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Abstract This paper presents an systematic dynamic
modeling and performance analysis method of an over-
constrained 2PUR-PSR parallel manipulator with par-
asitic motions, where P, U, S, and R represent the pris-
matic joint, universal joint, spherical joint, and rev-
olute joint, respectively. The process of the deduc-
tion of the over-constrained forces/moment is given.
The Newton–Euler approach and natural orthogo-
nal complement method are adopted to establish two
types of dynamic models with and without constrained
forces/moments with the consideration of the over-
constrained forces/moments. The dynamic manipu-
lability ellipsoid, which measures the uniformity of
changing the position and orientation of the manip-
ulator’s moving platform, is adopted to evaluate the
dynamic performance of the parallel manipulator. To
show the feasibility of the proposed method, numerical
simulations are conducted to investigate the dynamic
models and performance of the 2PUR-PSR manipula-
tor. The actuation forces, constrained forces/moments,
and the compatible deformation are calculated. Distri-
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bution of theDME index is also obtained. The proposed
modeling approach provides a fundamental basis for
the structural optimization and control scheme design
of the over-constrained parallel manipulator.

Keywords Dynamic modeling · Performance
analysis · Low-mobility parallel manipulator ·
Over-constraints · Parasitic motion

1 Introduction

Parallel manipulators (PMs) have been intensively
studied for over a decade and have been used in a wide
spectrum of applications, from simple pick-and-place
operations of an industrial robot to advanced electronic
manufacturing, maintenance of nuclear plants robotics
[1,2]. Because of their closed kinematic structures,
PMs exhibit better performance in terms of accuracy,
rigidity, and payload capacity and show greater poten-
tial to deal with numerous tasks [3]. The lower motil-
ity PMs, which own less than six degrees of freedom
(DOF), can perform most of the aforementioned tasks
and have received more and more popularities for their
lower cost, lower complexity in structure and easier
control [4].

Dynamic modeling serves as the fundamental basis
for the dynamic performance analysis and is essential
for the structural design and control scheme design of
parallel manipulators. However, different applications
have different requirements for the dynamic model.
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For the structural design, the driving forces/torque
and the constrained forces/moments should be cal-
culated simultaneously, while for the control scheme
design, the dynamic model should be efficient enough
for the real-time calculation. Unlike serial manipula-
tors which possess well-established dynamic modeling
methods, however, due to the closed kinematic chain,
an explicit dynamic formulation of the PMs is much
more complicated. Besides, the parasitic motions and
over-constraints usually accompany the lower motility
PMs, which makes the dynamics even more compli-
cated [5]. Over-constraints would result in deformation
for the flexibility of links, which cannot be ignored for
high-accurate applications. Most previous studies on
low-mobility PMs have focused on kinematics and the
corresponding optimal design. The systematic inves-
tigation of dynamics and performance analysis of the
over-constrained PM with parasitic motions is still an
open problem.

Therefore, we aim to propose a systematic precise
and efficient method to derive the explicit dynamic
formulation and dynamic performance analysis for
the over-constrained lower-mobility PM with parasitic
motions. We focus on an over-constrained 2PUR-PSR
PM, which possesses one translational and two rota-
tional DOFs with parasitic motions, is a three-legged
parallel manipulator utilizing the sliders to allow actu-
ators to be mounted on the base.

The literature on the dynamic modeling of PMs
mainly falls into four categories: the Newton–Euler
method, Lagrange formulation, Kane equation, and
principle of virtual power [6]. Using Newton–Euler
method, Dasgupta obtained the inverse dynamic mod-
els of the Stewart platform [7,8]. First, the dynamic
equation of every isolated rigid bodywas obtainedwith
the consideration of the internal forces and moments,
resulting in a system that can be applied in model-
based feed-forward control. By eliminating the inter-
nal forces and moments, a closed-form dynamic for-
mulation of the Stewart platform was then derived.
Using the same method, Chen established the closed-
form dynamic model of the 3PRRU parallel manipula-
tor without parasitic motion or redundant constraints,
and the dynamic performance was then analyzed based
on the dynamic model [9]. By incorporating the defor-
mation compatible equations, Bi derived the inverse
dynamic model of an over-constrained parallel manip-
ulator with the Newton–Euler formulation. This model
has the potential to be integrated with control systems

to improve dynamic performance under real-time con-
trol [10]. However, the Newton–Euler method usually
results in a set of differential algebraic equations with
a maximum number of coordinates. As the Newton–
Euler equations of all bodies and the constraint equa-
tions are integrated together, the computation cost is
very high.

Many researchers have applied the usual Lagrange
formulation to PMs, but the closed kinematic chain
requires the introduction of Lagrange multipliers [11],
making the Lagrange formulation too complex. To
eliminate the multipliers, Stefan proposed a recursive
matrix representation for the kinematics of the parallel
manipulator and employed a dynamicmodel for the PM
using the minimal parameters derived from the kine-
matics [12–14]. Chen proposed the Udwadia–Kalaba
approach to calculate the multipliers and obtained an
explicit dynamic model of the Stewart platform [15].
By combining the Lagrange formulation with the vir-
tual work principle, Guiyang established the dynam-
ics of a parallel manipulator with three DOFs [16].
Houssem considered open-loop sub-chains of the PM
and derived their dynamics by the Lagrange formula-
tion with respect to an own set of generalized coordi-
nates and velocities. By considering the principle of
energy equivalence, the equations can be computed
separately for the sub-chains of the robot [17]. Dong
established the dynamic model of a planar parallel
manipulator with the redundant actuations with the
Lagrange equation, and the Lagrange multipliers were
eliminated by the expression of the null space of veloc-
ity constraintmatrix [18]. Briot employed theLagrange
formulation to derive the dynamic model of the 5R par-
allel manipulator with flexible joints and flexible links,
and the Lagrange multipliers were derived based on
the dynamic model of the moving platform (MP), and
an explicit dynamic model was thus obtained [19,20].
However, as explicit expressions require the kinetic and
potential energies of all components in the manipula-
tor, the computational cost of the Lagrange equation
would increase significantlywhen the number of bodies
increases. Hence, for parallel manipulators with closed
kinematic chains, dynamicmodelingwith theLagrange
formulation is too complex.

By integratingLagrange equationwith d’Alembert’s
principle, Kane’s equations demonstrate that the sum
of total generalized active forces and the total gener-
alized inertia forces for each generalized coordinate
of the system equals zero [21]. It can be shown that
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the constrained forces/moments are eliminated auto-
matically with Kane’s equations, as all selected par-
tial velocities are independent. Using Kane’s equation,
Chen derived the rigid-flexible coupled dynamicmodel
of a 3RRR planar parallel manipulator [22]. Cheng
derived the dynamic model of a hip joint simulator
with a 3SPS+1PS spatial parallel manipulator. This
provided the theoretical basis for the design of a driv-
ing system with active branched-chains and the struc-
tural parameters of the intermediate branched-chain,
as well as for the control system design [23]. However,
the deductions of partial velocities and accelerations
require tedious calculations due to the closed kinematic
chains of PMs, and also the established dynamic model
is inappropriate for structural design as constrained
forces/moments in connecting joints are automatically
eliminated.

