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Abstract Statistical analysis of stochastic dynami-
cal systems is of considerable importance for engi-
neers as well as scientists. Engineering applications
require approximate statistical methods with a trade-
off between accuracy and simplicity. Most exact and
approximatemethods available in the literature to study
stochastic differential equations (SDEs) are best suited
for linear or lightly nonlinear systems. When a system
is highly nonlinear, e.g., a system with multiple equi-
libria, the accuracy of conventional methods degrades.
This problem is addressed in this article, and a novel
method is introduced for statistical analysis of spe-
cial types of essentially nonlinear SDEs. In particu-
lar, second-order dynamical systems with nonlinear
stiffness and additive random excitations are consid-
ered. The proposed approximate method can estimate
second-ordermoments of the state vector (namely posi-
tion and velocity), not only in the case of white noise
excitation, but also when the excitation is a corre-
lated noise. To illustrate the efficiency, a second-order
dynamical system with bistable Duffing-type nonlin-
earity is considered as the case study. Results of the pro-
posedmethod are comparedwith theGaussianmoment
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closure approximation for two types of colored noise
excitations, one with first-order dynamics and the other
with second-order dynamics. In the absence of exact
closed-form solutions, Monte Carlo simulations are
considered as the reference ideal solution. Results indi-
cate that the proposed method gives proper approxima-
tions for the mean square value of position, for which
the Gaussian moment closure method cannot provide
good estimations. On the other hand, both methods
provide acceptable estimations for the mean square
value of velocity in terms of accuracy. Such nonlin-
ear SDEs especially arise in energy-harvesting appli-
cations, when the ambient vibration can be modeled as
a wideband random excitation. In such conditions, lin-
ear energy harvesters are no longer optimal designs, but
nonlinear broadband harvesting techniques are hoped
to show much better performance.

Keywords Gaussian moment closure · Nonlinear
stochastic differential equations · Duffing oscillator ·
Colored noise excitation

1 Introduction

A differential equation that is forced by an irregular
process such as a Wiener process or Brownian motion
is called a stochastic differential equation (SDE) [1].
Earthquakes, winds and ocean waves are important
examples of stochastic excitations [2]. Stochastic dif-
ferential equations arise in many engineering applica-
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tions such as filtering problems, fluid mechanical tur-
bulence and random vibration [3]. Special interest on
SDEs exists in the analysis of vibration energy har-
vesters that are designed to harvest energy from ambi-
ent random vibrations [4,5].

In the context of analytical study of stochastic dif-
ferential equations (SDEs), several well-known tech-
niques have been addressed in the literature so as to
extract various statistical properties of the stochastic
system such as the probability distribution function
(PDF) of the system response, the spectral density of it
and/or the first-, second- and higher-order moments of
the state variables [6–8]. For linear stochastic systems
with additive (white or colored) random excitations,
statistical analysis is a straightforward procedure and
is completely documented [2,6]. But difficulties arise
in the case of nonlinear SDEs for which the approxi-
mate analytical methods are different in terms of diffi-
culty and accuracy [9]. Available methods include but
not limited to statistical and equivalent linearization
[9–12], moment closure [13–17], stochastic averaging
[18–21] and approximate solution of the Fokker–Plank
equation [22–25].

For analytical study of nonlinear SDEs, it is impor-
tant whether the random excitation is white or colored.
Analytical methods are highly limited in the case of
nonwhite excitations. Among the available techniques,
linearization and stochastic averaging techniques are
applicable on SDEs with both white and colored exci-
tations, while closure methods as well as PDF approx-
imation methods can be applied only when the excita-
tion iswhite [7,26]. However, inmany cases, especially
when the system is highly nonlinear, the linearization
and stochastic averaging methods cannot predict the
statistical behavior of the system correctly [27].

It is a commonpractice to consider a colored noise as
a filtered white noise, i.e., the colored Gaussian noise is
assumed to be the output of a linear system (called noise
dynamics) excitedwithwhiteGaussian noise. Then, the
state vector of the noise dynamics is augmented to the
fundamental state vector of the system [28]. So, a SDE
with colored noise excitation can be converted to a SDE
with white noise excitation, in the cost of a larger state
space. Then, a wider variety of analytical methods can
be applied on the SDE.

The moment closure technique is one of the most
popular approximate methods for the study of nonlin-
ear SDEs with white noise excitation. This technique
is based on moment equations. The moment equations

for a nonlinear SDE form an infinite hierarchy of equa-
tions. These equations can be algebraic or differen-
tial depending on whether the SDE is stationary or
nonstationary. The moment closure method truncates
the moment equations for the system at an arbitrary
order n. Then, based on a closure scheme (often the
cumulant-neglect closure [15]), higher-order moments
with orders greater than n which appear in the trun-
cated equations are expressed in terms of lower-order
moments, so as to achieve a closed set of algebraic or
differential equations. The most important and most
simple case n = 2 is equivalent to assuming a Gaus-
sian shape for the joint PDF of the state vector. This
Gaussian moment closure method truncates moment
equations at second order and substitutes third- and
higher-order moments in terms of moments up to the
second order, resulting in a closed set of equations for
the first- and second-order moments [8,14,26].

