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Abstract In this paper,we consider dynamical behav-
ior of a comparatively simple self-oscillating circuit
only with an inductor, a capacitor and a memristor,
but this circuit can produce a self-sustained oscillation.
By applying the point transformation method and the
multiple-scale method, we carefully analyze dynamics
of this circuit and find there exists a periodic solution.
In our study, the two cases for the flux–charge rela-
tion of a memristor, i.e., continuous piecewise-linear
function and discontinuous function, are considered.
By using the above two approaches, we analytically
obtain the approximated period and amplitude of the
periodic solution. Some numerical examples also ver-
ify the correctness of theoretical analysis.
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1 Introduction

In 1971, from the logical and axiomatic points of view,
Chua postulated the existence of a fundamental two-
terminal passive device, named memristor (a contrac-
tion of memory–resistor), for which a nonlinear rela-
tionship links charge and flux [1]. However, on April
30, 2008, Stan Williams et al. [2] announced that the
missing circuit element has been found [3], which it
took more than 30years to show experimentally at
HP laboratories that it is possible to realize a passive
memristor-like device in nanotechnology [2,3].

An important feature is that an ideal memristor can
display nonvolatile memory and also has potential to
reproduce the behavior of a biological synapse [4]. In
1976, a broader class of memristive systems includ-
ing the memristor was presented by Kang and Chua
[5]. Furthermore, the design of memristive systems
requires a deep and clear understanding of the nonlinear
dynamics of these memristive systems. Many studies
and applications for the memristor have been done. In
[6,7], the authors have generalized the notion of mem-
ristor tomemcapacitor andmeminductor elements, and
an artificial synapse can be realized by these elements.
The combination of these elements in circuits can find
applications in neuromorphic devices to simulate com-
plex learning, adaptive, spontaneous behavior and asso-
ciative memory. The three mutually coupledmemristor
oscillator circuits are constructed, and the stability of
the multimode oscillation for such circuit is carefully
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analyzed in [8]. In [9], for recognizing and exploring
the electrical activities in neurons, the research pro-
gresses for the biological Hodgkin–Huxley model and
its simple versions are reviewed. The memristor-based
FitzHugh–Nagumo model is designed, and the chaotic
behaviors of the model under external stimuli have also
been found. Furthermore, the synchronization of cou-
pled memristor-based chaotic neurons with memristor
synapse is studied [10]. In [11], an external current is
injected into the Hindmarsh–Rose (HR) neuron model,
an improved HR model has been proposed, and this
results in the emergence of various dynamical behav-
iors such as hyperchaos, periodic bursters and soon. For
implementing the spike Timing-Dependent Plasticity
mechanism, a novel fully floating memristor-based cir-
cuit has been presented [12]. In the four-dimensional
current–voltage phase space, the authors constructed
the memristor canonical Chua’s circuit [13,14]. In
[15], the authors have further shown that the equa-
tions of dissipative memristor circuits can represented
by Hamilton’s equations. In the above cases, a con-
tinuous piecewise-linear function is used to represent
the flux–charge characteristic curve of these circuits
in [15–19]. The simplest parallel memristor system
based on a voltage-controlled memristor is designed,
and its dynamical characteristics are numerically ana-
lyzed [20]. In [21], the authors have proposed an elec-
tronic model based on Duffing oscillator with a charac-
teristic memristor nonlinear element, and for a certain
range of circuit parameters the dynamical behaviors of
this circuit such as bifurcations, chaos, three tori, tran-
sient chaos and intermittency are observed. By substi-
tuting Chua’s diode with a first-order memristive diode
bridge in the classical Chua’s circuit, a novel mem-
ristive chaotic circuit is constructed [22]. In [23], the
authors designed a second-order circuit employing an
inductor, a capacitor, a resistor and a flux-controlled
memristor, and analyzed local stability of equilibria,
local and global bifurcations, and furthermore, derived
necessary and sufficient conditions for the occurrence
of a supercritical Hopf bifurcation. In particular, for the
memristor-based canonical circuits many authors have
applied a classical piecewise-linear function to describe
the flux–charge characteristic curve [24–27].

However, the known analytic approaches are all
for differentiable and smooth dynamical systems; fre-
quently, nonlinear circuits are modeled by dynamical
systems, i.e., their nonlinearities are assumed suffi-
ciently smooth. In these analytic approaches, if one

wants to find an evidence of the appearance of peri-
odic oscillations, then the Hopf bifurcation Theorem
[28–30] is one of the most practical and important
results. However, in the real world, one has to employ
piecewise-linear or discontinuous systems so as to get
more precise models. In practical applications, such
as in the field of nonlinear electronics and control,
piecewise-linear or discontinuous systems are very
common [31,32].

Bifurcation analysis of piecewise-linear or discon-
tinuous systems may be very difficult; up to now, no
general theoretic results for this class of systems can
be applied practically, and at the same time, we must
consider the cumulative contribution of every phase
space section to the system dynamics. In particular, the
classical Hopf bifurcation theorems cannot directly be
applied to piecewise-linear or discontinuous systems
due to their non-differentiability or discontinuity. But,
bifurcations may occur in piecewise-linear or discon-
tinuous systems and they have similarities (but also
discrepancies) with the Hopf bifurcation in differential
and smooth dynamical systems [33].

