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Abstract A fractional-order predator–prey biologi-
cal economic system with Holling type II functional
response is proposed. Local stability and Hopf bifurca-
tion of predator–prey systems have been investigated
in both commensurate and incommensurate fractional-
order systems.We explore how the economic profit and
fractional orders influence the local stability and Hopf
bifurcation for the fractional-order predator–prey sys-
tem. For an incommensurate system, we propose a new
theory for the existence of Hopf bifurcation when the
fractional orders are considered as bifurcation param-
eters. Several numerical examples are demonstrated to
validate the theoretical results.

Keywords Fractional-order system · Predator–
prey biological economic model · Stability · Hopf
bifurcation

1 Introduction

Nowadays, fractional calculus has attainedmuch atten-
tion as the novel mathematical model to describe var-
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ious phenomena in nature [1–4]. Due to the non-local
property of the fractional derivative, the fractional-
order differential equations are more suitable than
integer-order ones in biological, economic and social
systems where memory effects are important. Several
numerical methods have been proposed to obtain accu-
rate approximations by handling the non-local property
of fractional derivatives [5–8], and dynamical proper-
ties for the fractional-order systems have been studied
[9–14].

The predator–preymodelwas studied to describe the
relationship between two species in biological systems
in which one predator feeds on the other prey. The first
model was introduced by Lotka [15] and Volterra [16].
Holling type II functional response models have been
investigated to describe more realistic predator–prey
biological systems [17–20]. Recently, many predator
prey models of fractional order have been proposed
and their dynamical features studied in [21–23] In
this paper, we consider the following fractional-order
predator–prey biological economicmodelwithHolling
type II functional response [19],
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Dα1x(t) = x

(
d − kx − y

a + x
− E

)
,

Dα2 y(t) = y

(
−r + bx

a + x

)
,

0 = E(px − c) − υ,

(1)

where α1, α2 ∈ (0, 1); x and y represent the prey den-
sity and predator density at time t , respectively; d, r , a
and b are positive constants that stand for prey intrin-
sic growth rate, predator mortality rate, half captur-
ing saturation constant and maximal predator growth
rate, respectively; d/k > 0 is the carrying capacity of
the prey; E(t) represents the harvest effort; p denotes
harvesting reward per unit harvesting effort for unit
weight; c represents harvesting cost per unit harvest-
ing effort; υ is the economic profit; and the fractional
derivative of order α, n − 1 < α ≤ n ∈ Z

+, is defined
in the Caputo sense [24].

Definition 1 The Riemann–Liouville fractional inte-
gral of order β ∈ R+ of the function f (t), t > 0 is
defined by

I β f (t) =
∫ t

0

(t − s)β−1

Γ (β)
f (s)ds.

Here, Γ (·) is the conventional Gamma function. Then
the Caputo fractional differential operator of order α of
f (t), t > 0 can be written by

Dα f (t) = I n−αDn f (t), D = d

dt
.

We refer to [1–4] for detailed analysis and discussions.
In this paper, wemainly discuss the effects of economic
profitυ and the fractional ordersα1, α2 on the dynamics
of the system (1) in the region

R3+ = {(x, y, E) | x > 0, y > 0, E > 0}.

It is well known that the economic profit υ is an
important parameter to determine the dynamical prop-
erties [17–20]. As far as authors know, the stability
analysis and the existence of Hopf bifurcation associ-
ated with both fractional orders (α1, α2) and economic
profit υ have not been addressed. In this paper, we pro-
vide the following results

– Stability regions with respect to (α1, α2) when the
economic profit υ varies. The stability regions are

sensitive with the fractional orders. For the com-
mensurate system, it is asymptotically stable for
υ < s(α), where s(α) is increasing with s(0) =
7/9 and s(1) = 1/3. For the incommensurate sys-
tem, the area of stability region with respect to
(α1, α2) is decreasing when the economic profit υ

is increasing (see Fig. 5).
– Existence of bifurcation versus an fractional order

α or an economic profit υ. For the incommensurate
system, we provide a new theory of the existence of
Hopf bifurcation by introducing a directional vec-
tor along the curve h(γ (α1, α2)) = 0, where the
curve h is constructed by the stability condition
(see Theorem 5).

Furthermore, we give several numerical simulations
to support our analysis.

2 Preliminaries

In this section, we introduce stability analysis of the
fractional-order system. Let us consider the nonlinear
fractional orders autonomous system

Dα1x1(t) = f1(x1, x2, . . . , xn),

Dα2x2(t) = f2(x1, x2, . . . , xn),

...