For highly nonlinear systems, Gaussian approxima-
tion may give erroneous estimations [29]. To increase
the accuracy, moment closure methods with higher
truncation orders can be applied. In fact, one can trun-
cate the moment equations for example at n = 4,
and write fifth- and higher-order moments appearing
in the equations in terms of lower-order ones [30,31].
This approach, however, highly increases the number
of coupled moment equations, bringing in difficulties
for solving the set of equations, along with different
problems concerning existence and uniqueness of the
solution [26,29]. This condition is severer in the case
of colored noise excitation when the noise dynamics
is augmented to the state vector of the system. Other
approximate methods, such as stochastic averaging,
have similar shortcomings for highly nonlinear sys-
tems.

One other method is to find an approximate solution
for the Fokker–Plank (FP) equation. The Fokker–Plank
equation in stationary conditions is a partial differen-
tial equation, defined on the whole state space of the
SDE. The exact solution of the FP equation exists only
for special types of SDEs with white noise excitation
[26]. For other types of SDEs, finding an approximate
analytical solution is nontrivial and the procedure is
case dependent. One other method is to solve the FP
equation numerically for example with the FE method
[32], but numeric solution of the FP equation is chal-
lenging and massive, especially for high-dimensional
state spaces [33,34].
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In this article, a novel method is proposed to approx-
imately solve the FP equation and calculate the required
moments, applicable on special types of highly nonlin-
ear SDEs. The proposedmethod is applied on a second-
order system with highly nonlinear (bistable) stiffness
and colored noise excitation. For this special system, in
the case of white noise excitation, the FP equation has
an exact analytical solution which is addressed in the
literature [26]. But when the type of excitation changes
to nonwhite and the noise dynamics is augmented to
the systemmodel, no analytical solution is available for
the statistical behavior of the system. In this situation,
the proposedmethod provides good approximations for
both themean displacement andmean velocity of oscil-
lations, whereas the Gaussian approximation performs
well only in the mean velocity estimation.

The problem statement in this paper is mainly
adapted from the energy-harvesting literature. It is
important to design and analyze a nonlinear energy-
harvesting device, which is able to harvest vibrational
energy from the broadband or narrow-band random
vibrations in the environment. However, except the
Gaussian approximation method, no simple and accu-
rate analytical tool is available to analyze the perfor-
mance of the energy harvester, especially when the
excitation is a colored noise and the system is highly
nonlinear. This is while designing a vibration energy
harvester may be highly facilitated when an approx-
imate measure of performance is in hand. In other
words, having an approximate analytical solution for
the statistical properties of the system, can be used to
assist the optimal and robust designs.

This paper is organized as follows. Section 2 briefly
describes the systemmodel in the state-space form. The
FP equation corresponding to this system is developed
in Sect. 3. Then in Sect. 4, the Gaussian approxima-
tion method is applied on the system to illustrate its
strengths andweaknesses for highly nonlinear systems.
Then the proposed method is introduced in Sect. 5 fol-
lowed by two case studies in Sects. 6 and 7. Finally,
some concluding remarks are declared in Sect. 8.

2 System model

Consider amass–spring–damper systemwith nonlinear
stiffness and random excitation. The governing differ-
ential equation is therefore a nonlinear SDE with the
following state-space representation:

d

dt
x1 = x2

d

dt
x2 = − γ x2 − f (x1) + ν (t) (1)

where x1 and x2 are the nondimensional displace-
ment and velocity and f (x1) is an odd function of
x1. For the special case of the Duffing oscillator [35],
f (x1) = k1x1 + k3x31 with k3 > 0. The linear stiffness
k1 can be positive, zero or negative. The spring force
will have a single stable equilibrium at the origin if k1 is
nonnegative.On the other hand, for negative linear stiff-
ness k1 < 0, the system shows a bistable behavior with
two off-center stable equilibria at x1 = ±√|k1/k3|
and one unstable equilibrium at the origin.

