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Abstract This paper studies parameters identifica-
tion and minimizing base disturbances problems after
the space manipulator capturing an unknown target. A
concurrent learning algorithm that concurrently uses
past motion data points and instantaneous motion data
of the system is proposed for the parameters identifi-
cation. Given a condition for selecting the used past
data points as well as a scaling technique to make the
parameters have the same magnitude, the concurrent
learning algorithm guarantees that parameters identifi-
cation errors can globally converge to zero at an expo-
nential rate and without the need for satisfying the per-
sistent excitation (PE) condition. An adaptive reaction-
less control method is proposed based on the passivity
theorem and Task-priority method, which ensures that
the base attitude is stationary and joint motions sat-
isfy the limits during the system generating excitation
motions for the parameters identification. Simulation
results verify the effectiveness of the proposedmethod.
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1 Introduction

Space manipulators have drawn significant interest in
the research community since their inception in the
mid-1990s [1], as promising solutions for in-orbit ser-
vicing, satellitemaintenance, space debris removal, etc.
In the post-capture phase of a spacemanipulator servic-
ing a target whose dynamic parameters are unknown in
advance, an uncertain combined system is obtained. To
obtain accurate dynamic equations of the system and
applymodel-based precise controlmethods, the system
unknown dynamic parameters need to be identified.

The parameter identification methods of space
manipulators in the literature can be roughly divided
into three categories: vision-based [2–4], force-based
[5,6], and momentum-based [7–9]. The vision-based
and force-based methods required the space manip-
ulator to be equipped with dedicated sensors, which
made the parameter identification methods be more
susceptible to signal noises [9]. The momentum-based
methods established the identification model based on
the conservation principle of the system momentum,
and needed the system excitation motions to iden-
tify the parameters. A notable work in [7] derived
the identification model based on the conservation of
the system linear and angular momentum, however,
which required the initial linear and angular momen-
tum of the system to be zero. The derivative form and
incremental form of the momentum-based identifica-
tion model, which eliminated the nonzero but constant
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systemmomentum from the identification model, were
used in [8] and [9], and a Lyapunov function-based
parameters adaption law and a recursive least-squares
(RLS) algorithm were proposed to identify the param-
eters, respectively. A recent work based on the conser-
vation of the systemmomentum to identify the parame-
ters of a spacemanipulator was proposed in [10], where
the excitation trajectories were parameterized by trun-
cated Fourier series and the coefficient parameterswere
determined by minimizing the condition number of the
regressor matrix. In [11], an optimization problem was
formulated and solved with the particle swarm opti-
mization algorithm to identify the inertial parameters
of the system. The space manipulator was treated as a
single-body system by locking all the joints and a two-
body system by unlocking only one joint sequentially,
which made that only simple dynamic equations were
used for identification; as a result, the excitation trajec-
tories for the parameters identification were also easily
realized. The main drawback of using the momentum-
based parameters identification methods is that the sys-
tem excitation motions must satisfy the persistently
exciting (PE) condition to guarantee that the param-
eters identified results can converge to the true values
[12]. However, the PE condition imposes requirement
on the system motion at every moment, thus having
requirement on the future motions of the system, which
makes the PE condition harsh and difficult to be veri-
fied online.Moreover, for in-orbit systemsmaking their
motions satisfy the PE condition may cause extra fuel
consumption and affect the motion requirements by
other tasks; for instance, the base attitude of the space
manipulator should be stationary for communications
during generating excitation motions for the parame-
ters identification.

Concurrent learning algorithm for parameters iden-
tification, which guaranteed that parameters identifi-
cation errors globally converge to zero at an expo-
nential rate without the need for satisfying the PE
condition, was first proposed in [13]. The concurrent
learning algorithm simultaneously used the instanta-
neous motion data and the past motion data points
of the system to update identified parameters at each
iteration step. In [13], a condition was proposed for
the used instantaneous and past motion data points,
and it was proved that, by satisfying the condition
instead of the PE condition, the parameters identifi-
cation errors can globally, exponentially converge to
zero. In [14], a singular value maximizing algorithm

was proposed to select the past motion data points that
were used in the concurrent learning algorithm, which
demonstrated that the convergence rate of the param-
eters identification errors can be improved by appro-
priately selecting the past motion data points. Until
now, the concurrent learning idea has been applied
in the adaptive-optimal control design [15–18], game
systems [19–21], and aircraft systems [22–24], etc. To
the best of authors’ knowledge, the concurrent learning
algorithm has not been applied to aerospace missions.
Moreover, the existing concurrent learning algorithm
was designed for the systems that have only one out-
put and a regressor vector in the identification model.
However, the momentum-based identification model
of a space manipulator consists of an output vector
and a regressor matrix, which requires the concurrent
learning algorithm to be redesigned for a space manip-
ulator.

