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Abstract This paper presents an systematic dynamic
modeling and performance analysis method of an over-
constrained 2PUR-PSR parallel manipulator with par-
asitic motions, where P, U, S, and R represent the pris-
matic joint, universal joint, spherical joint, and rev-
olute joint, respectively. The process of the deduc-
tion of the over-constrained forces/moment is given.
The Newton—Euler approach and natural orthogo-
nal complement method are adopted to establish two
types of dynamic models with and without constrained
forces/moments with the consideration of the over-
constrained forces/moments. The dynamic manipu-
lability ellipsoid, which measures the uniformity of
changing the position and orientation of the manip-
ulator’s moving platform, is adopted to evaluate the
dynamic performance of the parallel manipulator. To
show the feasibility of the proposed method, numerical
simulations are conducted to investigate the dynamic
models and performance of the 2PUR-PSR manipula-
tor. The actuation forces, constrained forces/moments,
and the compatible deformation are calculated. Distri-
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bution of the DME index is also obtained. The proposed
modeling approach provides a fundamental basis for
the structural optimization and control scheme design
of the over-constrained parallel manipulator.

Keywords Dynamic modeling - Performance
analysis - Low-mobility parallel manipulator -
Over-constraints - Parasitic motion

1 Introduction

Parallel manipulators (PMs) have been intensively
studied for over a decade and have been used in a wide
spectrum of applications, from simple pick-and-place
operations of an industrial robot to advanced electronic
manufacturing, maintenance of nuclear plants robotics
[1,2]. Because of their closed kinematic structures,
PMs exhibit better performance in terms of accuracy,
rigidity, and payload capacity and show greater poten-
tial to deal with numerous tasks [3]. The lower motil-
ity PMs, which own less than six degrees of freedom
(DOF), can perform most of the aforementioned tasks
and have received more and more popularities for their
lower cost, lower complexity in structure and easier
control [4].

Dynamic modeling serves as the fundamental basis
for the dynamic performance analysis and is essential
for the structural design and control scheme design of
parallel manipulators. However, different applications
have different requirements for the dynamic model.
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For the structural design, the driving forces/torque
and the constrained forces/moments should be cal-
culated simultaneously, while for the control scheme
design, the dynamic model should be efficient enough
for the real-time calculation. Unlike serial manipula-
tors which possess well-established dynamic modeling
methods, however, due to the closed kinematic chain,
an explicit dynamic formulation of the PMs is much
more complicated. Besides, the parasitic motions and
over-constraints usually accompany the lower motility
PMs, which makes the dynamics even more compli-
cated [5]. Over-constraints would result in deformation
for the flexibility of links, which cannot be ignored for
high-accurate applications. Most previous studies on
low-mobility PMs have focused on kinematics and the
corresponding optimal design. The systematic inves-
tigation of dynamics and performance analysis of the
over-constrained PM with parasitic motions is still an
open problem.

Therefore, we aim to propose a systematic precise
and efficient method to derive the explicit dynamic
formulation and dynamic performance analysis for
the over-constrained lower-mobility PM with parasitic
motions. We focus on an over-constrained 2PUR-PSR
PM, which possesses one translational and two rota-
tional DOFs with parasitic motions, is a three-legged
parallel manipulator utilizing the sliders to allow actu-
ators to be mounted on the base.

The literature on the dynamic modeling of PMs
mainly falls into four categories: the Newton—Euler
method, Lagrange formulation, Kane equation, and
principle of virtual power [6]. Using Newton—Euler
method, Dasgupta obtained the inverse dynamic mod-
els of the Stewart platform [7,8]. First, the dynamic
equation of every isolated rigid body was obtained with
the consideration of the internal forces and moments,
resulting in a system that can be applied in model-
based feed-forward control. By eliminating the inter-
nal forces and moments, a closed-form dynamic for-
mulation of the Stewart platform was then derived.
Using the same method, Chen established the closed-
form dynamic model of the 3PRRU parallel manipula-
tor without parasitic motion or redundant constraints,
and the dynamic performance was then analyzed based
on the dynamic model [9]. By incorporating the defor-
mation compatible equations, Bi derived the inverse
dynamic model of an over-constrained parallel manip-
ulator with the Newton—Euler formulation. This model
has the potential to be integrated with control systems
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to improve dynamic performance under real-time con-
trol [10]. However, the Newton—Euler method usually
results in a set of differential algebraic equations with
a maximum number of coordinates. As the Newton—
Euler equations of all bodies and the constraint equa-
tions are integrated together, the computation cost is
very high.

Many researchers have applied the usual Lagrange
formulation to PMs, but the closed kinematic chain
requires the introduction of Lagrange multipliers [11],
making the Lagrange formulation too complex. To
eliminate the multipliers, Stefan proposed a recursive
matrix representation for the kinematics of the parallel
manipulator and employed a dynamic model for the PM
using the minimal parameters derived from the kine-
matics [12—14]. Chen proposed the Udwadia—Kalaba
approach to calculate the multipliers and obtained an
explicit dynamic model of the Stewart platform [15].
By combining the Lagrange formulation with the vir-
tual work principle, Guiyang established the dynam-
ics of a parallel manipulator with three DOFs [16].
Houssem considered open-loop sub-chains of the PM
and derived their dynamics by the Lagrange formula-
tion with respect to an own set of generalized coordi-
nates and velocities. By considering the principle of
energy equivalence, the equations can be computed
separately for the sub-chains of the robot [17]. Dong
established the dynamic model of a planar parallel
manipulator with the redundant actuations with the
Lagrange equation, and the Lagrange multipliers were
eliminated by the expression of the null space of veloc-
ity constraint matrix [18]. Briot employed the Lagrange
formulation to derive the dynamic model of the 5R par-
allel manipulator with flexible joints and flexible links,
and the Lagrange multipliers were derived based on
the dynamic model of the moving platform (MP), and
an explicit dynamic model was thus obtained [19,20].
However, as explicit expressions require the kinetic and
potential energies of all components in the manipula-
tor, the computational cost of the Lagrange equation
would increase significantly when the number of bodies
increases. Hence, for parallel manipulators with closed
kinematic chains, dynamic modeling with the Lagrange
formulation is too complex.

