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Abstract In this paper, we introduce a memristor
model and a meminductor model and design the cor-
responding emulator circuits for imitating their char-
acteristics. By employing the two models, we propose
a very simple chaotic circuit that contains only three
elements in parallel: a memristor, a meminductor and
a linear passive capacitor. The circuit is very simple,
but has very abundant dynamical behaviors, includ-
ing line equilibrium set, bursting, coexisting attractors,
transient chaos, transient period and intermittency. Fur-
thermore, we replace the memristor and meminductor
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with their corresponding emulators in the proposed cir-
cuit to make a hardware experiment, which illustrates
the validity of the theoretical analysis.

Keywords Chaos · Memristor · Meminductor

1 Introduction

As a novel basic circuit element, a memristor was theo-
retically predicted byChua [1]. In 1976,Chua andKang
[2] extended the definition of memristor and defined
memristive systems and devices, which included a
voltage-controlled memristor and a current-controlled
memristor. In 2008, the physical implementation of
memristor was reported in Nature by the researchers in
Hewlett-Packard (HP) laboratories [3], which gained a
wide interest in academic circles.

Some mathematical models of memristor were pre-
sented to describe precisely the characteristics of mem-
ristors. A mathematical model of HP memristor was
proposed by HP laboratory [3]. Since the dopant drift
of theHPmemristorwas nonlinear, Biolek et al. put for-
ward some window functions to implement memristor
models [4–6]. Although several window functions for
the nonlinear dopant driftmodels ofHPmemristor have
been studied, most of them are inadequate to capture
the full characteristics of HP memristor. For improv-
ing this nonlinear dopant drift model, Wen et al. [7]
proposed a unified window function to describe more
precisely a general memristor with restrictions of its
parameters given.
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Since a voltage-controlledmemristor wasmore suit-
able in parallel memristor-based application circuits,
a voltage thrEshold adaptive memristor (VTEAM)
model was proposed by Kvatinsky et al. [8]. Refer-
ence [9] presented a non-ideal active voltage-controlled
memristor and designed a chua’s circuit with multiple
attractors based on the memristor. For the convenience
of applied research, SPICE models of memristor were
proposed by Biolek et al. [4,10], and its emulators were
presented in Refs. [11,12]. Yu et al. designed a mem-
ristor emulator consisting of one varactor diode, one
capacitor, several current-feedback operational ampli-
fiers and resistors. Sánchez-López and Aguila-Cuapio
used the second-generation current conveyor to realize
a 860 kHz memristor emulator.

Chua et al. extended the concept of memristive sys-
tems to memcapacitor and meminductor [13], which
typically showspinchedhysteretic loops in the two con-
stitutive variables: charge–voltage for the memcapac-
itor and current-flux for the meminductor. The prop-
erties of these memory devices depend on the state
and history of the device. Recently, somemathematical
models and equivalent circuits of meminductor were
proposed. Reference [14] presented the mathemati-
cal model and equivalent circuit of a flux-controlled
meminductor. Liang et al. [15] used several second-
generation current conveyors and other devices to con-
struct a floating meminductor emulator.

The memristor, memcapacitor and meminductor are
collectively called as memory elements, which store
information without need for a power supply and can
be used for nonvolatile memory [13], artificial neural
network [16], logic circuits [17], nonlinear circuits [18]
and so on. Zhang et al. [19] used memristive synapse
to improve neuron models. Within single new neu-
ron model, the modes in electrical activities were con-
trolled by the synapse with memory. For chain net-
work with memristive synapse connection, continu-
ous pulses induced regular patterns, whereas the com-
plete synchronization was suppressed by the diversity
in synapse current. Reference [20] presented memris-
tive fully convolutional network, whose accuracy was
over some existing machine learning methods about
image segmentation. Wen et al. proposed memristor-
based multilayer neural networks for machine learn-
ing, whose area consumption was 2–8% of the one
of CMOS-only circuit [21]. A fuzzy method was
employed to enable learning rate adjustment for mul-
tilayer neural networks, which increased the learning

accuracy by 2–3% compared with a constant learning
rate. Reference [22] put forward memristor-based echo
state network,whose topological structure adoptedNW
small-world network. The proposed network success-
fully performed car evaluation and short-term power
load forecasting.