The principle of virtual power is another effective
dynamic modeling method for multibody system. The
process is as following: the generalized forces, includ-
ing the inertial forces, gravity forces, external forces,
and the actuation forces, for individual body are calcu-
lated first, and then, the dynamically systematic equi-
libriumequations depicting the virtual power of the sys-
tem, which were produced by all forces under instan-
taneous virtual displacement, are established and held
zero. As the constrained forces ormoments did not pro-
duce work for the system, they are eliminated from the
dynamic model; Jaime established the inverse dynamic
model of the 4-PRURPMbymeans of the screw theory
and the principle of virtual work [24]. Hu derived the
velocity mapping of the (3-UPU)+(3-UPS+S) serial-
parallel manipulator and established the dynamic mod-
els with the principle of virtual power, and the actua-
tion forces were derived [25]. Huang first established
the 3-DOF Modules of Two Reconfigurable PKM—
the Tricept and the TriVariant with the principle of
virtual power, and conducted comparison studies of
the dynamic performance [26], and then, the dynamic
model of the 4-DOF SCARA Type PM was derived
with the same method, based on which the dynamic
performance indices were optimized [27]. The princi-
ple of virtual power is a very efficient control-oriented
modelingmethod for the dynamics of thePM, forwhich
the constrained forces/momentswere eliminated.How-
ever, the constrained forces/moments are essential for
structural design, so the dynamic modeling with the
principle cannot satisfy the requirements for structural
design and control scheme design simultaneously.

Toderive a computationally efficient dynamicmodel,
the concept of the natural orthogonal complement
(NOC), which defined the relationship that maps the
independent velocities onto the twist of an individ-
ual body, is proposed to eliminate the constrained
forces/moments or the Lagrange multipliers [28]. In
NOC, dynamic modeling of individual body is estab-
lished first, and then, the NOC matrix is employed to
transform the twist of an individual body into inde-
pendent velocities. The resulting dynamic model is
in closed form without including constrained forces,
torques, or the Lagrange multipliers. Hence, this
method is quite efficient and straightforward and is very
suitable for PMs. Using this method, Ganesh estab-
lished the inverse dynamicmodel of a translational par-
allel manipulator and optimized the trajectories [29].

In the aforementioned literature, the research on
dynamic modeling of PMs has made considerable
achievements; however, relevant studies on the over-
constrained PMs with parasitic motions are quite lim-
ited. Also, to the author’s knowledge, there is still
no generally accepted dynamic index for the over-
constrained lower-mobility PMwith parasitic motions.
In this paper, to satisfy different requirements for
the dynamic models of structural and control scheme
design, a systematic closed-form dynamic modeling
and analysis method of the over-constrained PMs
with parasitic motions is presented. The dynamic
models with and without constrained forces/moments
can be established simultaneously with the Newton–
Euler equation and NOC method, and the deformation
induced by the over-constrained forces/moments are
derived. The dynamic manipulability ellipsoid (DME)
[30] for PMs without parasitic motions is employed to
evaluate the dynamic performance of the PMs para-
sitic motions. The 2PUR-PSR PM will be considered
to demonstrate the dynamic modeling and the dynamic
performance analysis of this type PMs. In the following
sections, the NOC method and Newton–Euler equa-
tion are used to establish closed-form dynamic model
of an over-constrained 2PUR-PSR PM with parasitic
motions. The derived model is validated by the com-
parison with generalized commercial software. Addi-
tionally, the dynamic performance is investigated. The
dynamic modeling and analysis method presented in
this paper is expected to be applicable to other similar
PMs with parasitic motions.
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Fig. 1 CAD model of the manipulator

2 Kinematics of the 2PUR-PSR parallel
manipulator

As shown in Fig. 1, the 2PUR-PSR PM considered
in this paper consists of a base platform and a MP
connected by two identical PUR limbs and one PSR
limb. A1 and A2 represent the intersections of the uni-
versal joint, A3 is the center point of spherical joint,
Pi (i = 1, 2, 3) generally denotes the location of the
prismatic joint and the actuatedmotor in each limb, and
the motion of the first two collinear prismatic joints is
perpendicularly to the third; Bi (i = 1, 2, 3) represents
the revolute joint in the MP connected with each limb,
and Ci (i = 1, 2, 3) represents the mass center of the
i th link. The reference frame O−XYZ and the mov-
ing frame P−uvw are attached to the base and the MP,
respectively, with O and P being the origins located at
the midpoint of A1A2 and B1B2; the X and u axes are
parallel to A1A2 and B1B2, whereas the Z and w axes
are perpendicular to the base and the MP; the Y and v
axes are then determined through the right-hand rule.
In addition, the geometrical parameters of limb 1 and
limb 2 are identical, with l1 and l3 being the length of
PB1 and A1B1, and the corresponding parameters of
limb 3 are l2 and l4, respectively.

2.1 Inverse position analysis

Inverse position analysis of the 2PUR-PSRPMinvolves
the determinationof the position andorientationof each
limb for the given position and orientation of the MP.
The orientation matrix of the moving frame P−uvw
with respect to the reference frame O−XYZ can be

B3

B2

B1

A2

A1

A3
P2

X
Y

Z
O

P3

P1

ys,2

xs,2

zs,2
ys,1

xs,1

zs,1

ys,3

xs,3

zs,3

u
v

w
P

zB,2

yB,2xB,2

yc,2
xc,2

zc,2

C2

yc,1
xc,1

zc,1
C1

yc,3
xc,3zc,3

C3
,1,1Sr

,1,2Sr

,2,1Sr

,2,2Sr

,3,1Sr

,3,2Sr

,1,2Lr

,1,1Lr
,2,2Lr

,2,1Lr

,3,2Lr

,3,1Lr

yB,1

zB,3

zB,1

yB,3
xB,1

xB,3

Fig. 2 Coordinate frame of the manipulator

derived in terms of three rotational angles ϕ, θ and φ

satisfying the Z-Y-X convention:

RP = RZ ,ϕRY,θRX,φ =
⎛
⎝
cosϕ − sin ϕ 0
sin ϕ cosϕ 0
0 0 1

⎞
⎠

×
⎛
⎝

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠
⎛
⎝
1 0 0
0 cosφ − sin φ

0 sin φ cosφ

⎞
⎠

=
⎛
⎝
cϕcθ cϕsφsθ − cφsϕ cϕsφsθ − cφsϕ
sϕcθ cϕcφ + sφsϕsθ sϕcφsθ − sφcϕ

−sθ sφcθ cφcθ

⎞
⎠ (1)

where c and s denote cos and sin, respectively.
The position of the MP with respect to the reference

frame is denoted as Pm = (x y z)T, (see Fig. 2), we
can derive the closed loop motion equation as:

pm + bi − qi − Li − RS,i rS,i,1

−RS,i rS,i,2 = 03×1, (i = 1, 2, 3) (2)

where Li is the vector of the i th link, RS,i = E3, the
3 multiplied by 3 unit matrix, denotes the rotational
transformation matrix from the body fixed frame of
the i th slider to the base frame, rS,i,1 and rS,i,2 rep-
resents the position vector of A1 and B1 in the body
fixed frame Pi−xS,iyS,i zS,i , qi and bi are positions of
the i th actuator and the revolute joint Bi with respect to
the base coordinate frame, with qi = qiei (i = 1, 2, 3),
bi = (−1)i+1 l1Rpei (i = 1, 2), and b3 = l2Rpe3, and
ei can be given by:
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e1 = e2 = (
0 1 0