By integrating Lagrange equation with d’ Alembert’s
principle, Kane’s equations demonstrate that the sum
of total generalized active forces and the total gener-
alized inertia forces for each generalized coordinate
of the system equals zero [21]. It can be shown that
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the constrained forces/moments are eliminated auto-
matically with Kane’s equations, as all selected par-
tial velocities are independent. Using Kane’s equation,
Chen derived the rigid-flexible coupled dynamic model
of a 3RRR planar parallel manipulator [22]. Cheng
derived the dynamic model of a hip joint simulator
with a 3SPS+ 1PS spatial parallel manipulator. This
provided the theoretical basis for the design of a driv-
ing system with active branched-chains and the struc-
tural parameters of the intermediate branched-chain,
as well as for the control system design [23]. However,
the deductions of partial velocities and accelerations
require tedious calculations due to the closed kinematic
chains of PMs, and also the established dynamic model
is inappropriate for structural design as constrained
forces/moments in connecting joints are automatically
eliminated.

The principle of virtual power is another effective
dynamic modeling method for multibody system. The
process is as following: the generalized forces, includ-
ing the inertial forces, gravity forces, external forces,
and the actuation forces, for individual body are calcu-
lated first, and then, the dynamically systematic equi-
librium equations depicting the virtual power of the sys-
tem, which were produced by all forces under instan-
taneous virtual displacement, are established and held
zero. As the constrained forces or moments did not pro-
duce work for the system, they are eliminated from the
dynamic model; Jaime established the inverse dynamic
model of the 4-PRUR PM by means of the screw theory
and the principle of virtual work [24]. Hu derived the
velocity mapping of the (3-UPU)+(3-UPS+S) serial-
parallel manipulator and established the dynamic mod-
els with the principle of virtual power, and the actua-
tion forces were derived [25]. Huang first established
the 3-DOF Modules of Two Reconfigurable PKM—
the Tricept and the TriVariant with the principle of
virtual power, and conducted comparison studies of
the dynamic performance [26], and then, the dynamic
model of the 4-DOF SCARA Type PM was derived
with the same method, based on which the dynamic
performance indices were optimized [27]. The princi-
ple of virtual power is a very efficient control-oriented
modeling method for the dynamics of the PM, for which
the constrained forces/moments were eliminated. How-
ever, the constrained forces/moments are essential for
structural design, so the dynamic modeling with the
principle cannot satisfy the requirements for structural
design and control scheme design simultaneously.

To derive acomputationally efficient dynamic model,
the concept of the natural orthogonal complement
(NOC), which defined the relationship that maps the
independent velocities onto the twist of an individ-
ual body, is proposed to eliminate the constrained
forces/moments or the Lagrange multipliers [28]. In
NOC, dynamic modeling of individual body is estab-
lished first, and then, the NOC matrix is employed to
transform the twist of an individual body into inde-
pendent velocities. The resulting dynamic model is
in closed form without including constrained forces,
torques, or the Lagrange multipliers. Hence, this
method is quite efficient and straightforward and is very
suitable for PMs. Using this method, Ganesh estab-
lished the inverse dynamic model of a translational par-
allel manipulator and optimized the trajectories [29].

In the aforementioned literature, the research on
dynamic modeling of PMs has made considerable
achievements; however, relevant studies on the over-
constrained PMs with parasitic motions are quite lim-
ited. Also, to the author’s knowledge, there is still
no generally accepted dynamic index for the over-
constrained lower-mobility PM with parasitic motions.
In this paper, to satisfy different requirements for
the dynamic models of structural and control scheme
design, a systematic closed-form dynamic modeling
and analysis method of the over-constrained PMs
with parasitic motions is presented. The dynamic
models with and without constrained forces/moments
can be established simultaneously with the Newton—
Euler equation and NOC method, and the deformation
induced by the over-constrained forces/moments are
derived. The dynamic manipulability ellipsoid (DME)
[30] for PMs without parasitic motions is employed to
evaluate the dynamic performance of the PMs para-
sitic motions. The 2PUR-PSR PM will be considered
to demonstrate the dynamic modeling and the dynamic
performance analysis of this type PMs. In the following
sections, the NOC method and Newton—Euler equa-
tion are used to establish closed-form dynamic model
of an over-constrained 2PUR-PSR PM with parasitic
motions. The derived model is validated by the com-
parison with generalized commercial software. Addi-
tionally, the dynamic performance is investigated. The
dynamic modeling and analysis method presented in
this paper is expected to be applicable to other similar
PMs with parasitic motions.
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Fig. 1 CAD model of the manipulator

2 Kinematics of the 2PUR-PSR parallel
manipulator

As shown in Fig. 1, the 2PUR-PSR PM considered
in this paper consists of a base platform and a MP
connected by two identical PUR limbs and one PSR
limb. A; and A, represent the intersections of the uni-
versal joint, A3 is the center point of spherical joint,
P;(i = 1,2,3) generally denotes the location of the
prismatic joint and the actuated motor in each limb, and
the motion of the first two collinear prismatic joints is
perpendicularly to the third; B; (i = 1, 2, 3) represents
the revolute joint in the MP connected with each limb,
and C; (i = 1,2, 3) represents the mass center of the
ith link. The reference frame O—XYZ and the mov-
ing frame P —uvw are attached to the base and the MP,
respectively, with O and P being the origins located at
the midpoint of AjA; and By B»; the X and u axes are
parallel to A1 A; and B By, whereas the Z and w axes
are perpendicular to the base and the MP; the Y and v
axes are then determined through the right-hand rule.
In addition, the geometrical parameters of limb 1 and
limb 2 are identical, with /1 and /3 being the length of
P B and A Bj, and the corresponding parameters of
limb 3 are /; and l4, respectively.