Itoh and Chua firstly realized several memristor-
based chaotic oscillators by using the piecewise lin-
ear memristors to replace Chua’s diodes in Chua’s
circuit [23]. Afterward, many memristor-based and
meminductor-based chaotic oscillators were presented
[24–28]. Some simple memristive oscillators with
three circuit elements were reported in Refs. [29–
32]. Muthuswamy and Chua [29] successfully imple-
mented the simplest autonomous chaotic circuit, in
which an active current-controlled memristor connects
a linear inductor and a linear capacitor in series. Refer-
ence [30] postulated a simple chaotic circuit contain-
ing a voltage-controlled memristor, an inductor and
a capacitor in parallel. For increasing complexity of
memristor-based systems, Teng et al. used a memristor
of fourth-degree polynomial memristance to produce a
multi-scroll chaotic attractor and further investigated its
chaotic behaviors in integer order and fractional order
[31]. Lozi and Abdelouahab [32] derived a fractional-
order simple oscillator by replacing a memristor of
fourth-degree polynomial memristance with the one
of second-degree and found that it has rich nonlinear
behavior, such as coexisting attractors. All these simple
memristive systems were difficult to integrate them in
ICs since an inductance element has larger volume. For
avoiding to this shortcoming, Reference [33] proposed
a simple chaotic circuit containing a non-ideal memin-
ductor, a resister and a capacitor, whose behaviors also
were complicated.

Recently, the system with coexisting attractors
received much attention. The phenomenon of coexist-
ing attractors is related to the emergence of multista-
bility, which occurs in some dynamical systems, corre-
sponding to the coexistence ofmultiple stable attractors
for a set of fixed parameters. Li et al. [34] put forward
symmetrical chaotic systems with multiple attractors.
Xu et al. [35] found multistability in memristor-based
circuit systems. The fractional-order simple oscillator
presented byLozi andAbdelouahab [32] also had coex-
isting attractors. Sincemultistability can result in unex-
pected behaviors, the system with coexisting attractors
can be employed in information engineering.
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However, all above simple chaotic oscillators
included only one non-ideal memristor or meminduc-
tor and possess finite equilibrium points. Moreover, a
simple chaotic system with two kinds of memory ele-
ments was not found by now. This paper presents a
novel simple oscillator that has only a meminductor, a
memristor and a capacitor.

The goal of this paper is to show how to design
a simple oscillator with two different types of mem-
ory elements, which can exhibit more complex dynam-
ics. For this end, we design amemristor–meminductor-
based circuit, which is a simpleMr–Mi–C (memristor–
meminductor–capacitor) parallel circuit and possesses
complex dynamical behaviors, such as bursting, tran-
sient phenomenon, intermittency and so on. Bursting is
originally used to describe a type of neuron activity in
biological neurons and endocrine cells, which involves
two time scales. Bursting oscillation has been found
in some nonlinear systems. With proper parameters,
the proposed oscillator contains two timescales, from
which the chaotic bursting oscillation can be observed.
In addition, transient phenomenon and intermittency
are found in the system.

The rest of this paper is outlined as follows. Section 2
gives amemristormodel and ameminductormodel and
explores their fingerprints by their equivalent circuits.
In Sect. 3, we construct a simple chaotic system and
investigate its nonlinear behaviors. Section 4 verifies
the theoretical analyses by the circuit experiments. The
conclusion is given in Sect. 5.

2 Memristor and meminductor models

2.1 A memristive model and its emulator circuit

The definition of memristor is generalized by Chua and
Kang, which is defined as [2]:

z(t) = G(y, x, t)x(t),
ẏ(t) = F(y, x, t),

(1)

where x(t) and z(t) are the input and output of a mem-
ristor, respectively, and y(t) is the state variable of a
memristor. F(.) and G(.) are functions related to the
specific memristor.

In order to design a memristor-based chaotic system
in parallel, a voltage-controlled memristor is proposed
as:
iM = (Ay2 − B)vM,

ẏ = −cvM − dy + ev2My.
(2)

where iM and vM denote the current and voltage across
the memristor, and A, B, c, d and e are constants. To
further investigate features of the memristor, the cor-
responding equivalent circuit is designed in Fig. 1. Let
R4 = R10, we can obtain

iM = 1
R1

(
1 − R3

R9
+ R3

R2
y2

)
vM,

ẏ = − 1
R6C1

vM − 1
R5C1

y + 1
R7C1

v2My.
(3)

Comparing Eq. (2) with Eq. (3), it can be obtained
that A = R3/R1R2, B = (1/R1)(R3/R9 − 1), c =
1/R6C1, d = 1/R5C1, e = 1/R7C1.

