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Abstract A novel nonlinear observer for the estima-
tion of vehicle velocity together with the tire-road fric-
tion coefficient is presented in this paper. The modu-
lar observer is designed based on a longitudinal tire
force estimation approach and a lateral tire friction
model. Compared to the state-of-art methods, the pro-
posed observer design provides accurate estimation of
the longitudinal velocity, lateral velocity, and the tire-
road friction coefficient simultaneously. Particularly,
the longitudinal tire forces are first estimated based on
a filter observer. Then, according to the calculation of
lateral tire forces, the nonlinear observer is proposed to
estimate vehicle velocity and the tire-road friction coef-
ficient. Moreover, the stability property of the observer
is analyzed using a Lyapunov-based method. Simula-
tion results validate the effectiveness of the proposed
method.
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1 Introduction

Driver assistance systems, e.g., automated highway
systems, depends on reliable vehicle control perfor-
mance [1]. The reliability of vehicle control perfor-
mance in terms of handling, stability and comfort
depends greatly on the precise estimate of vehicle states
such as longitudinal velocity, lateral velocity, and the
tire-road friction coefficient (TRFC) [2,3]. Based on
the estimated parameters, a proper energy efficiency
control can be proposed to reduce energy consumption
[4]. However, it is hard to measure the vehicle states
mentioned above directly because of high cost and low
reliability [5]. Hence, to achieve a good control per-
formance, real-time estimation of vehicle states based
on the information from some basic low cost vehicular
sensors has become popular [6].

The estimation methods for TRFC can be catego-
rized into cause-based and effect-based methods [7].
Cause-based methods focus on the study of detecting
influence factors in the interaction of the tire and the
road, and then identify the TRFC using certain ana-
lytical theories [7]. To our knowledge, three differ-
ent approaches to identify the TRFC have been tried,
including appliance of optical sensors, acoustic sen-
sors, and tire-tread sensors [8–10]. Optical sensors are
installed at the front of the vehicle, the reflections from
the surface are used to estimate the road surface [8].
This approach has the advantage of being able to esti-
mate the friction slightly before the tires reach, for
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instance, an icy spot. However, a difficulty here is keep-
ing the sensors clean. Acoustic sensors can be used to
listen to the tire noise; an acoustic sensor is used to
obtain information on road condition by registering the
acoustic waves emitted by the tires in [9]. The treads of
tires can be supplied with sensors for measuring stress
and strain. In [10], sensors of tire-tread deformation
are applied to obtain information on the tire-road con-
dition. The use of optical and acoustic sensors is par-
ticularly promising for detecting wet surfaces and the
risk of aquaplaning. However, the solution process is
technically very complicated and expensive. Despite
several experiments has verified the effectiveness and
accuracy, all these cause-basedmethods require special
sensors and are of high cost. Effect-based approaches
try to quantify the friction impacts between the tire and
the road. The friction impacts show on the tire in the
forms of tire-tread deformation and wheel slipping. In
[11], an online algorithm based on the friction curve
is presented and the performance of the algorithm is
evaluated in both simulation and experiments. How-
ever, when the vehicle model becomes complicated,
the demand for computing power could be high due
to computational complexity. To obtain a better con-
trol performance on the slip ratio, an intelligent tire
system is proposed in [12], and the various tire fric-
tion information is estimated based on acceleration sig-
nals. In [13], a slip-slope method is presented based
on a recursive least-squares algorithm. However, to
achieve an accurate estimation performance, the pro-
posed method relies on large tire slip greatly. If the
tire slip is extremely small, the system will not be able
to identify the friction coefficient information. In [14],
a dynamics-based estimation method of the TRFC is
presented and simulation results show that the reliabil-
ity of the anti-lock brake system has been enhanced.
In [15], a parameter identification method based on
differences among tire forces generated by in-wheel
motors is proposed to estimate the cornering stiffness
coefficient and the TRFC. In order to realize the vehi-
cle velocity control with unknown road friction con-
ditions, an adaptive function is presented in the con-
troller design based on the approximate estimation of
the TRFC in [16]. In [17], three estimation algorithms
are presented based on the calculation of slip-slope.
However, all these methods are effective only when the
vehicle velocity can be measured from sensor systems.