2.1 Inverse position analysis

Inverse position analysis of the 2PUR-PSR PM involves
the determination of the position and orientation of each
limb for the given position and orientation of the MP.
The orientation matrix of the moving frame P—uvw
with respect to the reference frame O—XYZ can be
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Fig. 2 Coordinate frame of the manipulator

derived in terms of three rotational angles ¢, 6 and ¢
satisfying the Z-Y-X convention:

cosp —sing O
Rp = RZ,quY,QRX,tp = simp Cos ¢ 0

0 0 1
cos 0 sinf 1 0 0
X 0 1 0 0 cos¢ —sing
—sinf 0 cosf 0 sing cos ¢
CyCh CySpSe — CpSy CySpSe — CpSy
= | 5pCo  CyCy + 54500  SpCeSe — S¢Cy (1
—Sp S¢Ch CyCoh

where ¢ and s denote cos and sin, respectively.

The position of the MP with respect to the reference
frame is denoted as P,, = (x y 2)T, (see Fig. 2), we
can derive the closed loop motion equation as:

Pm+bi—q; —Li —Rs irs i

—Rgrsi2=03x1, (=1,2,3) (2
where L; is the vector of the ith link, Rg; = E3, the
3 multiplied by 3 unit matrix, denotes the rotational
transformation matrix from the body fixed frame of
the ith slider to the base frame, rg; | and rg ;2 rep-
resents the position vector of A; and Bj in the body
fixed frame P;—xs,;yg ;Zs.i» q; and b; are positions of
the ith actuator and the revolute joint B; with respect to
the base coordinate frame, with ¢; = g;e; (i =1, 2, 3),
bi = (—=1)"' R je;(i = 1,2), and b3 = LR ye3, and
e; can be given by:
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ei=e;=(0 1 0) ,e3=(100)",
es=(00 1) 3)

From the characteristics of the PM, the axis vector c;
of the revolute joint in each limb is perpendicular to the
plane with the normal vector g¢; — P, so the following
relationship can be obtained:

cl-T (qi — Pm) =0 4)

where ¢; = R,¢;o, and ¢;( represents the axis vector of
the revolute joint in limb i:

Clp = €20 = €3,C30 = €] )

From Egs. (1)—(4), the constraint relationship can be
derived as:

actual motion of the mechanism. Therefore, s, must be
identically zero, which means ¢ must be O or 7. Based
on the characteristics of the PM, we assign ¢ = 0.
Hence, the constraint relationship can be expressed as:

=0
X = ztang (10)
y = (g3 — ztang) tangsy — z tang cy

From Eq. (10), the number of independent generalized
coordinates is three, and there are two additional para-
sitic motions. PMs with two rotational DOFs and one
rotational DOF have a wide range of applications, so
n = (z ¢ 6 )T is chosen as the independent general-
ized coordinates.

From Egs. (1) and (9), the positions of the sliders
can be obtained as:

+ Ircgsp) tany, /(tandz) sg +1)

+ \/l% — 7% sec? —l%sé — 2l1zseco 8¢ + licy

q1 = (—zco + se\/lf — l% secé sé + lf tané sg -2 seci +2lrz secé S

—Ircpsp) tany, /(tané s(% +1)

—\/l§ — 7% sec} —l%sé — 2lyzsecq sy — l1¢cg

q>» = —(zco — s \/IZ — l% secé sg + lf tani sg —z2 seci +20z seci S (11)

g3 = (lhcg+ 2z secé tang +\/lf + li tané Sg — 72 seci _

l% seci sg + 2z seci se)/(tané sg +1)

xcoCy — (g1 — y) cosp — 289 =0 (6)

xcgcy + (g2 + y)cosy — 250 =0 @)

¥ (cpcy +5¢308¢) + (g3 — x) (Cesy — Spsocy)
+zs¢co =0 ®)

Subtracting Eqgs. (7) from (6), we obtain a further rela-
tionship:

(g1 +q2)cosy =0 9

In the above equation, g + ¢»> cannot always be equal
to zero; therefore, cys, = 0 must hold. Substituting
cpsy = 0 into Eq. (6), if ¢y = 0, then z = 0 would
hold permanently, which obviously does not reflect the

To describe the inertial characteristics, the local coor-
dinate frames of each limb are established as in Fig. 2,
and the body fixed frames P; -xg;yg ;zs; and C; -
Xc,iyc iZc,i are attached to the mass center of the ith
slider and link, respectively, while the coordinate axis
of P; -x5,iys ;2s,i is parallel to the corresponding ones
of the base frame. Further, the z¢ ; axis is parallel to line
A;Bj,andthexc (i = 1,2)andy 3 are parallel to cor-
responding revolute axis. In addition, B;—xp ;¥ ;ZB.i
is attached to the MP with the zp ; axis normal to the
MP, and the xg ; (i = 1,2) and yp 5 axis are parallel
with the corresponding axis of B; -xp ;y g ;25.,i- Hence,
the transformation matrix R; from P-uvw to O-XYZ
for the ith limb can be expressed as:
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Ry, 0:Ruc; ¢;Rup,; viRip =RL iRyy; v Rip 2.2 Velocity and acceleration analysis

ce10se1100 1 0 0
0 cy —So; 0 cy; —Sy, The inverse kinematics of the PM is given by Egs. (11),

—sp, 0 C9l 0 s¢  Cy; 0 sy; cyy (14), (15) and (16); the velocities and accelerations can
0 be derived by differentiating with respect to time and
« (0 0 (=1)i+! ) represented by the generalized coordinates. Differenti-

0 (=1 0 ating Eq. (10) with respect to time, the parasitic linear
co, (_l)l:sd)i'f“ili s6; (_1)i+-1 S 0 and angular velocity of the MP can be derived as:
=1 0 (_1)f+ls¢i+¢i (= 1‘)l+lc¢i+‘~|»’i
=g (=)' oy (_1)t+1s9ic¢i+\lfi
i=12) (12)