The input signal ν (t) in (1) is a zero-mean random
excitation, which is assumed to be Gaussian, but not
necessarily a white noise. Instead, ν (t) is modeled as
the output of an n-dimensional linear SDE, with white
noise excitation:
d

dt
u = −L−1u + L−1w (t)

ν = bTu

〈w (t1)wT (t2)〉 = D
2

δ (t1 − t2) (2)

In thismodel,w (t) is an n-dimensional vector of Gaus-
sian white noise excitations and the n-by-n symmet-
ric positive-definite matrix D defines the amplitude of
the excitation. Furthermore, L is an invertible square
matrix and b is a column vector. In the one-dimensional
case with b = 1, L = τ and D = D0, ν (t) reduces
to an Ornstein–Uhlenbeck (exponentially correlated)
noise with correlation time τ :
d

dt
u = − 1

τ
u + 1

τ
w (t)

ν = u

〈w (t1) w (t2)〉 = D0

2
δ (t1 − t2) (3)

It should be noted that the power spectral density of
the excitation ν (t) is related to the vector b and the
matrices L and D:

Sνν (ω) = π bTH (ω) DH∗ (ω) b

H (ω) = (I + iωL)−1 (4)

3 Fokker–Plank equation

Consider a stochastic differential equation with addi-
tive and/or multiplicative Gaussian white noise excita-
tion in the state-space form:

dx = a (x, t) dt + g (x, t) dξ (5)
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where x is the n × 1 state vector, a (x, t) is the drift
vector, ξ is a vector of Wiener processes and g (x, t) is
called the diffusion matrix. The FPK equation for the
PDF p (x, t) corresponding to this system is written as
(Einstein notation is used) [33,36]:

∂

∂t
p (x, t) = − ∂

∂xi
(ai (x, t) p (x, t))

+ 1

2

∂2

∂xi∂x j

(
p (x, t) gik (x, t) g jk (x, t)

)
(6)

If both the drift vector a (x, t) and the diffusion
matrix g (x, t) have no explicit functionality of time,
the PDF p (x, t) gradually converges to its steady state
value and the FPK equation can be written for the sta-
tionary system. Furthermore, for a SDEwith only addi-
tive excitations, the FPK equation will be further sim-
plified since the diffusion matrix g does not depend on
the state vector x:

− ∂

∂xi
(ai (x) p (x))

+ 1

2
gikg jk

∂2

∂xi∂x j
(p (x)) = 0 (7)

The dynamical system (1) along with the noise dynam-
ics (2) forms a (n + 2)-dimensional system of stochas-
tic differential equations in the state-space form, with
Gaussian white noise excitation. Let x = (x1, x2),
and define p (x,u) as the joint PDF of the (n + 2)-
dimensional state vector. The stationary FPK equation
can be expanded for this system as follows:

− γ p + x2∂x1 p + (− γ x2 − f (x1) + b · u) ∂x2 p

+∇u ·
(
−L−1u p − L−1DL−T∇u p

)
= 0 (8)

where∇u is the gradient operator w.r.t. the vector u and
is a column vector equal to

[
∂u1 , ∂u2 , . . . , ∂un

]T.

4 Gaussian approximation

For a linear system, i.e., when the stiffness function
f (x1) is linear, the joint PDF p (x,u) is Gaussian in
all state variables x and u. This is not exactly true for
a nonlinear SDE, but one may approximately assume
a Gaussian shape for the joint PDF and try to find the
best fit for the parameters.

Consider the stationary FPK equation (7) corre-
sponding to the SDE (5) with n state variables. Gaus-
sian approximation assumes the PDF p (x) to have a
Gaussian shape in the following form:

p (x) = C0 exp

(
− 1

2
(x − μ)T Σ−1 (x − μ)

)
(9)

This shape for p (x) is equivalent to assuming third
and higher-order cumulants vanish. Substituting (9) in
(7) and taking first- and second-order moments of the
equation result in a complete set of algebraic equations
for the unknown vector μ and the unknown symmetric
matrix 	.

To verify the accuracy of the Gaussian approxima-
tion method, we apply this method on the second-order
system (1) with Duffing-type spring forces f (x1) =
k1x1 + k3x31 and white noise excitation, for which the
corresponding FPK equation has a closed-form solu-
tion [26]. The dynamical system (1) is mono-stable for
k1 ≥ 0 and bistable for k1 < 0. The mono-stable stiff-
ness is more likely to be approximated with an equiv-
alent linear one, while the bistable stiffness is known
to be “highly nonlinear.” Accordingly, although Gaus-
sian approximation provides appropriate estimations
of the statistical properties of the mono-stable system
(Fig. 1), it encounters large errors in the analysis of
the bistable system (Fig. 2), when compared to the true
values obtained from the analytical solution of the FPK
equation. Specifically, the estimation of 〈x21 〉 (i.e., the
expected value of x21 ) is weak in accuracy when utiliz-
ing the Gaussian approximation.