In this paper, we design a simple memristor-based
circuit by employing an inductor, a capacitor and
a flux-controlled memristor, and use two kinds of
nonlinear functions as the flux–charge characteristic
curve. One is continuous piecewise-linear function,
and another is discontinuous function. The analysis of
memristor-based circuit with the flux–charge charac-
teristic curve of continuous piecewise-linear function
is studied by applying the point transformation method
of Andronov [34], which is a very useful tool for ana-
lyzing piecewise-linear systems.

The analysis of the circuit with the flux–charge char-
acteristic curve of discontinuous function is performed
by applying Fourier series expansion and the multiple-
scale method [35]. The underlying idea of themultiple-
scale method is to consider the expansion representing
the response to be a function of multiple independent
variables, or scales, instead of a single variable. First,
in this paper we expand the sign function into Fourier
series, then using the multiple-scale method obtain the
approximated period and amplitude of the limit cycle.

The remaining part of this paper is organized as fol-
lows. In Sect. 2, we design a simple memristor-based
circuit with continuous piecewise-linear function. Sec-
tion 3 will start with a short introduction of the point
transformation method, and the whole point transfor-
mation is the product of somepoint transformations of a
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straight line into a straight line, these point transforma-
tions can be expressed in the form of parameters. In this
problem, the fixed points corresponding to limit cycles
will be determined by two transcendental equations and
their stability is also studied. In Sect. 4, we will first
expand the sign function into Fourier series, then using
the multiple-scale method we obtain the period and
the amplitude of the approximated periodic solution.
In Sect. 5, numerical simulations support the validity
of theoretical analysis. In the last section, some con-
clusions and future researches about the models will
be presented.

2 A circuit with only one memristor

In this section, the circuit with a flux-controlled mem-
ristor, an inductor and a capacitor are shown in Fig. 1.

Assume that the values of L andC for the impedance
and capacitance are positive constants, and apply
Kirchhoff’s current law and Kirchhoff’s voltage law
(see Fig. 1), we have

⎧
⎨

⎩

i(t) − î(t) − im(t) = 0,
−v(t) − v̂(t) = 0,
v̂(t) − vM (t) = 0.

(1)

Integrating both sides of Eq. (1) from time instant t0 to
time instant t , we get

⎧
⎨

⎩

q(t) − q̂(t) − qm(t) = Q,

−φ(t) − φ̂(t) = φ,

φ̂(t) − φM (t) = φ.

(2)

where Q = q(t0) − q̂(t0) − qm(t0), φ = −φ(t0) −
φ̂(t0), φ = φ̂(t0) − φM (t0).

C

L

+
–

+ –
( )i t

( )v t

ˆ( )v t

ˆ( )i t ( )mi t

+

–
( )Mv t

Fig. 1 A circuit with an inductor, a capacitor and a memristor

For convenience, we let Q = 0, φ = 0, φ = 0,
Eq. (2) have the following constitutive equations:

φ(t) = L
dq(t)

dt
, q̂(t) = C

dφ̂(t)

dt
and

qm(t) = qm(φm(t)) = qm(φ̂(t)).

Substituting the constitutive laws of bipoles into (2)
yields

⎧
⎨

⎩

dφ̂(t)
dt = q(t)

C − qm (φ̂(t))
C ,

dq(t)
dt = − φ̂(t)

L .

(3)

Assume α = 1/C and ξ = 1/L (note that the param-
eters α and ξ are positive real values), and define state
variables as x(t) = φ̂(t) and y(t) = q(t), state equa-
tions of the circuit in Fig. 1 become as

{
dx(t)
dt = αy(t) − αqm(x(t)),

dy(t)
dt = −ξ x(t).

(4)

We choose the following expression for the memristor
charge–flux (i.e., qm(t) − x(t) nonlinear relationship)
[1,5,13,23]:

qm(x(t)) = bx(t) + (a − b)sat(x(t)), (5)

where nonlinear function sat(x(t)) is defined as

sat(x(t)) = 1

2
(|x(t) + 1| − |x(t) − 1|) . (6)

Equation (4) can become as

ẍ(t) + [α(a − b)H(1 − |x |) + αb]ẋ(t) + αξ x(t) = 0,

(7)

where

H(x) =
{
0, x < 0,
1, x ≥ 0.

Equation (7) may rewrite as

ẍ(t) + αbẋ(t) + αξ x(t) = 0, |x | ≥ 1, (8a)

ẍ(t) + αaẋ(t) + αξ x(t) = 0, |x | < 1. (8b)

Let t = τ/
√

αξ, for convenience of our study, we still
replace τ with t , then Eq. (8) becomes

ẍ(t) + bdẋ(t) + x(t) = 0, |x | ≥ 1, (9a)

ẍ(t) + adẋ(t) + x(t) = 0, |x | < 1, (9b)
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Fig. 2 The phase plane (x, y) for Eq. (9)

where d = √
α/ξ . Thus, the phase plane (x, y)

(where y = ẋ) is divided by the lines x = − 1
and x = + 1 into three linear regions: (I)x <

−1, (II) |x | < 1 and (III)x > +1, in each of which
the appropriate linear equation (9) holds (see Fig. 2 and
Remark 1).