The system excitation motions being abundant is
helpful for the parameters identification; on the other
hand, other motion requirements of the system should
also be satisfied, such as that null base attitude dis-
turbances are caused by arm movements and joints
move within the physical limits. The reaction null
space (RNS) concept was first proposed in [25], which
obtained the arm motions that caused null base distur-
bances in a space manipulator. The RNS-based meth-
ods have beenwidely applied to the reactionless control
of spacemanipulators [26–28], however, which needed
the accurate kinematic/dynamic models of the system.
In the situation that the space manipulator captures an
unknown target, the uncertainty of the dynamic param-
eters makes it more difficult to design a reactionless
controller. In [9], an adaptive reactionless motion algo-
rithm was studied for the post-capture motions of a
space manipulator with unknown dynamic parameters.
However, the algorithm only regulated the base angular
velocity, in which case, the base attitude could deviate
from the desired orientation. An adaptive reactionless
control method that can regulate the base attitude errors
to zero was proposed in [29,30], respectively. How-
ever, the parameters identification algorithm in [29]
required the system excitation motions to satisfy the
PE condition and the unknown parameters were not
identified in [30]. Another flawed aspect of the above-
mentioned adaptive reactionless control methods was
that the motion limits of the system were not taken into
account, which probably led to the obtained system tra-
jectories inapplicable.
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This paper proposes a concurrent learning algorithm
for parameters identification of the space manipula-
tor, which guarantees that the parameters identification
errors can globally converge to zero at an exponential
rate without the need for satisfying the PE condition. A
parameters scaling technique is included in the concur-
rent learning algorithm, which makes the parameters
have the same magnitude; therefore, all the parameters
can be identified at the same time.An adaptive reaction-
less controller is also proposed for the space manipu-
lator, which ensures that the base attitude remains sta-
tionary as well as the joint motions satisfy the given
limits during the system generating excitation motions
for the parameters identification.

The rest of the paper is organized as follows:
Section 2 gives some preliminary knowledge. Sec-
tions 3 and 4 present the concurrent learning algorithm
and adaptive reactionless controller, respectively. The
effectiveness of the proposed method is demonstrated
through numerical simulations in Sect. 5. Some con-
cluding remarks are made in Sect. 6.

2 Preliminary

The space manipulator together with the unknown tar-
get is shown in Fig. 1. Assuming that there are no rel-
ative motions between the end-effector and target after
the capture, the original last link and target compose a

single body (treated as the new last link). In the new
system, the inertia parameters of the last link, includ-
ing the mass, position of the center of mass (CoM),
and moment/product of inertia, are unknown. Consid-
ering there are no external forces and torque exerted
on the system, the linear and angular momentum of the
system are constant; therefore, the momentum-based
identification model can be established and used as the
foundation of the proposed concurrent learning algo-
rithm in Sect. 3. The dynamic equations of the space
manipulator are also recalled, which are used to design
the adaptive reactionless controller in Sect. 4.

2.1 Identification model

The linear and angular momentum of the system can
be calculated as follows:

[
P
L

]
=

⎡
⎢⎢⎣

n∑
i=0

mi ṙ i
n∑

i=0
(I iωi + r i × mi ṙ i )

⎤
⎥⎥⎦ (1)

where P ∈ R
3 and L ∈ R

3 denote the linear and angu-
lar momentum of the system expressed in the inertial
frame, respectively. n is the number of the arm degrees-
of-freedom (DoFs). mi ∈ R is the mass of the link i ,
I i ∈ R

3×3 is the inertia tensor of the link i expressed in
a coordinate frame that is parallelwith the inertial frame

Fig. 1 A post-capture diagram of the space manipulator with an unknown target
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and located at the CoM of the link i . ωi ∈ R
3 is the

angular velocity of the link i and r i ∈ R
3/ṙ i ∈ R

3 are
the position/linear velocity of the link i CoM expressed
in the inertial frame, respectively.

Without loss of generality, assuming that the system
linear momentum is zero, Eq. (1) can be expressed as a
set of linear equations of inertia parameters of the last
link [9,31]:

y(Xb, ẋb, θ , θ̇ , t) = Φ(Xb, ẋb, θ , θ̇ , t)h (2)

where y is the output vector, Φ is the regressor
matrix, h = [

1/mn,
nanx , nany, nanz, n In,xx ,

n In,xy,

n In,xz,
n In,yy,

n In,yz,
n In,zz

]T is the vector of the iner-

tia parameters of the last link, an = [
anx , any, anz

]T
represents the position vector from the joint n to the
CoM of the link n, left-superscript ‘n’ represents the
inertia parameters expressed in the body frame, Xb ∈
SE(3) denotes the base CoM position and the base atti-
tude, and ẋb ∈ R

6 represents the linear velocity of the
base CoM and the base angular velocity expressed in
the inertial frame, respectively. θ ∈ R

n and θ̇ ∈ R
n

are the sets of the joint angles and angular velocities,
respectively.