)T
, e3 = (

1 0 0
)T

,

e4 = (
0 0 1

)T
(3)

From the characteristics of the PM, the axis vector ci
of the revolute joint in each limb is perpendicular to the
plane with the normal vector qi −Pm , so the following
relationship can be obtained:

cTi
(
qi − Pm

) = 0 (4)

where ci = Rpci0, and ci0 represents the axis vector of
the revolute joint in limb i :

c1o = c2o = e3, c3o = e1 (5)

From Eqs. (1)–(4), the constraint relationship can be
derived as:

xcθcϕ − (q1 − y) cθ sϕ − zsθ = 0 (6)

xcθcϕ + (q2 + y) cθ sϕ − zsθ = 0 (7)

y
(
cφcϕ + sφsθ sϕ

)+ (q3 − x)
(
cφsϕ − sφsθcϕ

)

+zsφcθ = 0 (8)

Subtracting Eqs. (7) from (6), we obtain a further rela-
tionship:

(q1 + q2) cθ sϕ = 0 (9)

In the above equation, q1 + q2 cannot always be equal
to zero; therefore, cθ sϕ = 0 must hold. Substituting
cθ sϕ = 0 into Eq. (6), if cθ = 0, then z = 0 would
hold permanently, which obviously does not reflect the

actual motion of the mechanism. Therefore, sϕ must be
identically zero, which means ϕ must be 0 or π . Based
on the characteristics of the PM, we assign ϕ = 0.
Hence, the constraint relationship can be expressed as:

⎧⎨
⎩

ϕ = 0
x = z tanθ

y = (q3 − z tanθ ) tanφsθ − z tanφ cθ

(10)

From Eq. (10), the number of independent generalized
coordinates is three, and there are two additional para-
sitic motions. PMs with two rotational DOFs and one
rotational DOF have a wide range of applications, so

η = (
z φ θ

)T
is chosen as the independent general-

ized coordinates.
From Eqs. (1) and (9), the positions of the sliders

can be obtained as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = (−zcθ + sθ
√
l24 − l22 sec

2
φ s

2
θ + l24 tan

2
φ s

2
θ − z2 sec2φ +2l2z sec2φ sθ

+ l2cθsθ) tanφ /(tan2φ s
2
θ + 1)

+
√
l23 − z2 sec2θ −l21s

2
φ − 2l1z secθ sφ + l1cφ

q2 = −(zcθ − sθ
√
l24 − l22 sec

2
φ s

2
θ + l24 tan

2
φ s

2
θ − z2 sec2φ +2l2z sec2φ sθ

−l2cθ sθ ) tanφ /(tan2φ s
2
θ + 1)

−
√
l23 − z2 sec2θ −l21s

2
φ − 2l1z secθ sφ − l1cφ

q3 = (l2cθ + z sec2φ tanθ +
√
l24 + l24 tan

2
φ s

2
θ − z2 sec2φ −l22 sec

2
φ s

2
θ + 2l2z sec2φ sθ)/(tan

2
φ s

2
θ + 1)

(11)

To describe the inertial characteristics, the local coor-
dinate frames of each limb are established as in Fig. 2,
and the body fixed frames Pi -xS,iyS,i zS,i and Ci -
xC,iyC,i zC,i are attached to the mass center of the i th
slider and link, respectively, while the coordinate axis
of Pi -xS,iyS,i zS,i is parallel to the corresponding ones
of the base frame. Further, the zC,i axis is parallel to line
Ai Bi , and thexC,i (i = 1, 2) and yC,3 are parallel to cor-
responding revolute axis. In addition, Bi−xB,iyB,i zB,i

is attached to the MP with the zB,i axis normal to the
MP, and the xB,i (i = 1, 2) and yB,3 axis are parallel
with the corresponding axis of Bi -xB,iyB,i zB,i . Hence,
the transformation matrix Ri from P-uvw to O-XYZ
for the i th limb can be expressed as:
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Ri = RyC,i ,θ iRxC,i ,φiRxB,i ,ψiRi,p = RL ,iRxB,i ,ψiRi p

=
⎛
⎝

cθi 0 sθi
0 1 0

−sθi 0 cθi

⎞
⎠
⎛
⎝
1 0 0
0 cφi −sφi
0 sφi cφi

⎞
⎠
⎛
⎝
1 0 0
0 cψi −sψi
0 sψi cψi

⎞
⎠

×
⎛
⎝
1 0 0
0 0 (−1)i+1

0 (−1)i 0

⎞
⎠

=
⎛
⎝

cθi (−1)i sφi+ψi sθi (−1)i+1sφi+ψi sθi
0 (−1)i+1sφi+ψi (−1)i+1cφi+ψi

−sθi (−1)i cφi+ψi cθi (−1)i+1sθi cφi+ψi

⎞
⎠

(i = 1, 2) (12)

R3 = RzC,3,ϕ3RyC,3,θ3RxC,3,φ3RyB3,ψ3R3,p = RL ,3RyB3,ψ3R3,p

=
⎛
⎝
cϕ3 −sϕ3 0
sϕ3 cϕ3 0
0 0 1

⎞
⎠
⎛
⎝

cθ3 0 sθ3
0 1 0

−sθ3 0 cθ3

⎞
⎠
⎛
⎝
1 0 0
0 cφ3 −sφ3

0 sφ3 cφ3

⎞
⎠

⎛
⎝

cψ3 0 sψ3

0 1 0
−sψ3 0 cψ3

⎞
⎠
⎛
⎝
0 0 1
0 1 0
−1 0 0

⎞
⎠

=
⎛
⎝

−cϕ3(sψ3cθ3+cφ3cψ3sθ3)−cψ3sφ3sϕ3 cϕ3sφ3sψ3−sϕ3cφ3 cϕ3(cψ3cθ3 − cφ3sψ3sθ3)−sψ3sφ3sϕ3
−sϕ3(sψ3cθ3+cφ3cψ3sθ3)+cψ3sφ3cϕ3 sϕ3sφ3sψ3+cϕ3cφ3 sϕ3(cψ3cθ3 − cφ3sψ3sθ3)+cψ3sφ3sϕ3

−cϕ3sθ3 cθ3sφ3 −sθ3cψ3 − cθ3cφ3sψ3

⎞
⎠ (13)

where RL ,i = RyC,i ,θ iRxC,i ,φi (i = 1, 2) and RL ,3 =
RzA3,ϕ3RyA3,θ3RxA3,φ3 represent the transformation
matrix from local coordinate frame of each link to the
base frame. Ri,p (i = 1, 2, 3) represents the transfor-
mation matrix from P-uvw to Bi−xB,iyB,i zB,i .