From the point of view of physics, the phase paths
must be continuous on the phase plane as well as on
the boundaries x = − 1 and x = + 1 (see Remark 1).
Also, Eq. (9) is invariant under a change in the variables
(x, y) into (−x,−y). The same symmetry is also estab-
lished for the paths in the upper and lower half of the
region (I).

Remark 1 In Fig. 2, the phase paths are presented as
spirals. This only takes place for |b| < 2/d, |a|
< 2/d.

The dynamical system (9) has a unique state of the
equilibrium at the origin (0, 0) which is a node (|a| ≥
2/d)or a focus (|a| < 2/d), stable for a > 0 and
unstable for a < 0. In the following, we will mainly
consider the self-excited circuit in which b > 0 and
a < 0.

Remark 2 If b > 0 and a > 0, then all phase paths
approach asymptotically the stable state of the equilib-
rium (0, 0); hence, the system will not oscillate (what-
ever the initial conditions).

3 The approximated periodic solution with
continuous piecewise-linear function

3.1 Point transformation

The phase plane (x, y) for the system is filled with
sections of paths, corresponding to the linear equation
(9), these sections of paths are joined together at their
ends on the straight lines x = − 1 and x = + 1, thus
forming entire phase paths.

To find all limit cycles, we construct the point trans-
formationof the half line into themselves anddetermine
its fixed points.

Let � be obviously the composite of four trans-
formations �1,�2,�3 and �4, where we denote the
transformation from the half lines S to S′ as �1, the
transformation from S′ to S1 as �2, the transformation
from S1 to S′

1 as �3, the transformation from S′
1 to S

as �4, respectively. By the symmetry, we have

�3 ≡ �1 and �4 ≡ �2. (10)

Therefore, the transformation � is obtained by apply-
ing the transformation �′ twice, i.e.,

�′ = �1 • �2, then � = (�′)2, (11)

relates S to S1.
In the region (I) (x < −1), the phase paths are deter-

mined by (9a), i.e., the solution of Eq. (9a) is

x(t) = Aeλ1t + Beλ2t , (12)

where λ1 and λ2 are the roots of the quadratic
equation:

λ2 + bdλ + 1 = 0. (13)

As is well known, for |b| > 2/d these roots are real and
for |b| < 2/d they are complex. Accordingly, depend-
ing on the sign of b2d2 − 4, we may obtain two types
of solutions and two different processes: for |b| < 2/d,
a damped oscillating process and for |b| > 2/d, a
damped aperiodic process.

When |b| < 2/d, the roots of the characteristic
Eq. (13) are:

λ1,2 = −h1 ± jω1, (14)
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Self-sustained oscillation in a memristor circuit 1271

where 0 < h1 = bd/2 < 1(b > 0), ω1 =√

1 − h21, j = √−1, and the general solution of the
equation (9a) is

x(t) = e−h1t (A cosω1t + B sinω1t), (15)

where A and B are determined by the initial conditions.
And precisely, if x = x0, y = y0 at t = 0, then its
solution is

⎧
⎪⎨

⎪⎩

x = e−h1t
[
x0 cosω1t + y0+h1x0

ω1
sinω1t

]
,

y = ẋ = e−h1t
[
y0 cosω1t − x0+h1y0

ω1
sinω1t

]
.

(16)

Therefore, the equation of the path leaving S at t = 0
(x0 = −1, y0 = −s,where s > 0) is

⎧
⎪⎨

⎪⎩

x = −e−h1t
[
cosω1t + s+h1

ω1
sinω1t

]
,

y = ẋ = e−h1t
[
−s cosω1t + 1+h1s

ω1
sinω1t

]
.

(17)

The representative point moving along the path (17)
will reach at time t1 = τ1/ω1, the half line S′ at a point
s′ (x = −1, y = s′ > 0) (see Fig. 2)
⎧
⎪⎨

⎪⎩

s′ = e
−h1

τ1
ω1

[
−s cos τ1 + 1+sh1

ω1
sin τ1

]
,

−1 = −e
−h1

τ1
ω1

[
cos τ1 + s+h1

ω1
sin τ1

]
.

Solving the above equations for s and s′, we obtain
the correspondence or the sequence function (The func-
tion for the point transformation of a line into another
line is called as the sequence function or the correspon-
dence function) for the transformation �1

⎧
⎪⎪⎨

⎪⎪⎩

s = eγ1τ1−cos τ1−γ1 sin τ1√

1+γ 2
1 sin τ1

,

s′ = e−γ1τ1−cos τ1+γ1 sin τ1√

1+γ 2
1 sin τ1

,
(18)

where

γ1 = h1
ω1

= h1
√

1 − h21

, ω1 = 1
√

1 + γ 2
1

.

