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Abstract This paper focuses on the design and imple-
mentation of optimization-based predictive control for
the problem of missile interception. Due to the inher-
ent nonlinearities of the missile–target dynamics or
even constraints, it is usually difficult to design a high-
accuracy and high-efficiency control algorithm. A non-
linear receding horizon pseudospectral control (RHPC)
scheme is constructed and applied to generate the opti-
mal control command. The problem of state estima-
tion, in the presence of measurement noise, is solved
by implementing a moving horizon estimation (MHE)
algorithm. Since the RHPC andMHE algorithms solve
the online open-loop optimal control problem at each
sampling instant, the computational cost associated
with them can be high. In order to decrease the com-
putational demand due to the optimization process, a
recently proposed nonlinear programming sensitivity-
based algorithm is used and embedded in the optimiza-
tion framework. Numerical simulations and analysis
are presented to demonstrate the effectiveness of the
proposed control scheme.
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1 Introduction

The design of nonlinear missile interception guidance
and control algorithm is among the most important
and difficult components of modern missile missions.
This type of problem has been widely studied during
the past decades [1–5]. However, it is still difficult to
design an optimal or near-optimal control strategy [6–
8]. The main theoretical and practical challenges rais-
ing in these problems are the inherent nonlinearities of
the missile–target dynamics, uncertainties in the aero-
dynamic model, target maneuver capability, measure-
ment noises and variable/mission constraints.

To enhance the performance of interception, vari-
ous robust control algorithms have been investigated
[10,11]. For example, Zhu et al. [10] applied a mod-
ified sliding-mode control to generate the guidance
law, wherein the target acceleration was handled by
the extended state observer. Similarly, in [11], consid-
ering the model uncertainties and target movement, a
stochastic optimal guidance lawwas designed based on
the Markov chain approximation technique. However,
the reported works do not address the inside constraints
such as the state and control limits or the velocity incre-
ment. In practical missile systems, these requirements
should be considered in the controller designs.

The problem addressed in this research is a reced-
ing horizon pseudospectral control (RHPC) design for
the integrated missile interception guidance and con-
trol problems. Traditionally, missile guidance and con-
trol systems are designed separately as two loops [2,4].
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That is, an inner loop autopilot is constructed in order
to track the acceleration command generated by the
outer loop guidance algorithm. However, such a design
usually leads to large design iterations and does not
fully exploit the relationships between different sub-
systems, thereby resulting in suboptimal performance
[12]. In recent years, there has been a growing interest
in the design of integrated guidance law and flight con-
trol system. For instance, in [9] the authors proposed
an integrated sliding-mode controller for the guidance
and control of interceptors. Besides, Panchal et al. [12]
proposed a continuous-time predictive control-based
integrated guidance and control algorithm to fulfill the
2-D missile–target interception mission. It was shown
in these investigations that the end-game performance
of the interceptor can be effectively enhanced by tak-
ing into account the coupling between the guidance
and control dynamics. This is mainly because in a
dual-control structure, additional degrees of freedom
and more missile state information can be used. Due
to these advantages, the integrated design of the mis-
sile guidance and control system, referred as integrated
guidance and control (IGC) [13], is considered in this
investigation.

The missile–target IGC algorithm designed in this
work is mainly based on the implementation of model
predictive control (MPC). The motivation of the use of
receding horizon control (RHC) or MPC relies on its
ability to deal with control and state constraints that
naturally arise in practical applications [14,15]. Con-
tributions made to apply MPC can be found in the lit-
erature [16–19]. For example, Li et al. [16] proposed a
neural network-based robust MPC algorithm to gener-
ate the optimal missile guidance law. Zhao et al. [17]
designed an MPC-based algorithm in order to generate
the multi-missile guidance law.Weiss et al. [18] imple-
mented an MPC algorithm to solve the spacecraft ren-
dezvous and docking problems. Wen et al. [19] devel-
oped a specific MPC scheme with output feedback for
a deorbiting electrodynamic tether system. Recently,
control algorithms based on pseudospectral methods
have become popular to offer a promising alternative to
MPC [15,20,21]. Pseudospectral methods can be used
to solve optimal control problems under constraints
using a specific discretization of the solution [23–25].
The main advantage with pseudospectral methods is
that a high approximation accuracy can be achieved
withmuch less temporal nodes,whichmeans the size of
the resulting static NLP problem can be decreased sig-

nificantly. Therefore, the application of pseudospectral
methods in MPC schemes can have positive influences
in terms of improving the real-time computational per-
formance.

One of the key components of the RHC schemes is
the optimization process [16,25–27]. Since the RHPC
algorithm solves an open-loop optimal control prob-
lem at each sampling instant, the effectiveness and effi-
ciency are largely affected by the optimization pro-
cedure employed. In order to meet the high real-
time requirements of the RHPC scheme constructed in
Sect. 3, a recently proposedNLP sensitivity-based opti-
mization technique [28] is applied and embedded in the
RHPC framework. This algorithm applies the implicit
function theory, where the optimal solution is found
around a continuously updated reference solution. A
detailed description of this near-optimal gradient-based
method can be found in [28,29]. By applying this tech-
nique, the complicated solution finding can be avoided
by approximating the optimal solution inexactly. This
indicates that the online computational performance of
the proposed RHPC method can be improved.