From Eqs. (1), (2), (12) and (13), the relevant
trigonometric functions of each limb can be obtained
as:

cθ1 = cθ , sθ1 = sθ , cφ1 = (z/cθ + l1sφ1)/ l3, sφ1 =
√
1 − c2φ1

(14)

cθ2 = cθ , sθ2 = sθ , cφ2 = (
z/cθ + l1sφ1

)
/l3, sφ2 =

√
1 − c2φ2

(15)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cϕ3 = −
(
zcφ − l2cφsθ − s2φcθ sθ

√
l24c

2
φ − l22s

2
θ − z2 + 2l2zsθ + l24s

2
φs

2
θ

)
/

((
s2φs

2
θ − c2φ

)√
l24s

2
φc

2
θ + l22s

2
θ − 2l2zsθ + z2

)

sϕ3 = sφ
(
l2c3θ + zs2θ /2 − l2cθ + cφc2θ

√
l24c

2
φ − l22s

2
θ − z2 + 2l2zsθ + l24s

2
φs

2
θ

)
/

(
cθ

(
c2φc

2
θ + s2θ

)√
l24s

2
φc

2
θ + l22s

2
θ − 2l2zsθ + z2

)

cθ3 = −
√
l24s

2
φ + l22s

2
θ + z2 − 2l2zsθ − l24s

2
φs

2
θ/l4, sθ3 = −

√
l22s

2
θ−l24c

2
φ + z2 − 2l2zsθ − l24s

2
ψ s

2
θ/l4

cφ3 = − (z − l2sθ )/
√
l24s

2
φc

2
θ + l22s

2
θ − 2l2zsθ + z2, sφ3 = −l4cθ sφ/

√
l24s

2
φc

2
θ + l22s

2
θ − 2l2zsθ + z2

(16)

2.2 Velocity and acceleration analysis

The inverse kinematics of the PM is given by Eqs. (11),
(14), (15) and (16); the velocities and accelerations can
be derived by differentiating with respect to time and
represented by the generalized coordinates. Differenti-
ating Eq. (10) with respect to time, the parasitic linear
and angular velocity of the MP can be derived as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̇ = 0

ẋ = tanθ ż + z sec2θ θ̇

ẏ = q̇3tanφsθ − tanφsecθ ż

+ (q3tanφcθ − ztanφsθ sec2θ )θ̇

+ (q3sθ sec2φ −zsecθ sec2φ)φ̇

= yz ż + yθ θ̇ + yφφ̇

(17)

123



Closed-form dynamic modeling and performance analysis 523

where the upper dot on a parameter means differentia-
tion with respect to time, and

yz =
⎛
⎝tanθ + − (z − l2sθ )√

l24 + l24 tan
2
φ s2θ − sec2φ (z − l2sθ )2

⎞
⎠ sec2φ tanφ sθ

/

(
tan2φ s2θ + 1

)
− tanϕ secθ

yθ =
⎛
⎝− l2sθ + z sec2φ sec2θ + l24 tan

2
φ sθ cθ + sec2φ (z − l2sθ ) l2cθ√

l24 + l24 tan
2
φ s2θ − sec2φ (z − l2sθ )2

− 2q3 tan
2
φ sθ cθ

)
tanφ sθ

/

(tan2φ s2θ + 1) + tanφ(q3cθ − zsθ sec
2
θ )

yφ =
⎛
⎝2z tanθ + l24 s

2
θ − (z − l2sθ )2√

l24 + l24 tan
2
φ s2θ − sec2φ (z − l2sθ )2

− 2q3s
2
θ

)
tan2φ sec2φ sθ

/

(
tan2φ s2θ + 1

)
+ sec2φ (q3sθ − z secθ )

From Eqs. (1) and (17), the matrix form of the linear
and angular velocities of the MP can be formulated as:

t p = K pη̇ (18)

where t p represents the twist of the MP, and

t p =
(
Ṗ
T
m ωT

)T
,K p

=
⎛
⎝

tanθ yz 1 0 0 0
0 yφ 0 cosθ 0 − sinθ

z sec2θ yθ 0 0 1 0

⎞
⎠

T

Differentiating Eq. (2) with respect to time yields:

Ṗm +ω×bi = q̇i +ωL ,i ×Li = q̇iei +ωL ,i ×Li (19)

where ω and ωi represent the angular velocity of the
MP and the link in limb i . Taking the dot product with
Li on both sides of Eq. (19) leads to:

LT
i Ṗm − LT

i b̃iω = q̇iLT
i ei (20)

where the upper slash on a vector denotes its skew
matrix. Hence, the velocity of the i th actuator can be
expressed as:

q̇i =
(
LT
i ei

)−1 (
LT
i −LT

i b̃i
)
t p (21)

Rewriting Eq. (21) inmatrix form results in the velocity
mapping between the linear actuators and the MP:

q̇ = K−1
q Kttp = Jq tp (22)

where

q=(
q̇1 q̇2 q̇3

)T
, Kq=

⎛
⎝
LT
1 e1

LT
2 e2

LT
3 e3

⎞
⎠ ,

Kt =
⎛
⎜⎝
LT
1 −LT

1 b̃1
LT
2 −LT

2 b̃2
LT
3 −LT

3 b̃3

⎞
⎟⎠

Taking the cross product with Li on both sides of
Eq. (19) yields the angular velocity of the link in limb i :

ωL ,i = Jwi t p (23)

where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Jwi=
(
L̃i − ei

(
LT
i ei

)−1
LT
i LT

i biE3−biLT
i +ei

(
LT
i ei

)−1
LT
i b̃i

)

LT
i Li

,

(i = 1, 2)

Jw3=
(
L̃3−e3

(
LT
3 e3

)−1
LT
3 LT

3 b3E3−b3LT
3+e3

(
LT
3 e3

)−1
LT
3 b̃3+L3LT

3

)

LT
3 L3

The linear and angular acceleration of the MP can be
obtained by differentiating Eq. (18) with respect to
time:

ṫ p = K pη̈ + K̇ pη̇ (24)

where η̈ is the acceleration of the independent general-
ized coordinates, and

K̇ p =
⎛
⎝

sec2θ θ̇ ẏz 0 0 0 0
ż sec2θ +2z tanθ sec

2
θ θ̇ ẏθ 0 − sinθ θ̇ 0 − cosθ θ̇

0 ẏφ 0 0 0 0

⎞
⎠
T

Taking the cross product with Li on both sides of
Eq. (19) and differentiating with respect to time, the
angular accelerationof the link in limb i canbeobtained
as:

ω̇L ,i = Jwi ṫ p + J̇wi t p (25)

where

J̇wi =
(
Liω

T
Li

− ωLiL
T
i + ei

((
LTi ei

)−1
LTi ω̃i

+
(
LTi ω̃Li ei

)−1
LTi

)

LTi (ω̃ − ω̃i ) biE3 − ω̃biL
T
i + biL

T
i ω̃i
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+ ei

((
−
(
LTi ω̃Li ei

)−1
LTi −

(
LTi ei

)−1
LTi ω̃Li

)
b̃i

+
(
LTi ei

)−1
LTi

(
biω

T − ωbTi

)))/
LTi Li , (i = 1, 2) ,

J̇w3 =
(
L3ω

T
L3

− ωL3L
T
i + e3

((
LT3 e3

)−1
LT3 ω̃3

+
(
LT3 ω̃L3e3

)−1
LT3

)

LT3 (ω̃ − ω̃3) b3E3 − ω̃b3L
T
3 + b3L

T
3 ω̃3

+ e3

((
−
(
LT3 ω̃L3e3

)−1
LT3 −

(
LT3 e3

)−1
LT3 ω̃L3

)
b̃3

+
(
LT3 e3

)−1
LT3

(
b3ω

T − ωbT3

))

