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Abstract In this paper, we apply the ansatz method
to the multi-linear form of the (2+1)-dimensional
Date–Jimbo–Kashiwara–Miwa equation for construct-
ing interaction solutions. By taking the ansatz as the
quadratic function or the linear combination of the
quadratic function and the exponential one, explicit
rational and rational-exponential solutions are derived.
It is shown that these exact solutions describe the lump,
the lump–stripe soliton interaction with fission and
fusion phenomena, and a rogue wave excited from the
stripe soliton pair, respectively.

Keywords Lump solution · Interaction solution ·
Rouge wave · Multi-linear form · Date–Jimbo–
Kashiwara–Miwa equation

1 Introduction

In nonlinear science, soliton is a type of classical non-
linear wave which arises as a result of balance between
nonlinearity and dispersion effects and it exhibits a
kind of local state in certain direction. Taking the long
wave limit of the soliton solution gives rise to a class
of rational solutions which describe the lump local-
ized in all directions in the space [1–3]. In particular,
rational solutions are able to depict the rouge wave
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which additionally possesses the locality of the time
[4]. Recently, a lot of lump solutions have been con-
structed via the direct Hirota bilinear method [5–10],
in which the auxiliary function in the bilinear form is
taken as the ansatz with the quadratic function. Soon
later, by taking the auxiliary function as the linear com-
bination of the quadratic function and the exponen-
tial one, it is found that such method can be used to
derive the mixed solutions which indicate the lump
interacting with the single stripe soliton, the stripe soli-
ton pair and so on [11–21]. Starting from the bilinear
form, this direct ansatzmethod is effective. However, is
this method still valid for the multi-linear form? To the
best of our knowledge, there are no relevant literatures
applying this kind of method to the multi-linear form
of a given nonlinear equation. In this article, we shall
take a (2+1)-dimensional nonlinear integrable equa-
tion as an example to show that the above rational and
rational-exponential solutions can be derived from the
multi-linear form.

As an integrable extension of the Kadomtsev–
Petviashvili (KP) hierarchy, the (2+1)-dimensional
Date–Jimbo–Kashiwara–Miwa (DJKM) equation has
been proposed [22,23]

uxxxxy + 4uxxyux + 2uxxxuy + 6uxyuxx − αuyyy

−2βuxxt = 0, (1)

where α and β are constants. By considering the bal-
ance between nonlinearity and dispersion, we take the
dependent variable transformation with the rational
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form

u = 2(ln f )x = 2
fx
f

. (2)

which leads Eq. (1) to the multi-linear form

Dx [(D3
x Dy − 3βDx Dt ) f · f ] · f 2

+ 1

2
Dy[(D4

x − 3αD2
y) f · f ] · f 2 = 0. (3)

Here the Hirota’s bilinear operators Dx ,Dy and Dt are
defined as [24]

Dn
x D

m
y D

l
t (a · b) =

(
∂

∂x
− ∂

∂x ′

)n(
∂

∂y
− ∂

∂y′

)m

×
(

∂

∂t
− ∂

∂t ′

)l

a(x, y, t)b(x ′, y′, t ′)
∣∣∣∣
x=x ′,y=y′,t=t ′

.

By introducing an auxiliary independent variable z,
and imposing an extra constraint bilinear equation

(D4
x − 3αD2

y + aDx Dz) f · f = 0, (4)

the multi-linear form (3) can be converted to the fol-
lowing bilinear equation

(
D3
x Dy − 3βDx Dt − a

2
DyDz

)
f · f = 0, (5)

where a is a constant. Equations (4) and (5) are viewed
as the bilinear form of the DJKM Eq. (1), both of them
are found to be nothing but the first two members of
the KP hierarchy. Indeed, Eq. (4) corresponds to the
bilinear form of the well-known KP equation while
Eq. (5) gives the one of the (3+1)-dimensional Jimbo–
Miwa equation. To investigate the complete integrabil-
ity of soliton equations in the KP hierarchy, Dorizzi
et al. [25] have taken Eq. (5) in isolation and tested
its integrability by considering the Painlevé property,
the multi-soliton criterion and the structure of symme-
try group. They found that Eq. (5) is only integrable
in a conditional sense. However, if Eq. (4) is consid-
ered together with Eq. (5) in lower-dimensional case,
it was shown that the complete integrability conditions
are satisfied. Thus, the (2+1)-dimensional DJKM Eq.
(1) was established and studied [22,23,26,27]. Hu and
Li [23] have provided its bilinear Bäcklund transfor-
mation and proved corresponding nonlinear superpo-
sition formulae by using bilinear operator identities.
With the help of the Bell polynomial theory and the
Hirota bilinear method, Wang et al. [26] have derived