Nonetheless, in practice, vehicle velocities are not
measurable but are usually estimated. For the veloc-

ity estimation, many different approaches have been
proposed. A kinematics-based algorithm is presented
in [18], which can estimate the lateral velocity and the
TRFC simultaneously. In [19], a sliding mode observer
is proposed to estimate vehicle acceleration, which can
be further used for the estimation of velocity. In [20],
a modular observer is presented for the estimation of
vehicle velocity. In this method, the Dugoff’s tire fric-
tionmodel is applied and the longitudinal tire forces are
used as inputs to the velocity observer. Errors includ-
ing measurement noises from sensors are considered in
the design of velocity estimation approach for a mobile
robot proposed in [21]. In [22], a fixed gain struc-
ture observer is proposed for the estimation of vehi-
cle velocities based on the acceleration measurements.
A couple of observers are proposed in [23] for the
estimation of longitudinal velocity and lateral veloc-
ity, respectively. However, only when the tire works in
the linear region condition is considered in the pro-
posed method which may bring great limitations in
real driving process. In addition to the observer meth-
odsmentioned above, the extendedKalmanfilter-based
approaches are utilized in the literature [24,25] as well.
Besides, in order to deal with the effect of the parame-
ter uncertainties, a nonlinear observer based on the dif-
ferential inclusion theory is proposed to estimate the
uncertainties within a finite time [26,27]. However, the
TRFC is regarded as a known state information in most
of these estimationmethods.To thebest our knowledge,
few published papers have considered the problem of
estimating the vehicle velocity and the TRFC simulta-
neously.

In this paper, a nonlinear modular observer is devel-
oped to estimate the longitudinal and lateral veloci-
ties together with the TRFC. First, the longitudinal tire
forces are estimated based on a filter observer. Then
inspired by [28], a vehicle velocity and TRFC estima-
tion observer is proposed based on the calculation of
lateral tire forces. The convergence of the observer is
analyzed based on the Lyapunov method, and simula-
tion results are presented for performance evaluation. In
comparison with existing works, the estimation of the
TRFC depending on vehicle lateral tire friction model
is incorporated into the observer design, so that the road
surface information can be considered into the estima-
tion of vehicle velocity to ensure the estimation results
more accurate and reliable.

The rest of this paper is organized as follows. The
vehicle dynamics and tire frictionmodels are discussed
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in Sect. 2. The proposed observer is detailed in Sect. 3,
and the convergence analysis is presented in Sect. 4.
Simulation tests in different driving conditions per-
formed in CarSim are presented in Sect. 5. Conclusions
are presented in Sect. 6.

2 Model development

Environmental factors such as road surface affect vehi-
cle dynamics and thus vehicle motions greatly. In this
section, to analyze the effect of road surface on vehi-
cle dynamics, a vehicle dynamical model is introduced
to describe the longitudinal and lateral motions first.
Then, the tire frictionmodel andwheel dynamicsmodel
are presented. These models will be utilized as a foun-
dation for the design of themodular observer in Sect. 3.

2.1 Vehicle model

Assume that the vehicle ismoving on a flat roadwithout
road grade or bank angle, the vehicle dynamics can be
expressed as follows [29]:

v̇x = rvy + ax

v̇y = −rvx + ay
(1)

where r is the yaw rate, vx and vy are the longitudinal
and lateral velocities of the vehicle, respectively. The
longitudinal and lateral acceleration rates ax and ay in
(1) can be further expressed as follows :

ax = 1

m

4∑

i=1

(Fxi cos δi − Fyi sin δi )

ay = 1

m

4∑

i=1

(Fxi sin δi + Fyi cos δi )

(2)

where Fxi and Fyi are the longitudinal and lateral forces
of the ith wheel, respectively; δi denotes the steering
angle of the corresponding wheel and m is the vehicle
mass.

Remark 1 The surface roughness is usually repre-
sented by the friction coefficient of the road and the
structural depth of the road surface. This study focuses
on the estimation of the tire-road friction coefficient,
and the structural depth of the road surface is not con-
sidered. Therefore, as proposed in literature [20,30],
and [31], it is assumed that the road grade and the

bank angle are both equal to zero. Otherwise, more
complicated vehicle dynamics should be used consid-
ering road profile estimations which is not the focus of
this study. Besides, the road grade angle and road bank
angle don’t affect the validity of the proposed algorithm
theoretically but only have an effect on the complexity
of the vehicle dynamics model when they are able to be
known exactly. Specifically, the road grade angle influ-
ences nominal forces and longitudinal acceleration by
producing components of the vehicle gravity, and the
bank angle mainly has an influence on the lateral accel-
eration. For simplicity and also as a kind of actual road
situations, the road grade and the bank angle are not
taken into consideration.

2.2 Tire friction model

The model of the tire-road contact force is complicated
because it is affected by a wide variety of parameters
including the tire characters such as tire cornering stiff-
ness, tire distortion and slip, radial deflection, tire-road
friction coefficient and nominal tire load acting on each
tire [32]. In this paper, the tire force is assumed to be
at the center of the contact patch, the following expres-
sion is used to represent the lateral force on each tire
[33]:

Fyi =
{

μFzig(αi ), if |q(αi )| ≤ 3

μFzi, if |q(αi )| > 3
(3)

where

g(αi ) =
{
|q(αi )| − |q(αi )|2

3
+ |q(αi )|3

27

}
sign(αi )

q(αi ) = Cy tan αi

μFzi

(4)

in which μ is the TRFC and Cy denotes the cornering
stiffness. The slip angle of the i th tireαi in (3) is defined
as the angle between the orientation of the tire and the
orientation of the velocity vector of the i th wheel as
shown in Fig. 2, which can be calculated as follows:

αi = δi − θi (5)

where θi is the angle that the velocity vector of the ith
wheelmakeswith the longitudinal axis of the vehicle; δi
denotes the steering angle of the corresponding wheel.
Therefore, the slip angles are similarly given by:
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Fig. 1 Vehicle model

α1 = δ1 − arctan

(
vy + l f · r
vx − b f

2 · r

)

α2 = δ2 − arctan

(
vy + l f · r
vx + b f

2 · r

)

α3 = δ3 − arctan

(
vy − lr · r
vx − br

2 · r

)

α4 = δ4 − arctan

(
vy − lr · r
vx + br

2 · r

)

(6)

where l f , lr , b f and br are lengths illustrated in Fig. 1.
Taking moments about the contact point of the rear and
front tires, respectively:

(Fz1 + Fz2)(l f + lr ) + maxh − mglr = 0

(Fz3 + Fz4)(l f + lr ) − maxh − mgl f = 0
(7)

where g represents the gravitational acceleration and h
is the height of the vehicle’s center of gravity. The load
transfers of the front and rear wheels �Fzf , �Fzr from
the inner to the outer wheels in the steady-state cor-
nering motion with centripetal acceleration ay follows
from the formula [33]:

�Fzf = mhay(lr · g − hax )

(l f + lr )g · b f

�Fzr = mhay(l f · g + hax )

(l f + lr )g · br .

(8)

The resulting vertical loads become, after considering
the left and right increments in load:

Fz1 = 1

2
(Fz1 + Fz2) − �Fzf

Fz2 = 1

2
(Fz1 + Fz2) + �Fzf

Fig. 2 Tire slip angle

Fz3 = 1

2
(Fz3 + Fz4) − �Fzr

Fz4 = 1

2
(Fz3 + Fz4) + �Fzr. (9)

Therefore, based on (7)–(9), the normal forces acting
on the i th wheel can be calculated as:

Fz1 = m(lr · g − hax )

2(l f + lr )
− mhay(lr · g − hax )

(l f + lr )g · b f

Fz2 = m(lr · g − hax )

2(l f + lr )
+ mhay(lr · g − hax )

(l f + lr )g · b f

Fz3 = m(l f · g + hax )

2(l f + lr )
− mhay(l f · g + hax )

(l f + lr )g · br
Fz4 = m(l f · g + hax )

2(l f + lr )
+ mhay(l f · g + hax )

(l f + lr )g · br

(10)

where g represents the gravitational acceleration and h
is the height of the vehicle’s center of gravity.

2.3 Wheel dynamics

As shown in Fig. 3, by assuming that the rolling resis-
tance and the tire deformation are negligible, the wheel
dynamics equation can be expressed as below [34]:

Iωω̇i = Tdi + Tbi − ReffFxi − Bωi i = 1, 2, 3, 4

(11)

where Iω is the inertia of the wheel; B is the equivalent
bearing and friction coefficient; Tdi and Tbi refer to
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Fig. 3 Wheel dynamics model

the drive torque and brake torque on the i th wheel,
respectively; Reff represents the effective radius of tire
and ωi is the wheel angular velocity of the i th wheel.

3 Observer design

In this section, a nonlinearmodular observer is designed
for the estimation of vehicle states. The observer struc-
ture is illustrated in Fig. 4, in which the yaw rate, steer-
ing wheel angles, longitudinal acceleration and lateral
acceleration can be measured from low cost sensors.

The longitudinal tire force of each tire is first esti-
mated based on a filter observer, which is denoted as
F̂xi. Then, according to the vehicle model presented in
(2), hy �

∑4
i=1 F

cal
yi cos δi can be calculated. Besides,

the estimated value of the lateral force can be obtained
from the lateral tire model presented in (3), which is
denoted as F̂yi. The design of the observer is detailed
in the following subsections.

3.1 Estimation of longitudinal tire forces

Suppose that the wheel torque is available, ω̇i can
be calculated based on the wheel dynamics equation
described in (11):

ω̇i = − B

Iω
ωi + T (u, t) + f (wi , t) (12)

where f (wi , t) � − Reff
Iω

Fxi and T (u, t) � Tdi+Tbi
Iω

.
Then, a filter observer for the wheel angular velocity is
designed as follows:

˙̂ωi = − B

Iω
ω̂i + T (u, t) + τi (t) (13)

in which

τi (t) = φ1(ei ) +
∫ t

0
φ2(ei )dt − B

Iω
ei

φ1(ei ) = ki1|ei | 12 sign(ei ) + ki2ei

φ2(ei ) = ki3sign(ei ) + ki4ei .