The main contributions of the work reported in this
paper are twofold. Firstly, prior to performing theMPC-
based IGC algorithm, the presence of noise in the mea-
surement of the model state is decreased by imple-
menting an MHE technique. Secondly, different from
the work carried out in [16], the online MHE+MPC
optimization model is solved using a pseudospectral
method so as to improve the solution finding accuracy.
Moreover, the computational performance of the opti-
mization process is enhanced by analyzing the NLP
sensitivity of the solutions at two consecutive update
time instants. It is worth noting that currently there are
many effective state estimation methods available in
the literature. For example, the use of extendedKalman
filter (EKF) and particle filter (PF) is two well-known
state estimation strategies. The EKF is one of the most
widely applied state estimate approaches for nonlinear
process control due to its strong generality. To apply
the EKF, the nonlinear system equation will be lin-
earized such that the classical KF becomes applicable.
Onemain challenge of using EKF is that in some appli-
cations, the calculation of the Jacobian might become
nontrivial. Besides, it requires the system nonlinear-
ity to be mild such that the linearization of the system
equation will not result in large divergence or approx-
imation error. On the other hand, the PF applies a set
of samples/particles in order to approximate the poste-
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rior density function. Compared with the EKF, it does
not require to compute the Jacobian and needs less
computational power. Moreover, if the size of the par-
ticle set goes to infinity, the PF can achieve asymp-
totically optimal estimation performance. However, a
major disadvantage of the PF is that it usually suffers
from the phenomena of degeneracy, and it tends to be
sensitive with respect to the initial guess value. The
MHE approach deals with the state estimation by for-
mulating an optimization model defined over a finite
moving horizon. This technique has the capability in
handling nonlinear system dynamics as well as vari-
able constraints. Furthermore, by applying the MHE
state estimator, the assumption of specific error dis-
tribution is no longer necessary. Although solving an
optimization model online may result in a high compu-
tational burden, the implementation of the sensitivity-
based optimization method can effectively deal with
this issue, thus making the MHE a potentially useful
alternative for the considered missile–target intercept
problem.

The rest of this paper is organized as follows. The
overall interception strategy and the nonlinear dynam-
ics of the three-dimensional missile–target system are
provided in Sect. 2. The main results are provided in
Sect. 3, where a moving horizon state estimation is
combined with a RHPC scheme to achieve the inter-
ception in the presence ofmeasurement noises. Numer-
ical simulations are provided in Sect. 4 to illustrate the
effectiveness of the proposed IGC strategies. The con-
cluding remarks are given in Sect. 5.

2 Missile–target nonlinear model

2.1 2-D missile–target engagement

Let us consider a standard 2-Dgeometry of planar inter-
ception scenario illustrated in Fig. 1. The correspond-
ing nonlinear kinematics are given by [2,4,10]:

ṙ = VT cos (θ − ϕT ) − VM cos (θ − ϕM )

θ̇ = (−VT sin (θ − ϕT ) + VM sin (θ − ϕM ))/r

ϕ̇M = AM

VM

ϕ̇T = AT

VT
(1)

where r is the range along the line of sight (LOS). VT
and AT are target velocity and acceleration, respec-

Fig. 1 Missile–target engagement geometry

tively. Correspondingly, VM and AM represent themis-
sile velocity and acceleration. θ stands for the LOS
angle. ϕM and ϕT are the flight path angle of the mis-
sile and target.

Then, by considering the normal acceleration as
the control input, the following state-space model of
missile–target engagement formulation can be con-
structed [4,10]:

ṙ = Vr

V̇r = V 2
θ

r
+ ATr − AM sin (θ − ϕM )

θ̇ = Vθ

r

V̇θ = −VrVθ

r
+ AT θ − AM cos (θ − ϕM ) (2)

where Vr = VT cos (θ − ϕT ) − VM cos (θ − ϕM ),
Vθ = −VT sin (θ − ϕT )+VM sin (θ −ϕM ). Vθ can be
treated as a transversal component of relative veloc-
ity rotating with the LOS. ATr = AT sin (θ − ϕT )

and AT θ = AT cos (θ − ϕT ). ATr and AT θ can be
described as the projection components of the target
acceleration.

During the engagement, the target maneuver is con-
sidered to be given by the first-order lag dynamics given
by:

ȦT = (Ac
T − AT )/τT (3)

where Ac
T is the commanded target acceleration, while

τT is the time constant associated with the target
dynamics. Subsequently, the pitch plane dynamics for
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the missile should be constructed so as to describe the
missile attitude related to the inertial frame. That is,

α̇ = q − (Lβ
α f1(α) + Lδ f2(α + δ))/VM

q̇ = Mβ
α f3(α) + Mδ f4(α + δ) + Mqq

δ̇ = (δc − δ)/τs

(4)

where α denotes the angle of attack; q stands for the
pitch rate; δ and δc are, respectively, the actual and
demanded deflection angles. Similar to Eq. (3), δ is
established by the first-order dynamics with the time
constant τs . L

β
α , Lδ , M

β
α , Mδ and Mq are the aero-

dynamic forces and pitch moments acting on the mis-
sile, respectively. fi , i = 1, 2, 3, 4, are saturation func-
tions denoting the nonlinear aerodynamic characteris-
tics of the missile. Based on the engagement equations
and pitch plane dynamics, the integrated model is then
established. Let us rewrite the dynamic equations by
defining the state variable in a more compact form
(e.g., x = [r, Vr , θ, Vθ , AT , α, q, δ]T = [x1, x2, x3,
x4, x5, x6, x7, x8]T ). Then Eqs. (2)–(4) in the state
space can be given by:

ẋ = f (x(t), u(t), t) (5)

where f ∈ �8 is the right-hand side of the dynamic
Eqs. (2)–(4). u = δc is the control input.

In this study, we aim at the integrated guidance and
control law design in the presence of model uncertain-
ties and noise measurements of the state model. The
objective is to design an optimization-based predictive
controller such that the state variables (given byEq. (2))
can be stabilized to the origin.

2.2 3-D missile–target engagement

The mission scenario can be easily extended to a 3-D
case. To better illustrate the 3-D engagement system,
equations of motion for the missile and target are con-
structed separately as follows:

Missile:
⎧
⎨

⎩

ẊM = VM sin ϕMa cosϕMe

ẎM = VM cosϕMa sin ϕMe

ŻM = VM sin ϕMe

Target:
⎧
⎨

⎩

ẊT = VT sin ϕTa cosϕT e

ẎT = VT cosϕTa sin ϕT e

ŻT = VT sin ϕT e

(6)

where ϕMa , ϕTa , ϕMe and ϕT e are azimuth and eleva-
tion angles of themissile and target, respectively. Based
onEq. (6), the 3-D dynamicmodel of themissile–target
engagement system is constructed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = VT cos(θy − ϕT e) cos(θz − ϕTa)

−VM cos(θy − ϕMe) cos(θz − ϕMa)

θ̇z = (VT sin(θz − ϕTa) − VM sin(θz
−ϕMa))/r

θ̇y = (VT cos(θz − ϕTa) sin(θy − ϕT e)

−VM cos(θz − ϕMa) sin(θy
−ϕMe))/r cos θz

ϕ̇Ta = AT y/VT
ϕ̇T e = AT z/VT
ϕ̇Ma = AMy/VM

ϕ̇Me = AMz/VM

(7)

where θy and θz are the LOS angles. Eq. (7) can be
analogized using the 2-D engagement system given by
Eq. (1). The target acceleration is again modeled as:
ȦT y = (Ac

T y − AT y)/τT and ȦT z = (Ac
T z − AT z)/τT ,

where AT y and AT z stand for the yaw and pitch lat-
eral accelerations. A detailed description of the 3-D
case missile–target interception geometry is depicted
in Fig. 2.