R; = ch,3,¢3Ryc.3,93RXC,3,¢3R}'33,¢3R3,p =R 3Ry 43R5,

Cp; —Sp3 O co, 0 sg 1 0 0 Cy; 0 sy, 0 01
= | Sp3 Cgps 0 0 1 0 0 Co; —Sis 0 1 0 0 1 0
0 0 1 —sp; 0 coy 0 s¢p; Cos —sy; 0 cy; -1 00
—Coy;3 (Sllm Ch3 +Cip3Cy3 593)_‘:\]13 Sp3Sp3  C3Se3Siz —Sp3Cds  Co3 (cllfs €63 — Cop3Su3 S65) —SU3S¢3Se3
=1 —Ses (Slll3 Co3 +Cip3Cy3 593)+Cll!3 Sh3Cp3  Se3Sh3SY3 TCp3Chs  Sgs (Cllf3 Co3 — Cop3Sus3 893)+C\113 S¢3S¢3 (13)
—Co3S63 C635¢3 —863Cy3 — CO3C3Sys3

where Ry, ; = Ry, g, Ryc;.0;(0 = 1,2) and Ry 3 =

. p =0
R;5.0,Ry45.0;Ry 45,45 represent the transformation ¢ 5
matrix from local coordinate frame of each link to the X = tang  + zsec 0
base frame. R; , (i = 1,2, 3) represents the transfor- y = ¢3tangsy — tangsecyz an
mation matrix from P-uvw to B;—xp ;yp ;2B.i- 2\4
L7855, + (g3tangcy — ztangsy sec;)o

From Egs. (1), (2), (12) and (13), the relevant (g3tang 02 ot 5 9.)
trigonometric functions of each limb can be obtained + (g38¢ secy, —zsecy secy)p
as: = y.2+ yo0 + yp
Co =Cp,S6; = S0, Copy, = (2/co + 115¢,)/ 13,84, = /1 — Ci] (14)
Co, = Ch, 89, = 89, Cip, Z(Z/Cg+11S¢l)/13,S¢2 = l—Ciz (15)

Cpy = — (zc¢ —lhcysp — CQSQ\/IZ 2 _ lzse — 224 2hzsp + lf ésg)/

<(S¢SO — C¢) \/l2s¢c9 250 2lrz89 + 2 )

Spr = 50 (12} + 2520/2 = oo + o0} [3c3 — B3 — 22 + 2ozt + 35283 )/
(09 ( cd + Se) \/ZZ icg 13s3 — 2bzsg + 2 )

= —\/ﬂs s+ 22 — 2azsy — BsEsd/la, soy = —\[B3—13c3 + 22 — 2ozsy — 35353 /la

(16)

— (2 = bso)/\J135363 + s} — 2azsy + 22, 54, = —l4C9s¢/\/l4 5362 + 1355 — 2azs + 22
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where the upper dot on a parameter means differentia-
tion with respect to time, and

—(z—1
v. = | tany + (z —lasp)
\/lf + lf tané sg - secé (z — lrsg)?

(tané sg + l) — tany, secy

) secé tang sp /

lf tané spco + secé (z —Ilasg) lrco

yo = | —lso+z seci seca +
\/lf + l% tané sg - secé (z — Irsp)?

—2q3 tané Sg 69> tany sg /
(ta\ngﬁ sg + 1) + tang (g3co — 259 secg)

1353 — (z—hso)*

\/lz + l‘% tanfp sg — secé (z — Irsp)?

Yo = (ZZ tang +

—2q3 s%) tané secé S /
(tané sg + 1) + secé (g389 — z5€cp)

From Egs. (1) and (17), the matrix form of the linear
and angular velocities of the MP can be formulated as:

t, =K,y (18)
where ¢, represents the twist of the MP, and
. T
(P; wT ) s Kp
tang y, 1 0 O 0

0 yp 0 cosp O —siny
zsec; yp 0 0 1 0

tP
T

Differentiating Eq. (2) with respect to time yields:

Py+oxb; =¢;+wp; xLi =gie;+wr; xL; (19)

where @ and w; represent the angular velocity of the
MP and the link in limb i. Taking the dot product with
L; on both sides of Eq. (19) leads to:

L;rpm — LiTE,-w = qiL;Fe,- (20)

where the upper slash on a vector denotes its skew
matrix. Hence, the velocity of the ith actuator can be
expressed as:

gi = (LiTe,-)_l (£ —LTbi )1, @1

Rewriting Eq. (21) in matrix form results in the velocity
mapping between the linear actuators and the MP:

q=K;'Kity = J gty (22)
where
L{el

. T T

g=(q1 ¢ ¢3) . K4= LTe, :
L£e3

LT —LTh,

Ki=| LY —LTp,
T Ty,
Ly —L3b;

Taking the cross product with L; on both sides of
Eq. (19) yields the angular velocity of the link in limb i:

o =Juwitp (23)
where
- 1 e
Juie (Li —e; (LTe;)™' LT LlTinsz —b;LT +e; (LTe;)” LTb;) ’
(=12 '
- 1 1 e
Jus—= <L3 —e3 (L}-e3) L;r L;‘ng} —b3L§+e3 (L}-e3) Li{b}-l—L}L;{ )

LTL3

The linear and angular acceleration of the MP can be
obtained by differentiating Eq. (18) with respect to
time:

t, = K,ii + K, (24)

where jj is the acceleration of the independent general-
ized coordinates, and
sec .0 0 0 0 \'
K,=|: secg +2z tang secz 6 y9 0 —singd 0 —cosyf
0 o 0 0 0 0

Taking the cross product with L; on both sides of
Eq. (19) and differentiating with respect to time, the
angular acceleration of the link in limb i can be obtained
as:

or.i =Jwitp + Jwitp (25)
where
Jui = <Liw{i —opL] +e; ((L;-Fei)il LTe;

+ (L,T@L,.e,-)_l LiT)