(as h1 varies from 0 to +1, γ1 increases monotonically
from 0 to +∞).

We pass now to the point transformation �2, i.e.,
the transformation of the points of the half straight line
S′into point (+1, s1) of the half straight line S1 as gen-
erated by paths in the region (II), limiting ourselves to
the case −1 < h2 = ad

2 < 0, − 2
d < a < 0.

Similar to the above approach, if the initial value
(x ′

0, y
′
0), then the solution of (9b) is

⎧
⎪⎨

⎪⎩

x = e−h2t
[
x ′
0 cosω2t + y′

0+h2x ′
0

ω2
sinω2t

]
,

y = ẋ = e−h2t
[
y′
0 cosω2t − x ′

0+h2 y′
0

ω2
sinω2t

]
,

(19)

where

h2 = ad

2
, ω2 =

√

1 − h22.

For the phase path leaving the point (−1, s′) of the half
line S′(x = −1, s′ > 0) at t = 0 and passing through
the region (II), we have, according to (9b) for the case
−1 < h2 < 0.

⎧
⎪⎨

⎪⎩

x = e−h2t
[
− cosω2t + s′−h2

ω2
sinω2t

]
,

y = ẋ = e−h2t
[
s′ cosω2t + 1−s′h2

ω2
sinω2t

]
.

(20)

The parametric expressions for the transformation �2

can be obtained by assuming that S1 is reached at the
point x = + 1, y = s1 > 0, at t2 = τ2/ω2 > 0, and
solving for s′ and s1

⎧
⎪⎪⎨

⎪⎪⎩

s′ = eγ2τ2+cos τ2+γ2 sin τ2√

1+γ 2
2 sin τ2

,

s1 = e−γ2τ2+cos τ2−γ2 sin τ2√

1+γ 2
2 sin τ2

,
(21)

where

γ2 = h2
ω2

= h2
√

1 − h22

< 0, ω2 = 1
√

1 + γ 2
2

.

3.2 Fixed point and stability of limit cycle

In the following, we will discuss some properties for
(18). On differentiating (18), we get

ds

dτ1
= 1 − eγ1τ1(cos τ1 − γ1 sin τ1)

√

1 + γ 2
1 sin2 τ1

,

123



1272 X. Liao, N. Mu

and
ds′

dτ1
= 1 − e−γ1τ1(cos τ1 + γ1 sin τ1)

√

1 + γ 2
1 sin2 τ1

.

Now we introduce the auxiliary function

ϕ(τ, γ ) = 1 − eγ τ (cos τ − γ sin τ).

Hence, the following Lemma 1 is immediate.

Lemma 1 The following three properties of the func-
tion ϕ(τ, γ ) hold:

(i) ϕ(τ, γ ) = ϕ(−τ,−γ );
(ii) ∂ϕ

∂τ
= (1 + γ 2)eγ τ sin τ ;

(iii) For γ > 0, there exists τ = τ 0(γ ), τ ∈ (0, 2π)

such that ϕ(τ 0, γ ) = 0 and for τ < τ 0, ϕ(τ, γ )

> 0.

By (ii), we can see that ϕ(τ, γ ) with respect to τ under
γ > 0 is monotonically increased when τ ∈ (0, π),
and is monotonically decreased when τ ∈ (π, 2π).

By Lemma 1, we have

s = eγ1τ1ϕ(τ1,−γ1)
√

1 + γ 2
1 sin τ1

,
ds

dτ1
= ϕ(τ1, γ1)

√

1 + γ 2
1 sin2 τ1

,

(22a)

s′ = e−γ1τ1ϕ(τ1, γ1)
√

1 + γ 2
1 sin τ1

,
ds′

dτ1
= ϕ(τ1,−γ1)

√

1 + γ 2
1 sin2 τ1

.

(22b)

By (22) and Lemma 1, it follows that, for s ∈ (0,+∞),
the parameter τ1 ∈ (0, π). Also, as τ1 varies from
0 to π, s and s′ increase monotonically from 0 to
+∞, s, s′, ds

dτ1
and ds′

dτ1
remain positive and continuous.

To discuss the relation between the values of s and
s′, it suffices to note the following:
(i) for 0 < τ < π,

ds

ds′ = ϕ(τ1, γ1)

ϕ(τ1, −γ1)
> 0, (23)

and increases monotonically from 1 at τ1 → +0
to 1+eγ1π

1+e−γ1π at τ1 → π − 0, since

d2s

ds′2 = ∂

∂τ1

{
ϕ(τ1, γ1)

ϕ(τ1, −γ1)

}
1
ds′
dτ1

= 2(1 + γ 2
1 )

3
2 sin3 τ1

[ϕ(τ1, −γ1)]3
[
sinh γ1τ1 − γ1 sin τ1

]
> 0

(24)

for 0 < τ < π, and hence, 1 < ds
ds′ < 1+eγ1π

1+e−γ1π .