Lax pair, infinite conservation laws and multi-shock
wave solutions for the DJKM Eq. (1). Wronski and
Grammi determinant solutions for the DJKM Eq. (1)
have been constructed via the bilinear technique [27].
To our knowledge, the lump solution and the interac-
tion solution between the lump and the stripe soliton
for Eq. (1) have not been reported. Herewewill investi-
gate these solutions directly from the multi-linear form
of the DJKM equation.

The paper is organized as follows. In Sect. 2, we
derive the explicit lump solution of the DJKM equa-
tion and then analyze its local characteristics. Section 3
is devoted to finding the mixed solution between the
lump and one stripe soliton via a linear combination
of the quadratic function and the exponential one. The
interactions including fission and fusion processes for
two types of local waves are discussed in detail. In
Sect. 4, we construct the rational-exponential solution
consisting of the lump and the stripe soliton pair, then
the dynamical analysis shows that this mixed solution
exhibits a rogue wave excited from the stripe soliton
pair. Conclusions and discussions are given in Sect. 5.

2 Lump solution

To construct the lump solution for the DJKM Eq. (1),
we take the function f in the multi-linear form (3) as
the ansatz with the following quadratic function

f = g2 + h2 + a9, (6)

with

g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8,

where the real parameters ai (i = 1, 2, . . . , 9) will be
determined. Substituting (6) into the multi-linear form
(3) and vanishing the coefficients of the variables x, y
and t , we obtain a set of algebraic equations. Solving
these equations gives rise to the results as follows:

a3 = −α
[
2a1a5a6

(
3a22 − a26

) + a2
(
a22 − 3a26

) (
a21 − a25

)]
2β

(
a21 + a25

)2 ,

a7 = −α
[
2a1a2a5

(
3a26 − a22

) + a6
(
3a22 − a26

) (
a21 − a25

)]
2β

(
a21 + a25

)2 ,

a9 =
(
a21 + a25

)3
α (a1a6 − a2a5)2

. (7)
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Fig. 1 The lump (8) with
a1 = − 1

8 ,
a2 = a5 = a6 = α = β = 1
and a4 = a8 = 0: a the
three-dimensional plot at
t = 0 and b the contour
plots at different times

(a) (b)

To ensure that the function f is positive, analytical
and the solution u rationally localized in all directions
in the (x, y)-plane, one has to impose three constraint
conditions: α > 0, a21 + a25 �= 0 and a1a6 − a2a5 �= 0.
Then the solution of the DJKM Eq. (1) has the rational
form

u = 4(a1g + a5h)

g2 + h2 +
(
a21+a25

)3
α(a1a6−a2a5)2

, (8)

with

g = a1x + a2y

−α
[
2a1a5a6

(
3a22 − a26

) + a2
(
a22 − 3a26

) (
a21 − a25

)]
2β

(
a21+a25

)2 t+a4,

h = a5x + a6y

−α
[
2a1a2a5

(
3a26 − a22

) + a6
(
3a22 − a26

) (
a21 − a25

)]
2β

(
a21 + a25

)2 t+a8,

where a1, a2, a4, a5, a6 and a8 are arbitrary real con-
stants. At any fixed time t , when g2 + h2 → +∞,
equivalently x2+ y2 → +∞, the rational solution u in
(8) approaches to zero. Hence, the solution (8) depicts
a standard lump structure. Let the partial derivatives ux
and uy be zero, it is found that two critical points are at

A

(
a2a8 − a4a6 + (a2a7 − a3a6)t

a1a6 − a2a5

+ a21+a25√
α

,
a4a5−a1a8+(a3a5 − a1a7)t

a1a6 − a2a5

)
, (9)

and

B

(
a2a8 − a4a6 + (a2a7 − a3a6)t

a1a6 − a2a5

− a21 + a25√
α

,
a4a5 − a1a8 + (a3a5 − a1a7)t

a1a6 − a2a5

)
, (10)

which result in the maximum/minimum amplitudes

± 2
√

α(a1a6−a2a5)
a21+a25

, respectively. Thus the lump pos-

sesses one peak at the point A and one valley at the
point B, and the former’s height is equal to the latter’s
depth. From the extreme points, we know that the lump
moves along the route line

y = a3a5 − a1a7
a2a7 − a3a6

x + a3a8 − a4a7
a2a7 − a3a6

± a1a7 − a3a5√
α(a2a7 − a3a6)(a1a6 − a2a5)