Equation (2) includes the system angular momen-
tum L, which is nonzero and unknown if the target was
tumbling before the capture. In order to eliminate the
unknown L from the identification model, considering
that L is constant and its derivative is zero, Eq. (2) is
differentiated, which obtains a more general identifica-
tion model that allows the system angular momentum
to be nonzero:

z(Xb, ẋb, ẍb, θ , θ̇ , θ̈ , t) = Ψ (Xb, ẋb, ẍb, θ , θ̇ , θ̈ , t)h(3)

where z and Ψ stand for the time derivatives of y and
Φ, respectively.

2.2 Dynamic equations

Choosing the base attitude and base CoM position as
well as the joints displacements as generalized coordi-
nates, the dynamic equations of the space manipulator
can be expressed as follows [32]:

[
f b
τ

]
+

⎡
⎣ JT

bv

JT
bω

JT
m

⎤
⎦ f e =

⎡
⎣ME3 Hvω JTω

HT
vω Hω Hωθ

JT
Tw HT

ωθ Hm

⎤
⎦

⎡
⎣ v̇b

ω̇b

θ̈

⎤
⎦

+
⎡
⎣cbv

cbω

cm

⎤
⎦ (4)

where

Hb =
[
ME3 Hvω

HT
vω Hω

]
∈ R

6×6,

Hbm =
[
JTω

Hωθ

]
∈ R

6×n, Hm ∈ R
n×n

are the base inertia matrix, base-arm coupled iner-
tia matrix, and arm inertia matrix, respectively. cb =[
cTbv

, cTbω

]T ∈ R
6 and cm ∈ R

n are the velocity-

dependent, nonlinear terms for the base and arm,
respectively. The matrices Jb = [

Jbv , Jbω

] ∈ R
6×6

and Jm ∈ R
6×n are the Jacobian matrices for the

base and arm, respectively. The vectors f b ∈ R
6 and

f e ∈ R
6 are the forces andmoments exerted at the base

CoM and end-effector, respectively. The vector τ ∈ R
n

is the torque applied on the joints of the arm. M is the
total mass of the system, and E3 is the identity matrix.
Notations for the sub-matrices that are not shown here
can be found in [32].

For a free-floating space manipulator, the forces and
moments exerted at the base CoM and end-effector are
zero ( f b = f e = 06×1). Therefore, the dynamic equa-
tions can be expressed as follows:

[
06×1

τ

]
=

⎡
⎣ME3 Hvω JTω

HT
vω Hω Hωθ

JT
Tw HT

ωθ Hm

⎤
⎦

⎡
⎣ v̇b

ω̇b

θ̈

⎤
⎦ +

⎡
⎣cbv

cbω

cm

⎤
⎦ (5)

3 Parameters identification

Given the identificationmodel of the spacemanipulator
Eq. (3), denoting the real parameters and real outputs
of the plant are h∗ and ν, respectively, h∗ and ν satisfy
the following relationship:

ν(t) = Ψ (t)h∗ (6)

Note that the regressor matrix Ψ (Xb, ẋb, ẍb, θ ,

θ̇ , θ̈ , t) in Eq. (3) is also denoted as Ψ (t) in Eq. (6),
and the rest of the paper for the sake of simplicity. Like-
wise, the output vector z(Xb, ẋb, ẍb, θ , θ̇ , θ̈ , t) is also
denoted as z(t). Defining the output error e(t) = ν(t)−
z(t), it is clear that e(t) → 0 as t → ∞ if h(t) → h∗ as
t → ∞. A well-known choice for ḣ(t) in adaptive con-
trol laws that makes e(t) → 0 is the one that updates
h(t) in the direction of maximum reduction of the
instantaneous quadratic cost V (t) = e(t)T e(t) [12]:

ḣ(t) = −Γ Ψ (t)T e(t) (7)

where Γ > 0 represents a positive definite learning
rate matrix.
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3.1 Concurrent learning algorithm

The drawback of using the parameters learning law
Eq. (7) is that h → h∗ if and only if the system exci-
tation motions satisfy the PE condition [12]. The con-
current learning that simultaneously uses the instan-
taneous and past motion data points can relax the PE
condition in the parameters identification problem [13].
In this paper, the concurrent learning law is designed as
follows, which is used to identify the unknown inertia
parameters of the space manipulator:

ḣ(t) = −Γ Ψ (t)T e(t) − Γ

p∑
k=1

(
Ψ T

k ek
)

(8)

where ‘p’ and k ∈ {1, 2, . . . , p} denote the total num-
ber and index of the used past data points, respectively.
Ψ k is the regressor matrix evaluated at the correspond-
ing past time point. ek is obtained as follows:

ek = Ψ kh(t) − νk (9)

where νk is the recorded output vector at the corre-
sponding past time point.