Dαn xn(t) = fn(x1, x2, . . . , xn),

(2)

with the initial values

x1(0) = x01, x2(0) = x02, . . . , xn(0) = x0n,

where 0 < αi ≤ 1, i = 1, 2, . . . , n. If α1 = α2 =
· · · = αn = α, system (2) is called a commensurate
order, otherwise it indicates an incommensurate order
system.

Definition 2 The constant (xeq1 , xeq2 , . . . , xeqn ) is an
equilibrium point of the fractional dynamic system (2),
if and only if

fi (x
eq
1 , xeq2 , . . . , xeqn ) = 0, i = 1, 2, . . . , n.

Theorem 1 ([4,10]) Consider the commensurate non-
linear fractional-order system (2)with 0 < α1 = · · · =
αn = α ≤ 1. The equilibrium points of system (2), xeq ,
are locally asymptotically stable if all eigenvalues λi
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of the Jacobian matrix J evaluated at the equilibrium
points

J =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ ,

ai j = ∂ fi
∂x j

|xeq , i, j = 1, 2, . . . , n

satisfy:

|arg(λi )| >
απ

2
.

Theorem 2 ( [11]) Consider an incommensurate non-
linear fractional-order system (2) where αi ’s are ratio-
nal numbers between 0 and 1, for i = 1, 2, . . . , n. Let
M be the least common multiple (LCM) of the denom-
inators ui of αi ’s, where αi = vi

ui
, (ui , vi ) = 1 (the

greatest common divisor of ui and vi is 1), ui , vi ∈
Z

+, i = 1, 2, . . . , n and γ = 1
M . Then, the equilibrium

points of system (2) are locally asymptotically stable if
and only if all the roots λ’s of the equation

det

⎛
⎜⎜⎜⎝

λMα1 − a11 −a12 . . . −a1n
−a21 λMα2 − a22 . . . −a2n

...
... . . .

...

−an1 −an2 . . . λMαn − ann

⎞
⎟⎟⎟⎠ = 0

(3)

satisfy:

|arg(λ)| >
γπ

2
.

3 Stability analysis

In this section, we investigate local stability analysis
for the our model system (1) by using Theorems 1 and
2. To do this, we find an equilibrium point (x0, y0, E0)

by solving the following system:

x

(
d − kx − y

a + x
− E

)
= 0,

y

(
−r + bx

a + x

)
= 0,

E(px − c) − υ = 0,

(4)

which yields

(x0, y0, E0)

=
(

ar

b − r
, (a + x0)(d − kx0 − E0),

υ

px0 − c

)
.

(5)

From the existence of the equilibrium point, we assume
that

(b − r) > 0, (d − kx0 − E0) > 0, (px0 − c) > 0.

3.1 The commensurate nonlinear fractional-order
system

Consider the commensurate nonlinear fractional-order
system (1) with α1 = α2 = α, 0 < α < 1. The
Jacobian matrix J of the system (1) evaluated at the
equilibrium point (x0, y0, E0) is

J =
[ px0E0

(px0−c) − kx0 + x0 y0
(a+x0)2

− x0
(a+x0)

aby0
(a+x0)2

0

]
,

and the corresponding characteristic polynomial of the
equilibrium point (x0, y0, E0) is given by

λ2 + a1(υ)λ + a2(υ) = 0, (6)

where

a1(υ) = kx0 − px0E0

(px0 − c)
− x0y0

(a + x0)2
,

a2(υ) = abx0y0
(a + x0)3

> 0.

Then, it is easy to see by Theorem 1 that a suffi-
cient condition for the local asymptotic stability at the
equilibrium point (x0, y0, E0) is

|arg(λi (υ))| >
απ

2
, i = 1, 2, (7)
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where λi (υ) is the solution of the characteristic Eq. (6)
and is given by

λ(υ) =
−a1(υ) ±

√
a21(υ) − 4a2(υ)

2
. (8)

Since a2 > 0, λi (υ) are negative real or complex con-
jugate with negative real part for a1 > 0. In this case,
the stability condition (7) is equivalent to the Routh–
Hurwitz conditions [9].That is,

a21 � 4a2, a1 > 0, or a21 < 4a2, a1 > 0. (9)

For a1 < 0, the solutions λi (υ) are positive real or
complex conjugate with positive real part. Thus, we
have the following equivalent condition for (7)

a1 < 0, 4a2 > a21,

∣∣∣∣∣∣tan
−1

⎛
⎝

√
4a2 − a21
a1

⎞
⎠

∣∣∣∣∣∣ >
απ

2
.