When the equivalent circuit parameters are taken
as Fig. 1 and we apply a sinusoidal voltage signal
of v = cos(2π ft) to the memristor, the v–i char-
acteristics can be obtained as Fig. 2a, where a set
of frequency-dependent pinched hysteresis loops are
illustrated. Since the v–i characteristic curves exist in
the second and fourth quadrants, the proposed memris-
tor is an active memristor. Varying the value of R9, two
different v–i characteristics are described in Fig. 2b,
where the v–i characteristic curve exists in the second
and fourth quadrants as R9 = 12.5 k�, while the curve
exists in the first and third quadrants as R9 = 50 k�.
Therefore, it is clear to observe that varying the value of
R9 can change the nature of thememristor. Itmeans that
the memristor is a passive memristor when R9 = 50
k�, i.e., corresponding to B < 0; otherwise, it is active
when R9 = 12.5 k�, i.e., corresponding to parameter
B > 0. This paper utilizes an active memristor.

2.2 A meminductor model and its emulator circuit

The meminductor is postulated by Chua et al. in Ref.
[13], where a flux-controlled meminductor is defined
as

iLM = L−1(ρ)ϕ,
ρ̇ = ϕ,

(4)

where L−1(ρ) is the inverse meminductance and ρ is
the state variable of a meminductor.

The inversememinductance is selected as L−1(ρ) =
D+Eρ [14]. Its equivalent circuit is designed as shown
in Fig. 3. Let R14 = R15, R18 = R19, R22 = R23, the
flux-controlled meminductor is described as

iLM = 1
R11

(
R23
R20

+ R23
R21

ρ
)

ϕ,

ρ̇ = ϕ.
(5)
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Fig. 1 Equivalent emulator
circuit of the memristor

Fig. 2 v–i characteristic curves of the memristor a with different frequencies and b with different values of R9. (Color figure online)

Fig. 3 Equivalent emulator circuit of the meminductor
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Fig. 4 ϕ–i characteristic
curves of the meminductor:
the ϕ–i characteristic curves
of f = 100 Hz, f = 120
Hz and f = 300 Hz are
colored in blue, green and
red, respectively. (Color
figure online)

Fig. 5 A simple chaotic circuit

Comparing Eq. (4) with Eq. (5), the parameters of
the mathematical model can be represented by D =
R23/(R20 R11) and E = R23/(R21R11).

Similarly, when a sinusoidal voltage signal of v =
cos(2π ft) is employed to stimulate this equivalent cir-
cuit, and its frequency is set to 100 Hz, 120 Hz and
300 Hz, respectively, the ϕ–i characteristics are dis-
played in Fig. 4, where the hysteresis loops depend on
the frequency. These ϕ–i curves are in the second and
fourth quadrants, whereupon indicating that the pro-
posed meminductor is active.

3 A simple chaotic system based on memristor and
meminductor

3.1 A simple chaotic oscillator

Based on the proposed memristor and meminductor
models, a simple chaotic circuit that contains only three
elements is constructed as shown in Fig. 5. Selecting

the voltage vc across the capacitor, the state variable y
of the memristor, the flux ϕ of the meminductor and its
state variable ρ as state variables, the state equations
of the system can be described as
⎧⎪⎪⎨
⎪⎪⎩

C v̇C = −(Ay2 − B)vC − (Dρ + E)ϕ,

ẏ = −cvC − dy + ev2C y,
ϕ̇ = vC ,

ρ̇ = ϕ.

(6)

Let vc = x , ϕ = z, ρ = u, A
C = a, B

C = b, D
C = α,

and E
C = β,ẇ = dw

dτ
(w ≡ x, y, z, u), t = τ , the

equations are expressed as:
⎧
⎪⎪⎨
⎪⎪⎩

ẋ = −(ay2 − b)x − (αu + β)z,
ẏ = −cx − dy + ex2y,
ż = x,
u̇ = z.

(7)

When the system parameters are set as a = 0.1, b =
0.5, c = 0.5, d = 10, e = 4, α = 0.1 and β = 1, with
the initial conditions as (− 1,− 0.5,− 0.5,− 3), the
system shows chaotic state. The Lyapunov exponents
of the oscillator are LE1 = 0.081, LE2 = 0, LE3 =
− 0.040 and LE4 = − 4.290, as well as the Lyapunov
dimension is DL = 3.010. The chaotic attractors and
the Poincaré mappings are exhibited in Figs. 6 and 7,
respectively.