Defining the parameters identification errors h̃ =
h − h∗, using the above concurrent learning law the
changing rate of the h̃ can be calculated as follows
(notice that h∗ is constant):

˙̃h(t) = ḣ(t) = −Γ Ψ (t)T e(t) − Γ

p∑
k=1

(
Ψ T

k ek
)

= −Γ Ψ (t)TΨ (t )̃h(t) − Γ

p∑
k=1

(
Ψ T

k Ψ k h̃(t)
)

= −Γ

⎛
⎝Ψ (t)TΨ (t) +

p∑
k=1

(
Ψ T

k Ψ k

)⎞
⎠ h̃(t)

(10)

Equation (10) presents a linear time-varying equa-
tion in h̃. We can see that by appropriately selecting
the used past data points, the h̃(t) can converge to 0. A
condition for Ψ (t) and Ψ k is proposed as follows:

Condition1DefineΘ =Ψ (t)TΨ (t)+∑p
k=1

(
Ψ T

k Ψ k
)
.

Selecting past data points makes the matrix Θ positive
definite.

Given theCondition 1, the parameters identification
errors h̃(t) obey the following theorem:

Theorem 1 By satisfying Condition 1, the parameters
identification errors h̃(t) can globally converge to zero
at an exponential rate using the concurrent learning
law proposed in Eq. (8).

Proof Define a Lyapunov function of h̃(t):

V (̃h(t)) = 1

2
h̃(t)T h̃(t) (11)

The derivative of the Lyapunov function is calcu-
lated as follows:

V̇ (̃h(t)) = h̃(t)T ˙̃h(t)

= −h̃(t)T Γ

⎛
⎝Ψ (t)TΨ (t) +

p∑
k=1

(
Ψ T

k Ψ k

)⎞
⎠ h̃(t)

= −h̃(t)T Γ Θ h̃(t) (12)

Since Γ and Θ are positive definite, there exists
a λM > 0 making V̇ (̃h(t)) ≤ −λM h̃(t)T h̃(t) =
−λM‖h̃(t)‖2. Therefore, using theorem 4.6 from [33]
the exponential stability of the zero solution h̃ = 0 of
the parameters error dynamics Eq. (10) is established.
Furthermore, the values of the Lyapunov function are
radially unbounded; therefore, the result is globally
guaranteed. �	

3.2 Discussion

In the proposed concurrent learning algorithm, the
recorded past motion data points are concurrently used
with the instantaneous motion data to identify the
parameters, and the parameters identification errors
globally, exponentially converge to zero by satisfying
the proposed Condition 1 instead of the PE condition.
The Condition 1, which applies only to a subset of all
past data, is always reachable after the systemmoves to
generate excitation motions over a finite time interval.
Moreover, the Condition 1 is to determine the positive
definiteness of a matrix, which can be easily online
monitored. On the other hand, the PE condition (refer
to the Definition 3.2 in [34]) applies also to how Ψ (t)
should behave in the future, which is harsh to be satis-
fied and online monitored.

Selecting the used past motion data points is crucial
for making the parameters identification errors rapidly
converge to zero, and therefore a scheme to select the
used past data points is presented in the following text.
Another notable aspect is that the unknown parameters
possibly have vastly different magnitudes, and there-
fore, it may require significantly different time inter-
vals to identify the different parameters. A parameters
scaling technique, which turns the real parameters into
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auxiliary parameters that have the same magnitude, is
proposed. As a result, all the parameters can be identi-
fied at the same time.

3.2.1 Selecting past motion data points

In order to perform the proposed concurrent learning
algorithm, as shown in Eq. (8), the past system motion
information, which includes the regressor matrix Φk

and system real output νk , should be recorded for use.
It isworth noting that the accelerations and velocities of
the base and joints, the baseCoMposition, the base atti-
tude, and the joint angles need to be measured to calcu-
late the regressor matrix Φk and system real output νk ,
since the identificationmodelEq. (3) is used.Whenper-
forming the proposed concurrent learning algorithm,
the selected past data points and the instantaneous data
need to make the matrix Θ positive definite. Note that
Θ is the summation of the following terms Ψ (t)TΨ (t)
and Ψ T

k Ψ k , and each term is already nonnegative, the
larger distance between two terms makes it more pos-
sible that Θ is positive definite. Therefore, a past data
point that satisfies the following relationship is selected
to identify the parameters:
‖Ψ k − Ψ (t)‖2

‖Ψ (t)‖2 > ξ1 (13)

where ‖ · ‖2 denotes �2−norm of a matrix, ξ1 is a con-
stant positive scalar.

