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Abstract In this paper, the finite frequency fault
detection (FD) problem is addressed for a class of non-
homogeneous Markov jump systems with nonlinear-
ities and sensor failures. Compared with the existing
sensor fault models that contain many known faulty
modes, the fault model in this paper is more general
since it not only covers more types of sensor fail-
ures but also does not need to know the fault infor-
mation in advance. Then, by means of finite frequency
stochastic performance indices, a novel FD scheme is
proposed. Some new lemmas, in which the nonlinear
item and nonhomogeneousMarkov switching are dealt
appropriately, are developed to capture the stability of
the system and desired finite frequency performances.
Then, by the derived lemmas, sufficient conditionswith
potentially less conservativeness are investigated to
guarantee the existence of the FD filters. Finally, an
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application to HiMAT vehicle is given to illustrate the
effectiveness of the derived theoretical results.
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1 Introduction

In recent decades, it is witnessed that Markov jump
systems (MJSs) have received intensive research atten-
tion due to their strong ability to model the practi-
cal systems with sudden parameter variations, such as
manufacturing systems, economic systems, electrical
systems and communication systems [1–8]. MJS is a
kind of system that includes two parts, finite discrete
jump modes and system states which are, respectively,
governed by Markov process and discrete-time differ-
ential equations [9]. As the pivotal factor of Markov
processes, transition probabilities (TPs) play important
roles in determining relevant system performances. For
normal MJSs with affirmatory and known TPs, great
efforts have been made to concentrate on the prob-
lems of stable and stability, H∞ estimation and fil-
tering, and so on [10–12]. For more information, one
can see [13] for a survey. Further, for semi-MJSs and
MJSs with partially known even uncertain TPs, there
were also fruitful results concerned with the similar
problems mentioned above, for example, [14,15] and
the references therein. It should be noticed that these
results have been presented in the case of the TPs are
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constant, i.e., the considered Markov chain is a homo-
geneous one. Nevertheless, in many practical systems,
such a premise may be not satisfied. Taking the verti-
cal take-off and landing (VTOL) system, which can be
seen in [16], for example, it can bemodeled into normal
MJSs in an ideal situation. However, the derived jump
probabilities will be varied when the system experi-
ences sudden disturbances such as wind and tempera-
ture. Thus, it is amatter of course to consider nonhomo-
geneous MJSs, and consequently there are a few kinds
of literature focusing on such kinds of systems, such as
[16] proposed an H∞ estimation method in discrete-
time domain for the MJSs with time-varying TPs, [17]
addressed a robust H∞ filtering scheme for kinds of
uncertain discrete-time nonhomogeneous MJSs. How-
ever, the research on such kinds of systems is still in its
infancy and deserves further considerations.

On the other hand, FD plays an important role in
modern control field due to the increasing demands
on reliability and low maintenance costs [18–22]. And
consequently, great research efforts have been made on
the FD problem for MJSs. For example, [23] presented
a generalized H2 FD method for two-dimensional
MJSs, [24] dealt with the FD and isolation problem
for MJSs based on a geometric method, [25] designed
the FD filter for MJSs with nonlinear stochastic time
delays, and [26] developed an FD strategy for discrete-
timeMJSswith partial knowledge ofTPs. Further, from
the references therein, one can see more information
about the results of FD for MJSs. Nevertheless, this
method cannot be utilized for nonhomogeneous MJSs
with nonlinearities, especially when the sensors expe-
rience failures.

It should be also noticed that the methods men-
tioned above are all developed in time domain. How-
ever, for some fault signals, they usually occur in a
certain frequency domain, such as the actuator stuck
fault is always in low-frequency range. In such situa-
tions, the aforementioned FD methods are imprecise
due to the signal frequency constraints were not con-
sidered. Consequently, the FD strategy proposed in a
finite frequency domain is considered as a more prac-
tical one nowadays. Of course, with the aid of the gen-
eralized Kalman–Yakubovič–Popov (GKYP) lemma,
many FD schemes have been investigated, such as in
[28–30], but all of them are proposed for certain lin-
ear systems. However, it should be declared that for
systems which are not linear time-invariant ones, the
GKYP lemma cannot be utilized directly. And thus, it

is valuable to explore the finite frequency FD method
for such kinds of systems. Accordingly, there are a few
results concerned with such a topic. For example, in
[31], FD and isolation scheme have been presented in
finite frequency domain for a switched stochastic sys-
tem with multi-stochastic parameters, and in [18], FD
strategy for fuzzy systems has been considered. Nev-
ertheless, those developed methods cannot be utilized
to detect the sensor faults that occurred in certain fre-
quency range for nonhomogeneous MJSs, especially
for such kinds of systems with nonlinearities, which
cannot be ignored in practical cases when designing
the system.