, (11)

and with the velocities

Vx = a2a7 − a3a6
a1a6 − a2a5

, Vy = a3a5 − a1a7
a1a6 − a2a5

. (12)

Thismeans that the lump’s peak and valley are symmet-
ric with respect to the line y = a3a5−a1a7

a2a7−a3a6
x + a3a8−a4a7

a2a7−a3a6
.

Such a lump and its moving path are displayed in Fig.1.
Fig. 1a shows the lump’s three-dimensional shape at
time t = 0, and Fig. 1b displays the contour plots
at different times whose moving path obeys the route
line y = − 33

112 x . Besides, the illustrated lump moves
with themaximum/minimumamplitudes± 144

65 , and the
velocities (Vx = − 7168

4225 , Vy = 2112
4225 ).

3 Lump interacting with one stripe soliton

In this section, we will seek for the mixed solution
between the lumpandone stripe soliton, and further dis-
cuss their interaction property. Recall that one-soliton
solution for the DJKM Eq. (1) requires the function f
to be taken as 1 + ek1x+l1y+ω1t+ξ0 with the dispersion
relation for the coefficients k1, l1 and ω1. Therefore,
in order to obtain the mixed lump-soliton solution, we
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take the function f as the ansatz with the following
rational-exponential function

f = g2 + h2 + a9 + keξ , (13)

with

g = a1x + a2y + a3t + a4, h = a5x + a6y + a7t + a8,

ξ = k1x + k2y + k3t,

where the real parameters ai (i = 1, 2, . . . , 9), k and
ki (i = 1, 2, 3) will be determined. Similar to the case
of the lump solution, substituting (13) into the multi-
linear form (3) and vanishing the coefficients of the
exponential functions and the variables x, y and t , one
can get more algebraic equations. Solving these equa-
tions yields the following results:

a3 = −
α

[
2a1a5a6

(
3a22 − a26

)
+ a2

(
a22 − 3a26

) (
a21 − a25

)]

2β
(
a21 + a25

)2 ,

a7 = −
α

[
2a1a2a5

(
3a26 − a22

)
+ a6

(
3a22 − a26

) (
a21 − a25

)]

2β
(
a21 + a25

)2 ,

a9 =
(
a21 + a25

)3
α

(
a1a6 − a2a5

)2 , k1 =
√

α
(
a1a6 − a2a5

)
a21 + a25

,

k2 =
√

α
(
a1a6 − a2a5

) (
a1a2 + a5a6

)
(
a21 + a25

)2 ,

k3 =
α
√

α
(
a1a6−a2a5

) (
a1a2+a5a6

) [(
a1a2+a5a6

)2−(
a1a6−a2a5

)2]

2β
(
a21+a25

)4 .

(14)

The constraint conditions: α > 0, a21 + a25 �= 0,
a1a6 − a2a5 �= 0 and k > 0 need to be satisfied for
those arbitrary constants to guarantee a well-defined
function f . In this situation, the solution of the DJKM
Eq. (1) is given by the rational-exponential form

u =
4a1g + 4a5h + 2

√
αk(a1a6−a2a5)

a21+a25
eξ

g2 + h2 + (a21+a25 )
3

α(a1a6−a2a5)2
+ keξ

, (15)

with

(a) (b) (c)

Fig. 2 The three-dimensional plots of the rational-exponential solution (15) with a1 = − 1
8 , −a2 = a5 = a6 = α = 1, k = −β = 1

10
and a4 = a8 = 0: a t = − 0.8; b t = 0 and c t = 2.5

(a) (b) (c)

Fig. 3 The contour plots of the rational-exponential solution (15) with a1 = − 1
8 , −a2 = a5 = a6 = α = 1, k = −β = 1

10 and
a4 = a8 = 0: a t = −0.8; b t = 0 and c t = 2.5
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(a) (b) (c)

Fig. 4 The three-dimensional plots of the rational-exponential solution (15) with a1 = 1
8 , a2 = a5 = a6 = α = 1, k = −β = 1

10 and
a4 = a8 = 0: a t = −2.5; b t = 0 and c t = 0.8

(a) (b) (c)