(ii) for τ1 → π −0, the correspondence function (22)
has a rectilinear asymptote

s = 1 + eγ1π

1 + e−γ1π
s′ + ā, (25)

where

ā = lim
τ→π−0

[

s − 1 + eγ1π

1 + e−γ1π
s′
]

= −2γ1(1 + eγ1π )
√

1 + γ 2
1

< 0.

(iii) Because d2s
ds′2 > 0 and ā < 0, the curve of Eq. (22)

is located above the asymptote (20).

In the following, we will discuss the properties of (21).
From (21), we have

(i) For τ2 → +0, s1 and s′ → +∞.

(ii) s′ = 0 for a certain τ2 = τ ′
2(0 < τ ′

2 < π)

determined by the equation s′(τ ′
2) = 0 or 1 +

e−γ2τ2(cos τ2 + γ2 sin τ2) = 0,wheres′(τ2) > 0.
(iii) Differentiating (21), we have

ds1
dτ2

= −1 + e−γ2τ2(cos τ2 + γ2 sin τ2)
√

1 + γ 2
2 sin2 τ2

, (26)

ds′

dτ2
= −1 + eγ2τ2(cos τ2 − γ2 sin τ2)

√

1 + γ 2
2 sin2 τ2

, (27)

and

ds1
ds′ = 1 + e−γ2τ2(cos τ2 + γ2 sin τ2)

1 + eγ2τ2(cos τ2 − γ2 sin τ2)
. (28)

Let g(τ2) = 1 + e−γ2τ2(cos τ2 + γ2 sin τ2), then we
have

dg(τ2)

dτ2
= −(1 + γ 2

2 )e−γ2τ2 sin τ2 < 0.

Hence, 1 + e−γ2τ2(cos τ2 + γ2 sin τ2) > 0 when 0 <

τ2 < τ ′
1 and similarly

1 + eγ2τ2(cos τ2 − γ2 sin τ2) > 0

for 0 < τ2 < τ ′
2, then for these values of τ2,

ds′
dτ2

<

0 and ds1
dτ2

< 0. Also, ds1
ds′ > 0, so that as τ2 varies

from 0 to τ ′
2, s

′ decreases monotonically from +∞ to
0, and s1 decreases from +∞ to s1(τ ′

2) > 0. Hence,
the interval of smallest positive values of τ2 needed to
know all points of the half line S′ is 0 < τ2 < τ ′

2.
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(i) Since

d2s1
ds′2 = − 2(1 + γ 2

2 )
3
2 sin3 τ2

[1 + eγ2τ2(cos τ2 − γ2 sin τ2)]3
[
sinh γ2τ2 + γ2 sin τ2

]
> 0 (29)

for all values of τ2 in the interval 0 < τ2 < τ ′
2, then

as s′ increases from0 to+∞, ds1
ds′ increasesmono-

tonically from 0 (at s′ = 0) to +1 (at s′ → +∞),
i.e., 0 < ds1

ds′ < 1. Equation (22) has the asymp-

tote s1 = s′ − 4γ2√

1+γ 2
2

, and, due to the fact that

d2s1
ds′2 > 0, this curve is located above the asymp-
tote. These properties are sufficient to construct a
graph of the correspondence function (21).

Construct the curves (18) and (21) on one plane. The
fixed points are determined analytically by the follow-
ing equations

⎧
⎪⎪⎨

⎪⎪⎩

e−γ1τ1−cos τ1+γ1 sin τ1√

1+γ 2
1 sin τ1

= eγ2τ2+cos τ2+γ2 sin τ2√

1+γ 2
2 sin τ2

,

eγ1τ1−cos τ1−γ1 sin τ1√

1+γ 2
1 sin τ1

= e−γ2τ2+cos τ2−γ2 sin τ2√

1+γ 2
2 sin τ2

,

(30)

which is obtained from Eqs. (18) and (21) by eliminat-
ing s′ and putting s1 = s.

It is easy to show that there exists only one point of
intersection of the curves (18) and (21). In fact, the exis-
tence of at least one point of intersection follows from
the continuity of these curves and from the inequalities.

s1 − s = − 2γ2
√

1 + γ 2
2

+ 2γ1
√

1 + γ 2
1

> 0 for s′ = 0,

s1 − s < 0 for sufficiently large s′. (31)

Remark 3 The slopes of the asymptotes of the curves
(18) and (21) are equal, respectively, to 1+eγ1π

1+e−γ1π and to
1, i.e., the asymptote of the curve (18) is steeper than
the asymptote of the curve (21).

Further, if several points of intersection did exist,
then for the first of them (the one with smallest s′),
we should have ds1

ds′ < ds
ds′ , and for the following one

ds1
ds′ > ds

ds′ . The latter is impossible since 0 < ds1
ds′ <

1 and ds
ds′ > 1(for any values of s′). Thus, there is one

unique point of intersection and therefore one unique
fixed point if 0 < h1 < 1 and − 1 < h2 < 0. The
fixed point is stable since 0 < ds1

ds < 1.