(10)

3.2 An incommensurate nonlinear fractional-order
system

Consider an incommensurate nonlinear fractional-
order system (1), α1, α2 ∈ (0, 1) and αi = vi/ui with
(ui , vi ) = 1, i = 1, 2. Then, the equilibrium point
(x0, y0, E0) of the system in (5) is asymptotically sta-
ble if and only if all the roots λ’s of the equation

det

(
λMα1 − a11 −a12

−a21 λMα2 − a22

)
= 0 (11)

satisfy the following condition

|arg(λ)| >
γπ

2
,

where M is the least common multiple of the denomi-
nators ui , and γ = 1/M .

3.3 Numerical illustrations

For all numerical simulations through this work, we
choose the coefficients in the fractional-order system
(1) [19]

a = 0.5, b = 2, d = 2, r = 1, p = 4, c = 1, k = 2.

Combined with the coefficients, the equilibrium point
is evaluated as (x0, y0, E0) = (0.5, 1 − υ, υ) and the
corresponding eigenvalues can be evaluated in (8)

λ = (3υ − 1 ±
√
9υ2 + 2υ − 7)/4. (12)

For an integer system, the equilibriumpoint (x0, y0, E0)

is stable for a1(υ) = 0. Since a1(υ) = (1 − 3υ)/4, it
is stable when υ = υ0 = 1/3.

For a commensurate fractional-order system, the sta-
bility of the equilibrium point is followed by (9) and
(10). Figure 1 shows the approximated solutions of x
and y forα = 0.9, 0.95 and 1with υ = 0.32 and 0.333,
respectively. For υ < υ0, the eigenvalues are negative
real values so that |arg(λ)| > απ/2. Thus, the equilib-
rium point is asymptotically stable for all α ∈ (0, 1) in
Fig. 1.

Forυ > υ0, the equilibriumpoint is unstable forα =
1 because of positive real eigenvalue. But, the stability
forα ∈ (0, 1) depends on the conditions (7).Whenυ =
0.342, the eigenvalues are given by λ1,2 = 0.0065 ±
0.5735i . Then if α < (2/π) |arg(λi )| = 0.9927, it is
asymptotically stable. Figure 2a, b depicts the stabil-
ity for α = 0.9, 0.95, respectively. For υ = 0.53, the
equilibrium point (x0, y0, E0) = (0.5, 0.47, 0.53) has
the eigenvalues λ1,2 = 0.1475± 0.4617i . It is asymp-
totically stable for α < (2/π) |arg(λi )| = 0.8031. Part
(c) of Fig. 2 supports the stability of the equilibrium
point for α = 0.8. However, for υ = 0.55, it is easy
to see that the equilibrium point is asymptotic stable
when α < 0.7774. When α = 0.8, Fig. 2d shows that
it is unstable. For the commensurate fractional-order
system, it is shown that the system is asymptotically
stable for υ < s(α), where s(α) = απ/2 − |arg(λ)|.
Here, s(0) = 7/9, s(1) = 1/3 and it is decreasing
when α is increasing. The stability region with respect
to α and υ is shown in Fig. 3.

For the incommensurate fractional-order system, the
eigenvalues can be evaluated by solving the charac-
teristic equation (11) which may be a higher order
of polynomial function depending on the fractional
orders α1, α2. Let us set the economic profit to be
υ = 0.5. Then the equilibrium point is (x0, y0, E0) =
(0.5, 0.5, 0.5). For (α1, α2) = (0.7, 0.8), all eigen-
values are approximated, which gives the minimum
of argument: min | arg(λ)| = 0.1774. Since γ =
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Fig. 1 Plots of x and y with υ = 0.32, 0.333 and x(0) =
0.499, y(0) = 0.666
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Fig. 2 Plots of x and y with υ = 0.342, 0.53, 0.55 and x(0) =
0.4, y(0) = 0.1

π/20 = 0.1570, the equilibrium point is asymptotic
stable. For (α1, α2) = (0.8, 0.9), we have min | arg(λ)|
= 0.1563 so that the equilibrium point is unstable.
Figure 4 depicts the stability of the equilibrium point
with an initial condition x(0) = y(0) = 0.48. When υ

varies from 0.4 to 0.7, the stability regions with respect
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Fig. 3 Stability region for the commensurate system
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Fig. 4 Plots of x, y and E withυ = 0.5 and x(0) = y(0) = 0.48
(left: α1 = 0.7, α2 = 0.8, right: α1 = 0.8, α2 = 0.9)

to (α1, α2) are demonstrated in Fig. 5. It is shown
that the area of stability region is decreasing as υ is
increasing.