Remark 1 It is worth remarking that in some rela-
tive references and the missile–target dynamic model
used in this paper, the effect of gravity was omitted to
simplify the engagement formulation. For the design
of guidance and control command, the gravitational
effects can be taken into account by simply subtracting
the gravity from the acceleration command. This strat-
egy considers the gravity implicitly, and it might result
in some deviations from the real system. Future works
should be carried out in order to explicitly incorporate
gravity compensation into the missile–target engage-
ment system such that the effect of gravity can be opti-
mally compensated.

3 Receding horizon pseudospectral control

3.1 Discrete approximation model

For the numerical solutions of the RHPC problems, the
multi-interval Legendre–Gauss–Radau (LGR) pseu-
dospectral method is applied to parameterize the
continuous-time equations of state dynamics given by
Eq. (5) [20,23–25]. The motivation of the use of pseu-
dospectral algorithm relies on its high accuracy in
function approximation. A detailed introduction with
respect to the different classes of pseudospectral meth-
ods can be found in [23]. The time horizon is divided
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Fig. 2 3-D missile–target engagement geometry

into Ñ mesh intervals [ti , ti+1] for i = 1, . . . , Ñ .
The mesh grid points are equally spaced and the �

is assumed to be the length of the mesh interval. By
using the Lagrange interpolation, the state and control
variables are discretized over the i th time interval as:

x (i)(t) ≈ X (i)(t) =
Nk+1∑

j=1

x (i)
j L(i)

j (t) = 	(i)x (i) (8)

u(i)(t) ≈ U (i)(t) =
Nk∑

j=1

u(i)
j L(i)

j (t) = 	(i)u(i) (9)

where j = 1, 2, . . . , Nk , Nk is the number of LGR
collocation points. t j ∈ [ti , ti+1] can be obtained by
solving PK−1(t) + PK (t) = 0, where PK is the K th-
order Legendre polynomial. a(·) is a positive weight
function. 	(i) = [L(i)

1 , L(i)
2 , . . . , L(i)

Nk
] where L(i)

j is
the Lagrange interpolation basis function.

One advantage of using pseudospectral approxima-
tion is that the derivative of the state equations (e.g.,
ẋ(t) = f (x(t), u(t), t)) can be obtained by differenti-
ating the approximation function:

ẋ (i)(t) = dx (i)(t)
dt ≈ dx (i)(t)

dt

=
Nk+1∑

j=1

d
dt (

a(t)
a(t j )

L(i)
j (t))x (i)

j

(10)

Note that the term d
dt (

a(t)
a(t j )

L j (t)) can be obtained at
collocation points and it can be compacted into a dif-
ferentiation matrix. That is,

Djk = d

dt
(
a(t)

a(t j )
L(i)
j (t)) |t=t j (11)

Fig. 3 Approximation comparison of an open-loop optimal con-
trol problem

where Djk denotes the elements of the Nk × (Nk +
1) differentiation matrix and can be calculated by the
following equation:

Djk =

⎧
⎪⎪⎨

⎪⎪⎩

−Nk (Nk+2)
4 , k = j = 0;

LNk (t j )
LNk (tk )

1
t j−tk

, k �= j, 1 ≤ k, j ≤ Nk ;
−1

2(1−t j )
, 1 ≤ k = j ≤ Nk

(12)

In order to clearly show the approximation accuracy
of the Legendre–Gauss–Radau pseudospectral method
(LGRPM), Fig. 3 shows a comparison between the
approximations of an open-loop optimal control solu-
tions using LGRPM and zero-order hold (ZOH) func-
tions (commonly used in theMPC framework [16,18]).

This example can also be understood as a conver-
gence analysis of open-loop solution to the exact solu-
tion and the problem formulation associated with it is
defined as follows:

minimize J = 1
2

∫ 1

0
[u(t)2 + x(t)u(t) + 1.25x(t)2]dt

subject to ẋ(t) = 0.5x(t) + u(t), x(0) = 1

The exact state and control trajectories to this problem
are:

x∗(t) = cosh (1−t)
cosh (1)

u∗(t) = − sinh (1−t)+0.5 cosh (1−t)
cosh (1)
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The approximation errors are measured using the max-
imum base ten logarithm of the state and control vari-
ables. That is,

Ex = max
j

log10 |x j − x∗(t j )|
Eu = max

j
log10 |u j − u∗(t j )|

As shown in Fig. 3, LGRPM can produce almost
identical results with the exact solution. However, ZOH
functions cannot achieve such a high accuracy. In addi-
tion, the algorithm will steer the approximation error
to zero as the number of basis functions increases.

Remark 2 It is worth noting that one well-known issue
with pseudospectral optimal control is the choice of col-
location points. For optimal control of underactuated
nonlinear dynamical systems (e.g., the missile dynam-
ical system), the approximation to the dynamics may
be poor if the current mesh grid is chosen improperly.
This brings the development of mesh refinement strate-
gies. That is, the current mesh grid will be updated
several times in order to achieve higher accuracy. In
recent years, many effective mesh refinement strate-
gies that can be embedded in the pseudospectral meth-
ods have been developed. In this paper, we are inter-
ested in applying the pseudospectral method to solve
the MHE and MPC formulation. A detailed analysis
of the approximation error order of the pseudospectral
method is beyond the scope of this paper. We refer to
[33] for such an analysis.

Remark 3 One important issue of mesh refinement-
based pseudospectral methods is that it may result in
several calls to the NLP solver and a significant com-
putational cost. Due to the lack of physical knowledge
of the system dynamics and the uncertainties/noises in
the model, it is usually hard to select a proper accuracy
threshold of the mesh refinement process. Therefore,
to make a trade-off between the approximation accu-
racy and real-time applicability, themulti-interval LGR
pseudospectral method with fixed number of colloca-
tion points is applied to produce a relatively densemesh
grid. This mesh grid setting is given in the simulation
section andperturbations of this numberwill only result
in negligible differences of the results.