3.2 Basic dynamical analysis

The divergence of System (7) is written as

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
+ ∂ u̇

∂u

= −ay2 + b − d + ex2. (8)
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Fig. 6 Chaotic attractors of the simple chaotic oscillator a x–y phase portrait, b y–z phase portrait, c z–u phase portrait, d u–x phase
portrait

When the parameters are selected as a = 0.1, b = 0.5,
c = 0.5, d = 10, e = 4, α = 0.1 and β = 1, under
the initial condition of (− 1,− 0.5,− 0.5,− 3), it has
∇V < 0, i.e., the system is dissipative, which implies
that the attractor might be a chaotic attractor.

Let ẋ = ẏ = ż = u̇ = 0, a line equilibrium set O(0,
0, 0, u) of this circuit can be obtained. In other words,
this system has infinite equilibria. Its Jacobian matrix
is described as

J =

⎡
⎢⎢⎣

b 0 −(αu + β) 0
−c −d 0 0
1 0 0 0
0 0 1 0

⎤
⎥⎥⎦ . (9)

The characteristic equation at equilibrium set conse-
quently is written as

F(λ) = λ[λ3 + (d − b)λ2

+ (αu + β − bd)λ + d(αu + β)]. (10)

By solving Eq. (10), we can yield one eigenvalue λ1 =
0, and one cubic equation of λ:

λ3 + a1λ
2 + a2λ + a3 = 0, (11)

where a1 = d−b, a2 = αu+β −bd, a3 = d(αu+β).
According to the Routh–Hurwitz stability criterion,

System (7) is stable if a1 < 0, a3 < 0 and a1a2 > a3.
For a = 0.1, b = 0.5, c = 0.5, d = 10, e = 4,
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Fig. 7 Poincaré map on z = 0

α = 0.1 and β = 1, under the initial condition of
(− 1,− 0.5,− 0.5,− 3), the eigenvalues of the charac-
teristic equation can be obtained as λ1 = 0, λ2 = − 10
and λ3,4 = 0.2500± j0.7984. Thus the equilibrium is
unstable saddle-focus equilibrium in this case.

3.3 The influences of parameters

To explore the sensitivity of the simple oscillator with
regard to the parameter a, the Lyapunov spectrum and
the corresponding bifurcation portrait are calculated

with the parameter a increasing from 0 to 1.2. When
the other parameters and the initial conditions are cho-
sen as Sect. 3.1, the Lyapunov exponent spectrum is
depicted in Fig. 8a, where LE1-3 stand for the first
three Lyapunov exponents, and the fourth Lyapunov
exponent is trimmed out due to its large negative value.
The corresponding bifurcation portrait is displayed in
Fig. 8b.

Obviously, the system exhibits complex dynamical
behaviors. In the region of 0 < a ≤ 0.0059, there is one
positive Lyapunov exponent, which indicates the sim-
ple system is chaotic. When the parameter aincreases
to 0.006, the system emerges periodic windows. If the
parameter a is greater than 0.03, it goes into chaos. As
a is the range of 1.118 to 1.2, the quasi-periodic state
appears. In particular, two different chaotic attractors in
the x–y plane are shown in Fig. 9a, c, whereas Fig. 9b,
d demonstrate the periodic and quasi-periodic state of
the system, respectively.

In order to explore both a and b influencing on the
system simultaneously, the dynamical map of the sys-
tem is depicted in Fig. 10, where the other parameters
and the initial conditions are set as Sect. 3.1. In the
dynamical map, the system is in periodic state when the
value of the parameters a and b is in the yellow regions,
the system in chaotic state when the value in the blue
region, and the system in unbounded state when the
value in the brown region.

Fig. 8 Lyapunov exponent spectrum and bifurcation portrait against a: a Lyapunov exponent spectrum and b bifurcation portrait.
(Color figure online)

123
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Fig. 9 Phase portraits in the x–y plane with the parameter a: a a = 0.00006, b a = 0.02, c a = 0.2, and da = 1.18

Fig. 10 Dynamical map with a and b. (Color figure online)

3.4 Impacts of initial conditions

For analyzing the sensitivity of the initial condition,
we fix the system parameters as Sect. 3.1, and exploit
Lyapunov exponent spectrum, bifurcation portrait and
dynamical map.