(14)

The estimate error of the wheel angular velocity ei is
defined as ei � ωi − ω̂i , then

ėi = ω̇i − ˙̂ωi = − B

Iω
ei + f (wi , t) − τi (t)

= f (wi , t) − φ1(ei ) −
∫ t

0
φ2(ei )dt.

(15)

Because− Reff
Iω

Ḟxi is bounded in real driving conditions,
denote

ėi = ei1 − φ1(ei )

ėi1 = −φ2(ei ) + ρ̇i
(16)

where

ei1 = f (wi , t) −
∫ t

0
φ2(ei )dt

ρi = f (wi , t)

(17)

then the derivative of ei and ei1 can be calculated as
follows:

ėi = − ki1|ei | 12 sign(ei ) − ki2ei + ei1

ėi1 = − ki3sign(ei ) − ki4ei + ρ̇i .
(18)

Theorem 1 Suppose that the derivative ofρ is globally
bounded by |ρ̇i | ≤ bi1 + bi2|ei | for some constants
bi1,bi2 > 0, then the gains ki can be selected such that
ki1 > 2

√
bi1, ki2 >

√
bi2, ki3 > 0, ki4 > 0 so that

the system is finite-time stable. Furthermore, the term∫ t
0 φ2(ei )dt provides a smooth estimation of ρi in finite
time.

Proof The Lyapunov function V (ei ) ∈ R is first
designed as follows:

V (ei ) = 1

2

[
ki1|ei | 12 sign(ei ) + ki2ei − ei1

]2

+ 2ki3|ei | + ki4e
2
i + 1

2
e2i1.

(19)
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Let 	i = [|ei | 12 sign(ei ) ei ei1]T , then V (ei ) can be
written as V (ei ) = 	i

T Hi	i , where

Hi = 1

2

⎡

⎣
(4ki3 + k2i1) ki1ki2 −ki1

ki1ki2 (2ki4 + k2i2) −ki2
−ki1 −ki2 2

⎤

⎦ (20)

and satisfies λmin{Hi }� 	i �
2 ≤ V (ei ) ≤ λmax

{Hi }� 	i �
2, in which � 	i �

2 = |ei | + e2i + e2i1.
After taking derivatives of (19), the following results

can be obtained:

V̇ (ei ) = − 1√|ei |	i
T Ai1	i − 	i

T Ai2	i

+ ρ̇i (−ki1	i1 − ki2	i2 + 2	i3)
(21)

in which

Ai1 = ki1
2

⎡

⎣
(2ki3 + k2i1) 0 −ki1

0 (2ki4 + 5k2i2) −3ki2
−ki1 −3ki2 1

⎤

⎦

Ai2 = ki2

⎡

⎣
ki3 + 2k2i1 0 0

0 (ki4 + k2i2) −ki2
0 −ki2 1

⎤

⎦

(22)

where ρ̇i is upper-bounded by |ρ̇i | ≤ bi1+bi2|ei |, then
ρ̇i (−ki1	i1 − ki2	i2 + 2	i3) ≤ Gi1 + Gi2 = Gi (23)

where

Gi1 = (bi1 + bi2|ei |)(ki1|ei | 12 + ki2|ei |)

=
(

ki1

|ei | 12
+ ki2

)
(bi1	

2
i1 + bi2	

2
i2)

Gi2 = 2ei1(bi1 + bi2|ei |)

(24)

then Gi can be expressed as:

Gi =

⎧
⎪⎨

⎪⎩

1

|ei |
1
2
	i

T Bi1	i + 	i
T Bi2	i , if ei ≥ 0

1

|ei |
1
2
	i

T B
′
i1	i + 	i

T B
′
i2	i , if ei < 0

(25)

in which

Bi1 = ki1

⎡

⎢⎣
bi1 0 bi1

ki1
0 bi2 0
bi1
ki1

0 0

⎤

⎥⎦ ,

B
′
i1 = ki1

⎡

⎢⎣
bi1 0 − bi1

ki1
0 bi2 0

− bi1
ki1

0 0

⎤

⎥⎦

Bi2 = ki2

⎡

⎢⎣
bi1 0 0
0 bi2

bi2
ki2

0 bi2
ki2

0

⎤

⎥⎦ ,

B
′
i2 = ki2

⎡

⎢⎣
bi1 0 0
0 bi2 − bi2

ki2
0 − bi2

ki2
0

⎤

⎥⎦ (26)

Hence, V̇ (ei ) ≤
⎧
⎪⎨

⎪⎩

− 1

|ei |
1
2
	i

T (Ai1 − Bi1)	i − 	i
T (Ai2 − Bi2)	i , ei ≥ 0

− 1

|ei |
1
2
	i

T (Ai1 − B
′
i1)	i − 	i

T (Ai2 − B
′
i2)	i , ei < 0.