3.2 Moving horizon estimation

As a technique based on numerical optimization, the
nonlinear MPC constructs a series of optimal control

problems to optimize a specified objective function
while accounting for the system dynamics and con-
straints [26]. The design of optimization-based con-
trollers is usually based on the assumption of full
state feedback.However, in some practical applications
(e.g., the missile interception guidance and control),
theremight be somemeasurement noises in the system,
and thus, the state variables are not directly available
[11,12]. To address this problem, anMHE technique is
developed by constructing an online suboptimization
problem.

In the absence of measurement noise, the relation-
ships between the measurable outputs and the inte-
grated missile–target state variables are defined as
y = h(x). h(·) is a mapping from the missile–target
state space to the measurable output space. Note that
in many practical scenarios, only a part of states are
available for measurement. In these cases, it is neces-
sary to reconstruct the state information using a limited
number of measurement. For the MHE optimization
process, the solution finding is carried out using the lat-
est N̄ measurements yij obtained at the sampling time

instants t ij , where i = 1, . . . , N̄ . Using the LGRPM
method to approximate the dynamics, the MHE sub-
problem can then be formulated as follows:

minimize JMHE =
N̄∑

i=1
‖h(z(i)j ) − y j‖22

subject to ∀t (i)j ∈ [ti , ti+1]
Nk+1∑

k=1

D(i)
jk z

(i)
j = ti+1 − ti

2
f (z(i)j , u(i)

j , t (i)j )

z j − zmax ≤ 0
u j − umax ≤ 0

(13)

where z j stands for the state estimation at time instant
t j , whereas h(z j ) is the actual measured value. Usu-
ally, an initial state estimation term should also be
introduced in the objective function. However, for the
missile–target intercept problem, it is assumed to have
a known initial state vector of the engagement system.

The motivation for the use of MHE over standard
tools such as the extended Kalman filter (EKF) relies
on its ability in dealing with highly nonlinear system
dynamics (e.g., the nonlinear missile–target engage-
ment systemconsidered in this study). TheEKF is com-
putationally efficient, but it requires both the variances
of the noises to be small and the systemnonlinearities to
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be mild such that the linearization of dynamics can still
be valid. On the other hand, utilizing the MHE algo-
rithm requiresmore computational efforts since it needs
to solve the nonconvex nonlinear optimization prob-
lems related to the MHE formulation. However, one
advantage of using the MHE formulation (13) is that
only the latest N̄ measurements are taken into account
instead of all the Nk measurements. Therefore, the
computational complexity can be reduced significantly
and the online performance can also be improved.

The objective function of Eq. (13) is ameasure of the
missile–target state estimation errors. It is worth noting
that the state estimate at the time instant tk+1 (e.g.,

z(N̄ )
Nk+1) is used as the initial condition of the subsequent
model predictive pseudospectral control step.

3.3 Receding horizon pseudospectral control

MPC can be regarded as an iterative optimization pro-
cess that produces control moments by performing a
moving horizon trajectory optimization [26,27]. The
control is periodically recalculated with the current
state as an initial condition, thus providing a feedback
action that can improve robustness to uncertainties and
disturbances.

By using the updated initial condition x (1)
1 = z(N̄ )

Nk+1,
the moving prediction horizon of the kth RHPC opti-
mization problem becomes [tk+1, tk+1 + T ], where
T = Ñ�. That is, the moving horizon of the RHPC
formulation consists of Ñ sampling intervals. Consid-
ering that the control objective of the RHPC is to drive
the missile–target system given by Eq. (5) to the origin,
the following stage cost function can be formulated:

JRHPC =
Ñ∑

i=1

∫ tk+1+Ñ�

tk+1

(x (i))T Qx (i)+(u(i))T Ru(i)dt

(14)

where i = 1, . . . , Ñ . Q ∈ �4×4 is a semi-definite
matrix. R ∈ �1×1 is a symmetric positive definite
matrix. By introducing ψ(x (i), u(i), t (i)) = (x (i))T

Qx (i) + (u(i))T Ru(i) and using a Gauss quadrature to
approximate the integral term, the RHPC cost can be
rewritten as:

J̄RHPC =
Ñ∑

i=1

Nk∑

j=1

ω jψ(x (i)
j , u(i), t (i)j ) (15)

where ω j is the LGR weight and defined as:

ω j =
∫ +1

−1
L j (t)dt (16)

According to [23], Eq. (16) can be rewritten as:

ω j =
⎧
⎨

⎩

2
(Nk+1)2

, j = 0;
1

(Nk+1)2
1−t j

[LNk (t j )]2 , j �= 0
(17)

Therefore, the RHPC formulation is considered as
an online optimal control problem which has the min-
imum value of cost function defined by Eq. (15) sub-
ject to the state, control and nonlinear algebraic con-
straints. Specifically, the RHPC optimization model
can be given by:

minimize J̄RHPC =
Ñ∑

i=1

Nk∑

j=1

ω jψ(x (i)
j , u(i)

j , t (i)j )

subject to
Nk+1∑

k=1

D(i)
jk x

(i)
j = ti+1 − ti

2
f (x (i)

j , u(i)
j , t (i)j )

x (i)
j − xmax ≤ 0

u(i)
j − umax ≤ 0

(18)

3.4 NLP optimality and approximated KKT
conditions

One significant challenge of the optimization-based
control strategies is that the computational cost associ-
ated with it can be high and usually cannot be afforded
online [16,28,35]. To deal with this problem, a NLP
sensitivity-based optimization method is applied and
embedded in the RHPC framework. This technique
improves the computational performance, by solving
an easier, approximate problem.