In order to explore the sensitivity of the initial con-
dition x(0), and selecting the initial values as y(0) =
0, z(0) = 10.5 and u(0) = 0, the first three Lyapunov
exponents and the corresponding bifurcation portrait
are depicted in Fig. 11, where the initial value x(0)
increases from 1 to 8. From Fig. 11, it is clear to
observe that the state of the proposed oscillator depends
on the initial value x(0). The simple oscillator starts
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Fig. 11 Lyapunov exponent spectrum and bifurcation portrait against x(0): a Lyapunov exponent spectrum and b bifurcation portrait.
(Color figure online)

Fig. 12 Phase portraits in the x–y plane with the parameter x(0): a x(0) = 1, and b x(0) = 5

from periodic state. The system jumps from periodic
state into chaotic state at x(0) = 2.830. In the region
of 2.830 ≤ x(0) ≤ 6.620, there exist some periodic
windows. The system jumps back periodic state as
x(0) = 6.621. In particular, the periodic attractor in
the x–y plane is shown in Fig. 12a, whereas Fig. 12b
demonstrates chaotic state of the system, respectively.

In order to observe the influence of x(0) and z(0) on
the system dynamics at the same time, the dynamical
map of the system is illustrated in Fig. 13, where the
yellow region denotes chaotic state, as well as the blue
one stands for periodic state. From Fig. 13, we can see

that the initial values have an important influence on
the dynamics of the system.

However, the dynamical behavior of the simple
chaotic system is independent of the initial condition
y(0). The Lyapunov exponent spectrum and bifurca-
tion portrait with respect to initial condition y(0) are
shown in Fig. 14, where the other initial conditions are
set as x(0) = − 1, z(0) = − 0.5 and u(0) = − 3.
This phenomenon is named as sustained chaos in this
paper, whose largest Lyapunov exponent keeps posi-
tive value and is approximate constant in the region of

123
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Fig. 13 Dynamicalmapwith x(0) and z(0). (Color figure online)

y (t) ∈ [− 1000, 1000]. The bifurcation portrait also
indicates that the system is sustained chaos state.

3.5 Bursting phenomenon

Bursting is an important neuronal activity of sending
message [36,37], which is a phenomenon of alternating
between rest states and spiking states. Bursting phe-
nomenon also is found in some nonlinear dynamical
systems [38–40], which relates to Hopf bifurcation and
fold bifurcation. When the system has two timescales,
the fast variables are modulated by the slow variable,
which leads to the emergence of bursting.

Fig. 15 Critical condition in the y–u plane

Hence, a system, which has bursting phenomenon,
can be divided into fast and slow subsystems such that
the slow subsystem includes a single slow variable, and
the fast subsystem includes the remaining variables,
which are relatively fast [41,42]. The fast subsystem
of Eq. (7) is expressed as⎧⎨
⎩
ẋ = −(ay2 − b)x − (αu + β)z,
ż = x,
u̇ = z,

(12)

which consists of the first two equations and the fourth
equation in Eq. (7), while the slow subsystem is the rest
of the equations described as

ẏ = −cx − dy + ex2y, (13)

Fig. 14 Lyapunov exponent spectrum and bifurcation portrait against y(0): a Lyapunov exponent spectrum and b bifurcation portrait.
(Color figure online)
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A memristor–meminductor-based chaotic system 775

Fig. 16 Bursting phenomenon under the initial condition of (0, 2, 1, 0) a time-domain waveform of the variable x , b time-domain
waveform of the variable y, c x–y phase portrait

which is the third equation of Eq. (7). For the fast sub-
system, the variable y can be considered as a conven-
tional parameter, and its equilibriumpoint is got asO(0,
0, u). The corresponding Jacobian matrix is expressed
as

Jsub =
⎡
⎣

−(ay2 − b) −(αu + β) 0
1 0 0
0 1 0

⎤
⎦ . (14)

Therefore, the characteristic equation is described as

det(λI − Jsub) = λ[λ2 + (ay2 − b)λ + (αu + β)].
(15)

Obviously, the characteristic equation has a zero eigen-
value,whichmeans that there exists the fold bifurcation
with the variable y taking any value.

TheHopf bifurcation is associatedwith the existence
of a pair of pure imaginary eigenvalues, whereupon
the critical condition at the Hopf bifurcation point is
(ay2−b) = 0 and (αu+β) > 0. This critical condition
is demonstrated in the y–u plane, which is the two red
lines as shown in Fig. 15.

For the parameters as a = 0.1, b = 0.4, c = 0.2,
d = 0.1, e = 4, α = 0.1 and β = 3, with the ini-
tial condition as (0, 2, 1, 0), the eigenvalues of the fast
subsystem can be obtained as λ1 = 0, and λ2,3 =
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776 B. Xu et al.

Fig. 17 Coexisting attractors of bursting with the initial conditions of (1, 1.8, 1, 1) (blue) and (2, −1, 1, 2) (red): a time-domain
waveforms of the variable x , b time-domain waveforms of the variable y, c x–y phase portraits. (Color figure online)

0± j1.7321. These eigenvalues indicate that fold bifur-
cation and Hopf bifurcation appear in this fast subsys-
tem, and thus, the bursting oscillation occurs.