The Gaussian approximation method can be applied
in the Fourier space as well. One can take an n-
dimensional Fourier transform of the FPK equation (7)
and obtain the governing differential equation for the
characteristic function P (ω) corresponding to the PDF
p (x), which is defined as P (ω) = Fx [p (x)]. This
procedure is possible only if all the drift components
ai (x) be polynomials of the state vector x. This condi-
tion is necessary for P (ω) to be extractable from the
Fourier transform of (7). The characteristic function of
the assumed

P (ω) = C ′
0 exp

(
iμTω − 1

2
ωT� ω

)
(10)

Gaussian PDF (9) is also Gaussian.
Substituting (10) in the Fourier transform of (7)

leads to an algebraic equation in ω for which the
unknowns are the n-by-1 vectorμ and the n-by-n sym-
metric matrix �. In the Fourier space, to apply the
Gaussian closure, it is not required to calculate the
first- and second-order moments; instead, one can sim-
ply separate different orders of ωi , eliminate third- and
higher-order terms and set the coefficients of lower
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Fig. 1 Performance of Gaussian approximation for a mono-stable stiffness with k1 = k3 = 1 and with γ = 0.04

Fig. 2 Performance of Gaussian approximation for a bistable stiffness with k1 = − 1 and k3 = 1 and with γ = 0.04

orders of ωi equal to zero. This results in a set of alge-
braic equations that can be solved for μ and �. Note
that the solution of this method is the same as the stan-
dard Gaussian approximation method. The difference
is in the simplicity of application.

Combination of these two methods is also possible.
Instead of taking a full-state (n-dimensional) Fourier
transform, one can take a partial-state Fourier trans-
form and then calculate the moments for the remaining
state variables. This hybrid procedure is utilized in the
proposed method.

5 The proposed method

The Gaussian approximation method results in sim-
ple and relatively accurate approximations for weakly
nonlinear systems. But for strongly nonlinear sys-
tems, large errors appear in the Gaussian approxima-

tion. More accurate approximations may be achieved
by migrating from Gaussian to non-Gaussian closure
schemes, but this highly increases the complexity of
moment equations especially for nonwhite excitations
when the noise state variables are augmented to the sys-
tem state space. In this article, a novel quasi-Gaussian
method is proposed that shows a trade-off between
accuracy and simplicity.

Consider the FPK equation (8) which corresponds
to the second-order dynamical system (1) with noise
dynamics (2). For this system, p (x,u) defines the
(n + 2)-dimensional joint PDF.Also define p (x) as the
joint PDF of the fundamental state vector x = (x1, x2).
In fact, p (x) is more valuable than p (x,u). Numer-
ically, p (x) is the integral of p (x,u) over the whole
u ∈ R

n . Also, one may calculate the n-dimensional
Fourier transform P (x,ω) and set ω = 0 to reach the
desired joint PDF p (x):
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P (x,ω) = Fu [p (x,u)]

=
∫

Rn
p (x,u) exp (− iω · u) du1 . . . dun

p (x) =
∫

Rn
p (x,u) du1 . . . dun

= P (x,ω)|ω=0 (11)

In the Gaussian approximation method, p (x,u) is
assumed to be Gaussian w.r.t all state variables x and
u. Then, P (x,ω) will also be Gaussian w.r.t ω as well
as x. Finally, one can check that p (x) has a Gaussian
shape in both x1 and x2.

A modification on the Gaussian approximation
method can though improve the accuracy of the esti-
mation of 〈x21 〉, while preserving the adequate perfor-
mance of the Gaussian approximation for the estima-
tion of other statistical properties, the most important
of which being 〈x22 〉.

In the proposed “quasi-Gaussian” method, we
assume p (x,u) to be Gaussian w.r.t the noise state vec-
tor u, but not necessarily in the fundamental state vec-
tor x. Equivalently, P (x,ω) is assumed to be Gaussian
w.r.t ω but not necessarily w.r.t x:

P (x,ω)

= exp

(
−φ (x) − i qT (x)ω − 1

2
ωTQ (x) ω

)
(12)

where φ (x), q (x) and Q (x) are real scalar, vector
and matrix functions of x, respectively, and Q (x) is
symmetric. Then, one can simply check that p (x) =
exp (−φ (x)). The governing differential equation for
P (x,ω) can be derived by taking the Fourier transform
of Eq. (8):

− γ P + x2∂x1 P + (−γ x2 − f (x1)) ∂x2 P

+ i bT∂x2∇ωP

+ωTL−1∇ωP + ωTL−1DL−Tω P = 0 (13)

Now, one can substitute the assumed shape (12) for
P (x,ω) in (13). The result is an approximate partial
differential equation in which the unknown functions
are φ (x), q (x) and Q (x), and the vector ω explicitly
appears in the equation. This PDE is not solvable for
all values of ω. Instead, according to the second-order
moment closure technique, one can write the Taylor
expansion of the equation w.r.t. ω just up to the second
order and set the coefficients of ω0, ω1 and ω2 equal
to zero (ωn is an abbreviated notation for