Note that the number of the used past data points is
not limited in the Condition 1. However, in the proof
of the Theorem 1 it shows that the convergence rate
of the parameters identification errors is determined by
the eigenvalues of the matrix Θ . The more past data
points are used, the larger positive eigenvalues are pos-
sessed by Θ , which will accelerate the convergence
of the parameters identification errors. Therefore, an
index is defined as follows:

ξ2 = ‖Ψ (t)h(t) − ν(t)‖2 = ‖Ψ (t )̃h(t)‖2
≤ ‖Ψ (t)‖2‖h̃(t)‖2 (14)

when ξ2 is large (shows that the parameters identi-
fication errors are large), a large number of the past
data points can be used in the concurrent learning law
Eq. (8).

3.2.2 Parameters scaling

The unknown parameters in the identification model
Eq. (3) may have vastly different magnitudes. Here,

we present an alternative identification model, which
is identical to the original identification model Eq. (3)
but deals with the parameters with the samemagnitude:

z(t)
‖z(t)‖2 =

(
1

‖z(t)‖2Ψ (t)

)
D(t)D(t)−1h(t) (15)

where D(t) = diag
(
d1(t), d2(t), . . . , dnp(t)

)
is a diag-

onal matrix, np = 10 is the number of the unknown
inertia parameters of the space manipulator,

d j (t) =
{

1
‖c j (t)‖2 , if ‖c j (t)‖2 
= 0

1, if ‖c j (t)‖2 = 0
(16)

where c j (t) is the j th column of thematrix 1
‖z(t)‖2 Ψ (t).

Denoting z(t) = z(t)
‖z(t)‖2 ,Ψ (t) =

(
1

‖z(t)‖2 Ψ (t)
)

D(t), h(t) = D(t)−1h(t), the alternative identifica-
tion model can be expressed as:

z(t) = Ψ (t) h(t) =
np∑
j=1

Ψ j (t)h j (t) (17)

where z(t),Ψ (t), h(t) are termed as the auxiliary out-
put vector, auxiliary regressor matrix, and auxiliary
parameters, respectively.

Since z(t) and each column of the matrix Ψ (t), i.e.,
Ψ j (t), are both normalized vectors, each scaled auxil-
iary parameter h j (t) has the samemagnitude and affect
z(t) equally. Using Eq. (17) as the identificationmodel,
it is expected that all the parameters h(t) can be iden-
tified at the same time.

Applying the proposed concurrent learning law to
the alternative identification model, the convergence

rate of the auxiliary parameters, ḣ(t), can be obtained.
Successively, the convergence rate of the original phys-
ical parameters, ḣ(t), can be calculated as follows:

ḣ(t) = D(t)ḣ(t) (18)

4 Controller design

It is crucial to keep the base attitude at a desired
orientation for communications with the ground and
solar panels collecting energy, etc., when the system
is driven to generate the excitation motions. In this
section, an adaptive reactionless controller is designed
for the space manipulator, which prevents base atti-
tude disturbances from the arm motions. Furthermore,
considering there are limits on joint motions, the con-
troller that keeps the joints away from the limits is
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designed as well. Two kinds of the control commands,
which prevent the base attitude disturbances from the
arm motions and keep the joints away from the limits,
respectively, are synthesized based on the Task-priority
method.

4.1 Reactionless control law

Based on the passivity theorem [35], a reference veloc-
ity and a reference acceleration trajectories for base
attitude are designed as follows:

η = ωd
b + K o1δεb (19)

η̇ = ω̇d
b + K o1δ̇εb + K o2

(
ωd
b + K o1δεb − ωb

)
(20)

where the superscript ‘d’ represents the desired values,
the unit quaternion qb = {ηb, εb} ∈ R

4 is employed
to represent the base attitude. (ηb is the scalar part,
and εb is the vector part of the quaternion.) δεb =
ηbε

d
b−ηdbεb−εdb×εb represents the orientation error of

the base. K o1, K o2 are positive definite gain matrices.
Define the tracking error of the reference velocity

s = η −ωb, given s = 0 the asymptotic stability of the
null base attitude tracking error can be demonstrated by
using the Lyapunov argument [36]. In order to keep the
base attitude stationary, the desired base attitude vari-
ables in the reference trajectories are set asωd

b = 0 rad/s
and that qdb equals the initial base attitude, and an adap-
tive reactionless control law is designed as follows to
guarantee s = 0.

Given the complete dynamic equations of system
Eq. (5), the following sub-dynamics about how joint
motions affect base motions can be decomposed from
Eq. (5):

06×1 =
[
ME3 Hvω

HT
vω Hω

] [
v̇b
ω̇b

]
+

[
JTω

Hωθ

]
θ̈ +

[
cbv

cbω

]
(21)

Whenonly concerning the base attitude disturbances
caused by joint motions, we divide Eq. (21) into two
subequations:

03×1 = ME3v̇b + Hvωω̇b + JTωθ̈ + cbv (22a)

03×1 = HT
vωv̇b + Hωω̇b + Hωθ θ̈ + cbω (22b)

Then, we solve the base CoM linear acceleration v̇b
from Eq. (22a) and substitute the result into Eq. (22b),
which leads to the following system sub-dynamics
about how the base attitude is affected by jointmotions:

03×1 = Hb,oω̇b + Hbm,oθ̈ + cb,o (23)

where,

Hb,o = Hω − HT
vωM

−1Hvω

Hbm,o = Hωθ − HT
vωM

−1 JTω

cb,o = cbω − HT
vωM

−1cbv (24)

In order to obtain an adaptive reactionless control
law that makes s = 0, a Lyapunov function candidate
is selected as:

V (s) = 1

2
sT

(
Ĥb,o + Λ2

)
s (25)

Note that ‘ ’̂ represents an estimation of a variable.
Hb,o is the inertia matrix of the base attitude motion in
Eq. (23), which is usually positive definite. Ĥb,o is pos-
sibly negative definite since it uses the identified param-
eters. Therefore, we perform Eigen-Decomposition on
Ĥb,o and design a Λ2 as follows:

Λ2 =
k∑

i=1

(ξ3 − ζi ) μiμ
T
i (26)

where ζi ,μi , i = 1, 2, . . . , k are theminus eigenvalues
and the corresponding eigenvectors of Ĥb,o, respec-
tively. ξ3 is a positive constant scalar. Adding Ĥb,owith
Λ2 omits all the minus Eigenvalues from Ĥb,o, which
guarantees Ĥb,o + Λ2 is positive definite. Therefore,
the Lyapunov function candidate shown in Eq. (25) is
positive definite.

FromEq. (23),we have 03×1 = Ĥb,oω̇b+ Ĥbm,oθ̈+
ĉb,o. Differentiating V (s) yields

V̇ (s) = sT
(
Ĥb,o + Λ2

)
ṡ + 1

2
sT ˙̂Hb,os

= sT
(
Ĥb,oη̇ − Ĥb,oω̇b + Λ2 ṡ

) + 1

2
sT ˙̂Hb,os

= sT
(
Ĥb,oη̇ + Ĥbm,oθ̈ + ĉb,o + Λ2 ṡ

)
+ 1

2
sT ˙̂Hb,os

(27)

Let us define the adaptive reactionless control lawas:

θ̈c,bAtti tude = −Ĥ
+
bm,o

(
Ĥb,oη̇ + ĉb,o + Λ1s + Λ2 ṡ

)
(28)

where the notation ‘+’ represents the pseudoinverse of
a matrix.
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Using the adaptive reactionless control law Eq. (28),
the derivative ofV (s) inEq. (27) is further expressed as:

V̇ (s) = sT
(
Ĥb,oη̇ + Ĥbm,oθ̈c,bAtti tude + ĉb,o

+Λ2 ṡ) + 1

2
sT ˙̂Hb,os

= sT
(
Ĥb,oη̇ − (

Ĥb,oη̇ + ĉb,o + Λ1s + Λ2 ṡ
)

+ ĉb,o + Λ2 ṡ
) + 1

2
sT ˙̂Hb,os

= −sTΛ1s + 1

2
sT ˙̂Hb,os

= −sT
(

Λ1 − 1

2
˙̂Hb,o

)
s

(29)

Once making Λ1 > 1
2

˙̂Hb,o, for example, letting

Λ1 = 1
2

˙̂Hb,o + ξ4E3, ξ4 is a positive constant scalar,
the derivative of the Lyapunov function V (s) is nega-
tive definite. Therefore, the global, asymptotic stability
of the zero solution s = 0 is established. Consequently,
the base attitude errors can asymptotically converge to
zero [36].

4.2 Task-priority based controller

The space manipulator is redundant due to that the
number of the arm DoFs is larger than the number
of the base attitude task variables (i.e., n > 3) [37].
Here, the redundant arm DoFs are used to keep the
joint motions away from the limits, which is realized
by designing a PD controller to make the joints follow
bounded desired trajectories. The reactionless control
commands obtained in Sect. 4.1 and the PD control
commands are synthesized based on the Task-priority
method.

Supposing that the joints follow bounded sine
curves, i.e., θdi = θi,max sin( 2πTi t),
i = 1, 2, . . . , n, the PD controller that drives a joint to
follow its desired trajectory is designed as follows:

θ̈ic,bound = θ̈di + kθi1

(
θ̇di − θ̇i

)
+ kθi2

(
θdi − θi

)
,

i = 1, 2, . . . , n (30)

where kθi1, kθi2 are the constant positive control gains.
Using the PD controller, the joint angle error dynam-

ics is:(
θ̈di − θ̈i

)
+ kθi1

(
θ̇di − θ̇i

)
+ kθi2

(
θdi − θi

)
= 0

(31)

which represents aMass–Spring–Damper systemabout
the joint angle tracking error θdi −θi . The damping ratio

of the system is calculated as
kθi 1

2
√

kθi 2
. Choosing the

control gains kθi1, kθi2 to satisfy the relationship 0 <
kθi 1

2
√

kθi 2
< 1, one can get a underdamped system [38].