LT (& — @) bE3 — @b;L] +b;L] &;
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~1 -1 -
+e; <<— (LiTwLie,-) LiT - (LiTe,-) LiTa)Ll.) b;
—1
+(Ller) LT (bio” - wbiT)» JLTL;, (i =1,2),
: T T T, \ !yT-
Juw3 = L3wL3 —wrL; +e3 (L3e3> L; w3
—1
+ (LSTwL3e3) Lg)
LY (& — @3)b3E3 — @b3LY + b3LY @5
_ -1 - -
+ e3 <<— (ngL3e3> L} — <L§e3> L3T""L3> b3
-1
+ (L§e3) Lg (bng - wbi{))
+asLsL] — L3(:>3L§) /LTLs

Similarly, the acceleration of the actuators can be
obtained as time derivative of Eq. (22):

é:qup +thp (26)

where ]q is the time derivative of J, and can be
expressed as:

Jo=—K,'"K,K,'K, + KK,

=K' (—-K,K;'K, +K)) 27
where
K, =

(@, x Ly)Tes

)

(L, x L1)Tey
( (@, x L3)Tes )
(@1, x LT —(or, x L)Thy — LTh,
Kt = | (&L, X L))" —(wr, % Lz)Tiz —ngz
(@1, x L3)T —(01, x L3)Ths — LTbs
bi = (=1 (Ry&RY + Rk, )
= ()it ((:)R,,é,-R; +R,,é,-R;(:)T) =12

by = > (@R, &R} + Ry&:Ka")

3 Dynamics of the 2PUR-PSR parallel
manipulator

The dynamic modeling of the 2PUR-PSR PM is
described in this section. First, the twists of individ-
ual bodies, limbs, the system are derived, and thus,
the NOC matrix is obtained; then, the Newton—Euler
method is used to establish the dynamics model with
constrained forces/moments, based on which the NOC
matrix and compatible deformation are employed to
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establish the dynamic models with and without con-
strained forces/moments.

From Fig. 2, the mass center of the slider and link
in ith limb can be expressed as:

Psi =4q; t Rsrs.i
(28)
Pri="Ds;+Rsirsio+RLrL ;1

wherery 1 ; represents position vector of A; in the body
fixed frame C;-xc ;y¢ ;2c.i-

The velocity of the mass center of the ith slider and
link can be obtained by differentiating Eq. (28) with
respect to time:

Psi=4; +wsi X Rs;rs i1
= (E3 —Rs,ifs,i,lRE,i) (il,-T w?,,-)T
Pri=qi+twr; xRy irLi1=4; _RL,i;'L,i,]RI’iwL,i
= <E3 _RL,i;L,i,lR}:J) (iIiT w{,i)T

(29)

where g ; is the angular velocity of the ith actuator,
and ws ;| = 03><1.

The NOC method employs the concept of twist to
describe the velocity field of the individual body, and
the twist of the actuator and the link in the ith limb are
indicated as ts ; and #7,;, respectively:

T T
ts; = (PE, w?,‘) S = <I){,i w{,i> (30)

From Egs. (29) and (30), the twist of the ith limb is
denoted as:

. T

i= (6 ) =Kix; (31)
T . .

where x; = (qlT “’E,) denotes limb independent

E; 03 E3 03 !
03 03 R{,ii‘L,i,lRL,i E;) -

Hence, the generalized twists including the limbs
and the MP of PM can be expressed as:

variables, K; = (

~ ~ ~ T . .
t=(tT hoh t;) —Kj=Tj (32)

where T denotes the NOC matrix,
T
(xT x3 x3 ) .T=KLK,, and

X =



Closed-form dynamic modeling and performance analysis

525

K1 0pxe 012x6 O
K — 012x6 Ko 012x6 O
06 O012x6 K3z 0 |’
06 (173 0 Eg
E; 03 03 03 03 03 Og
0; 03 03 E3z 03 03 0O
0; E; 03 03 03 03 O

E; 03 03 03 03 03 0g
0; 03 03 Ez 03 03 0O
0; E; 03 03 03 03 0O
L=|05 05 0; 03 E; 03 0
0; 03 E; 03 03 03 0O
0; 03 03 03 03 E3 0
03 03 03 03 03 03 Eg

L=]0; 03 03 03 E; 03 0 e3 031 03x1 03415 §p1
0; 03 Ez 03 03 03 O 0 e 0 0 W
00 0 0 0 B0 S KIS ) AT
Jw,3
03 03 03 03 03 03 Eg 0151 Orsx1 015x1 Ejs 06
Jq
es O Ona Osasy (5 For the ith link in the fixed frame O—XYZ, the
x 031 e 031 03515 Juo Newton—Euler equation can be derived as:
0351 03x1 €4 0315 7 ’
0151 O15x1 O15x1 Ejs Ew’3
6
dmL,fI”L,i _ e _ .
—g, - =mpipp; =fr;+mLig
dRI' R 0r) T .
— LT Ldt Lit =RL,iIlL’,-RE,iwL,i+RL,iIZL,I-RL,iwL,i+RL,iIlL’,-R£,-wL,i (34)

~ 1 T 1 T ~T 1 T -
= wL,iRL,iIL,,'RL’iwL,i +RL,iIL,iRL,iwL,iwL,i + RL,iIL,iRL,iwLJ'

I pT . - I pT
=Rpil} R; ,wr i+ &L iRl R wr;=nL;

By differentiating Eq. (32) with respect to time, the
acceleration mapping between of the individual body
and the system independent variables can be expressed
as:

i=Ti+Ti (33)
where T = KLK, + KLK, + KLK, K; =

03 03

03 _ _ 03~ _ ,K —

03 ©pFL,;, —FL, ;0L

03 03

K, 01236 O12x6 O

0126 K> 012x6 06

. , and
01256 O12x6 K3 0

0¢ 06 06 06

wheremy, ; and I ZL ; are the mass and the inertial tensor
of the ith link in the body fixed frame, and g denotes

T
the gravity acceleration. wy, ; = ( E’i ny i) is the

wrench in the fixed frame, and can be decomposed

T
into working wrench wf ; = ( f ‘iTi n‘iTi ) and non-

working wrench wii = ( ”LTl nCLTl. )T. The working
wrench w‘i ; denotes wrench due to actuators, external
forces/moments gravity or dissipation, while the non-
working wrench is caused by the constraint forces and
moment and can be expressed as:

{ 7 =Ly rAai + L% rApi @5)
ng ;=L grai + Ly pAp.i

where A4 ; € R¥>1(i =1,2),A03 e R andAp; €
R3*! are the ideal constraint forces/moments generated
in the universal joint, spherical joint and the revolute
joint of the links. LS, ; € R34 =1,2), L » €
R4 =1,2), L 57 € RS, L5, € R,
L. 7 € R3*3 and Ly » € R3*3 are transformation

@ Springer



526

Z. Chen et al.

matrices related with the constraint forces/moments
and can be expressed as:

Ly 1T_LA2T [E3’03X1]’L54,3,T=E3
Ly g = [RL,I;'L,I,IR{’I,ZCJ] ,

LS 5 p = —RpsFL 3R] 5,

Ly, r= I:RL,Z;'LJ,IR{,Z,ZC,Q]

Ly 7 =Lyr7=Lys7=- [E3. 0342 ]
Ly p=-— I:RL,I;'L,I,ZR{’I, v, w] ,
Ly,p=— [RL,sz,z,zR{’z, v,w] ,
Lyspr=-— I:RL,3;'L,3,2R€’3, u,w]

The matrix form of Eq. (34) can be reformulated as:
Wi — mL,iE3 03 ﬁL,,’
L 03 RLJ’IZLJR{J» oL
(% 0; PLi
0s & Ry I iREi L
<L§4 it L T) <)~A,i> _ (mL,iE3)g
Lf4!R L%zR >"B»i 03
=My itri+Wpitri —Cr ik — G ig (36)

From Eq. (36), Newton—Euler equation of the sliders
can be given by:

wh . — <m5*"E3 03 > (ﬁs,i )
S 03 Rsil3 R, )\ @s,
+ 0; 03 ) <Ps,i
03 G)S,iRs,ilg,iRg,i w5, i
A Shir Shir ()»p,i ) _ <ms,iE3>g
Sia i,R Si},i,R Aai 03
C

= Mg ts; + Wsits; —w§,; —Gs.ig 37)

where mg; and Ig_l. represent the mass and iner-
tial tensor of the sliders with the corresponding body

T
_ ~T a
= (ES "s,i,l) Si =

a a
Cs.i fs, ; denotes forces and

fixed coordinate frame. w‘g ;

(e;[‘ erStl) fSl -

torques generated by the actuators, and f” = f§ e
T

3 : c cT cT

is the actuation forces. W, = ( si Mg, ) denote

the ideal constraint forces and moments exerted on the
sliders and can be given by:

C — .
i =Shirhai 85, rhpi

c
nSt_SAzR)‘A’J’_Sle

@ Springer

where A,; € R3*3 denotes ideal constraint forces
and moments caused by the prismatic joints, while
the transformation matrices S% | 7, 8% | . 8% | 7 and
S%.1.g are given by:

Sea1r=8prr=le3,€4,03],8% 3 r=[ei1, e4, 03]
S5 1 & =[Fs.11- (3, 1)  E3],

8%,k = [Fs.2.1- (€3, e4) , E],

S5 3.8 = [Fs.3.1- (€1, e1) , Es3]
—[E3.031].8% 5 7 = —E3
[Fs.2.2.2¢1],

A,l,T = SA,z,T =

Shir=—[Fs12.2c1], 8428 =~

YR ="Ts32
Similarly, matrix form of Newton—Euler equation for
the MP can be given by:

u mpE3 03 I‘jm
"=\ 0 RORY )\ 6
03 03 DPm
+ ~ PpT
03 @R,I,R » ®

_ (PL}’I,T Poor PL}’,3,T> L (mpE3)
P 1k PL;DZR P 3k "\os #

=Mpt,+ Wpyt, — pl -Gpg (38)

wherem , and I g represents the mass and inertial tensor

of the MP with respect to the corresponding body fixed

_ cT cT
coordinate frame. wp ;= ( pi My
constraint forces and moments of the MP, respectively,

and can be represented as:
C — C C C
pi =Ppirie 1 + Py rhp2 + Py s rdps

c _ C C C
np; =Py gAp 1+ Py, pAp2 + Py 3 pAp3

denotes the

Where the transformation matrix P, , € R* can
be derived as:

Py p =P =Ph 5 = [E3 03]
Pyir= [bl,v,w] Phor= [l;z,v,w],
Phir= [53,u,w]

Based on Egs. (36)—(38), the system dynamic equation
of the over-constrained PM can be derived as:

Mt + Wt — C\ — Gg = w" 39)
where M, W and C; denotes extended inertial matrix,
extended angular velocity matrix and the extended con-
straint transformation matrix of the PM, respectively,
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while G and w? are the gravity matrix and the actuation
matrix, which can be represented as:

M = blkdiag (Mg, My 1, Mg, My 2,Mg3, M 3,Mp)
W = blkdiag (Ws 1, W 1, Ws2. Wr 2, Ws3, Wi 3, Wp)

T
—(cT T T . T GT. T T
G= (GS,I’GL,I’GS,Z’GL,]’GS,3’GL,1’GP>

T
— T T T T T T T
A= I:)‘ )‘ )‘B 1’ )‘P,2’)‘A,2’)‘B,2’)‘P,3’)‘A,3’)‘B,Sj|

a aT aT aT T a a fa
w —(Ws1 le’wsz’Wszwswayw ) =wes ST

=[f1 3 f3}

T™MTi + T"MTi +T"WTi — T"Gg = T"wi s f*

(41)

Based on the screw theory, the limb 1 and limb 2
simultaneously possess the constraints of translation in
u axes and rotation about z.; axes, which means that
there are two over-constrained motions in the 2R1T
PM. Hence, translational deformations along # and
rotational deformation about w axes of limb 1 and limb
2 should be equal, which can be derived as:

3 2 3. Tp—lyc X 2 eT —1lyc
-1 .. (3—rp2i) | ro2i(—rLa.i) LesRy Ly irrsi el Ry Ly prb.i
SiTu=€ R, (—=mp iy i+m g)[ e el Bt
T, 3L JAPLi T 3ET, 2ET, 3ET, 2ET,
. - ’ i=1,2
S: _ TR—l _RLJI[L,:‘R{J"’LJ_“’LJRLJIIL,,‘R{J"’LJ I ) I3LY ; gAB.i ( )
iRz =€3Rp ; GT. (3=rp2,i)+ GI.