Based on the constructed online optimization formu-
lation shown in Eq. (18), the corresponding augmented
Lagrange function is then given by:

L =
Ñ∑

i=1

Nk∑

j=1

ω jψ(x (i)
j , u(i)

j , t (i)j ) + λ1(x
(i)
1 − z(N̄ )

Nk+1)

+
Nk∑

j=1

λT
j

⎛

⎝
Nk+1∑

k=1

D(i)
jk x

(i)
j − Ñ�

2
f (x (i)

j , u(i)
j , t (i)j )

⎞

⎠

+
Nk∑

j=1

νTj (x (i)
j − xmax) +

Nk∑

j=1

μT
j (u

(i)
j − umax)

(19)
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where λ j , ν j , μ j , j = 1, . . . , Nk are vectors of the
Lagrange multipliers. For simplicity in the presenta-
tion, the superscript representing the index of time
interval is ignored in the following equations. The opti-
mal solution of the optimization problem (18) should
satisfy the first-order optimality or Karush–Kuhn–
Tucker (KKT) conditions given by:

∇λ1L = x1 − z(N̄ )
Nk+1 = 0

∇λ jL =
Nk+1∑

k=1

Djkx j − Ñ�

2
f j = 0

∇x jL = ω j∇x j ψ j +
Nk+1∑

k=1

λk

ω j
Dk j − Ñ�

2
AT
j
λ j

ω j

+ ν j = 0

∇u jL = ω j∇u j ψ j − Ñ�
2 BT

j
λ j
ω j

+ μ j = 0

(20)

where f j := f (x j , u j , t j ), ψ j := ψ(x j , u j , t j ),
AT
j := ∇x j f j and BT

j := ∇u j f j , respectively. By

defining p := z(N̄ )
Nk+1, the first-order nonlinear equa-

tions can be rewritten in a more condensed form:

ζ(s(p, Nk + 1), p) = 0 (21)

where s(p, Nk + 1) is the solution vector and is
given by s(p, Nk + 1)T = [xT1 , uT1 , λT

1 , νT1 , μT
1

xT2 , uT2 , λT
2 , νT2 , μT

2 . . . , xTNk
, uTNk

, λT
Nk

, νTNk
, μT

Nk
]. The

optimal solution is then defined as: s∗(p, Nk +1). NLP
solvers based on Newton iteration search for a given
solution s∗(p0, Nk + 1) by successive linearization of
Eq. (21) (e.g., first-order Taylor expansion) around the
current searching point s j (p0, Nk + 1), where j is the
iteration index. This can be described as:

K (p0, Nk + 1)�s = −ζ(s(p0, Nk + 1), p0)

K (p0, Nk + 1) = ∂ζ

∂s
|(s(p0,Nk+1),p0) (22)

where K is the KKT matrix. Equation (22), combined
with suitable adjustments tomonitor the step length�s
(e.g., line search or trust region techniques), yields the
optimal solution s∗(p0, Nk + 1).

In order to improve the online performance of the
optimization algorithm, the effect of perturbations on
p around the nominal solution is analyzed. Then, these
sensitivity results are used to approximate solutions
to the neighboring problems. The general idea of the
sensitivity-based optimization can be understood as
exploiting the similarity between the solutions of the
optimization problem at two consecutive update time

instants. To achieve the approximation, the following
theory regarding NLP sensitivity is introduced [28,29].

Theorem 1 [28,30] Consider the RHPC optimization
problem given by Eq. (18) with f (·) and ψ(·) that are
twice continuously differential in a neighborhood of the
nominal solution s∗(p0, Nk + 1), if the nominal solu-
tion s∗(p0, Nk +1) can satisfy the linear independence
constraint qualifications (LICQ) [28,30] and second-
order sufficient conditions (SOSC) [28,30], then

1. s∗(p0, Nk + 1) is an isolated local optimal solu-
tion of the problem, and the associated Lagrange
multipliers are unique.

2. For p in a neighborhood of p0, there exist a unique,
continuous and differentiable vector function s∗(p,
Nk+1), which is a local optimal solution satisfying
the LICQ and SSOC conditions.

3. There exists positive constants c1 and c2 such
that |s∗(p, Nk + 1) − s∗(p0, Nk + 1)| ≤ c1|p −
p0|, and the optimal values satisfy |JNk+1(p) −
JNk+1(p0)| ≤ c2|p − p0|.
The results in Theorem 1 allow the application of

the implicit function theory to Eq. (21) at the nominal
solution point s∗(p0, Nk + 1):

K ∗(p0, Nk + 1)
∂s∗

∂p

= −∂ζ(s(p, Nk + 1), p)

∂p
|s∗(p0,Nk+1) (23)

where K ∗(p0, Nk +1) is the KKT matrix calculated at
s∗(p0, Nk + 1). The right-hand side term of Eq. (23) is
∂ζ(s(p,Nk+1),p)

∂p |s∗(p0,Nk+1) = [−Inx , 0, . . . , 0], where
nx is the degrees of freedom of the state equations.
Assuming that the nominal solution s∗(p0, Nk + 1)
can satisfy SSOC and LICQ, the KKT matrix can then
be used to calculate the sensitivity matrix shown in
Eq. (23). Based on these results, the estimation of the
neighboring problem can be approximated by:

s̃(p, Nk + 1) = s∗(p0, Nk + 1) + ∂s∗

∂p
(p − p0) (24)

where s̃ stands for the approximation of s∗(p, Nk +1).
Based on the continuity and differentiability assump-
tions, there exists a positive constant c3 such that
|s̃(p, Nk + 1) − s∗(p, Nk + 1)| ≤ c3|p − p0|2.

The calculation of the sensitivity matrix in Eq. (23)
(e.g., ∂ζ(s(p,Nk+1),p)

∂p ) requires nx backsolves. This pro-
cess is usually expensive especially when the size of
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the system becomes larger. To deal with this prob-
lem, the step length �s(p, Nk + 1) = s̃(p, Nk + 1) −
s∗(p0, Nk+1) is obtained by linearization ofKKTcon-
ditions at the nominal solution point s∗(p0, Nk + 1).
That is,

K ∗(p0, Nk + 1)�s(p, Nk + 1)

= −ζ(s∗(p0, Nk + 1), p) (25)

where ζ(s∗(p0, Nk + 1), p) corresponds to the KKT
matrix calculated at the nominal solution. �s can be
described as a Newton step starting from the nominal
solution to the solutionof the neighboringproblemsuch
that s̃(p, Nk +1) can satisfy Eq. (24). The main advan-
tage of this approximation process is that only a single
backsolve is required to compute the sensitivity matrix.
Compared with addressing the NLP problem to obtain
new solutions, this update costs negligible time. More-
over, it is worth noting that if f (·) and ψ(·) are convex
quadratic functions, s̃(p, Nk + 1) = s∗(p, Nk + 1),
whichmeans the approximate solution is exactly equiv-
alent to the optimal solution.