(27)

It can be demonstrated that the terms (Ai1 − Bi1),
(Ai2−Bi2), (Ai1−B

′
i1) and (Ai2−B

′
i2) are all positive

definite, V̇ (ei ) ≤ 0. So the observer system with the
robust term τi (t) ensures the error dynamics converges
to zero in finite time. �	

Theorem 1 ensures that as t → ∞, ei1 → 0.
Therefore, the estimated longitudinal tire force can be
obtained as:

F̂xi = − Iw
Reff

ρ̂i = − Iw
Reff

∫ t

0
φ2(ei ). (28)

Then based on (2), hy can be calculated as follows:

hy = may −
4∑

i=1

F̂xi sin δi . (29)

3.2 Observer design for vehicle velocity and TRFC

Observer for longitudinal and lateral velocities together
with the tire-road friction coefficient is designed in this
subsection, which is based on the calculation of the
lateral tire force.

Assumption 1 The value of the tire-road friction coef-
ficient is constant for the same road segment: μ̇ = 0.

The vehicle states and the estimation of vehicle
states are defined as x = [vx vy μ]T and x̂ =
[v̂x v̂y μ̂]T , respectively. The observer for vehi-
cle velocity and the tire-road friction coefficient is
designed as follows:
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˙̂x1 = r x̂2 + ax + l1

(
1

4

4∑

i=1

viw − x̂1

)

˙̂x2 = − r x̂1 + ay − l2

(
hy −

4∑

i=1

F̂yi cos δi

)

˙̂x3 = l3

(
hy −

4∑

i=1

F̂yi cos δi

)

(30)

where l1, l2 and l3 are observer gains and viw is the
longitudinal velocity of the i th wheel which can be
calculated as

viw =
{

ωi Reff cos δi + ωi r, if i = 1, 2

ωi Reff cos δi − ωi r, if i = 3, 4.
(31)

In (30), the estimated tire force F̂yi is obtained
by substituting the estimated vehicle states x̂ in the
tire friction model proposed in (3). The estimate error
x̃(t) � x(t) − x̂(t) can be expressed as follows:

˙̃x1 = r x̃2 − l1 x̃1 + u1

˙̃x2 = −r x̃1 + l2

4∑

i=1

(Fyi − F̂yi) cos δi + u2

˙̃x3 = − l3

4∑

i=1

(Fyi − F̂yi) cos δi + u3

(32)

where, u1(t), u2(t), u3(t) ∈ R are the signals defined
as follows:

u1 � l1
4

4∑

i=1

(vx − viw)

u2 � l2

(
hy −

4∑

i=1

Fyi cos δi

)

u3 � − l3

(
hy −

4∑

i=1

Fyi cos δi

)

(33)

where uobs is defined as uobs � [u1 u2 u3]T ∈ Duobs

and Duobs refers to the domain of the signals.

Remark 2 The equation viw = ωi Reff cos δi is used to
estimate the vehicle longitudinal velocity to simplify
the relationship detailed in (27) and hy is calculated
from (25). Besides, as to be seen in the stability analysis
detailed in Sect. 4 and the simulation tests shown in
Sect. 5, the effect of the signals uobs to the observer
system can be ignored.

4 Observer convergence analysis

In the following analysis, it is proved that the designed
observer is input-to-state stable (ISS) despite of the
existence of external inputs. To analyze the stability
property of the modular observer, the following two
Lemmas are firstly proposed.

Lemma 1 ∂Fyi
∂vy

≤ 0 can be obtained when vx >

max{| b f
2 · r |, | br2 · r |}.

Proof According to (3), Fyi can be described by the
following ones:

Fyi = μFzi · h(αi ) (34)

in which h(αi ) can be expressed below:

h(αi ) �
{
g(αi ), if |q(αi )| ≤ 3

1, if |q(αi )| > 3.
(35)

The derivatives of Fyi with respect to vy can be calcu-
lated as:

∂Fyi
∂vy

= μFzi · ∂h(αi )

∂αi
· ∂αi

∂vy
. (36)

If |q(αi )| > 3, h(αi ) = 1, then

∂h(αi )

∂αi
= 0. (37)

Otherwise, if |q(αi )| ≤ 3, then

∂h(αi )

∂αi

= Cy

μFzi

(
Cy

3μFzi
| tan αi | − 1

)2

· sec2 αi ≥ 0. (38)

According to (37) and (38), ∂h(αi )
∂αi

≥ 0 can be
obtained. Based on (5), after taking the derivative of the
side slip angle αi with respect to vy , it’s easy to demon-

strate that ∂αi
∂vy

< 0 when vx > max{| b f
2 · r |, | br2 · r |} is

satisfied.
Therefore according to the analysis above, it can be

concluded that
∂Fyi
∂vy

≤ 0 on the condition that vx >

max{| b f
2 · r |, | br2 · r |}. �	
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Lemma 2 There exist positive constants c1, c2, c3 that
the following relationships can always be true for x(t),
x̂(t) ⊆ R3:

x̃3

4∑

i=1

(Fyi − F̂yi) cos δi

≤ c1|x̃1||x̃3| + c2|x̃2||x̃3| + c3 x̃
2
3

x̃2

4∑

i=1

(Fyi − F̂yi) cos δi

≤ c1|x̃1||x̃2| − c2 x̃
2
2 + c3|x̃2||x̃3|.

