
(7), (46)–(48) of youBot robot with both disturbance signal and
measurement noise

Fig. 38 Torque vc,4 for kinematically optimal controller (5)–
(7), (46)–(48) of youBot robot with both disturbance signal and
measurement noise

Fig. 39 Torque vc,5 for kinematically optimal controller (5)–
(7), (46)–(48) of youBot robot with both disturbance signal and
measurement noise

5 Conclusions

The new kinematically optimal class of the cascaded
controllers, intended for the end effector trajectory
tracking in the task space, has been presented. The
main advantage of the proposed control algorithms is
the elimination of the inverse or a pseudo-inverse of
the mobile manipulator Jacobian matrix from the tra-
jectory tracking problem. Instead, a simple class of
the transpose Jacobian controllers has been proposed.
Moreover, the offered control scheme generates at least
absolutely continuous steering signals. Applying the
Lyapunov stability theory, it was shown in the work
that the proposed control strategies are finite time sta-
ble provided that some practically reasonable assump-
tion regarding the rank of the extended Jacobian matrix
is fulfilled. Numerical examples have also shown that
kinematically optimal cascaded controller generates
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smaller steering signals (in the L2 norm) as compared
to the control scheme (25), (46)–(48). The proposed
approach to the trajectory tracking control problem
may be directly applicable to many cooperating mobile
manipulators operating in a six-dimensional task space.
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