Therefore, the joint angle tracking errors can asymp-
totically converge to 0 using the controller Eq. (30).

Given the reactionless control command and joint
tracking control command, as shown in Eq. (28) and
Eq. (30), the two control commands are added together
using the Task-priority based method [39]:

θ̈c = θ̈c,bAtti tude + Ĥ
#
bm,oθ̈c,bound (32)

where θ̈c,bound = [
θ̈1c,bound , · · · , θ̈nc,bound

]T
,

Ĥ
#
bm,o = En − Ĥ

+
bm,o Ĥbm,o (33)

is the null space of the matrix Ĥbm,o.
In the complete control command Eq. (32), the task

of causing null base attitude disturbances is assigned
with a higher priority than the task of the joint motions
being limited. We substitute the Task-priority-based
control law Eq. (32) into the derivative of the Lyapunov
function Eq. (27) in the Sect. 4.1

V̇ (s) = sT
(
Ĥb,oη̇ + Ĥbm,oθ̈c + ĉb,o + Λ2 ṡ

)
+ 1

2
sT ˙̂Hb,os

= sT
(
Ĥb,oη̇ + Ĥbm,oθ̈c,bAtti tude

+ ĉb,o + Λ2 ṡ
) + 1

2
sT ˙̂Hb,os

= −sT
(

Λ1 − 1

2
˙̂Hb,o

)
s

(34)

It can be seen that the control of the joint motions
being limited does not affect the control of causing null
base attitude disturbances, and the Task-priority-based
control law guarantees that the base attitude remains
stationary. However, since the tasks with lower priori-
ties use the remaining DoFs [39], there are not enough
DoFs left for the task of the joint motions being lim-
ited. Therefore, the joint motions will be limited but
may exceed the given ranges at times.

In the work, the Task-priority-based control law
Eq. (32) is applied to the space manipulator that has
unknown inertia parameters. At the same time, the
motion data points are stored and used for the parame-
ters identification with the proposed concurrent learn-
ing algorithm.
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5 Simulations

The concurrent learning algorithm and adaptive reac-
tionless controller are applied to the system of a space
manipulator holding an unknown target, whose param-
eters are shown in Table 1, to show the effectiveness of
the proposed method. First, assuming that initial esti-
mated values of the unknown parameters are 80% of
the true values, the identified results of the unknown
parameters and auxiliary parameters are presented,
which shows the effectiveness of the proposed concur-
rent learning algorithm and parameters scaling tech-
nique. The base attitude and joint angles are presented
to demonstrate that the base attitude remains stationary
and joint angles are successfully limited by using the
proposed adaptive reactionless control method. Then,
the initial estimated values of the unknown parame-
ters are assumed as 10% of the true values, and the
identified results of the unknown parameters verify the
global convergence property of the proposed concur-
rent learning algorithm. Finally, the identified results
using the concurrent learning algorithm are compared
with those obtained by only using instantaneousmotion
data in the learning law; therefore, the advantages of
the concurrent learning algorithm are demonstrated.

Setting the initial estimated values of the unknown
parameters are 80% of the true values, the parameters
used in the concurrent learning algorithm and control
method are given the following values:

0 50 100 150 200
t (s)

0

20

40

60

80

100

m
n (k

g)

Fig. 2 Identified results of the mass

Γ = E10, ξ1 = 0.01, ξ3 = 10−5, ξ4 = 0.1 (35)

p = 20 (if ξ2 > 0.001) or p = 1 (if ξ2 ≤ 0.001)

(36)

K o1 = 5E3, K o2 = 10E3, kθi1 = 5, kθi2 = 10,

i = 1, 2 . . . , 6 (37)

Figures 2, 3, and 4 present the identified results of the
mass, CoM position, and inertia tensor parameters of
the last combined link, respectively, which show that
the identified results of all the inertia parameters con-
verge to the true values after about 100s.

Figure 5 illustrates the identified results of the aux-
iliary parameters that are scaled to have the same mag-

Table 1 System parameters of the simulation model

Satellite(B0) B1 B2 B3 B4 B5 B6 (with target)

Mass (kg) 400 12 10 10 8 6 30

ai (m) 0 0 0.270 0 0 0 − 0.270

0 0 0 0 0 − 0.034 0

0 0.150 − 0.251 0.150 − 0.350 0 0.430

bi (m) 0.357 0 0.560 0 0 0 0

− 0.010 0 0 0 0 −0.066 0

0.419 0.150 − 0.049 0.150 − 0.700 0 0
i I i (kgm2) Ixx 30 0.510 0.278 0.420 0.500 0.330 13.980

Iyy 28 0.510 1.811 0.420 0.500 0.172 16.780

Izz 32 0.200 1.690 0.150 0.210 0.260 14.050

Ixy 0.260 0 0 0 0 0 − 0.690

Ixz 0.370 0 0.263 0 0 0 0.130

Iyz − 0.290 0 0 0 0 0 0.510
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Fig. 3 Identified results of
the CoM position
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the inertia tensor parameters
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nitude. Although the magnitudes of the real inertia
parameters are significantly different, such as that the
magnitude of the reciprocal of the mass is 0.033 versus
the magnitude of the inertia moments is around 15, all
the auxiliary parameters, as shown in Fig. 5, have mag-
nitudes that are between 0 and 1, which demonstrates

the effectiveness of the proposed parameters scaling
law.