(39)

Proof By using Lagrange mean value theorem, the fol-
lowing results can be obtained:

4∑

i=1

(Fyi − F̂yi) cos δi =
4∑

i=1

∂Fyi
∂x1

(xi ) cos δi x̃1

+
4∑

i=1

∂Fyi
∂x2

(xi ) cos δi x̃2

+
4∑

i=1

∂Fyi
∂x3

(xi ) cos δi x̃3

(40)

where x = [x1 x2 x3]T is a point between xi and x̂i .
After multiplying (40) with x̃3, the following equation
can be obtained:

x̃3

4∑

i=1

(Fyi − F̂yi) cos δi

=
4∑

i=1

∂Fyi
∂x1

(xi ) cos δi x̃1 x̃3

+
4∑

i=1

∂Fyi
∂x2

(xi ) cos δi x̃2 x̃3

+
4∑

i=1

∂Fyi
∂x3

(xi ) cos δi x̃
2
3 .

(41)

According to Lemma 1,
∂Fyi
∂vy

≤ 0 when certain
conditions are satisfied. Therefore the upper bounds
of

∂Fyi
∂x1

,
∂Fyi
∂x2

,
∂Fyi
∂x3

can be found and assuming that

c1, −c2, and c3 are upper bounds of
∑4

i=1
∂Fyi
∂x1

cos δi ,
∑4

i=1
∂Fyi
∂x2

cos δi , and
∑4

i=1
∂Fyi
∂x3

cos δi , respectively,
which can be expressed in the following way:

Table 1 Vehicle parameters

Parameters (units) Value

m (kg) 1723

Cy (N · rad−1) 19350

l f (m) 1.232

lr (m) 1.468

Reff (m) 0.353

b f (m) 1

br (m) 1

Iω (kg · m2) 1.5

h (m) 0.46

Fig. 4 Observer structure

Fig. 5 Front wheel steering angle on a high-μ case

4∑

i=1

∂Fyi
∂x1

(xi ) cos δi ≤ c1

4∑

i=1

∂Fyi
∂x2

(xi ) cos δi ≤ −c2

4∑

i=1

∂Fyi
∂x3

(xi ) cos δi ≤ c3. (42)
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Fig. 6 Longitudinal tire
forces estimation on a
high-μ case
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Fig. 7 States estimation on
a high-μ case with a small
steering wheel angle
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In the same way, the following inequality can be
obtained:

x̃2

4∑

i=1

(Fyi − F̂yi) cos δi

≤
∣∣∣∣∣

4∑

i=1

∂Fyi
∂x1

(xi ) cos δi

∣∣∣∣∣ |x̃1||x̃2|

+
4∑

i=1

∂Fyi
∂x2

(xi ) cos δi x̃
2
2

+
∣∣∣∣∣

4∑

i=1

∂Fyi
∂x3

(xi ) cos δi

∣∣∣∣∣ |x̃2||x̃3|.

(43)

Therefore, (39) can be obtained. �	
Theorem 2 The states estimation x̂ of the velocity and
TRFC observer converges to the real states and the
system is ISS if the observer gains l1, l2 and l3 are
chosen such that:

α = 3βc3
βc2 + 2c21

βc2 − 1

4
c21 > 0

(44)

in which α = l3
l2
, β = l1

l2
.

Proof The Lyapunov function V (t) ∈ R for the veloc-
ity and TRFC observer is defined below:

V (t) = 1

2
x̃21 + 1

2
x̃22 + 1

2
x̃23 . (45)

After substituting from (32), the time derivative of (45)
can be described by the following ones:

V̇ = x̃1 ˙̃x1 + x̃2 ˙̃x2 + x̃3 ˙̃x3

= − l1 x̃
2
1 + l2 x̃2

4∑

i=1

(Fyi − F̂yi) cos δi

− l3 x̃3

4∑

i=1

(Fyi − F̂yi) cos δi

+ (x̃1u1 + x̃2u2 + x̃3u3).

(46)

Based on Lemma 2, it can be shown that:

V̇ ≤ −|x̃ |T Q|x̃ | + (|x̃1|u1 + |x̃2|u2 + |x̃3|u3)
≤ −|x̃ |T Q|x̃ | + ||x̃ || · ||uobs||

(47)

Fig. 8 Front wheel steering angle on a high-μ case

where |x̃ | � [|x̃1|, |x̃2|, |x̃3|]T , with

Q =
⎡

⎣
l1 − l2c1

2
l3c1
2

− l2c1
2 l2c2

l3c2−l2c3
2

l3c1
2

l3c2−l2c3
2 l3c3

⎤

⎦ .