Therefore, for 0 < h1 < 1 and − 1 < h2 < 0 there
is a unique stable limit cycle, to which all phase paths
tend to: (for t → +∞). Thus, the memristor circuit
has a mode of self-excitation.

The period of the self-oscillations is clearly equal to

T = 2√
αξ

[
τ̄1

ω1
+ τ̄2

ω2

]

. (32)

(in units of the dimensionless time), where τ̄1 and τ̄2
are values of τ1 and τ2 in a limit cycle.

4 Self-sustained oscillation with discontinuous
function

If we replace Eq. (5) with the following function [34,
36]

qm(x) = −ax + b

2
x |x | , (33)

where a > 0, b > 0, Eq. (4) becomes as

ẍ(t) + α(−a + b |x |)ẋ(t) + αξ x(t) = 0. (34)

Similar to the previous approach, let t = τ/
√

αξ we
still replace τ with t , then Eq. (3) becomes

ẍ(t) + ε(−a + b |x |)ẋ(t) + x(t) = 0, (35)

where

ε = d = √
α/ξ.

Theorem 1 [33] The equation ẍ(t) + ε f (x)ẋ(t) +
g(x) = 0 has a unique periodic solution if f and g are
continuous, and F(x) ≡ ∫ x

0 f (u)du is an odd function,
and F(x) is zero only at x = 0, x = C, x = −C, for
some C > 0 and F(x) → 0 as x → ∞ monotonically
for x > C. In addition, g(x) must be an odd function,
and g(x) > 0 for x > 0.

Here,

F(x) =
{

(−ax + b
2 x

2), x > 0,

(−ax − b
2 x

2), x < 0.
(36)

123



1274 X. Liao, N. Mu

Fig. 3 The representative
point P on a segment of a
phase path in the left and a
closed path : P leaves A and
returns to A an infinite
number of times in the right

Fig. 4 The unique
equilibrium (0, 0) of system
(4) with (5) is a stable node,
where α = 1.75, ξ =
1, a = 1.6, b = 1: a wave
plot, b phase plane plot
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In the following, we will find how the system evolves
to a limit cycle, obviously the sgn(x) can expand into
the following Fourier series

sgn(x) = 4

π

∞∑

n=0

(−1)n

(2n + 1)
cos(2n + 1)x, (37)

Using the multiple-scale method and setting τ = t
which represents the fast time scale of oscillations and

T = εt which represents the slow amplitude drift, we
have

ẋ = ∂x

∂τ
+ ε

∂x

∂T
, (38)

and

ẍ = ∂2x

∂τ 2
+ 2ε

∂2x

∂τ∂T
+ ε2

∂2x

∂T 2 . (39)
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Fig. 5 The unique
equilibrium (0, 0) of system
(4) with (5) is an unstable
node and a stable periodic
solution occurs, where
α = 1.75, ξ = 1,
a = − 0.8, b = 1: a wave
plot, b phase plane plot
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Denote

xτ � ∂x

∂τ
, xT � ∂x

∂T
, xττ � ∂2x

∂τ 2
,

xT T � ∂2x

∂T 2 , xτT � ∂2x

∂τ∂T
. (40)

Let

x(t) = x0(τ, T ) + εx1(τ, T ) + O(ε2). (41)

Substituting Eqs. (38)–(41) into Eq. (35), we can easily
obtain the following leading order

x0ττ + x0 = 0, (42)

and the first order is

x1ττ + x1 = x0τ (a − bsgn(x)x0) − 2x0τT . (43)

The solution to Eq. (42) is

x0 = A(T )eiτ + A∗(T )e−iτ , (44)
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Fig. 6 The unique
equilibrium (0, 0) of system
(4) with (5) is a stable focus,
where
α = 1.75, ξ = 1, a = 1.2,
b = 1: a wave plot, b phase
plane plot

0 1 2 3 4 5 6 7 8 9 10

-0.15

-0.1

-0.05

0

0.05

0.1

t

x,
y

(a) Wave plot

x(t)

y(t)

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

x(t)

y(
t)

(b) Phase plane plot

and so, using Eqs. (37) and (44), Eq. (43) becomes

x1ττ + x1 = −2i AT e
iτ + 2i A∗

T e
−iτ + (i Aeiτ − i A∗e−iτ )

·
⎧
⎨

⎩
(a − b(Aeiτ + A∗e−iτ ))

2

π

⎛

⎝
∞∑

j=0

(−1) j

(2 j + 1)

[
ei(2 j+1)τ + e−i(2 j+1)τ

]
⎞

⎠

⎫
⎬

⎭

= −2i AT e
iτ + 2i A∗

T e
−iτ + iaAeiτ − iaA∗e−iτ

− 2b

π

⎧
⎨

⎩

⎛

⎝
∞∑

j=0

(−1) j

(2 j + 1)
i A2

[
ei(2 j+3)τ + ei(1−2 j)τ

]
⎞

⎠ −
⎛

⎝
∞∑

j=0

(−1) j

(2 j + 1)2
i A∗2 [ei(2 j−1)τ + e−i(2 j+3)τ

]
⎞

⎠

⎫
⎬

⎭

(45)