∏
i ω

ni
i with

n = ∑
i ni ). Then, the following set of differential

equations will be developed:

ω0 : − γ − x2∂x1φ (x) + bT ∂x2q (x)

+
(
γ x2 + f (x1) − bTq (x)

)
∂x2φ (x) = 0

ω1 : − x2∂x1q (x) − ∂x2Q (x) b − L−1q (x)

+
(
γ x2 + f (x1) − bTq (x)

)
∂x2q (x)

+Q (x) b ∂x2φ (x) = 0

ω2 : −L−1Q (x) + L−1DL−T − 1

2
x2∂x1Q (x)

+ 1

2

(
γ x2 + f (x1) − bTq (x)

)
∂x2Q (x)

− ∂x2q (x) bTQ (x) = anti sym. (14)

This set of equations is formed fromone scalar, one vec-
tor and one matrix differential equation for the scalar,
vector and matrix unknown functions φ (x), q (x) and
Q (x), respectively. The third equation in (14) states
that the left-hand side of the equation has to be an
anti-symmetric matrix. According to the symmetry of
Q (x), the number of equations matches the number of
unknowns. However, looking for the exact solution of
(14) seems not to be simpler than solving the original
differential equation (13). But, through further assump-
tions and approximations, the system (14) reduces to
much more simple and solvable equations.

Assume the joint PDF to be Gaussian w.r.t x2 as
well. This restricts the three functions φ (x), q (x) and
Q (x) to be of the following forms:

φ (x) = φ0 (x1) + φ1 (x1) x2 + φ2 (x1) x
2
2/2

q (x) = q0 (x1) + q1 (x1) x2

Q (x) = Q0 (x1) (15)

Substituting (15) in (14), three ordinary differential
equations are obtained for six unknown functions, all
of which are functions of the single variable x1. Fur-
thermore, the all three equations are polynomials in x2.
These three differential equations are not solvable for
all values of x2 and must be solved in an approximate
manner. According to the assumption for the PDF to be
Gaussian w.r.t. x2 as well as ω, moments of different
orders of x2 up to the secondorder are set to zero. To this
end, since the first (scalar) equation in (14) corresponds
to ω0, moments of the zeroth, first and second orders
are set to zero. Denoting by eqn the left-hand side of
the first equation in (14), the zeroth-, first- and second-
order moments are

∫ ∞
−∞ xn2 eqn dx2, with n equal to

zero, one and two, respectively. Similarly, since the
second (vector) equation in (14) corresponds to ω1, the
zeroth- and first-order moments are set to zero. For the
third (matrix) equation in (14), only the zeroth-order
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moment is assumed to be zero because it corresponds
toω2. This results in six ordinary differential equations
for the six unknown functions φ0 (x1), φ1 (x1), φ2 (x1),
q0 (x1), q1 (x1) and Q0 (x1).

ω0 : x02
(
f (x1) − bTq0 (x1)

)
φ1 (x1)

−
(
γ − bT q1 (x1)

)
= 0

ω0 : x12
(
γ − bT q1 (x1)

)
φ2 (x1) − φ′

1 (x1) = 0

ω0 : x22
(
γ − bT q1 (x1)

)
φ1 (x1)

+
(
f (x1) − bTq0 (x1)

)
φ2 (x1) − φ′

0 (x1)

− 3

2
〈x22 〉φ′

2 (x1) = 0

ω1 : x02 f (x1) q1 (x1) −
(
L−1 + q1 (x1) bT

)
q0 (x1)

+Q0 (x1) bφ1 (x1) − q′
1 (x1) 〈x22 〉 = 0

ω1 : x12 −q′
0 (x1) + γ q1 (x1)

−
(
L−1 + q1 (x1) bT

)
q1 (x1)

+Q0 (x1) bφ2 (x1) = 0

ω2 : x02 −L−1Q0 (x1) − q1 (x1) bTQ0 (x1)

+L−1DL−T = anti sym. (16)

Note that φ′
0 (x1) denotes differentiation of φ0 (x1)

w.r.t. x1. The same notation is used for φ′
1 (x1), φ′

2 (x1),
q′
0 (x1) and q′

1 (x1). Briefly, we assumed the joint PDF
p (x,u) to be Gaussian w.r.t u as well as x2. Differ-
ences between the proposed method and the Gaussian
approximation method appear hereafter. If one further
assumes the PDF to also be Gaussian w.r.t x1, the result
will be identical to theGaussian approximationmethod
discussed in Sect. 4. For the PDF to be Gaussian w.r.t
x1, the unknown functionsQ0 (x1), q1 (x1) and φ2 (x1)
must be constants, q0 (x1) and φ1 (x1) must be multi-
ples of x1, and φ0 (x1) must be a multiple of x21 . Then,
examining equations (16) proves φ1 (x1) = 0 which
implies statistical independency of x1 and x2. After tak-
ing suitablemomentsw.r.t x1 according to theGaussian
closure scheme, the system (16) reduces to a set of alge-
braic equations for the unknown parameters which can
be solved either analytically or numerically.