+ ω̃3L3L
T
3 − L3ω̃3L

T
3

)
/LT3L3

Similarly, the acceleration of the actuators can be
obtained as time derivative of Eq. (22):

q̈ = Jq ṫ p + J̇q t p (26)

where J̇q is the time derivative of Jq and can be
expressed as:

J̇q = −K−1
q K̇qK−1

q K t + K−1
q K̇ t

= K−1
q (−K̇qK−1

q K t + K̇ t ) (27)

where

K̇q =
⎛
⎝

(ωL1 × L1)
Te1

(ωL2 × L2)
Te2

(ωL3 × L3)
Te3

⎞
⎠ ,

K̇t =

⎛
⎜⎜⎜⎝

(ωL1 × L1)
T −(ωL1 × L1)

Tb̃1 − LT
1
˙̃b1

(ωL2 × L2)
T −(ωL2 × L2)

Tb̃2 − LT
2
˙̃b2

(ωL3 × L3)
T −(ωL3 × L3)

Tb̃3 − LT
3
˙̃b3

⎞
⎟⎟⎟⎠

˙̃bi = (−1)i+1 l1
(
Ṙp ẽiRT

p + Rp ẽi Ṙ
T
p

)

= (−1)i+1 l1
(
ω̃Rp ẽiRT

p + Rp ẽiRT
pω̃

T
)

, (i = 1, 2)

˙̃b3 = l2
(
ω̃Rp ẽ3RT

p + Rp ẽ3RT
pω̃

T
)

3 Dynamics of the 2PUR-PSR parallel
manipulator

The dynamic modeling of the 2PUR-PSR PM is
described in this section. First, the twists of individ-
ual bodies, limbs, the system are derived, and thus,
the NOC matrix is obtained; then, the Newton–Euler
method is used to establish the dynamics model with
constrained forces/moments, based on which the NOC
matrix and compatible deformation are employed to

establish the dynamic models with and without con-
strained forces/moments.

From Fig. 2, the mass center of the slider and link
in i th limb can be expressed as:

{
pS,i = qi + RSi rS,i,1

pL ,i = pS,i + RS,i rS,i,2 + RL ,i rL ,i,1
(28)

where rL ,1,i represents position vector ofAi in the body
fixed frame Ci -xC,iyC,i zC,i .

The velocity of the mass center of the i th slider and
link can be obtained by differentiating Eq. (28) with
respect to time:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ṗS,i = q̇i + ωS,i × RSi rS,i,1

=
(
E3 −RS,i r̃S,i,1RT

S,i

) (
q̇Ti ωT

S,i

)T

ṗL ,i = q̇i +ωL ,i × RL ,i rL,i,1= q̇i −RL ,i r̃L,i,1RT
L ,iωL ,i

=
(
E3 −RL ,i r̃L ,i,1RT

L ,i

) (
q̇Ti ωT

L ,i

)T

(29)

where ωS,i is the angular velocity of the i th actuator,
and ωS,i = 03×1.

The NOC method employs the concept of twist to
describe the velocity field of the individual body, and
the twist of the actuator and the link in the i th limb are
indicated as tS,i and tL,i, respectively:

tS,i =
(
ṗTS,i ωT

S,i

)T
, tL ,i =

(
ṗTL ,i ωT

L ,i

)T
(30)

From Eqs. (29) and (30), the twist of the i th limb is
denoted as:

t̃i =
(
tTS,i tTL,i

)T = Kiχ i (31)

where χ i =
(
q̇Ti ωT

L ,i

)T
denotes limb independent

variables, Ki =
(
E3 03 E3 03
03 03 RT

L,ir̃L,i,1RL,i E3

)T

.

Hence, the generalized twists including the limbs
and the MP of PM can be expressed as:

t =
(
t̃T1 t̃T2 t̃T3 tTp

)T = Kχ̇ = Tη̇ (32)

where T denotes the NOC matrix, χ =(
χT
1 χT

2 χT
3 tTp

)T
, T = KLKp, and
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K =

⎛
⎜⎜⎝

K1 012×6 012×6 06
012×6 K2 012×6 06
012×6 012×6 K3 06
06 06 06 E6

⎞
⎟⎟⎠ ,

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E3 03 03 03 03 03 06
03 03 03 E3 03 03 06
03 E3 03 03 03 03 06
03 03 03 03 E3 03 06
03 03 E3 03 03 03 06
03 03 03 03 03 E3 06
03 03 03 03 03 03 E6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝
e3 03×1 03×1 03×15

03×1 e1 03×1 03×15

03×1 03×1 e4 03×15

015×1 015×1 015×1 E15

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Jq
Jw,1

Jw,2

Jw,3

E6

⎞
⎟⎟⎟⎟⎠

By differentiating Eq. (32) with respect to time, the
acceleration mapping between of the individual body
and the system independent variables can be expressed
as:

ṫ = Ṫη̇ + Tη̈ (33)

where Ṫ = K̇LKp + KL̇Kp + KLK̇p, K̇i =⎛
⎜⎜⎝
03 03
03 03
03 ω̃L ,i r̃L1,i − r̃L1,i ω̃L ,i

03 03

⎞
⎟⎟⎠ , K̇ =

⎛
⎜⎜⎝
K̇1 012×6 012×6 06
012×6 K̇2 012×6 06
012×6 012×6 K̇3 06
06 06 06 06

⎞
⎟⎟⎠ , and

L̇ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E3 03 03 03 03 03 06
03 03 03 E3 03 03 06
03 E3 03 03 03 03 06
03 03 03 03 E3 03 06
03 03 E3 03 03 03 06
03 03 03 03 03 E3 06
03 03 03 03 03 03 E6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝
e3 03×1 03×1 03×15

03×1 e1 03×1 03×15

03×1 03×1 e4 03×15

015×1 015×1 015×1 E15

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

J̇p
J̇w,1

J̇w,2

J̇w,3

06

⎞
⎟⎟⎟⎟⎠

For the i th link in the fixed frame O−XYZ, the
Newton–Euler equation can be derived as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dmL ,i ṗL ,i

dt = mL ,i p̈L ,i = f L ,i + mL ,ig
d(RL ,i IlL ,iR

T
L ,iωL ,i )

dt = ṘL ,i IlL ,iR
T
L ,iωL ,i + RL ,i IlL ,i Ṙ

T
L ,iωL ,i + RL ,i IlL ,iR

T
L ,i ω̇L ,i

= ω̃L ,iRL ,i IlL ,iR
T
L ,iωL ,i + RL ,i IlL ,iR

T
L ,i ω̃

T
L ,iωL ,i + RL ,i IlL ,iR

T
L ,i ω̇L ,i

= RL ,i IlL ,iR
T
L ,i ω̇L ,i + ω̃L ,iRL ,i IlL ,iR

T
L ,iωL ,i = nL ,i

(34)

wheremL ,i and IlL ,i are the mass and the inertial tensor
of the i th link in the body fixed frame, and g denotes

the gravity acceleration. wL ,i =
(
f TL ,i nTL ,i

)T
is the

wrench in the fixed frame, and can be decomposed

into working wrench wa
L ,i =

(
f aTL ,i naTL ,i

)T
and non-

working wrench wc
L,i =

(
f cTL ,i ncTL ,i

)T
. The working

wrench wa
L ,i denotes wrench due to actuators, external

forces/moments gravity or dissipation, while the non-
working wrench is caused by the constraint forces and
moment and can be expressed as:

{
f cL ,i = Lc

A,i,TλA,i + Lc
B,i,TλB,i

ncL ,i = Lc
A,i,RλA,i + Lc

B,i,RλB,i
(35)

where λA,i ∈ R
4×1(i = 1, 2), λA,3 ∈ R

3×1 and λB,i ∈
R
5×1 are the ideal constraint forces/moments generated

in the universal joint, spherical joint and the revolute
joint of the links. Lc

A,i,T ∈ R
3×4(i = 1, 2), Lc

A,i,R ∈
R
3×4(i =1, 2), Lc

A,3,T ∈ R
3×3, Lc

A,3,R ∈ R
3×3,

Lc
B,i,T ∈ R

3×5 and Lc
B,i,R ∈ R

3×5 are transformation
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matrices related with the constraint forces/moments
and can be expressed as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lc
A,1,T = Lc

A2,T
= [

E3, 03×1
]
,Lc

A,3,T = E3

Lc
A,1,R =

[
RL ,1r̃L ,1,1RT

L ,1, zc,1
]
,

Lc
A,3,R = −RL ,3r̃L ,3,1RT

L ,3,

Lc
A,2,R =

[
RL ,2r̃L ,2,1RT

L ,2, zc,2
]

Lc
B,1,T = Lc

B,2,T = Lc
B,3,T = − [

E3, 03×2
]

Lc
B,1,R = −

[
RL ,1r̃L ,1,2RT

L ,1, v,w
]
,

Lc
B,2,R = −

[
RL ,2r̃L ,2,2RT

L ,2, v,w
]
,

Lc
B,3,R = −

[
RL ,3r̃L ,3,2RT

L ,3,u,w
]

The matrix form of Eq. (34) can be reformulated as:

wa
L ,i =

(
mL ,iE3 03

03 RL ,i IlL ,iR
T
L ,i

)(
p̈L ,i
ω̇L ,i

)

+
(
03 03
03 ω̃L ,iRL ,i IlL ,iR

T
L ,i

)(
ṗL ,i
ωL ,i

)

−
(
Lc
A,i,T Lc

B,i,T
Lc
A,i,R Lc

B,i,R

)(
λA,i

λB,i

)
−
(
mL ,iE3

03

)
g

= ML ,i ṫL ,i + WL ,i tL ,i − CL ,iλL ,i − GL ,ig (36)

From Eq. (36), Newton–Euler equation of the sliders
can be given by:

wa
S,i =

(
mS,iE3 03
03 RS,i ISS,iR

T
S,i

)(
p̈S,i
ω̇S,i

)

+
(
03 03
03 ω̃S,iRS,i I

p
S,iR

T
S,i

)(
ṗS,i
ωS,i

)

−
(
Scp,i,T ScA,i,T
Scp,i,R ScA,i,R

)(
λp,i

λA,i

)
−
(
mS,iE3

03

)
g

= MS,i ṫS,i + W S,i tS,i − wc
S,i − GS,ig (37)

where mS,i and ISS,i represent the mass and iner-
tial tensor of the sliders with the corresponding body

fixed coordinate frame. wa
S,i =

(
E3 r̃TS,i,1

)T
f aS,i =

(
eTi eTi r̃

T
S,i,1

)T
f aS,i = f aCS,i f aS,i denotes forces and

torques generated by the actuators, and f aS,i = f aS,iei

is the actuation forces. wc
S,i =

(
f cTS,i ncTS,i

)T
denote

the ideal constraint forces and moments exerted on the
sliders and can be given by:
{
f cS,i = ScA,i,TλA,i + Scp,i,Tλp,i

ncS,i = ScA,i,RλA,i + Scp,i,Rλp,i

where λp,i ∈ R
3×5 denotes ideal constraint forces

and moments caused by the prismatic joints, while
the transformation matrices ScP,1,T , S

c
P,1,R , S

c
A,1,T and

ScA,1,R are given by:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ScP,1,T =ScP,2,T = [e3, e4, 03] ,ScP,3,T = [e1, e4, 03]

ScP,1,R = [
r̃S,1,1 · (e3, e4) ,E3

]
,

ScP,2,R = [
r̃S,2,1 · (e3, e4) ,E3

]
,

ScP,3,R = [
r̃S,3,1 · (e1, e4) ,E3

]

ScA,1,T = ScA,2,T = − [
E3, 03×1

]
,ScA,3,T = −E3

ScA,1,R = − [
r̃S,1,2, zc,1

]
,ScA,2,R = − [

r̃S,2,2, zc,1
]
,

ScA,3,R = −r̃S,3,2

Similarly, matrix form of Newton–Euler equation for
the MP can be given by:

wa
p =

(
mpE3 03
03 RpI

p
pRT

p

)(
p̈m
ω̇

)

+
(
03 03
03 ω̃RpI

p
pRT

p

)(
ṗm
ω

)

−
(
Pc
P1,T Pc

P,2,T Pc
P,3,T

Pc
P,1,R Pc

P,2,R Pc
P,3,R

)
λp−

(
mpE3

03

)
g

= M p ṫ p + W pt p − wc
p,i − Gpg (38)

wheremp and I
p
p represents themass and inertial tensor

of the MP with respect to the corresponding body fixed

coordinate frame. wc
p,i =

(
f cTp,i ncTp,i

)T
denotes the

constraint forces and moments of the MP, respectively,
and can be represented as:{
f cP,i = Pc

B,1,TλB,1 + Pc
B,2,TλB,2 + Pc

B,3,TλB,3

ncP,i = Pc
B,1,RλB,1 + Pc

B,2,RλB,2 + Pc
B,3,RλB,3

Where the transformation matrix Pc
B,i,T ∈ R

3×5 can
be derived as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pc
B,1,T = Pc

B2,T = Pc
B,3,T = [

E3, 03×2
]

Pc
B,1,R =

[
b̃1, v,w

]
,Pc

B,2,R =
[
b̃2, v,w

]
,

Pc
B,3,R =

[
b̃3,u,w

]

Based on Eqs. (36)–(38), the system dynamic equation
of the over-constrained PM can be derived as:

Mṫ + Wt − Cλλ − Gg = wa (39)

where M, W and Cλ denotes extended inertial matrix,
extended angular velocitymatrix and the extended con-
straint transformation matrix of the PM, respectively,
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whileG andwa are the gravity matrix and the actuation
matrix, which can be represented as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M = blkdiag
(
MS,1,ML ,1,MS,2,ML ,2,MS,3,ML ,3,M p

)

W = blkdiag
(
WS,1,WL ,1,WS,2,WL ,2,WS,3,WL ,3,W p

)