By simulating Eqs. (12) and (13), the time-domain
waveforms of the state variables x and y are depicted in
Fig. 16a, b, respectively, and the corresponding phase
portrait in the x–y plane is displayed in Fig. 16c. The
Lyapunov exponents of the oscillator are LE1 = 0.023,
LE2 = 0, LE3 = − 0.003 and LE4 = − 0.050, where-
upon this bursting can be regarded as chaotic bursting.

Moreover, fixing the above system parameters and
changing initial conditions from (1, 1.8, 1, 1) to (2,
−1, 1, 2), the corresponding time-domain waveforms
and the phase portrait for the state variables x and y are

shown in Fig. 17,where thewaveform (orbit)marked in
blue starts from the initial condition (1, 1.8, 1, 1), while
the other waveform (orbit) from (2, −1, 1, 2). From
Fig. 17, we can observe two coexisting attractors of
bursting, which are approximately symmetrical about
the y-axis.

3.6 Coexistence of attractors

In recent years, attractor coexistencebecomes a research
focus, which is a special phenomenon in some spe-
cial nonlinear systems, i.e., the coexistence of differ-
ent attractor basins with the different initial conditions
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Fig. 18 Coexisting attractors in the x–y and z–u planes with
different b under the initial conditions of (2, − 1, 1, 2) (blue),
(− 2, 0.7, − 1, − 2) (red), (0.1, 0, 0.2, 0) (green) and (0, 0, 0.2,
0.2) (yellow): a attractors in the x–y plane and b attractors in the
z–u plane with b = 0.0001, c attractors in the x–y plane and d
attractors in the z–u plane with b = 0.1, e attractors in the x–y

plane and f attractors in the z–u plane with b = 0.2, g attractors
in the x–y plane and h attractors in the z–u plane with b = 0.5, i
attractors in the x–y plane and j attractors in the z–u plane with
b = 20, k attractors in the x–y plane and l attractors in the z–u
plane with b = 100. (Color figure online)
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Fig. 18 continued
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Fig. 19 Bifurcation portraits under the initial conditions:a bifur-
cation portraits under the initial conditions of (2,− 1, 1, 2) (blue),
(− 2, 0.7, − 1, − 2) (red), b bifurcation portraits under the initial

conditions (0, 0, 0.2, 0.2) (blue) and (0.1, 0, 0.2, 0) (red). (Color
figure online)

Fig. 20 Attractive basins on the cross section of a = 1, b = 0.1,
c = 0.02, d = 5, e = 6, α = 2 and β = 12: a the attractive basin
in the cross section of z(0) = 0 and u(0) = 0, b the attractive

basin in the cross section of x(0)= 2 and y(0)= 0. (Color figure
online)

[43–46]. In Sect. 3.4, two coexisting attractors of burst-
ing are demonstrated.

For further exploring this phenomenon, we fix a =
1, c = 0.02, d = 5, e = 6, α = 2 and β = 12, with
varying the parameter b and then watch the changes of
this system’s state. The results of numerical simulation
are demonstrated in Fig. 18, where the orbit colored in
blue starts from the initial condition of (2, −1, 1, 2),
and the red, green and yellow ones start from the initial

conditions of (−2, 0.7, −1, −2), (0.1, 0, 0.2, 0) and
(0, 0, 0.2, 0.2), respectively.

When b = 0.0001, the coexistence of four periodic
attractors is shown in Fig. 18a, b, where the four peri-
odic attractors are separated in the x–y and z–u planes,
respectively.

For b = 0.1, 0.2 and 0.5, Fig. 18c, e, g, respec-
tively, display the coexisting chaotic attractors on the
x–y phase plane, as well as Fig. 18d, f, h shows the
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Fig. 21 Coexisting attractors in the x–y and z–u planes with different initial conditions: a x–y plane b z–u plane. (Color figure online)

coexisting chaotic attractors in the z–u phase plane,
respectively.

From Fig. 18c, e, g, it is clear to observe that four
chaotic attractors are interlinked in the x–y plane, and
the shape of the every existing attractor is slightly dif-
ferent. Moreover, the overlap of the attractor basins in
the z–u plane also emerges with the increase of the
parameter b.

Figure 18i, k visualizes two separated chaotic attrac-
tor basins in the x–y plane. However, green attractor
is in the upper attractor basin as b=20, whereas green
attractor is in the below attractor basin as b=100. Fur-
thermore, the distance between two separated basins
increases in the y-axis direction with the increase of
the parameter b.