However, Gaussian approximation gives erroneous
estimations for some statistical behavior of the system,
especially the second-order moment 〈x21 〉. In fact, the
largest distortion in the joint PDF from the Gaussian
shape appears in the x1 direction.One can simply check
that the behavior of the joint PDF p (x,u)with the afore-

mentioned assumptions along the x1 axis ismainly con-
trolled by the unknown function φ0 (x1). Therefore, a
light modification of the Gaussian approximation may
present much better estimations of the desired second-
order moment 〈x21 〉. So, we can justify all the afore-
mentioned Gaussian assumptions on the six unknown
functions, except the assumption onφ0 (x1). In fact, the
third equation in (16) is supposed to completely define
φ0 (x1). The other five equations form a complete set
of equations for the five remaining unknowns.

Letφ2 (x1) = φ2,q1 (x1) = q1 andQ0 (x1) = Q0 all
be constant functions. Also assume q0 (x1) = q̄0x1 and
φ1 (x1) = φ̄1x1 as in the Gaussian closure technique.
Then applying the Gaussian closure technique on the
six equations in (16) except the third one, the following
set of algebraic equations is achieved and has to be
solved for φ2, q̄0, q1and Q0 (note that φ̄1 is zero).

γ − bT q1 = 0
〈x1 f (x1)〉

〈x21 〉
q1 −

(
L−1 + q1b

T
)
q̄0 = 0

− q̄0 + γ q1 −
(
L−1 + q1b

T
)
q1 + Q0 bφ2 = 0

−L−1Q0 − q1b
TQ0 + L−1DL−T = anti sym. (17)

And the third equation in (16) can be solved for φ0 (x1)
as:

φ0 (x1) =
(

U (x1) − bTq̄0
x21
2

)

φ2 (18)

where U (x1) is the potential function correspond-
ing to f (x1), i.e., f (x1) = dU (x1) /dx1. Adopted
from the statistical linearization method, the term
〈x1 f (x1)〉/〈x21 〉 can be named the equivalent linear
stiffness denoted by keq and can be calculated as fol-
lows:

keq = 〈x1 f (x1)〉
〈x21 〉

=

∫ +∞

−∞
x1 f (x1) e

−φ0(x1)dx1
∫ +∞

−∞
x21e

−φ0(x1)dx1

(19)

Therefore, the numerical value of keq can be calculated
by an iterative procedure.

Two different noise models are investigated in the
following sections to prove the performance of the pro-
posedmethod. Note that in the case of white noise exci-
tation, the proposedmethod gives the exact solution for
the joint PDF and hence for the desired second-order
moments 〈x21 〉 and 〈x22 〉.
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6 Case study I: noise with first-order dynamics

As a special case, consider themodel (3) for the random
excitation with first-order dynamics (Fig. 3). For this
system L = τ , b = 1 and D = D0 as presented in
Eq. (3). The solution for the unknown function φ0 (x1)
and the unknown constantφ2 according to the proposed
method are as follows:

φ2 = γ

D0

(
1 + γ τ + τ 2keq

)

φ0 (x1) =
(

U (x1) − γ τ

1 + γ τ
keq

x21
2

)

φ2 (20)

Especially at τ = 0, the solution reduces to the well-
known probability distribution function for a second-
order SDE with nonlinear stiffness and white noise
excitation. On the other hand, for linear stiffness
f (x1) = k x1, the solution coincides with the exact
Gaussian solution.

The result for τ = 0.1 and γ = 0.04 and a bistable
Duffing-type stiffness f (x1) = k1x1 + k3x31 with
k1 = − 1 and k3 = 1 are shown in Fig. 4. In this figure,
the results from the Gaussian approximation and the
proposed method are compared with the Monte Carlo
simulations. The estimation of the mean square value
of velocity 〈x22 〉 has similar accuracies in both meth-
ods. However, the proposed method shows much more
accurate approximations for the mean square of dis-
placement 〈x21 〉 than the Gaussian method.