Fig. 5 The contour plots of the rational-exponential solution (15) with a1 = 1
8 , a2 = a5 = a6 = α = 1, k = −β = 1

10 and
a4 = a8 = 0: a t = −2.5; b t = 0 and c t = 0.8

g = a1x + a2y

− α
[
2a1a5a6

(
3a22 − a26

) + a2
(
a22 − 3a26

) (
a21 − a25

)]
2β

(
a21 + a25

)2 t + a4,

h = a5x + a6y

− α
[
2a1a2a5

(
3a26 − a22

) + a6
(
3a22 − a26

) (
a21 − a25

)]
2β

(
a21 + a25

)2 t + a8,

ξ =
√

α (a1a6 − a2a5)

a21 + a25

{
x + (a1a2 + a5a6)(

a21 + a25
) y

+ α (a1a2 + a5a6)
[
(a1a2 + a5a6)2 − (a1a6 − a2a5)2

]
2β

(
a21 + a25

)3 t

}
,

where a1, a2, a4, a5, a6, a8 and k are arbitrary real con-
stants.

It is known that the stripe soliton solution is
expressed by the exponential function, which exhibits
the exponentially localized behavior in certain direc-
tion. In contrast to a stripe soliton solution, a lump
solution is a type of rational function solution which is
localized in all directions in the space. Thus, the explicit

solution (15) describes the interaction between the
lump and one stripe soliton. The propagation process
contains two kinds of phenomena: fission and fusion.
To interpret the propagating properties, we analyze the
solution (15) with respect to the time t directly. Specif-
ically, assuming x and y are constants and k3 > 0, it is
found that the exponential function eξ is the dominant

term and u →
√

α(a1a6−a2a5)
a21+a25

when t > 0, while the

rational function g2+h2+a9 is the dominant term and

u → 2a1g+2a5h

g2+h2+ (a21+a25 )3

α(a1a6−a2a5)2

when t < 0, which means

that the rational lump appears. The whole evolution is
the fission process. On the contrary, k3 < 0 leads to the
fusion process. As shown in Figs. 2 and 3, one stripe
wave and one lump fuse into one stripe wave grad-
ually, which represents the fusion process. Figures 4
and 5 exhibit the fission process that one stripe wave
splits into one stripe wave and one lump conversely.
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4 Rogue wave excited from the stripe soliton pair

Following the idea of constructing the interaction solu-
tion between the lump and one stripe soliton, we may
seek for such kind of the solution which contains the
lump and a pair of stripe solitons. To this aim, we add
a different exponential function to the ansatz (13) and
it becomes the following form

f = g2 + h2 + a9 + keξ + le−ξ , (16)

with

g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8,

ξ = k1x + k2y + k3t,

where the real parameters ai (i = 1, 2, . . . , 9), k, l and
ki (i = 1, 2, 3) will be determined. Similarly, after the
substitution of the function (16) into the multi-linear
form (3), vanishing the coefficients of the exponential
functions and the variables x, y and t yields a set of
algebraic equations. By solving these equations, we
obtain the results as follows:

a3 = −α
[
2a1a5a6

(
3a22 − a26

) + a2
(
a22 − 3a26

) (
a21 − a25

)]
2β

(
a21 + a25

)2 ,

a7 = −α
[
2a1a2a5

(
3a26 − a22

) + a6
(
3a22 − a26

) (
a21 − a25

)]
2β

(
a21 + a25

)2 ,

a9 =
(
a21 + a25

)3
α (a1a6 − a2a5)2

+ αkl (a1a6 − a2a5)2(
a21 + a25

)3 ,

k2 =
√

α (a1a6 − a2a5) (a1a2 + a5a6)(
a21 + a25

)2 ,

k1 =
√

α (a1a6 − a2a5)

a21 + a25
,

k3 = α
√

α (a1a6−a2a5) (a1a2+a5a6)
[
(a1a2+a5a6)2−(a1a6−a2a5)2

]
2β

(
a21+a25

)4 .