Let α = l3
l2
and β = l1

l2
, then Q can be rewritten as

Q = l2Q, where Q is defined as

Q �

⎡

⎣
β − c1

2
αc1
2− c1

2 c2
αc2−c3

2
αc1
2

αc2−c3
2 αc3

⎤

⎦ . (48)

When α is chosen such that α = 3βc3
βc2+2c21

, then the

leading principal minors of Q can be calculated as fol-
lows:

D1 = β, D2 = βc2 − 1

4
c21,

D3 = 2βc23
βc2 + 2c21

(
βc2 − 1

4
c21

)
.

(49)

Therefore, as long as β is chosen such that βc2− 1
4c

2
1 >

0, then D1, D2 and D3 > 0 can be satisfied simulta-
neously. And as a result of that, Q is positive definite.
Thus, there exists |x̃ |T Q|x̃ | ≥ λmin(Q)||x̃ ||2 and it can
be derived that:

V̇ ≤ − l2λmin(Q)||x̃ ||2 + ||x̃ || · ||uobs|| (50)

whereλmin(Q) refers to the smallest eigenvalue of Q. If
l2 is chosen such that l2 > κ

λmin(Q)
where κ is a positive
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Fig. 9 Longitudinal tire
forces estimation on a
high-μ case
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Fig. 10 States estimation
on a high-μ case with a
large steering wheel angle
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constant, V̇ can be further constrained as follows:

V̇ < − κ||x̃ ||2 + ||x̃ || · ||uobs||
= − κ(x̃21 + x̃22 + x̃23 ) + ||x̃ || · ||uobs||
= −W2(x̃) − θκ||x̃ ||2 + ||x̃ || · ||uobs||

(51)

where −W2(x̃) � −κ(1 − θ)(x̃21 + x̃22 + x̃23 ) and θ

is a constant that can be chosen arbitrarily as long as
0 < θ < 1 is satisfied. Then, for all ||x̃ || ≥ ||uobs||

θκ
, it

can be derived that:

V̇ < −W2(x̃) − ||x̃ || · (θκ||x̃ || − ||uobs||) < 0. (52)

Therefore, according to the Theorem 4.19 described
in [35], the designed observer is ISS. �	

5 Simulation results

In this section, simulation results are presented to eval-
uate the effectiveness of the proposed method based on
CarSim [36]. The vehicle model used for simulation is
a rear-driven B-class hatchback. The vehicle states pro-
vided by CarSim are used as ground truth for the effec-
tiveness verification of the designed modular observer.
Parameters for the used vehicle model are based on
the basic information of the B-class Hatchback vehicle
type listed in the CarSim database. The detailed values
are listed in Table 1.

In real driving scenarios, tire-road friction condi-
tions are affected by several factors such asweather and
the surface materials of the road, etc. On sunny days,
for example, the TRFC is quite large which can be up to
μ = 0.85 in general. However, for the same road seg-
ment, the TRFC may drop to μ = 0.3 on a snowy day.
These typical driving situations are simulated to vali-
date the performance of the designed observer system
in the following subsections. Considering that white
noises cannot be ignored for obtaining signal informa-
tion in real driving process, states estimationwithwhite
noises are also designed.

5.1 Velocity and TRFC estimation on a high-μ case
with a small steering wheel angle

The TRFC is set to μ = 0.85 and as shown in Fig. 5,
the command steering wheel angle is set to 30◦.

Simulation results for the fixed small steering wheel
angle test at a vehicle speed of 80 km/h are illustrated

Fig. 11 Front wheel steering angle on a low-μ case

in Figs. 6 and 7. Both the longitudinal velocity and
lateral velocity estimated from the observer follow the
trend of real velocities well and it takes about 3 s for
the estimated TRFC to converge to the real value. The
performance of the estimation is quite accurate and the
converge rate is applicable in real driving process.

5.2 Velocity and TRFC estimation on a high-μ case
with a large steering wheel angle

This is a high-μ test which simulates the dry concrete
road. The TRFC is set to μ = 0.85, and as shown in
Fig. 8, the steering wheel angle is set to 80◦ which is
much larger than the one in the first test.

Simulation results for the fixed large steering wheel
angle test at a vehicle speed of 80 km/h is illustrated
in Figs. 9 and 10. Both the longitudinal velocity and
lateral velocity estimated from the observer follow the
trend of real velocities well and it takes about 2 s for
the estimated TRFC to converge to the real value. Com-
pared with the small steering angle test in Sect. 5.1, it
shows that the designed observer has a better perfor-
mance when the steering wheel angle becomes larger.

5.3 Velocity and TRFC estimation on a low-μ case
with a large steering wheel angle

The TRFC is set to μ = 0.3 and as shown in Fig. 11,
the command steering wheel angle is set to 80◦.