(42)

and

Cs;1 O6xs 06x9 0sx5 Opxg Opxs
O6x5 Cr1 06x9 0Opx5 Ogxs Opxs
O6x5 06x9 Cs2 0Osxs5 Ogxg Opxs
C. =1 06x5 06x9 Osx5 CL2 Ogxs Osxs |
O6x5 06x9 Osxs Osx9 Cs3 Opxs
O6x5 06x9 Osxs Osx9 Osxs CL3
06x9 P%y Osxs Phy O6x9 Py

‘é‘s’i 0651 Opx1
O6x1 Osx1 Opx1

O6x1 fCs; Oox1 f
wes = | O6x1 Osx1 Osx1 | ./ = | f5
O6x1 Oox1 fCs.; 13

O6x1 O6x1 Opx1

Osx1 O6x1 Opx1

According to the principle of virtual power, the ideal
constraint forces and moments in the connecting joints
don’t produce work in the system dynamics; hence, we
can obtain:

T'C, =0 (40)
Based on Egs. (32), (33) and (40), the system dynamic

model without constraint forces/ moments can be refor-
mulated as:

where I, and I, are the area of inertial moments about
the body fixed frame C; -xc ;yc ;zc,i, while E and G
are Young modulus and shear modulus. Therefore, the
compatible deformation conditions can be given by:

{ (SLT,u = 52,T,u (43)
81,R.zc; = 02,R zc,

Substituting Eq. (43) into (39), constraint force along
u and moment about w of revolute joint By can be
represented by other constraint wrenches of revolute
joint By and Bs; hence, the system dynamic model with
the constraints can be derived as:

M'Ty +M'Tjy +W'Tj) —G'g = C;\/ (44)

where M, W’ and G’ represent the reformulated iner-
tial matrix, angular velocity matrix, the gravity matrix,
respectively, while C, and A" are the reformulated con-
straint transformation matrix and the wrench and can
be given by:
M =M+AM, W =W+ AW,G =G
+AG,C, =C) + AC,),

A= I:XPI’)‘Al’)‘/B1’)‘P2’)‘A2’)‘B2’)‘P3’)”A3’

AL 3,f“T] b1 =Ap1(2:4)
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where AM, AW, AG, and AC), are the increase due to
the substitution of constraint force along # and moment
about w of revolute joint By, details of which are in the
appendix.

Hence, the closed form dynamic models with and
without constrained forces/moments of the over-constr-
ained PMs with parasitic motion are established. For
Eq. (41), the constrained forces/moments are elimi-
nated, and it is quite straightforward and computational
efficient for the dynamic performance analysis, as well
as the control scheme design. For Eq. (44), the actuation
forces and constrained forces/moments can be com-
puted simultaneously, and it’s essential for structure
design. Also, the proposed method utilized the concept
of modular dynamic modeling; hence, the clearance
and friction can be easily integrated into the system
equation; in future studies, the rigid-flexible coupling
dynamic model will also be established to obtain rigid-
flexible coupling dynamic characteristics and an accu-
rate constraint forces/moments.

4 Dynamic performance analysis of the
2PUR-PSR parallel manipulator

Based on the dynamic model established in Eq. (41),
the dynamic performance is investigated in this sec-
tion. The concept of dynamic manipulability ellipsoid
(DME) [30] proposed by Yoshikawa is employed to
evaluate the uniformity of the PM’s ability in changing
the MP’s position/orientation under the stated driving
forces. Then, the distribution and the characteristics of
the DME index in the preset workspace are also studied
in this section.
The dynamic Eq. (41) can be reformulated as:

a

—1 P
(17wes)  TTMTKE, =F (45)

where K ;; denotes the pseudoinverse of K j,, f ‘= =
(TTwes) ™ (T (WT +MT) i — T"Gg) and 7, =

t, — K 1) are the generalized driving force and the MP’s
acceleration of the PM, respectively.
The set of all 7 p which s realizable by a joint driving

force such Hfa H < 1 is an ellipsoid described as:

i, <1 (46)

@ Springer

where M = (TTw‘éS)JF T™™T (TTw‘éS)f1 den~0tes
the reduced inertial matrix of the system, and J =
K, (TTw“CS)_1 is the Jacobian matrix associating the
PM’s actuated joints with the MP.

However, manipulators usually involve translational
and rotational motions; hence, the DME should be
decomposed into corresponding aspects, and two ellip-
soids will be calculated to evaluate the translational and
rotational DME:

T s T AT~ ~ 2
tpdr M MIft,r <1 )
T sg T~ T ~ ~g2

where ), 7 and £, g are the translational and rotational

aspect of 7.

From kinematic analysis, the manipulator has one
translational and two rotational motions with two trans-
lational parasitic motions; hence, the dynamic per-
formance might be different when the manipulator
moves in different configurations. To evaluate the
isotropic property of dynamic manipulability, the con-
dition number and the mean condition number of M.J JTr

ot .
and MJ p < are adopted as the measure of the manip-
ulator’s dynamic performance as:

_or2 ., _ or2
WT =571 WR = g
: 48
ijdSZ wadS ( )
wWGer = S ,2WGR = S

where wr and w g denote the condition number of MJj ;—
and MJ ;, respectively, o7 and o7 | are the nonzero
singular value of MJ ;r, or.2 and og | are the nonzero
singular value OfMj;, and o172 < or,1,0R2 < ORI,
while wg g and w7 are the mean value of wy and wg
for the given height z.