(17)

To guarantee the well-defined function f and the
appearance of the stripe soliton pair, the constraint con-
ditions: α > 0, a21 + a25 �= 0, a1a6 − a2a5 �= 0, k > 0
and l > 0 need to be imposed. In this case, the rational-
exponential solution of the DJKM Eq. (1) reads

u =
4a1g + 4a5h + 2

√
α(a1a6−a2a5)
a21+a25

(keξ − le−ξ )

g2 + h2 + (a21+a25 )3

α(a1a6−a2a5)2
+ αkl(a1a6−a2a5)2(

a21+a25
)3 + keξ + le−ξ

,

(18)

with

(a) (b) (c)

(d) (e)

Fig. 6 The three-dimensional plots of the rational-exponential solution (18) with a1 = 1
10 , a2 = a5 = 2, a4 = a6 = α = 1, k = l = 1

20 ,
β = 1

10 and a8 = 0: a t = −5; b t = −1; c t = 0; c t = 1 and d t = 5
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Fig. 7 The contour plots of the rational-exponential solution (18) with a1 = 1
10 , a2 = a5 = 2, a4 = a6 = α = 1, k = l = 1

20 , β = 1
10

and a8 = 0: a t = −5; b t = −1; c t = 0; d t = 1 and e t = 5

g = a1x + a2y

− α
[
2a1a5a6(3a22 − a26) + a2(a22 − 3a26)(a

2
1 − a25)

]
2β(a21 + a25)

2
t

+ a4,

h = a5x + a6y

− α
[
2a1a2a5(3a26 − a22) + a6(3a22 − a26)(a

2
1 − a25)

]
2β(a21 + a25)

2
t

+ a8,

ξ =
√

α(a1a6 − a2a5)

a21 + a25

{
x + (a1a2 + a5a6)

(a21 + a25)
y

+ α(a1a2 + a5a6)
[
(a1a2 + a5a6)2 − (a1a6 − a2a5)2

]
2β(a21 + a25)

3
t

}
,

where a1, a2, a4, a5, a6, a8, k and l are arbitrary real
constants. For the solution (18), we present the simple
asymptotic analysis to show that how a rogue wave
arises from the stripe soliton pair. By taking x and y as
constants, it can be found that

lim
t→±∞

g2

h2

=
[
2a1a5a6

(
3a22 − a26

) + a2
(
a22 − 3a26

) (
a21 − a25

)]2
[
2a1a2a5

(
3a26 − a22

) + a6
(
3a22 − a26

) (
a21 − a25

)]2 , (19)

lim
t→±∞

g2

keξ + le−ξ
= 0,

lim
t→±∞

h2

keξ + le−ξ
= 0, (k, l > 0), (20)

which implies that as t tends to infinity, only the reso-
nant stripe soliton pair appears, but as t arrives at the
intermediate time t = 0, the rational lump emerges and
attains its maximum/minimum amplitudes. This kind
of the mixed solution is illustrated in Figs. 6 and 7 with
three-dimensional and contour plots. The whole evolu-
tion process of the lump accords with the character of
a rogue wave, hence the rational-exponential solution
(18) describes the rogue wave excited from the stripe
soliton pair.

5 Conclusions and discussions

In conclusion, we derive explicit rational and rational-
exponential solutions of the (2+1)-dimensional DJKM
equation by using the direct ansatz method. The ansatz
form for the auxiliary function in the multi-linear
form is taken as the quadratic function, and the differ-
ent linear combinations of the quadratic function and
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1240 F. Guo, J. Lin

exponential one, respectively. The dynamical analysis
shows that the exact rational solution depicts the lump
structure. The rational-exponential solutions are clas-
sified to two cases: (i) The first one describes the inter-
action between the lump and one stripe soliton, which
includes fission and fusion phenomena. (ii) The sec-
ond one contains the lump and the stripe soliton pair,
in which the interaction process exhibits a rogue wave
excited from the stripe soliton pair. Local and interac-
tion properties for these nonlinear waves are discussed
in detail.

It is worth mentioning that all our derivations start
from the multi-linear form rather than the bilinear form
of the objective nonlinear equation. This suggests that
the direct ansatz method is also valid for the general
multi-linear form. For some nonlinear equations, their
bilinear forms are difficult to be derived but their multi-
linear forms can be given from the truncated Painlevé
expansion. Therefore, one can start directly from the
multi-linear form of the nonlinear equation to seek for
rational and rational-exponential solutions. Besides, if
we change the functions in the ansatz into other types
of functions, or consider their different linear combina-
tions, one can obtain more different types of solutions.
These solutions may be used to describe the interac-
tion among different local waves. In addition, the lump
solution and the interaction solution between the lump
and the stripe soliton are provided in explicit and ana-
lytical forms. The potential applications of these mixed
solutions in other nonlinear fields deserve further study.
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