The secularity condition is

2AT = aA − 2b

π

(

A2 + A∗2

3

)

. (46)

Note that the substitution sgn(x) = 4
π
cos t has

omitted the final term in Eq. (46). In fact, it is nec-
essary to maintain terms up to and including j = 1 at
this order.
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Fig. 7 The unique
equilibrium (0, 0) of system
(4) with (5) is an unstable
focus and a stable periodic
solution occurs, where
α = 1.75, ξ = 1, a =
− 1.2, b = 1: a wave plot, b
phase plane plot

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

t

x,
y

(a) Wave plot

x(t)

y(t)

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x(t)

y(
t)

(b) Phase plane plot

Letting

A = 1

2
β(T )eiθ(T ), (47)

and substituting (47) into Eq. (46), it is straightforward
to show that θ(T ) is identically zero and that

2
dβ(T )

dT
= aβ(T ) − 4b

3π
β2(T ). (48)

If β0 is the initial values of β and by dependence of
solutions of differential equations on initial values, then
the solution for Eq. (48) is

β(T ) = 3πaβ0

4bβ0 − (4bβ0 − 3πa)e− aT
2

. (49)

Hence, for a > 0, b > 0, β(T ) → 3πa
4b as T → ∞. It

has been shown that the limit cycle of a discontinuous
version of the memristor-based circuit can be solved
for small ε. The Fourier series expansion of sgn(x) is

needed, but only two terms are required to successfully
analyze the system to first order.

For large ε, derive t = εt ′, set δ = 1/ε2 and drop
the primes. Then, Eq. (35) becomes

δ ẍ(t) + (−a + b |x |)ẋ(t) + x(t) = 0. (50)

By using the Lienard transformation [26], we have

{
ẏ = −x,
δ ẋ = y − F(x),

(51)

where F(x) is given byEq. (36). Hence, for large ε (i.e.,
small δ), one can see that y → F(x). In the following,
we will compute the transit time S of a closed phase
path (limit cycle).

In the phase planewith axes x and y, the state at time
t0 consists of the pair of values (x(t0), y(t0)). These val-
ues of x and y represented by a point P in the phase
plane serve as initial conditions for the first-order dif-
ferential equations (51), and therefore determine all the
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Fig. 8 The equilibrium (0,
0) of system (4) with (33) is
unstable and a periodic
solution occurs, where α =
1, ξ = 100, a = 10, b = 1:
a wave plot, b phase plane
plot
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states through which the system passes in a particular
motion (see Fig. 3). The succession of states given para-
metrically by

x = x(t), y = y(t),

traces out a curve through the initial point P: (x(t0),
y(t0)), called a phase path.

In the representation on the phase plane, the time t is
not involved quantitatively, but can be featured by the
following considerations. Figure 3 shows a segment
ÂB of a phase path. Suppose that the system is in a
state A at time t = tA. The moving point P represents
the states at times t ≥ tA; it moves steadily along ÂB
(from left to right in y > 0) as t increases, and is called
a representative point on ÂB.

The velocity of P along the curve ÂB is given in
component form by

(ẋ(t), ẏ(t)) =
(
1

δ
(y − F(x)),−x

)

,

[from (51)]: This depends only on its position P:
(x, y), and not at all on t and tA (this is true only for
autonomous equations). If tB is the time P reaches B,
the time SAB taken for P to move from A to B,

SAB = tB − tA,

is independent of the initial time tA. The quantity is
called the transit time from A to B along the phase
path.

The transit time SAB of the representative point P
from state A to state B along the phase path can be
expressed as
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Fig. 9 The equilibrium (0,
0) of system (51) with (36)
is unstable and a periodic
solution occurs, where
α = 10, ξ = 0.1, a =
0.1, b = 0.5: a wave plot, b
phase plane plot

t
50 51 52 53 54 55 56 57 58 59 60

x,
y

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Wave plot

y(t)

x(t)

x(t)
0-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6

y(
t)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
(b) Phase plane plot

SAB =
∫ tB

tA
dt =

∫ tB

tA

(
dy

dt

)−1 (dy

dt

)

dt =
∫ tB

tA

dy

ẏ
.

We consider the case when a phase path is a closed
curve. Hence, the time which is derived to complete a
limit cycle in this limit is given by

S =
∮

dt =
∫

dy

ẏ
. (52)

The response in this limit is made up of a fast phase
(which is derived to be negligible) and a slow phase.
The function F(x) has extreme values of ± a2

2b at x =
∓ a

b , respectively. The slow phase starts at (x, F(x)) =
( ab (1 + √

2), a2
b ) and ends at the minimum of F(x)

given by ( ab , − a2
2b ). The slow phase starts again at

(x, F(x)) = (− a
b (1+√

2), − a2
b ) and ends again at the

maximum of F(x) given by (x, F(x)) = (− a
b , a2

2b ).
Hence, Eq. (52) becomes

S = 2
∫

F ′(x)
−x

dx = 2
∫ a

b

a
b (1+√

2)

(
−b + a

x

)
dx

= 2 [−bx + a ln x]|
a
b
a
b (1+√

2)
= 2a[√2 − ln(1 + √

2)].