4 Hopf bifurcation analysis

Hopf bifurcation for the integer-order system, α = 1,
was studied in [19]. They chose the economic profit υ
as a bifurcation parameter and found that Hopf bifur-
cation occurs when the economic profit is bigger than a
certain threshold. In this section, wewill investigate the
Hopf bifurcation of the system (1) by considering the
economic profit υ and fractional order α as the bifur-
cation parameters. We point out that Hopf bifurcation
in the fractional-order system occurs in complex con-
ditions from those in their integer-order system.

For the integer-order system, it has been known that
Hopf bifurcation may occur when the system is stable
at a bifurcation parameter υ. Thus, the roots of the
characteristic equation (6) are zero real parts for the
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Fig. 5 Stability regions with respect to (α1, α2) when υ varies
from 0.4 to 0.7

local stability. Letting a1(υ) = 0 gives the bifurcation
parameter υ0

υ0 = ((px0 − c)2/p)(k − y0/(a + x0)
2).

Then,Hopf bifurcation occurs at the bifurcation param-
eter υ0 if the following conditions are satisfied

Im[λ(υ0)] �= 0,
d

dυ
(Re[λ(υ0)]) �= 0.

However, there are differences in a fractional-order sys-
tem for the stability conditions compared with those in
a integer system as shown in Theorems 1 and 2, More-
over, both economic profit and fractional order are the
bifurcation parameters so that it requires a new Hopf
bifurcation analysis.

4.1 Hopf bifurcation analysis of commensurate
system

For the commensurate fractional-order system (1) with
α1 = α2 = α, 0 < α < 1, the stability of equilibrium
point depends on the sign of απ/2−|arg(λi )| , i = 1, 2
in Theorem 1. Let us consider the fractional order α as
a bifurcation parameter and define a function f with
respect to the fractional order α

f (α) = απ/2 − |arg(λi )| .

By Theorem 1, if f (α) < 0, then the equilibrium point
is locally asymptotically stable; if f (α) > 0, then it is
unstable. Next, wewill use the function f (α) to investi-
gate Hopf bifurcation in the fractional-order commen-
surate system (1) versus the fractional order α.

Theorem 3 ([12] Existence of Hopf bifurcation ver-
sus the fractional order) When bifurcation parameter
α passes through the critical value α∗ ∈ (0, 1), the
fractional-order system (1) undergoes a Hopf bifurca-
tion at the equilibrium point (x0, y0, E0), if the follow-
ing conditions hold:

(i) the Jacobian matrix of the system (1) at the equilib-
rium point has a pair of complex conjugate eigen-
values λ1,2 = θ ± iω, where θ > 0,

(ii) f (α∗) = 0,

(iii)
d[ f (α)]

dα

∣∣∣∣
α=α∗

�= 0 (transversality condition).

Let us note that the eigenvalues λ are given by (12).
In order to satisfy the condition (i) in Theorem 3 for
all α ∈ (0, 1), the eigenvalues have a positive real part
complex numbers. This implies that 3υ − 1 > 0 and
9υ2+2υ−7 < 0. Thus, Hopf bifurcation in system (1)
occurs for all α ∈ (0, 1) whenever the economic profit
locates in υ ∈ (1/3, 7/9). By the conditions (i i) and
(i i i), it is easy to see that the Hopf bifurcation occurs
along the boundary between the stable and unstable
region in Fig. 3.

For υ = 0.5, the bifurcation value α∗ can be
evaluated by solving f (α∗) = 0 which gives α∗ ≈
0.8391. The transversality condition is satisfied by
d[ f (α)]

dα

∣∣∣
α=α∗ = π/2. Thus, Hopf bifurcation occurs

at α = α∗. As α increases past α∗, it is shown in Fig. 6
that the phase portraits of x and y have larger limit cycle
orbits.

Now we consider a economic profit υ as a bifurca-
tion parameter when α is fixed. For the stability of the
equilibrium point, let us define a function g(υ) as

g(υ) = απ/2 − |arg(λi (υ))| .