G =
(
GT
S,1,G

T
L ,1,G

T
S,2,G

T
L ,1,G

T
S,3,G

T
L ,1,G

T
p

)T

λ =
[
λTP,1,λ

T
A,1, λ

T
B,1,λ

T
P,2, λ

T
A,2,λ

T
B,2, λ

T
P,3, λ

T
A,3, λ

T
B,3

]T

wa =
(
waT
S,1,w

aT
L ,1,w

aT
S,2,w

aT
L ,2,w

aT
S,3,w

aT
L ,3,w

aT
p

)T=wa
CS f a , f a

=
[
f a1 f a2 f a3

]T

and

Cλ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

CS,1 06×5 06×9 06×5 06×8 06×5

06×5 CL,1 06×9 06×5 06×8 06×5

06×5 06×9 CS,2 06×5 06×8 06×5

06×5 06×9 06×5 CL,2 06×8 06×5

06×5 06×9 06×5 06×9 CS,3 06×5

06×5 06×9 06×5 06×9 06×5 CL,3

06×9 Pc
P1 06×8 Pc

P2 06×9 Pc
P3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

wa
CS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f aCS,i 06×1 06×1

06×1 06×1 06×1

06×1 f aCS,i 06×1

06×1 06×1 06×1

06×1 06×1 f aCS,i
06×1 06×1 06×1

06×1 06×1 06×1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f a =
⎛
⎝

f a1
f a2
f a3

⎞
⎠

According to the principle of virtual power, the ideal
constraint forces and moments in the connecting joints
don’t produce work in the system dynamics; hence, we
can obtain:

TTCλ = 0 (40)

Based on Eqs. (32), (33) and (40), the system dynamic
modelwithout constraint forces/moments can be refor-
mulated as:

TTMTη̈ + TTMṪη̇ + TTWTη̇ − TTGg = TTwa
CS f

a

(41)

Based on the screw theory, the limb 1 and limb 2
simultaneously possess the constraints of translation in
u axes and rotation about zc,i axes, which means that
there are two over-constrained motions in the 2R1T
PM. Hence, translational deformations along u and
rotational deformation about w axes of limb 1 and limb
2 should be equal, which can be derived as:

⎧⎪⎪⎨
⎪⎪⎩

δi,T,u=eT3R
−1
L ,i

(−mL ,i p̈L ,i+mL ,ig
) [ (l3−rL ,2,i )

3

3E I y
+ rL ,2,i (l3−rL ,2,i )

2

2E I y

]
+ l33e

T
3R

−1
L ,iL

c
B,i,T λB,i

3E I y
+ l23e

T
1R

−1
L ,iL

c
B,i,RλB,i

2E I y

δi,R,zC,i =eT4R
−1
L ,i

(−RL ,i IlL ,iR
T
L ,i ω̇L ,i−ω̃L ,iRL ,i IlL ,iR

T
L ,iωL ,i

G I z

(
l3−rL ,2,i

)+ l3Lc
B,i,RλB,i

G I z

) (i=1, 2)

(42)

where Iy and Iz are the area of inertial moments about
the body fixed frame Ci -xC,iyC,i zC,i , while E and G
are Young modulus and shear modulus. Therefore, the
compatible deformation conditions can be given by:

{
δ1,T,u = δ2,T,u

δ1,R,zC,i = δ2,R,zC,i

(43)

Substituting Eq. (43) into (39), constraint force along
u and moment about w of revolute joint B1 can be
represented by other constraint wrenches of revolute
joint B1 and B2; hence, the system dynamicmodel with
the constraints can be derived as:

M′Tη̈ + M′Ṫη̇ + W ′Tη̇ − G′g = C′
λλ

′ (44)

where M′, W ′ and G′ represent the reformulated iner-
tial matrix, angular velocity matrix, the gravity matrix,
respectively, while C′

λ and λ′ are the reformulated con-
straint transformation matrix and the wrench and can
be given by:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M′ = M + 	M,W ′ = W + 	W,G′ = G

+	G,C′
λ = Cλ + 	Cλ

λ′ =
[
λT
P,1,λ

T
A,1,λ

′T
B,1,λ

T
P,2,λ

T
A,2,λ

T
B,2,λ

T
P,3,λ

T
A,3,

λT
B,3, f

aT
]T

,λ′
B,1 = λB,1(2 : 4)
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where	M,	W ,	G, and	Cλ are the increase due to
the substitution of constraint force along u andmoment
about w of revolute joint B1, details of which are in the
appendix.

Hence, the closed form dynamic models with and
without constrained forces/moments of the over-constr-
ained PMs with parasitic motion are established. For
Eq. (41), the constrained forces/moments are elimi-
nated, and it is quite straightforward and computational
efficient for the dynamic performance analysis, as well
as the control schemedesign. ForEq. (44), the actuation
forces and constrained forces/moments can be com-
puted simultaneously, and it’s essential for structure
design. Also, the proposed method utilized the concept
of modular dynamic modeling; hence, the clearance
and friction can be easily integrated into the system
equation; in future studies, the rigid-flexible coupling
dynamic model will also be established to obtain rigid-
flexible coupling dynamic characteristics and an accu-
rate constraint forces/moments.

4 Dynamic performance analysis of the
2PUR-PSR parallel manipulator

Based on the dynamic model established in Eq. (41),
the dynamic performance is investigated in this sec-
tion. The concept of dynamic manipulability ellipsoid
(DME) [30] proposed by Yoshikawa is employed to
evaluate the uniformity of the PM’s ability in changing
the MP’s position/orientation under the stated driving
forces. Then, the distribution and the characteristics of
the DME index in the preset workspace are also studied
in this section.

The dynamic Eq. (41) can be reformulated as:

(
TTwa

CS

)−1
TTMTK+

p
˙̃t p = f̃

a
(45)

where K+
p denotes the pseudoinverse ofK p, f̃

a = f a −(
TTwa

CS

)−1 (
TT

(
WT + MṪ

)
η̇ − TTGg

)
and ˙̃t p =

ṫ p−K̇ pη̇ are the generalized driving force and theMP’s
acceleration of the PM, respectively.

The set of all ˙̃t p which is realizable by a joint driving
force such

∥∥∥f̃ a
∥∥∥ ≤ 1 is an ellipsoid described as:

˙̃tTpJ̃+T
M̃

T
M̃J̃

+˙̃t p ≤ 1 (46)

where M̃ = (
TTwa

CS

)−T
TTMT

(
TTwa

CS

)−1
denotes

the reduced inertial matrix of the system, and J̃ =
K p

(
TTwa

CS

)−1
is the Jacobian matrix associating the

PM’s actuated joints with the MP.
However, manipulators usually involve translational

and rotational motions; hence, the DME should be
decomposed into corresponding aspects, and two ellip-
soidswill be calculated to evaluate the translational and
rotational DME:

⎧⎨
⎩

˙̃tTpT J̃+T
T M̃

T
M̃ J̃+

T
˙̃t pT ≤ 1

˙̃tTpR J̃+T
R M̃

T
M̃J̃

+
R
˙̃t pR ≤ 1

(47)

where ˙̃t p,T and ˙̃t p,R are the translational and rotational

aspect of ˙̃t p.
From kinematic analysis, the manipulator has one

translational and two rotationalmotionswith two trans-
lational parasitic motions; hence, the dynamic per-
formance might be different when the manipulator
moves in different configurations. To evaluate the
isotropic property of dynamic manipulability, the con-

dition number and the mean condition number of M̃J̃
+
T

and M̃J̃
+
R ← are adopted as the measure of the manip-

ulator’s dynamic performance as:

⎧⎨
⎩

wT = σT,2
σT,1

,wR = σR,2
σR,1

wGT =
∫

wT dSz
Sz

,wGR =
∫

wRdSz
Sz

(48)

wherewT andwR denote the condition number of M̃J̃
+
T

and M̃J̃
+
R , respectively, σT,2 and σT,1 are the nonzero

singular value of M̃J̃
+
T , σR,2 and σR,1 are the nonzero

singular value of M̃J̃
+
R , and σT,2 ≤ σT,1, σR,2 ≤ σR,1,

while wGR and wGT are the mean value of wT and wR

for the given height z.