The period of the limit cycle of Eq. (35) for large
ε is therefore given by (2a[√2 − ln(1 + √

2)])ε ≈
1.0657aε.

5 Numerical examples

In this section, first we consider Eq. (4) with (5) and
set α = 1.75, ξ = 1 and for different a, b, computer
simulations may see Figs. 4, 5, 6 and 7. By the previous
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analysis, we know that the unique equilibrium (0, 0) is a
node if a < −2/d or a > 2/d, and it is stable for a > 0
(see Fig. 4) and it is unstable for a < 0 (see Fig. 5).
If we derive α = 1.75, ξ = 1, a = −0.8, b = 1,
based on the analytical results in the above section 3,
we can calculate d = 1.3229, h1 = 0.6614, h2 =
−0.5292, ω1 = 0.75, ω2 = 0.8485 [see Eq. (14)],
and furthermore, we can obtain τ 1 = 5.0291, τ 2 =
5.6896 [see Eq. (32)]. Hence, the analytical value of
the approximate period is T = 10.137, but its numer-
ical value based on the computer simulation is 10.139
(see Fig. 5,wherewe useOED45 inMATLAB to calcu-
late, which usually is the function of choice among the
ODE solvers and compares method of orders four and
five to estimate error and determine step size). From
these numerical results, we have found there are some
errors between the analytical method and the numerical
method. This is because on the one hand, the proposed
method in this paper is a kind of approximately ana-
lytical method, and on the other hand, our numerical
simulationmethod is use ofOED45 inMATLABwhich
is based on the Runge–Kutta(4,5) integration method.
From Figs. 6 and 7, the unique equilibrium (0, 0) is
a focus if −2/d < a < 2/d, it is a stable focus for
a > 0 and it is an unstable focus for a < 0 (see Figs. 6,
7). If we derive α = 1.75, ξ = 1, a = − 1.2, b = 1,
we can calculate the analytical value of the approxi-
mate period is 10.444, but its numerical value based on
the on computer simulation is 10.447 (see Fig. 7). The
results of theoretical analysis and computer simulations
are basically coincident.

Next, we reconsider Eq. (4) with (33) and let α =
1, ξ = 100, a = 10, b = 1, we can calculate the ana-
lytical value of the approximate amplitude is 23.562,
but its numerical value based on the computer simula-
tion (see Fig. 8) is 23.567. If we derive α = 10, ξ =
0.1, a = 0.1, b = 0.5, we have ε = 10, the analyti-
cal value of the approximate period is 1.0667, and its
numerical value is 1.0669 (see Fig. 9). These also illus-
trate the correctness of our theoretical analysis.

The above results show that the analytical results are
relatively accurate; this is because system parameters
have a wide range of parameter space, but the numeri-
cal solutions for corresponding circuitmodelmust have
specific and fixed values of system parameters. Fur-
thermore, more detailed studies across specific param-
eters are carried out using numerical approach alone;
however, the focus of our work is obtaining tractable
analytics for a nonlinear system rather than investigat-

ing numerical solutions. These analytical results pro-
vide a direct connection between system parameters
and a memristor-based circuit model. By showing how
period and amplitude scale with system parameters,
these results help explain results observed in numeri-
cal simulations.

6 Conclusions

It has been shown that a simple circuit with an inductor,
a capacitor and a flux-controlled memristor can exhibit
self-sustained oscillation; in particular, the flux–charge
characteristic curves with continuous piecewise-linear
or discontinuous function are applied.

For the analysis of continuous piecewise-linear sys-
tems, the point transformation method of Andronov
has been a useful tool. The geometric intuition of the
method is very clear and helps to the topological anal-
ysis of the dynamical system. The method does not
require the use of more complex tools. At the same
time, the multiple-scale method has also been a use-
ful approach for the analysis of discontinuous systems.
In our analysis, the Fourier series expansion of sign
function is applied, but only two terms are needed to
successfully analyze the system to first order.

Continuous piecewise-linear or discontinuous mod-
els can be considered as the combination of several
different linear systems, and each one describes the
dynamics in a part of the phase space. Within every
section of the phase space, the dynamics are very sim-
ple but the global dynamics can be very complex and
even chaotic [23].

In this paper, our main contribution is that the period
and amplitude of a limit cycle are derived analytically.
To the best of the authors’ knowledge,wedonot find the
existing literature on memristor to analytically study
the approximate periodic solution. We have presented,
to our knowledge, the first analytical expressions for
the period and amplitude of a memristor-based cir-
cuit. These compact expressions are in good agree-
ment with numerical solutions of corresponding cir-
cuit. The formulas are shown to be useful by permit-
ting quick comparisons relative to a simple memristor-
based oscillator. As presented in this paper, the second-
order piecewise-linear systems can be combined as
higher-order systems to construct chaotic oscillators,
which will be our future works.
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