Motivated by the aforementioned points, it is imper-
ative to develop a finite frequency FD strategy for
nonhomogeneous MJSs with sensor failures and non-
linearities. Nevertheless, such an interesting topic is
with some difficulties listed below: (1) How to model
the possible sensor failures appropriately? (2) How
to detect the failures with small amplitude? (3) How
to deal with the nonlinearities and nonhomogeneous
Markov switching when developing the solvable con-
ditions in finite frequency domain? Specifically, in
this paper, the listed questions are solved legitimately.
Firstly, a novel sensor fault model is given, which
is more general than existing ones, since it not only
involves more kinds of failures but also does not need
to know the fault information beforehand. And then,
an FD strategy is presented, in which the residual is
sensitive to the fault and the reference input in faulty
case, meanwhile robust to the disturbance and the ref-
erence input in fault-free case. Subsequently, sufficient
conditions with potentially less conservativeness are
developed to capture the required performance for the
system, in which the nonlinear item and nonhomoge-
neous Markov switching are dealt appropriately. And
the FD filter gains can be characterized by derived con-
ditions. Lastly, the effectiveness of the investigated FD
scheme is verified by an application to HiMAT vehicle.

2 Modeling of the system and problem formulation

Consider a class of MJSs given in a probability space
{�,F,P} as the form of

x(k + 1) = Aαk x(k) + Eαk f
(
x(k), αk

)

+ B1αkw(k) + B2αk s(k)

y(k) = Cαk x(k) + D1αkw(k) + D2αk s(k)

(1)
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Table 1 Illustration of finite frequency range

�s1 �s2 Ξ�s

LF −�sl �sl {|�s | ≤ �sl |�s ∈ R}
MF �s1 �s2 {(�s−�s1)(�s−�s2)≤0|�s∈R}
HF �sh 2π − �sh {|�s | ≥ �sh |�s ∈ R}

where x(k) ∈ Rn is the system state, y(k) ∈ Rm is the
measured output, w(k) ∈ L2[0,∞) is the disturbance,
s(k) ∈ L2[0,∞) is the reference input with frequency
�s ,�s ∈ Ξ�s := {ς(�s−�s1)(�s−�s2) ≤ 0|�s ∈
R}. f (·, ·) : Rn × R → Rn is a nonlinear function.
Further, the parameter {αk, k ≥ 0} represents a nonho-
mogeneous Markov stochastic process with range set
of S = {1, 2, . . . , N } and TP matrix Λ(k) = (λi j (k))
given by λi j (k) = P{αk+1 = j |αk = i} with λi j (k) >

0, ∀i, j ∈ S and
∑

j∈S λi j (k) = 1. The system matri-
ces Aαk , Eαk , B1αk , B2αk , Cαk , D1αk , D2αk are known
matrices with proper dimensions, which characterize
the relationships between the system variables. In the
sequel of the paper, the subscript αk associated with
αk = i is denoted by i .

Remark 1 It is noted that Ξ�s is utilized to limit the
frequency range. From the reference [27], it is obvious
thatΞ�s can characterize low-frequency (LF), middle-
frequency (MF) andhigh-frequency (HF) domainwhen
ς = 1 by selecting the parameters as in Table 1 while
characterize the full frequency domain when ς = −1
and �s1 = �s2 = 0.

Assumption 1 The nonlinear function f (·, ·) is
assumed to be bounded as

E{ f (x(k), i)|x(k), i} = 0;
E{ f (x(k), i) f T(x(k), i)|x(k), i}

=
K∑

κ=1

τκiτ
T
κi

(
xT(k)Θκi x(k)

)
(2)

where τκi , Θκi , (κ = 1, . . . ,K) are known column
vectors and positive definite matrices.