5 Numerical study of dynamic response and
performance

Based on Eqs. (41) and (44), the actuation forces and
the constraint forces/moments can be calculated for the
given trajectory. Also, the dynamic performance can
be investigated based on the deduced DME (48). This
sectionwill verify the correctness of the dynamicmodel
and investigate the dynamic performance of the PM.

123



Closed-form dynamic modeling and performance analysis 529

0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

250

Time(s)

ADAMS model
Proposed model

0 0.1 0.2 0.3 0.4-200

-150

-100

-50

0

Time(s)

ADAMS model
Proposed model

0 0.1 0.2 0.3 0.4 0.5
-40

-20

0

20

40

60

80

Time(s)

ADAMS model
Proposed model

Fig. 3 Computed torques of ADAMS model and the proposed model

Table 1 The mass and inertial tensors of the parallel manipulator

Body Mass (kg) Mass center rS/L ,i,1, rS/L ,i,2(mm) Inertial tensor (kgm2)

The slider 0.05 (0, 0,−5) (0, 0, 5) blkdiag
(
5 × 10−10, 5 × 10−10, 5 × 10−10

)

Link 1 and 2 0.1025 (0, 0,−48.9) (0, 0, 41.1) blkdiag
(
5.9 × 10−7, 6.4 × 10−8, 5.9 × 10−9

)

Link 3 0.174 (0, 0,−44.8) (0, 0, 50.2) blkdiag
(
1.5 × 10−7, 1.5 × 10−7, 6.5 × 10−9

)

The MP 10 – blkdiag
(
7.2 × 10−7, 1.5 × 10−7, 6.5 × 10−9

)

In the numerical simulation, the preset values of the
parallel manipulator’s kinematic parameters are given
by l1 = 30 mm, l2 = 35 mm for the size of theMP, and
l3 = 90 mm, l4 = 95 mm for the length of the links,
and other geometrical and inertial parameters are listed
in Table 1. In addition, the inertial tensors aremeasured
in the body fixed frame located in the corresponding
mass center. The following trajectory was tested for
the dynamic model:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z=60
(
6t5/t5d − 15t4/t4d + 10t3/t3d

)
+ 20

θ=20π
(
6t5/t5d − 15t4/t4d +10t3/t3d

)
/180 − 10π/180

φ=20π
(
6t5/t5d − 15t4/t4d +10t3/t3d

)
/180 − 10π/180

(49)

where td denotes the desired duration time, and td =
0.5 s.

Based on the given trajectory of theMP, the required
joint space trajectory canbe calculatedusing the inverse
kinematic model, with which the required actuation
forces, the constrained forces/moments and the com-
patible deformation can be calculated through Eq. (41)
and (44), respectively. The computed actuation forces
using the proposedmodel and the commercial software
ADAMS are shown in Fig. 3, and it is evident that the
force profiles of the proposedmodel are the same as the

ADAMSmodel, indicating correctness of the proposed
model,which couldbe employed in thedynamicperfor-
mance evaluation and accurate dynamic based control
design.

The constrained forces/moments and the actuation
forces computed with the Eq. (48) were illustrated in
Fig. 4; the results show that the for the prismatic joints,
the peak actuation forces of the first and second limbs
are nearly 250Nand190N, respectively,while the value
for the third is about 60N. In addition, peak reaction
moments of the first and second limbs are much larger
than the third limb, which might be explained by the
fact that the spherical joint for the third limb cannot
bear moments while the universal joints for the first
and second limbs could bear moment around the links.
Also, reaction forces and moments of different direc-
tions show significant differences; therefore, the selec-
tion of the linear actuators and joints should be paid
attention to the issues.

The compatible deformations are calculated from
Eq. (43) and shown in Fig. 5, peak translational defor-
mation along u direction is around 0.0148 mm, and the
value for rotational deformation about w is 0.01rad.
Hence, for high precision operations such as precision
positioning and machining, the compatible deforma-
tions cannot be neglected.

As indicated above, the manipulator has one transla-
tional and two rotationalmotionswith two translational
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Fig. 4 Active and constraint forces and moments in the proposed model
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Fig. 5 Compatible
deformation of
over-constraints
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Fig. 6 DME of the parallel
manipulator
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parasitic motions; the range of z is selected [20 mm,
80 mm], and for the 2DOF rotational motion, a rectan-
gular area is selected in the range of [−0.175 rad, 0.175
rad] × [−0.175 rad, 0.175 rad] for θ and φ. Thus, the
parasiticmotions can be calculated from the given inde-
pendent variables.

As indicated in Fig. 6, the dynamic indexwR experi-
enced rising and decline stages, which can be explained
by the fact that when the manipulator stays in the home
position (θ = 0, φ = 0), the rotation of the MP about
θ is driven by the two limbs, while for φ, the motion
is only produced by the third limb. In the meantime, it
can be seen that the isotropic property becomes better
when themagnitude of q1 increases. That’s because the
coupling of the motions is strengthened. Also, unlike
the 2R1T parallel manipulators with similar symmet-
ric structure without the parasitic motion [9], symmet-
ric line of the wR and wT is not parallel with φ or θ ,
but has certain slop degree of them; the reason is the
existence of the parasitic motion that makes the trans-
lation and rotational motion highly coupled, which can
also be explained by the similar trend between wR and
wT . In addition, with the increase in the magnitude of
z to about 70 mm, the dynamic indexes wGT and wGR

reach their maxima; then, they both decrease, which
indicates that the dynamic index has some relevance
with the kinematic and structural parameters.

Hence, in future work, the influences of the manip-
ulator’s kinematic parameters and the bodies’ inertia
properties on the index of dynamic performance will
be further studied based on the modeling and analy-
sis method proposed in this paper, and an integrated

optimal design and model-based control will be car-
ried out to improve the performance.

6 Conclusions

This paper presents a systematic dynamic modeling
and performance analysis of the over-constrained PM
with parasitic motions with the example of the 2PUR-
PSR PM. The type and number of over-constrained
forces/moments are first analyzed with the algebraic
method. Based on the Newton–Euler formulation and
the NOC method, the closed-form dynamic mod-
els with and without constrained forces/moments are
established and have been validated by means of
numerical simulations with the comparison of gen-
erally accepted commercial software. The concept of
DME is then adopted to evaluate the dynamic manipu-
lability performance of the 2PUR-PSR PM. And the
distribution characteristics of both translational and
rotational condition number and their mean values
within the workspace of the parallel manipulator are
studied, which indicated that the dynamic performance
can be enhanced by kinematic and structure optimiza-
tions. The proposed dynamic modeling and perfor-
mance analysis method can also be applied to other
PMs with parasitic motion or over-constraints.
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