Simulation results for the fixed large steering wheel
angle test at a vehicle speed of 90 km/h are shown
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Fig. 12 Longitudinal tire
forces estimation on a
low-μ case
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Fig. 13 States estimation
on a low-μ case with a large
steering wheel angle
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Fig. 14 Front wheel
steering angle under a
J -turn maneuver

in Figs. 12 and 13. In this condition, both the longi-
tudinal velocity and lateral velocity can be estimated
accurately within a quite short time which illustrates
the effectiveness of the proposed method.

5.4 Velocity and TRFC estimation on a high-μ case
under a J -turn situation

The J -turn condition simulates a severe and rapid
change of the steer angle during the driving process. In
thismaneuver, the vehiclemoves on a straight line in the
beginning. Because the front wheel steering angle δ f

is commonly proportional to the steering wheel angle
controlled by driver, δ f is treated as the input signal. As
shown in Fig. 14, at t = 0s, the driver turns the steer-
ing wheel from 0◦ to 80◦ within 1 s and then keeps 80◦
unchanged. The TRFC is set toμ = 0.85 and the initial
velocity is set to 80 km/h.

Both the vehicle longitudinal velocity and lateral
velocity are estimated with high precision according
to the simulation results presented in Fig. 15a, b. The
estimated TRFC, as shown in Fig. 15c, reaches the typ-
ical high-μ value of 0.85 within 3 s after the beginning
of the steering signal. Again, even at a J -turn driving
condition as shown in Fig. 16, the system can still esti-
mate the TRFC together with vehicle velocity reliably,
which is acceptable in real driving process.

5.5 Velocity and TRFC estimation with white noises

In order to reflect the real driving scenarios realisti-
cally, white noises are utilized in the simulated mea-

surements, including vehicle longitudinal and lateral
acceleration rates ax , ay and wheel angular velocity
wi . The peak value of the white noises is set as 3% of
the measurements value.

For the simulation results shown in Figs. 17, 18, 19
and 20, the vehicle velocities and TRFC can still esti-
mate the vehicle states reliably in the presence of white
noises.

6 Discussion

This paper focuses on the real-time estimation of the
vehicle velocity and tire-road friction coefficient. As
proposed in the Introduction, many vehicle control sys-
tems, especially active safety control systems such as
ABS, traction control, vehicle stability control, colli-
sion warning, collision avoidance, adaptive cruise con-
trol (ACC), can greatly benefit from being made road-
adaptive and states-known. The control algorithms can
be modified to account for the external road condi-
tions if the actual tire-road friction coefficient and vehi-
cle velocity information are available in real time. For
example, in an ACC system, speed information is the
basis of algorithm implementation, and road condition
information from friction coefficient estimation can be
used to adjust the longitudinal spacing headway from
the preceding vehicle. In the case of vehicle stability
control systems, the values of vehicle velocity and tire-
road friction coefficient are needed for estimating the
target value of yaw rate for the vehicle. The estimation
of velocity and tire-road friction coefficient is also use-
ful for winter maintenance vehicles like snowplows.
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Fig. 15 Longitudinal tire
forces estimation on a
high-μ case under a J -turn
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Fig. 16 States estimation
on a high-μ case under a
J -turn maneuver
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Fig. 17 Noises test on a
high-μ case with a small
steering wheel angle
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Fig. 18 Noises test on a
high-μ case with a large
steering wheel angle
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Fig. 19 Noises test on a
low-μ case with a large
steering wheel angle
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Fig. 20 Noises test on a
high-μ case under a J -turn
maneuver
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For such vehicles that have to operate in a harsh winter
road environment, the knowledge of velocity and fric-
tion coefficient can help to improve the safety of oper-
ation. Furthermore, the vehicle operator can use these
information to adjust the amount and kind of deicing
material to be applied to the roadway. It can also be
used to automate the application of deicing material.

Direct estimationmethods using sensors such as dif-
ferential GPS and accelerometers have different limita-
tions. Limitations of utilizing differential GPS include
the slowupdate rates and the lack ofwide availability of
differential correction. Limitations involved with using
an accelerometer to estimate vehicle velocity include its
sensitivity to vertical vibrations as well as road grade
inputs and bias errors. The proposed method in this
paper can avoid these problems effectively. However,
a limitation of the developed system is that it requires
sufficient road grade information in order to estimate
the friction coefficient accurately. Estimating the infor-
mation of the road grade and the bank angle accurately
is still one of the future research directions.

7 Conclusions

In this paper, a new velocity and TRFC estimation
method for a vehicle system is proposed based on
the wheel angular velocity filter observer and the lat-
eral tire friction model. The proposed observer sys-
tem is demonstrated to be input-to-state stable based
on a complete stability analysis using Lyapunov-based
methods. In comparison with existing works on vehi-
cle state estimation, the contribution of the proposed
method is the simultaneous estimation of vehicle veloc-
ities and the identification of the TRFC for different
road surface conditions. Simulation results are pre-
sented to demonstrate the effectiveness of the proposed
estimation method.
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