The proposed Condition 1 requires the matrix Θ

to be positive definite. The minimum eigenvalue of the
matrix Θ is presented in Fig. 6, which shows that the
minimum eigenvalues are always larger than 0, indicat-
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Fig. 5 Identified results of
the scaled auxiliary
parameters

ing that theCondition 1 is always satisfied during iden-
tifying the parameters. As a result, the identified results
of all the inertia parameters, as shown in Figs. 2, 3, 4,
have converged to the true values using the proposed
concurrent learning algorithm.

Using the proposed adaptive reactionless control
method, the base attitude disturbances caused by arm
motions are presented in Fig. 7. It can be seen that base
attitude suffers from the pretty small disturbances that
are less than 0.0002◦ most of the time.

The joint angles trajectories are presented in Fig. 8.
Note that the joints are required to follow sine curves
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Fig. 6 Minimum eigenvalue of the matrix Θ

(
θi,max = π

4 , Ti = 100
i , i = 1, 2, . . . , 6

)
in the controller

design, the joint angles do not strictly follow the desired
trajectories, due to the lack of DoFs to perform joint
angles tracking task that is assigned with a lower prior-
ity in the controller design. However, the joint motions
are successfully restricted to oscillate in the limited
ranges. As a comparison, the joint angles trajectories
under the controller that considers null base attitude
disturbance without joint motion limits are illustrated
in Fig. 9. Some joints experience large displacements,
such as that the displacement of the sixth joint reaches
almost 20 rad, which may go against the physical
limits.

Fig. 7 Trajectories of the base attitude
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Fig. 8 Joint angles
trajectories with limits

Fig. 9 Joint angles
trajectories without limits

Fig. 10 Identified results of
the inertia parameters
without joints following
sine curves
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Fig. 11 Identified results of
the inertia parameters

Fig. 12 Identified results of
the inertia parameters only
using the instantaneous
motion data

The sine curves that satisfy the PE condition have
been selected as the desired trajectories of the joints

for restricting joint motions to limited ranges. In order
to omit the case that joints following the sine curves
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make the excitation motions satisfy the PE condition,
the identified results of the inertia parameters without
requiring the joint motion limits, i.e., joints not fol-
lowing the sine curves, are presented in Fig. 10, which
shows that the parameter identification errors can con-
verge to zero by only satisfying the condition 1 using
the proposed concurrent learning algorithm.

In order to verify the global convergence property
of the concurrent learning algorithm, the initial esti-
mated values of the inertia parameters are set as 10%
of the true values. Figure 11 presents the corresponding
identified results, which shows all the identified results
converge to the true values, and therefore, the global
convergence property is verified.

The identified results of the inertia parameters,
where only instantaneous motion data are used in the
learning law, are presented in Fig. 12. It can be seen that
until 200 s only some identified results, such as those of
the mass, converge to the true values of the parameters;
however, the others, such as those of the inertia tensor
parameters, have not converged. Compared with the
previous identified results using the proposed concur-
rent learning law, it demonstrates the fast convergence
rate, which in fact is proved to be exponential rate, of
the proposed concurrent learning algorithm.

6 Conclusions

A concurrent learning algorithm for parameters identi-
fication and an adaptive reactionless control method of
spacemanipulators are presented in this paper. The past
motion data points of the system are properly selected
and used together with the instantaneous motion data
in the proposed concurrent learning algorithm, which
makes the parameters identification errors globally
converge to zero at an exponential rate and without
the need for satisfying the PE condition. A parameters
scaling technique is included in the concurrent learn-
ing algorithm, which turns the real unknown inertia
parameters into the auxiliary parameters that have the
samemagnitude; therefore, the parameters can be iden-
tified at the same time. The adaptive reactionless con-
trol method realizes that null base attitude disturbances
are caused by arm motions and the joint motions sat-
isfy the physical limits, where the two kinds of the
control commands are synthesized by using the Task-
priority-basedmethod. Simulation results show that (1)
the parameters identified results can globally converge

to the true values, and the convergence rate using the
proposed concurrent learning algorithm is faster than
that only using the instantaneous motion data as in
conventional adaptive control methods, (2) the scaled
auxiliary parameters indeed have the same magnitude,
and (3) the base attitude disturbances are < 0.0002◦
most of the time and the joint motions are successfully
restricted in the limited ranges.
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