Remark 2 The description (2) in statistical sense is
more general since it can involve various types of non-
linearities, such as the nonlinear stochastic sequences,
whose powers are dependent on the sector-bounded
nonlinear function of the system states.

In this paper, the time-varying TP matrix Λ(k) is
considered to be with a polytopic structure described
by

Λ(k) = Λ(o(k)) =
L∑

ı=1

oı (k)Λ
ı (3)

where oı (k) ≥ 0, ı ∈ L = {1, 2, . . . , L} are scalar
functions of k satisfying

∑
ı∈L oı (k) = 1, Λı are

known matrices, which denote the vertices of the poly-
tope.

Remark 3 It is noticed that equation (3) characterized a
kind of time-dependent Markov chain, and this kind of
process is called as nonhomogeneous Markov process.
Further, if the time-varying one is fixed, i.e.,Λ(k) = Λ,
it is the normal homogeneous one, which performs
as a special case of the considered process in this
manuscript. In [16], the author proposed an H∞ esti-
mation method for a class of nonhomogeneous MJSs,
in which the TP matrix Λ(k) is subject to the piece-
wise homogeneous as Λσk , σk takes values in a finite
set with a finite mode, which is also a specific form of
the considered one in this paper.

Further, when the sensors encounter possible fail-
ures, the following model will be adopted to describe
the j th measured output

y j
ι (k) = � j

ι (k)y j (k) + f j (k), ι = 0, 1 (4)

where �
j
ι (k) denotes the unknown efficiency coeffi-

cient, and f j (k) represents the stuck or drift fault with
unknown bound occurred on the j th sensor with fre-
quency � f , � f ∈ Ξ� f := {ς(� f − � f 1)(� f −
� f 2) ≤ 0|� f ∈ R}. Moreover, ι = 0 means the fault-

free case in which �
j
ι (k) = 1 and f j (k) = 0, while

ι = 1means faulty case, wherein 0 ≤ �
j
ι (k) ≤ 1. Thus,

we have

yι(k) = �ι(k)y(k) + f (k) (5)

with �ι(k) = diag{� j
ι (k)}.

Remark 4 There are a few kinds of literature consid-
ering sensor failures, such as the multi-mode model
has been adopted in [18]. However, some information
about the fault in each mode should be exactly known
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beforehand, which restricts the application of the pro-
posed method. In the model (5), �ι(k) is assumed to be
unknown. Such an assumption is more reasonable to
describe the practical systems. Moreover, except out-
age and stuck ones, the model (5) can express more
kinds of failures such as loss of effectiveness and drift
phenomena compared to [18]; thus, it is more general.

The FD filter as the following form will be adopted
to generate the residuals

x̂(k + 1) = A f i x̂(k) + B1 f i yι(k) + B2 f i s(k)

r(k) = C f i x̂(k) + D f i yι(k)
(6)

where x̂(k) ∈ Rn denotes the filter state, r(k) ∈ R is the
residual signal, A f i , B1 f i , B2 f i , C f i and D f i are filter
gains. Then, by defining the augmented vector x̃(k) =
[ xT(k) x̂T(k) ]T, the whole FD systems together with
the possible faults can be obtained as follows

x̃(k + 1) = Aι
i x̃(k) + E ι

i f
(
T x̃(k), i

)

+ Bι
1iw(k) + Bι

2i s(k) + Bι
3i f (k)

r(k) = Cι
i x̃(k) + Dι

1iw(k) + Dι
2i s(k) + Dι

3i f (k)

(7)

where T = [ I 0 ], E ι
i = [ EiT 0 ]T, and

[Aι
i Bι

1i Bι
2i Bι

3i
Cι
i Dι

1i Dι
2i Dι

3i

]

=
⎡

⎣
Ai 0 B1i B2i 0

B1 f i�ιCi A f i B1 f i�ιD1i B1 f i�ιD2i+B2 f i B1 f i

D f i�ιCi C f i D f i�ιD1i D f i�ιD2i D f i

⎤

⎦

(8)

Denoting the operator ‖ · ‖E2 =∑∞
0 {E| · |2}1/2, and

then the following definitions are firstly recalled.