7 Case study II: noise with second-order dynamics

Many environmental excitations are band-limited.
Band-limited excitations can be approximately mod-
eled as white noise signals passed through a second-
order filter. Mathematically, the model is characterized
by the noise center frequency ων , the damping ratio

Fig. 3 Power spectral
density for first- and
second-order noises

Fig. 4 Performance of the proposed method compared with the Gaussian approximation for a first-order noise excitation with τ = 0.1
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Fig. 5 Performance of the proposed method compared with the Gaussian approximation for a second-order noise with ων = 1.0, ζν =
0.2

Fig. 6 Performance of the proposed method compared with the Gaussian approximation for a second-order noise with ων = 1.5, ζν =
0.1

ζν and the amplitude of the white noise D0. Then, the
parameters in the state-space model (2) for the excita-
tion are as follows:

D =
[
D0 0
0 0

]
, L−1 =

[
0 − 1
ω2

ν 2ζνων

]
, b =

[
1
0

]
(21)

Defining γν = 2ζνων , the solution for φ2 and φ0 (x1)
is as follows:

φ2 = γ γν (γ + γν)

D0 ω2
ν

(
1 − τ ′γν + τ

′2ω2
ν

)

φ0 (x1) =
(

U (x1) − γ τ ′

γ τ ′ + 1
keq

x21
2

)

φ2

τ ′ = γν (γ + γν) + (
keq − ω2

ν

)

ω2
ν (γ + γν)

(22)

One can check that for linear stiffness f (x1) = k x1,
this solution will be the same as the exact Gaussian
solution.

The results for ων = 1.0, ζν = 0.2 and ων =
1.5, ζν = 0.1 are presented in Figs. 5 and 6, respec-

tively. The mechanical parameters k1, k3 and γ are the
same as in the first case study. Again, the results from
the Gaussian approximation and the proposed method
are compared with the Monte Carlo simulations. In
both figures, the estimation of 〈x21 〉 is considerably
more accurate for the proposed method than the Gaus-
sian approximation method. For 〈x22 〉, the accuracy of
the proposed method is not better than the Gaussian
approximation method. In fact, the proposed method
modifies the Gaussian approximation method so as to
deal with the essential nonlinearity in 〈x1〉 direction
and provide better approximations for 〈x21 〉, for which
the Gaussian approximation gives erroneous estimates.
On the other hand, the joint PDF of the system in x2
direction is mostly Gaussian, and the Gaussian approx-
imation gives good estimations for moments in this
direction and the proposed method does not improve
the accuracy of estimations in x2 direction.
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8 Conclusion

A quasi-Gaussian moment closure method was intro-
duced in this paper. This method is applied on a Duff-
ing oscillator with highly nonlinear (bistable) stiffness
and small damping coefficient, subject to colored noise
excitation. Random excitations with both first-order
and second-order dynamics are considered. The results
show an improved accuracy for the proposed method
in the estimation of the mean amplitude of vibration
compared to the Gaussian approximation method.

Themethod proposed in this paper is only applied on
a special type of SDEs, i.e., the Duffing-type oscillator,
excited by colored random Gaussian noise with first-
and second-order dynamics. However, the formulation
in Eqs. (17) and (18) is general enough to be used for
any shape of the stiffness function as well as any order
of the noise dynamics.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

References

1. Smith, R.C.: Uncertainty Quantification: Theory, Imple-
mentation, and Applications. SIAM, Bangkok (2013)

2. Yang, C.Y.: Random Vibration of Structures. Wiley, New
York (1986)

3. Henderson, D., Plaschko, P.: Stochastic Differential Equa-
tions in Science and Engineering. World Scientific Publish-
ing, Singapore (2006)

4. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy
harvesting. Phys. Rev. Lett. 102(8), 80601 (2009)

5. Briand, D., Yeatman, E., Roundy, S. (eds.): Micro Energy
Harvesting, vol. XXXIII. Wiley, Weinheim (2015)

6. Newland, D.E.: An Introduction to Random Vibrations,
Spectral and Wavelet Analysis, 3rd edn. Wiley, New York
(1993)

7. Socha, L.: Linearization Methods for Stochastic Dynamic
Systems. Springer, Berlin (2008)

8. Ibrahim, R.A.: Parametric Random Vibration. Wiley, New
York (1985)

9. Socha, L.: Linearization in analysis of nonlinear stochas-
tic systems: recent results-part I: theory. Appl. Mech. Rev.
58(3), 178 (2005)

10. Caughey, T.K.: Equivalent linearization techniques. J.
Acoust. Soc. Am. 34(12), 2001–2001 (1962)

11. Roberts, J.B., Spanos, P.D.: Random Vibration and Statis-
tical Linearization. Courier Dover Publications, New York
(2003)

12. Spanos, P.T.D.: Formulation of stochastic linearization for
symmetric or asymmetric MDOF nonlinear systems. J.
Appl. Mech. 47(1), 209 (1980)