Four coexisting chaotic attractors in the z–u plane
with b = 20, 100 are displayed in Fig. 18j, l, respec-
tively, where the four chaotic attractors are separated
again when b = 100. Hence, it is easy to see that the
system has complex dynamics in this bifurcation with
respect to both the parameter b and initial conditions.

In order to investigate the phenomenon of attractor
coexistence, we draw the bifurcation portraits, which is
shown in Fig. 19. Though there exits almost the same
process from periodic oscillation to chaotic oscillation,
the periodicwindows in the chaotic region and themax-
imum of the oscillation are different.

The attractive basin, which changes with the system
parameters, is an important tool to analyze coexistent
attractors of circuits. Figure 20gives the attractive basin
in the cross section of a = 1, b = 0.1, c = 0.02, d = 5,

Table 1 Initial conditions and color

Initial conditions Color

(2, 0, − 1.80, − 1.94) RoyalBlue

(2, 0, − 0.55, − 1.46) Aquamarine

(2, 0, 1.42, − 0.90) DarkOrange

(2, 0, 1.32, 1.40) Red

e = 6, α = 2 and β = 12. It includes four differ-
ent color regions, representing four different types of
attractors in the given value regions of the two param-
eters. From the graph of the attractive basin, we can
see that the oscillation state varies with the increases
of z(0) and u(0). Several detailed coexistent attractors
are given in Figs. 21. Table 1 lists the initial values and
the corresponding types of coexistent attractors.

3.7 Transient phenomenon and intermittency

Transient phenomenon has been found in memristor-
based or meminductor-based systems, which includes
transient chaos [32,47–49], transient hyperchaos [49,
50] and transient period [51]. Transient chaos is a famil-
iar phenomenon, which is often observed in chaotic
systems. The proposed system also generates tran-
sient chaos certainly. When the parameters are set as
a = 0.1, b = 1, c = 0.5, d = 10, e = 4, α = 0.2
and β = 1, and the initial condition is selected as (−1,
−1.1, 1, 1), the time-domain waveform of the variable
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Fig. 22 Transient chaos a time-domain waveform of the vari-
able x in the time interval [0, 2000 s], b Lyapunov exponent
spectrum, c phase portrait of transient chaos, d phase portrait of

periodic oscillation, f time-domain waveform of the variable x
in the time interval [1000, 1110 s]. (Color figure online)
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Fig. 23 Intermittency for the initial conditions of a (− 1, 0.7, 1, 1), and b (− 1, − 0.8, 1, 1)

x is depicted in Fig. 22a, where the trajectory has a
transition from transient chaos to periodic oscillation.

The Lyapunov exponent spectrum is displayed
in Fig. 22b, where the largest Lyapunov exponent
decreases to zero with time evolution, which verifies
this transient phenomenon. In order to further illustrate
this transient, the chaotic phase portrait is shown in
Fig. 22c, whereas Fig. 22d displays the periodic phase
portrait, and the waveform of the variable x in the time
interval [1000, 1110 s] is shown in Fig. 22e.

Moreover, if the initial condition is taken as (−1,
0.7, 1, 1), the intermittency on the route from chaos to
period is displayed in Fig. 23a. Under different condi-
tions, this system emerges different intermittency. Fig-
ure 23b demonstrates the different intermittency with
the former, where the initial condition is (−1,−0.8, 1,
1).

This proposed system has infinite equilibria, where-
upon this system maybe has transient period. Setting
the parameters as a = 1, b = 1, c = 0.5, d = 5, e = 4,
α = 2 and β = 10, and taking initial condition as
(−1.4649, 0.5461, 0.1394, 8.9251), the time domain
waveform of the variable x is displayed in Fig. 24a,
which shows that this system starts from periodic oscil-
lation and then switches to chaos with time evolution.
The Lyapunov exponent spectrum is shown in Fig. 24b.
For clarity, the waveform of the variable x in the time
interval [0, 10s] is shown in Fig. 24c, which is a sinu-
soidal oscillation. Figure 24d, e demonstrates the tran-
sient process from periodic oscillation to chaotic oscil-
lation by using phase portraits.