The equilibrium point (x0, y0, E0) = (0.5, 1 − υ, υ)

is asymptotic stable if g(υ) < 0, and it is unstable if
g(υ) > 0. Then we propose the following existence of
Hopf bifurcation versus a economic profit υ.
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Fig. 6 Bifurcation diagram for x(t) with respect to α (top) and
phase portrait (bottom) with υ = 0.5

Theorem 4 ([12] Existence of Hopf bifurcation ver-
sus an economic profit) When bifurcation parameter
υ passes through the critical value υ∗, the fractional-
order system (1) undergoes a Hopf bifurcation at the
equilibrium point (x0, y0, E0), if the following condi-
tions hold:

(i) the Jacobianmatrix of the system (1) at the equilib-
rium point has a pair of complex conjugate eigen-
values λ1,2 = θ(υ) ± iω(υ), where θ(υ) > 0,

(ii) g(υ∗) = 0,

(iii)
d[g(υ)]
dυ

∣∣∣∣
υ=υ∗

�= 0 (transversality condition).

The condition (i) implies υ ∈ (1/3, 7/9). Since the
bifurcation value υ∗ is the solution of g(υ) = 0, it can
be evaluated by solving

√
7 − 2υ − 9υ2 + (1 − 3υ) tan(απ/2) = 0,

which gives

υ∗ = 3p2 − 1 ± 4
√
3p2 + 4

9(p2 + 1)
, p = tan

(απ

2

)
. (13)

The last transversality condition (iii) is equivalent to

3υ − 5

2(υ − 1)
√
7 − 2υ − 9υ2

∣∣∣∣
υ=υ∗

�= 0. (14)

Let α = 0.95. Then, the bifurcation value υ∗ can
be computed by (13). Combined with the constraint
υ ∈ (1/3, 7/9), we have υ∗ ≈ 0.3910. Using (14), the

transversality condition is satisfied as d[g(υ)]
dυ

∣∣∣
υ=υ∗ ≈

1.42 �= 0. Thus, Hopf bifurcation occurs at υ∗. Fig-
ure 7 depicts the bifurcation diagram versus υ. When
the economic profit υ increases beyond υ∗, it is shown
that the radius of limit cycle orbits also increases.

4.2 Hopf bifurcation analysis in a incommensurate
system

For the incommensurate fractional-order system, it is
also important to find a sign of γπ/2 − |arg(λi )| , for
the stability of equilibrium point by Theorem 2. Let us
note that γ depends on all fractional orders αi . Since
the characteristic equation (3) may be a higher-order
polynomial, all |arg(λi )| may not be same. Suppose
the fractional orders αi , i = 1, 2, . . . , n can be chosen
as the bifurcation parameters in fractional-order sys-
tems. Let us define a function h with respect to γ (α1,

α2, . . . , αn)

h(γ (α1, α2, . . . , αn)) = γπ

2
− min

i
|arg(λi )| .

By Theorem 2, if h(γ ) < 0, then the equilibrium point
is locally asymptotically stable; if h(γ ) > 0, then the
equilibrium point is unstable. Next, we will use the
function h(γ ) to investigate the existence ofHopf bifur-
cation in the fractional-order incommensurate system
(1) versus the fractional order α1 and α2.
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Fig. 7 Bifurcation diagram for x(t) with respect to υ (top) and
phase portrait (bottom) with α = 0.95

Theorem 5 (Existence of Hopf bifurcation versus a
fractional order (α1, α2) in a incommensurate system)
When bifurcation parameters (α1, α2) pass through the
critical values α∗

1 , α
∗
2 ∈ (0, 1), the fractional-order

system (1) undergoes a Hopf bifurcation at the equi-
librium point (x0, y0, E0) if the following conditions
hold:

(i) h(γ (α∗
1 , α

∗
2)) = 0,

(ii) ∇h(γ (α∗
1 , α

∗
2)) · −→

d �= 0 (transversality condi-

tion), where
−→
d is a directional vector of the curve

h(γ (α1, α2)) = 0 at (α∗
1 , α

∗
2).