13. Di Paola,M., Falsone, G., Pirrotta, A., Palermo, U., Scienze,
V.: Stochastic response analysis of nonlinear systems under
Gaussian inputs. Probab. Eng. Mech. 7, 15–21 (1992)

14. Sun, J., Hsu, C.S.: Cumulant-neglect closure method for
nonlinear systems under random excitations. J. Appl. Mech.
54(3), 649 (1987)

15. Wu, W.F., Lin, Y.K.: Cumulant-neglect closure for non-
linear oscillators under randomparametric and external exci-
tations. Int. J. Nonlinear. Mech. 19(4), 349–362 (1984)

16. Crandall, S.H.: Non-Gaussian closure for random vibration
of non-linear oscillators. Int. J. Nonlinear. Mech. 15(4–5),
303–313 (1980)

17. Makarem, H., Pishkenari, H.N., Vossoughi, G.R.: A modi-
fiedGaussianmoment closuremethod for nonlinear stochas-
tic differential equations. Nonlinear Dyn. 89(4), 2609–2620
(2017)

18. Zhu, W.Q.: Stochastic averaging methods in random vibra-
tion. Appl. Mech. Rev. 41(5), 189 (1988)

19. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approx-
imate method of solving random vibration problems. Int. J.
Nonlinear Mech. 21(2), 111–134 (1986)

20. Lin, Y.K.: Some observations on the stochastic averaging
method. Probab. Eng. Mech. 1(1), 23–27 (1986)

21. Zhu, B.W., Lin, Y.K.: Stochastic averaging of energy enve-
lope. J. Eng. Mech. 117(8), 1890–1905 (1992)

22. Di Paola, M., Sofi, A.: Approximate solution of the Fokker–
Planck–Kolmogorov equation. Probab. Eng.Mech. 17, 369–
384 (2002)

23. Soize, C.: Steady-state solution of Fokker–Planck equation
in higher dimension. Probab. Eng. Mech. 3(4), 196–206
(1988)

24. Er, G.-K.: A consistent method for the solution to reduced
FPK equation in statistical mechanics. Phys. A Stat. Mech.
Appl. 262(1–2), 118–128 (1999)

25. Er, G.-K., Iu, V.P.: The approximate solutions of FPK equa-
tions in high dimensions for some nonlinear stochastic
dynamic systems. Commun. Comput. Phys. 10(5), 1241–
1256 (2011)

26. To, C.W.S.: Nonlinear Random Vibration: Analytical Tech-
niques and Applications, 2nd edn. CRC Press, Boca Raton
(2012)

27. Joo, H.K., Sapsis, T.P.: A moment-equation-copula-closure
method for nonlinear vibrational systems subjected to cor-
related noise. Probab. Eng. Mech. 46, 120–132 (2016)

28. Daqaq, M.F.: Transduction of a bistable inductive generator
drivenbywhite and exponentially correlatedGaussiannoise.
J. Sound Vib. 330(11), 2554–2564 (2011)

29. Fan, F.G., Ahmadi, G.: On loss of accuracy and non-
uniqueness of solutions generated by equivalent lineariza-
tion and cumulant-neglect methods. J. Sound Vib. 137(3),
385–401 (1990)

30. Daqaq, M.F.: On intentional introduction of stiffness non-
linearities for energy harvesting under white Gaussian exci-
tations. Nonlinear Dyn. 69(3), 1063–1079 (2012)

31. Ibrahim, R.A., Soundararajan, A.: An improved approach
for random parametric response of dynamic systems with
non-linear inertia. Int. J. Non. Linear. Mech. 20(4), 309–
323 (1985)

32. Kumar, P., Narayanan, S., Adhikari, S., Friswell, M.I.:
Fokker–Planck equation analysis of randomly excited non-

123



A quasi-Gaussian approximation method 835

linear energy harvester. J. Sound Vib. 333(7), 2040–2053
(2014)

33. Risken, H.: The Fokker–Planck Equation: Methods of Solu-
tion and Applications. Springer, Berlin (1989)

34. Spencer, B.F., Bergman, L.: On the numerical solution of the
Fokker–Planck equation for nonlinear stochastic systems.
Nonlinear Dyn. 4, 357–372 (1993)

35. Kovacic, I., Brennan,M.J.: TheDuffingEquation:Nonlinear
Oscillators and Their Behaviour. Wiley, New York (2011)

36. Jazwinski, A.H.: Stochastic Processes and Filtering Theory.
Academic Press, Cambridge (1970)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	A quasi-Gaussian approximation method for the Duffing oscillator with colored additive random excitation
	Abstract
	1 Introduction
	2 System model
	3 Fokker–Plank equation
	4 Gaussian approximation
	5 The proposed method
	6 Case study I: noise with first-order dynamics
	7 Case study II: noise with second-order dynamics
	8 Conclusion
	References