We remark that although the simple circuit contains
only two dynamic circuit elements and a nonlinear
resistor, i.e., a capacitor, a meminductor and a mem-
ristor, it can generate complex chaotic oscillation. The
reason is that the circuit contains a local-activememris-
tor which can provides the energy to sustain the oscil-
lation. In addition, the memristor and the meminductor
each has an internal variable, y and ρ, which each sat-
isfies a differential equation. Therefore, the governing
equations of the dynamic second-order circuit are actu-
ally described by a set of four differential equations,
thereby yielding the complex dynamical behaviors for
the second order circuit.

4 Circuit design and experiment results

Replacing the memristor and meminductor in Fig. 5
with their equivalent circuits (emulators) shown as
Figs. 1 and 3,we canmake a circuit experiment for veri-
fying the proposed memristor–meminductor-based cir-
cuit, and the corresponding circuit is shown in Fig. 25.
For controlling the speed of system evolution, the
timescaling factor K is introduced into Eq. (7). Let
τ = Kt , Eq. (7) is rewritten as:⎧⎪⎪⎨
⎪⎪⎩

ẋ = K [−(ay2 − b)x − (αu + β)z],
ẏ = K (−cx − dy + ex2y),
ż = Kx,
u̇ = Kz.

(16)

The dynamics of the circuit shown in Fig. 25 can be
described by:
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Fig. 24 Transient process from period to chaos a x waveform
from period to chaos in the time interval [0, 1000 s] b Lyapunov
exponent spectrum with respect to time t in the time interval [0,
1000 s], c periodic waveform of x in the transient process for

the time interval [0, 10 s], d phase portrait of transient period,
f phase portrait of chaotic oscillation in the transient process.
(Color figure online)
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Fig. 25 Experimental circuit with a memristor and a meminductor

Fig. 26 Experimental bursting phenomenon observed from a digital storage oscilloscope a time-domain waveforms of vc (brown) and
y (pink), b vc − y phase portrait
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Fig. 27 Chaotic attractors
observed from a digital
oscilloscope: a vc2 versus y,
b y versus ϕ, c ϕ versus ρ,
d ρ versus vc2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v̇C2 = − 1
R1C2

(
1 − R3

R9
+ R3

R2
y2

)
vC2

− 1
R1C2

(
R23
R20

+ R23
R21

ρ
)

ϕ,

ẏ = − 1
R6C1

vc2 − 1
R5C1

y + 1
R7C1

v2c2y,

ϕ̇ = 1
R12C3

vc2,

ρ̇ = 1
R16C4

ϕ.

(17)

Comparing Eq. (16) with Eq. (17), and let their corre-
sponding coefficients be equal, we have

1

R1C2

R3

R2
= Ka,

1

R1C2

(
R3

R9
− 1

)

= Kb,
1

R1C2

R23

R21
= Kα,

1

R1C2

R23

R20
= Kβ

1

R6C1
= Kc,

1

R5C1
= Kd,

1

R7C1

= Ke,
1

R12C3
= K ,

1

R16C4
= K

When the parameters of Eq. (17) are a = 0.1, b = 0.5,
c = 0.5, d = 10, e = 4, α = 0.1 and β = 1,
with K = 10000, the parameter values of the elec-
tronic components are selected as shown in Fig. 25

The experimental results of bursting obtained from
the digital oscilloscope of the experimental setup are
shown in Fig. 26, in which the brown and pink wave-
forms of Fig. 26a correspond to the time-domain wave-
forms of x and y in Fig. 16a, b, respectively, while
Fig. 26b corresponds to Fig. 16c, describing the phase
diagram of x versus y. Figure 27 shows chaotic attrac-
tors observed from oscilloscope of the physical circuit
experiment, and Fig. 28 is the experimental setup with
the experimental results of chaotic bursting. The phys-
ical circuit is constructed in a breadboard, whose area
is about 8 × 10 cm2. The circuit includes four ana-
log multiplier AD633s and three operational amplifier
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Fig. 28 Experimental setup
with experimental chaotic
bursting

LF347Ns; thus, the power consumption of the circuit
is approximate 1W.

5 Conclusion

In this work, we presented the mathematical mod-
els and their equivalent circuits of a memristor and
a meminductor. Based on the two models, a sim-
ple chaotic oscillator containing a memristor and a
meminductor is proposed. We have shown that this
oscillator can exhibit some complex dynamical behav-
iors, including bursting, coexisting attractors, transient
chaos, transient period and intermittency. Finally, an
electronic circuit is designed by utilizing the equivalent
circuits of the memristor and meminductor to substi-
tute their mathematical models, with which the experi-
mental results confirm its chaotic feature via hardware
experiment. Due to rich dynamical behaviors of the
simple chaotic system, it can be expected that it will
have extensive prospects for memristive circuits in the
future.
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