It should be noted that the change of the active sets
concerning the inequality constraints may affect the
results of the sensitivity analysis. If �s(p, Nk + 1) =
s̃(p, Nk+1)−s∗(p0, Nk+1) is large enough to result in
a change with respect to the current active set, approx-
imation of the KKT conditions becomes nonsmooth.
This indicates that Eq. (24) does not hold true and the
updated solution s̃(p, Nk + 1) might violate the box
constraints. Besides, Theorem 1 does not hold at the
pointswhere the change of active set occurs.As a result,
the continuity and differentiability of s∗(p, Nk + 1)
with respect to p cannot be preserved. One way to
tackle this problem is to use the generalized SOSC con-
dition as well as the relaxed set of constraint qualifica-
tions [29,35].

3.5 Implementation consideration

In order to better present the proposed algorithm, the
overall procedures of theMHE algorithm and theMPC
method are summarized, respectively, in Algorithms 1
and 2.

According to Algorithm 2, for the MPC loop, the
control variable is recalculated at each time step,
thereby providing feedback to reduce the effects caused
by uncertainties or model errors. Apart from the struc-
ture of the MPC algorithm, it is also important to know

Algorithm 1 Framework of the MHE real-time loops
/*Offline*/
Step 1: Initialize z(N̄ )

1 , Nk and N̄ ;

Step 2: Generate the LGR points {t j }Nk
j=1, the differential

matrix via Eq. (12), and the LGR weight coefficients
via Eq. (17);

/*Online (main Loop)*/
Step 3: At each time step j = 1, . . . , Nk

(a). Discretize the continuous system via Eq. (10);
(b). Construct the NLP problem via Eq. (13);

Step 4: Wait for a new measurement z(N̄ )
j+1;

Step 5: Calculate the derivative of the objective and
constraints;

Step 6: Solve the optimization problem (20) via the
sensitivity-based method;

Step 7: Update the primal and dual solutions via
Eqs. (23)–(25);

Step 8: Repeat Steps 3–7 until the next time step;

Algorithm 2 Framework of the MPC real-time loops
/*Offline*/
Step 1: Initialize x1, Nk and Ñ ;
Step 2: Generate the LGR points {t j }Nk

j=1, the differential
matrix via Eq. (12), and the LGR weight coefficients
via Eq. (17);

/*Online (main Loop)*/
Step 3: At each time step j = 1, . . . , Nk

(a). Discretize the continuous system via Eq. (10);
(b). Construct the NLP problem via Eq. (18);

Step 4: Wait for a new state x j+1;
Step 5: Calculate the derivative of the objective and

constraints;
Step 6: Solve the optimization problem (20) via the

sensitivity-based method;
Step 7: Update the primal and dual solutions via

Eqs. (23)–(25);
Step 8: Repeat Steps 3–7 until the next time step;

how the MPC scales as the problem grows. There-
fore, a computational complexity analysis with the
number of operations required to solve an iteration
of MPC versus the dimensionality, number of colloca-
tion points as well as the time horizon of the problem
is provided. Suppose that an optimal control problem
which contains nx state variables, nu control variables
and Nk LGR points is applied to discretize the sys-
tem. If the mesh grid consists of Ñ sampling inter-
vals and the length of the mesh interval is �, then
O(Ñ�(nx (Nk + 1)+ nuNk)

3) operations are required
to solve the formulation [16,22].
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4 Simulation studies

4.1 Parameter specification

In order to verify the effectiveness of the proposed
RHPC-based IGC approach, numerical simulations
were carried out. All the simulation results were car-
ried out using MATLAB under Windows 7 and Intel
(R) i7-3520M CPU, 2.90 GHZ, with 12.00 GB RAM.
The parameters of the RHPC algorithm are chosen as:
N̄ = 2, Ñ = 3, Nk = 4. Q and R are obtained
according to the Bryson’s rule [34]. The lower and
upper bounds of the state and control variables are
chosen as: r ∈ [0, 20000], Vr , Vθ ∈ [−5000, 5000],
θ ∈ [−40, 40], α ∈ [−20, 20], AM ∈ [−350, 350]
and δ ∈ [−20, 20], respectively. Besides, the pitch rate
and raw rate should vary in the region [−250, 250].

The initial positions of the missile are assigned as:
XM (0) = 0m, YM (0) = 0 and ZM = 0. The mis-
sile initial flight path angle and velocity are chosen as
ϕM = 35deg and VM = 1800 m/s, respectively. Cor-
respondingly, the initial flight path angle and velocity
of the target are set as ϕT = 50◦ and VT = 2000 m/s.
The initial range along the LOS is r = 12,000 m. In
addition, the initial LOS angle is θ = 40◦, and themea-
surement of the LOS is taken as a first-order lag system.
It is supposed that the target acceleration is given by
AT = (150 + dAT ) sin π t (m2/s).

Moreover, to evaluate the performance of the MHE
approach against measurement noises, it is assumed
that the measurements of the missile–target range r ,
target acceleration AT and the LOS angle (θy and θz)
are disturbed by d = [dr , dAT , dθy , dθz ], where d is
the zero mean Gaussian noise with standard devia-
tion of 10 m, 2 m/s and 1 mrad. The missile model-
dependent parameters are set as: L̄β

α = L̄α − L̄δ ,
L̄α = 1070.1 m/s2, L̄δ = 191.8 m/s2, M̄β

α =
M̄α − M̄δ , M̄α = −353.4 s−2, M̄δ = −283.3 s−2,
M̄q = −14.8 s−1. Since the RHPC optimization prob-
lem is formulated as a large-dimensional NLP prob-
lem, the scaling process becomes important to obtain
a robust and rapid convergence to the optimal solu-
tion. Therefore, all the optimization variables are scaled
using the strategy suggested in [34]. For the numerical
simulation, the trajectory sampling step is set to 0.2 s.
The NLP problems arising from the MPC and MHE
formulations are addressed using the primal–dual inte-
rior point algorithm (e.g., the IPOPT optimizer [36]).

Fig. 4 3-Dmissile–target engagement trajectory (no uncertainty
and noise)

The update of the NLP sensitivity is carried out manu-
ally via MATLAB.