(a) Stability regions on (α1, α2)
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(c) Almost tangential
vector for υ = 0.6

Fig. 8 Stability regions for a incommensurate system with sev-
eral values of υ (a); a horizontal directional vector for υ = 0.5
(b) an almost tangential vector for υ = 0.6

Proof Let (α∗
1 , α

∗
2) be the solution of the curve h(γ (α1,

α2)) = 0. Since h(γ (α1, α2)) is continuous, there
exists a δ-neighborhood Bδ(α

∗
1 , α

∗
2) such that the

sign of h(γ (α1, α2)) changes from positive to nega-
tive or from negative to positive in Bδ(α

∗
1 , α

∗
2). Let−→

d be a directional vector of h(γ (α1, α2)) = 0 at
(α∗

1 , α
∗
2). Since∇h(γ (α∗

1 , α
∗
2)) is a normal vector of the

curve h(γ (α1, α2)) = 0 at (α∗
1 , α

∗
2), ∇h(γ (α∗

1 , α
∗
2)) ·−→

d �= 0 if
−→
d is not a tangential vector. Suppose that−→

d ⊂ Bδ(α
∗
1 , α

∗
2) is a directional vector of the curve

h(γ (α1, α2)) = 0 at (α∗
1 , α

∗
2) and not a tangential vec-

tor. Then when (α1, α2) ∈ −→
d passes through (α∗

1 , α
∗
2),

the sign of h can change. Hence, one can assert that
Hopf bifurcation occurs (α∗

1 , α
∗
2). ��

Figure 8a shows the stability regions on (α1, α2)

with several economic profits υ. For υ = 0.5, we find
the bifurcation value by solving h(γ (α∗

1 , α
∗
2)) = 0

with a fixed α∗
2 = 0.75 which gives (α∗

1 , α
∗
2) =

(0.9078, 0.75). When we consider a horizontal line
α2 = 0.75 as the directional vector of h = 0 at (α∗

1 , α
∗
2)
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Fig. 9 Bifurcation diagram for x(t) when α1 varies (top) and
phase portraits of several values of α1(bottom); υ = 0.5

in Fig. 8b, it is clear that the second condition in The-
orem 5 is satisfied because the directional vector is not
a tangential vector. Then Hopf bifurcation occurs at
(α∗

1 , α
∗
2) by Theorem 5. It is shown in Fig. 9 that Hopf

bifurcation appears at α∗
1 . Also when α1 increases past

the bifurcation value α∗
1 , the corresponding limit cycle

has an attractor with a lager radius.
Next,wewant to demonstrate that aHopf bifurcation

does not occur along the tangential directional vector.
But, it is difficult to obtain an exact tangential vector
along the curve h = 0. Instead, we consider a ver-
tical line α̂1 = 0.8025 as the approximated tangen-
tial vector in Fig. 8c. Then, it has a very small stable

54.04.053.03.0
0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

Fig. 10 Bifurcation diagrams for x(t) with α1 = 0.8, 0.8025
and 0.805 as α2 varies

region in α2 axis when the parameter α2 varies along
the α̂1 = 0.8025 since the vertical line is the approxi-
mated tangential vector. Here, we choose two vertical
lines, α1 = 0.8 and α1 = 0.805. The first vertical line
is smaller than α̂1 = 0.8025 and it has a stable region
(α∗

21, α
∗
22), where α∗

21 = 0.3450, α∗
22 = 0.4275. But,

the second one is bigger than the approximated tan-
gential vector and it does not have a stable region in
α2 axis. Figure 10 depicts the extremum of x when α2

varies along the several vertical lines,α1 = 0.8, 0.8025
and 0.805. As the vertical line is approaching to the
tangential vector, the stable region in α2 axis is getting
smaller. Thus, it is concluded that the Hopf bifurca-
tion does not occur along the tangential vector which
supports Theorem 5.

5 Conclusion

In this work, we have studied the dynamic behavior of
a fractional-order prey–predator system with Holling
type II functional response from the perspective of local
stability and Hopf bifurcation.

In both commensurate and incommensurate sys-
tems,we have presented the local stability regions asso-
ciated with the equilibrium points when the economic
profit υ varies. It is shown that numerical examples
agree with the local stability theory for each equilib-
riumpoint.We also have proposed an existence ofHopf
bifurcation versus a fractional order or an economic
profit in a commensurate system. For the incommen-
surate fractional-order system, there are multiple bifur-
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cation parameters such as the fractional orders α1 and
α2. Thus, it is required to have a new Hopf bifurcation
theory for themultiple bifurcation parameters.We have
proposed a new transversality condition for the exis-
tence of Hopf bifurcation versus multiple bifurcation
parameters by introducing the directional vector along
with a bifurcation curve such as h(γ (α1, α2)) = 0.
From the several numerical illustrations, it has been
shown that all results confirm the proposed theory.
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