5 Numerical study of dynamic response and
performance

Based on Egs. (41) and (44), the actuation forces and
the constraint forces/moments can be calculated for the
given trajectory. Also, the dynamic performance can
be investigated based on the deduced DME (48). This
section will verify the correctness of the dynamic model
and investigate the dynamic performance of the PM.
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Fig. 3 Computed torques of ADAMS model and the proposed model

Table 1 The mass and inertial tensors of the parallel manipulator

Body Mass (kg) Mass center rg/r, i 1, 's/L,i,2(mm) Inertial tensor (kg m?)

The slider 0.05 0,0,=5) (0,0,5) blkdiag (5 x 10719,5 x 10710, 5 x 10710)
Link 1 and 2 0.1025 0,0, —48.9) (0,0,41.1) blkdiag (5.9 x 1077,6.4 x 1078,5.9 x 1077)
Link 3 0.174 (0,0, —44.8) (0, 0,50.2) blkdiag (1.5 x 1077, 1.5 x 1077, 6.5 x 1077)
The MP 10 - blkdiag (7.2 x 1077, 1.5 x 1077, 6.5 x 107°)

In the numerical simulation, the preset values of the
parallel manipulator’s kinematic parameters are given
by /!y = 30 mm, /; = 35 mm for the size of the MP, and
I3 = 90 mm, /4 = 95 mm for the length of the links,
and other geometrical and inertial parameters are listed
in Table 1. In addition, the inertial tensors are measured
in the body fixed frame located in the corresponding
mass center. The following trajectory was tested for
the dynamic model:

2=60 (66563 — 15¢% /1] +10r/23) +20
0=20m (6t5/;3 - 15t4/t§+10r3/t3)/180 —10%/180

b=207 (6;5/z§ - 15;4/zj+10t3/z3)/180 — 107/180
(49)

where t; denotes the desired duration time, and t; =
0.5s.

Based on the given trajectory of the MP, the required
joint space trajectory can be calculated using the inverse
kinematic model, with which the required actuation
forces, the constrained forces/moments and the com-
patible deformation can be calculated through Eq. (41)
and (44), respectively. The computed actuation forces
using the proposed model and the commercial software
ADAMS are shown in Fig. 3, and it is evident that the
force profiles of the proposed model are the same as the

ADAMS model, indicating correctness of the proposed
model, which could be employed in the dynamic perfor-
mance evaluation and accurate dynamic based control
design.

The constrained forces/moments and the actuation
forces computed with the Eq. (48) were illustrated in
Fig. 4; the results show that the for the prismatic joints,
the peak actuation forces of the first and second limbs
are nearly 250N and 190N, respectively, while the value
for the third is about 60N. In addition, peak reaction
moments of the first and second limbs are much larger
than the third limb, which might be explained by the
fact that the spherical joint for the third limb cannot
bear moments while the universal joints for the first
and second limbs could bear moment around the links.
Also, reaction forces and moments of different direc-
tions show significant differences; therefore, the selec-
tion of the linear actuators and joints should be paid
attention to the issues.

The compatible deformations are calculated from
Eq. (43) and shown in Fig. 5, peak translational defor-
mation along u direction is around 0.0148 mm, and the
value for rotational deformation about w is 0.01rad.
Hence, for high precision operations such as precision
positioning and machining, the compatible deforma-
tions cannot be neglected.

As indicated above, the manipulator has one transla-
tional and two rotational motions with two translational

@ Springer
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parasitic motions; the range of z is selected [20 mm,
80 mm)], and for the 2DOF rotational motion, a rectan-
gular areais selected in the range of [—0.175rad, 0.175
rad] x [—0.175 rad, 0.175 rad] for 6 and ¢. Thus, the
parasitic motions can be calculated from the given inde-
pendent variables.

Asindicated in Fig. 6, the dynamic index wg experi-
enced rising and decline stages, which can be explained
by the fact that when the manipulator stays in the home
position (0 = 0, ¢ = 0), the rotation of the MP about
0 is driven by the two limbs, while for ¢, the motion
is only produced by the third limb. In the meantime, it
can be seen that the isotropic property becomes better
when the magnitude of ¢ increases. That’s because the
coupling of the motions is strengthened. Also, unlike
the 2R1T parallel manipulators with similar symmet-
ric structure without the parasitic motion [9], symmet-
ric line of the wg and w7 is not parallel with ¢ or 9,
but has certain slop degree of them; the reason is the
existence of the parasitic motion that makes the trans-
lation and rotational motion highly coupled, which can
also be explained by the similar trend between wg and
wr. In addition, with the increase in the magnitude of
z to about 70 mm, the dynamic indexes wgr and wgg
reach their maxima; then, they both decrease, which
indicates that the dynamic index has some relevance
with the kinematic and structural parameters.

Hence, in future work, the influences of the manip-
ulator’s kinematic parameters and the bodies’ inertia
properties on the index of dynamic performance will
be further studied based on the modeling and analy-
sis method proposed in this paper, and an integrated

@ Springer

optimal design and model-based control will be car-
ried out to improve the performance.

6 Conclusions

This paper presents a systematic dynamic modeling
and performance analysis of the over-constrained PM
with parasitic motions with the example of the 2PUR-
PSR PM. The type and number of over-constrained
forces/moments are first analyzed with the algebraic
method. Based on the Newton—Euler formulation and
the NOC method, the closed-form dynamic mod-
els with and without constrained forces/moments are
established and have been validated by means of
numerical simulations with the comparison of gen-
erally accepted commercial software. The concept of
DME is then adopted to evaluate the dynamic manipu-
lability performance of the 2PUR-PSR PM. And the
distribution characteristics of both translational and
rotational condition number and their mean values
within the workspace of the parallel manipulator are
studied, which indicated that the dynamic performance
can be enhanced by kinematic and structure optimiza-
tions. The proposed dynamic modeling and perfor-
mance analysis method can also be applied to other
PMs with parasitic motion or over-constraints.
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