4.2 Interception results

The performance of the proposed IGC design is firstly
evaluated for a sample run. In this case, no model
uncertainty andmeasurement noise are considered. The
missile–target engagement trajectories, together with
the state measurement results, are displayed in Figs. 4
and 5. The corresponding estimation error evolutions
are presented in Fig. 6.

The result displayed in Fig. 4 shows that the mis-
sile can engage the target successfully with a 0.032 m
miss distance. According to the state estimation results
shown in Figs. 5 and 6, the plant states can be estimated
satisfactorily and the estimation error can be steered to
a small neighborhood of the origin. Therefore, these
results demonstrate that the MHE algorithm can have a
good performance in terms of estimating state variables
for the missile–target engagement system. In terms of
the computational performance, the average process-
ing time for generating the solution of each RHPC opti-
mization problem is around 0.1721 s in this case, which
is smaller than the trajectory update time.

Next, this sample run was performed by considering
the measurement noise as well as the parameter uncer-
tainty (e.g., the missile aerodynamic parameters L̄ , M̄
were assumed to be varied randomly by ± 10% from
the model values). Figure 7 depicts the time history of
the 3-D intercept geometry obtained by applying the
RHPC-based IGC method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 State estimation performance (no uncertainty and noise)

The corresponding state estimation trajectory results
are then plotted in Fig. 8. It should be noted that in the
last two figures (e.g., Fig. 8h and i), AT y and AT z stand
for the normal target acceleration profiles along the ele-
vation plane and azimuth plane. From these figures,
it can be observed that by performing the MHE pro-
cess and minimizing its least-squares objective func-
tion given by Eq. (13), the plant states can still be esti-
mated satisfactorily in the presence of measurement
noises.

The performance of applying other state estimation
approaches such as the EKF and the PF for the missile–
target interception problem is also analyzed. Numeri-
cal simulations were performed and the state estima-
tion error profiles obtained using different estimation

methods are depicted in Fig. 9. The result presented
in Fig. 9 shows that the MHE and PF methods per-
form better than the EKF in the initial state estimation.
Moreover, in the later stage of simulation, the estima-
tion error achieved via theMHEmethod remains nearly
zero, while the estimation errors achieved via the EKF
and PF both increase. In other words, theMHEmethod
tends to converge faster to the real value than its coun-
terparts. Moreover, the MHE approach is likely to be
more stable than the EKF and PF during the entire esti-
mation process. Therefore, it is suggested to apply the
MHE in dealing with the state estimation problem of
the missile–target interception task.

The results obtainedvia theproposed control scheme
are compared against other typical missile guidance
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Estimation error profiles (no uncertainty and noise)

Fig. 7 3-D missile–target engagement trajectory (with uncer-
tainty and noise)

and control strategies, for example a primal–dual neu-
ral network (PDNN)-based predictive control scheme
design reported in [16] and an integrated sliding-mode
guidance and control (SMGC) design studied in [3].
For the PDNN method, the state and control input
constraints are taken care by means of performance
index weightings. On the other hand, the SMGC con-
trol scheme utilizes the control saturation function to
handle constraints.

The comparative time histories with respect to the
missile acceleration, control input and attitude angles
are plotted in Fig. 10, from where it can be seen
that the proposed RHPC-based IGC law can produce
state and control trajectories without violating the pre-
specified state and control constraints in the absence
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 State estimation performance (with uncertainty and noise)

of model uncertainties and measurement noises. (The
control moments acting on the missile are provided in
Fig. 10e–f.) As for SMGC results, although the con-
trol constraints are guaranteed via the use of satura-
tion functions, constraint violations can be found in
the missile acceleration and angular rate trajectories.
Similar phenomena are found in the PDNN results.
Hence, using performance index weightings may fail
to satisfy the state constraints and result in constraint
violations. Actually, imposing state constraints might
further restrict the allowable control regions implicitly.
As indicated in Fig. 10, the algorithm has to sacrifice
using its maximum allowable control moments in order
to satisfy the missile acceleration and attitude angle
constraints.

Based on the results shown in Figs. 7, 8, 9 and 10, it
is obtained that the RHPCmethod achieves an engage-
ment time 3.303 s, which indicates the interception can
be fulfilled within short time for the interception mis-
sion investigated in this study. Besides, the miss dis-
tance for this sample run as well as the average com-
putation time for the RHPC optimization process are
0.324 m and 0.1729 s, respectively. These two factors
are slightly greater than the case that no model uncer-
tainty andmeasurement noises are considered. This can
be explained that the performance of the proposed con-
trol schememight be degraded due to the consideration
of these noises and uncertainties. However, according
to the design of the RHPC scheme stated in Sect. 3
of this paper, the optimization procedure is repeated
online at each sampling instant and the final state val-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 Performance of different estimation methods (with uncertainty and noise)

ues of the previous process will be applied as the initial
conditions of the continuing control loop. This reced-
ing manner can provide feedbacks such that the effects
of uncertainty and model errors are reduced signifi-
cantly, thereby improving the robustness of the control
algorithm.

To further verify the performance of the proposed
optimization-based predictive IGC scheme, it is nec-
essary to run a large number of simulations using the
Monte Carlo method. It is well known that the Monte
Carlo simulation is a powerful tool to analyze the effec-
tiveness and robustness of a design by allowing con-
sideration of the influences of different system noises
and uncertainties. In total, 500 Monte Carlo simula-
tions were performed for the missile–target engage-
ment mission. Simulation results show that the pro-
posed optimization-based predictive control algorithm

can lead the state estimation error to a small value and
achieve the hit for most of the cases with an average
miss distance of 0.0362 m and an average interception
time of 3.305 s when the stochastic disturbances and
measurement noises are included in the missile–target
system. A graph of the average runtime per iteration of
MPC is plotted in Fig. 11. It is further calculated that
the mean value of this runtime array is about 0.1723 s,
which is again smaller than the trajectory update time.
Hence, based on the results presented in Fig. 11, the
real-time applicability can be preserved by applying
the proposed control scheme.

4.3 Comparative study

Comparative studies were also performed to com-
pare the missile intercept accuracy achieved by apply-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Performance of the proposed IGC law (with uncertainty and noise)

Fig. 11 Average runtime per iteration of MPC

ing the proposed IGC solver with other alterna-
tive MPC-based controllers, for instance a differen-
tial dynamic programming (DDP)-based MPC con-
troller and a direct sequential quadratic programming
(DSQP)-based MPC controller. Moreover, to make a
fair comparison, all the algorithm-dependent parame-
ters are tuned optimally as suggested in relative inves-
tigations [19,30–32]. For the purpose of comparison, it
is worth mentioning that the missile’s target accuracy
is a critical factor for its effectiveness. Therefore, this
is used as the main criteria to evaluate the performance
of different controller designs.

Figure 12 illustrates the miss distance distribution
obtainedusing thedifferent guidance and control strate-
gies. The last subplot in Fig. 12 shows the corre-
sponding cumulative miss distance statistics for all
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Fig. 12 Miss distance distribution and SSKP results for different
methods

the engagement cases. Cumulative miss distance chart,
also known as Single Shot Kill Probability (SSKP), is
an effectiveway to visualize guidedmissile system per-
formance in aMonte Carlo sense. Figure 12 shows that
the DSQP-based method performs better than the pro-
posedmethod and theDDP-based controller in terms of
the SSKP value. (A higher SSKP value can be obtained
with a small value of miss distance.)

Regarding the real-time performance, it should be
noted that based on our experiments, a penaltymight be
found in computational time for the increased accuracy
and fidelity. Consequently, a relatively small index of
accuracy (e.g., 1×10−4) is applied in the optimization
process and the comparative study in order to enhance
the real-time applicability of different control schemes
as well as to make a fair comparison. The average
computational time required by the proposed method,
DSQP and DDP for the solution of each MPC opti-
mization problem are 0.1723 s, 0.5743 s and 0.6611 s,
respectively. The proposed approach achieves real-time
applicability as the optimization time is smaller than
the trajectory update time. Therefore, it can be con-
cluded that compared with other algorithms studied in
this investigation, the proposedRHPC-based algorithm
can preserve the real-time applicability without scar-
ifying the interception accuracy significantly. (This is
reflected by Fig. 12,where a relatively high SSKPvalue
can be obtained by applying the proposed strategy.)

Fig. 13 Effect of parameter uncertainty: DSQP results

Fig. 14 Effect of parameter uncertainty: RHPC results

4.4 Effect of parameter uncertainty

In this subsection, the effect of parameter uncertainty
on the computational time and the interception accu-
racy is studied. By assuming the missile aerodynamic
parameters are varied randomly by± 10%,± 15% and
± 20% from the model values, the sensitivity results
of the MPC-based controllers with respect to modeling
errors are displayed in Figs. 13, 14 and 15.

Themaximum, average andminimummiss distance
(MD) values, alone with the average computational
time consumed for each MPC optimization process,
are summarized in Table 1. According to the results
presented in Figs. 13, 14 and 15 and Table 1, it is appar-
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Fig. 15 Effect of parameter uncertainty: DDP results

ent that an increasing uncertainty effect will result in a
decrease in the interception accuracy and an increase in
terms of the computational time. It is worth noting that
in Table 1, another comparative study denoted aswarm-
start DSQP (wsDSQP) was carried out. In this strategy,
the NLP problem is solved directly using the solution
of the previous time step as an initial guess. Compared
with the normal DSQP solution, the computational as
well as the interception performance obtained by using
the wsDSQP can be improved to some extent. How-

ever, the real-time applicability of wsDSQP is still not
achieved.

For all the uncertain cases, the proposed RHPC
control scheme with the sensitivity-based optimization
method is able to preserve the real-time applicability
and achieve a competitive interception accuracy. How-
ever, it is found that the real-time applicability will lose
when the uncertainty interval is increase to ± 25%, as
the average running time for solving the optimization
problem will be increased to around 0.2738 s.

5 Conclusion

In this paper, an optimization-based predictive con-
trol strategy was constructed and implemented to solve
the missile integrated guidance and control problem
in the presence of model parameter uncertainties and
measurement noises. A multiple interval pseudospec-
tral method was applied to discretize the moving hori-
zon state estimation and predictive control problems.
Then the resulting NLP formulation was solved via
a sensitivity-based nonlinear programming approach.
In order to reduce the computational complexity and
match real-time requirements, the NLP sensitivity
information was applied to approximate the optimal
solution. Numerical simulations were conducted to
illustrate the effectiveness and robustness of the pro-

Table 1 Comparative results for different methods

Indicators DSQP-based wsDSQP-based Proposed method DDP-based

± 10% Uncertainty

Max(MD) (m) 0.2254 0.2247 0.3981 0.4717

Min(MD) (m) 0.0281 0.0280 0.0362 0.0453

Mean(MD) (m) 6.3928E−05 6.3928E−05 2.2709E−05 4.3299E−05

CPU (s) 0.5743 0.2841 0.1723 0.6611

± 15% Uncertainty

Max(MD) (m) 0.7929 0.7621 1.1885 4.5592

Min(MD) (m) 0.0878 0.0834 0.1588 0.4520

Mean(MD) (m) 3.9464E−05 3.7223E−05 6.2835E−04 3.2375E−04

CPU (s) 0.7229 0.3041 0.1801 0.6412

± 20% Uncertainty

Max(MD) (m) 2.1056 2.1056 2.9237 6.5470

Min(MD) (m) 0.2893 0.2773 0.3476 2.2833

Mean(MD) (m) 1.1122E−04 1.1122E−04 1.5891E−04 4.2029E−04

CPU (s) 0.8425 0.4447 0.1892 0.7070
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posed method. The results show that the integrated
guidance and control scheme investigated in this paper
can achieve the preceding requirements for the missile
interception mission.

However, there are some issues left in terms of
applying the proposed control scheme for addressing
the missile–target interception problem. For example,
the performance of the sensitivity-based optimization
techniquemight be affected significantly if large noises
and model errors are considered. As a result, the pro-
cessing speed will be decreased, thereby restricting the
implementation of longer predictive horizons. In addi-
tion, the current missile dynamic model is relatively
simple and more complex aerodynamic models should
be applied. This will inevitably increase the computa-
tional burden of the optimizer since a more dense mesh
grid is required to have an accurate approximation of
the dynamics. These issues will be the main subjects
of our future research.
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