Definition 1 The system (7) is stochastic stable (SS)
if the inequality ‖x̃(k)‖E2 < ∞ holds ∀i ∈ S when the
system (7) is without disturbance and fault.

Definition 2 For all i ∈ S, the system (7) is with a
finite frequency stochastic (FFS) H−index β to s(k) if

‖r(k)‖E2 ≥ β‖s(k)‖E2 (9)

holds under zero initial conditions for all the solutions
in certain frequency domain satisfying

e j�s

∞∑

k=0

(
x̃(k + 1) − e j�s1 x̃(k)

)

(
x̃(k + 1) − e− j�s2 x̃(k)

)T ≤ 0

(10)

where �s = (�s1 + �s2)/2.

Definition 3 For all i ∈ S, the system (7) is with a FFS
H∞ performance γ to s(k) if

‖r(k)‖E2 ≤ γ ‖s(k)‖E2 (11)

holds under zero initial conditions for all the solutions
in certain frequency domain satisfying (10).

Remark 5 It is obvious, from the Definitions 2–3, that
β indicates the sensitivity to the reference input in finite
frequency domain. On contrary, γ characterizes the
robustness to it in a finite frequency range. And thus,
the large β and the smaller γ they are, the better per-
formance we can get.

Till now, theFDstrategy to be addressed in this paper
can be formulated as: For the considered nonhomoge-
neous MJSs (1) and the possible sensor failure, design
a set of filters as form of (6) such that the dynamic of
the system (7) is SS and the possible sensor failures
can be detected effectively by satisfying the following
requirement:

(a) The system (7) is SS and with anH∞ performance
γ to the disturbance ω(k).

(b) In faulty case, the impact of s(k) on r(k) is max-
imized in certain frequency range, i.e., the system
(7) is with a FFS H−index β to s(k). Meanwhile
in fault-free case, the impact is minimized in cer-
tain frequency range, i.e., with a finite frequency
stochastic H∞ performance γd .

(c) In faulty case, the impact of f (k) on r(k) is max-
imized in certain frequency range, i.e., the system
(7) is with a FFS H−index β f to the fault.

Remark 6 In the proposed FD scheme which is pre-
sented above, it requires that the residual r(k) is sensi-
tive to s(k) and f (k) in faulty cases instead of to f (k)
only. This operation will make it possible to detect the
fault with small amplitude. And the effectiveness will
be shown in simulation further.
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3 Main results

3.1 Performance analysis

In this subsection, the analysis conditions to capture
the desired performances will be presented by the fol-
lowing lemmas and corollaries.

Lemma 1 The system (7) is SS and with a prescribed
H∞ performance γ , γ > 0, toω(k) if there exist matri-
ces P ι

i ı = P ιT
i ı > 0 and scalars δι

κi such that the fol-
lowing inequalities
[− δι

κi τTκiE ιT
i P̄ ι

i
∗ − P̄ ι

i

]
< 0 (12)

JιT
i Ψ ι

i J
ι
i + VιT

i Πι
iV

ι
i < MιT

i Υ ι
i M

ι
i (13)

hold ∀i ∈ S, κ = 1, 2, . . . ,K, and ι = 0, 1, where

Jι
i = [Jι

i1 Jι
i2 ],Vι

i = [Vι
i1 Vι

i2 ],Mι
i = [Mι

i1 Mι
i2 ],

Ψ ι
i =diag{P̄ ι

i ,−P ι
i },Πι

i=diag{Ω ′′
, 0},

Υ ι
i =diag{−I,γ 2 I }

with

Jι
i1 = [AιT

i I ]T, Jι
i2 = [BιT

1i 0 ]T, Vι
i1 = [Ω ′

0 ]T,

Vι
i2 = [ 0 I ]T, Mι

i1 = [CιT
i 0 ]T, Mι

i2 = [DιT
1i I ]T

wherein P̄ ι
i = ∑N

j=1
∑L

ı=1
∑L

j=1 oı (k)ξj (k)λıi j P
ι
jj ,

P ι
i =∑L

ı=1 oı (k)P
ι
i ı ,Ω

′ = T T[Θ1/2
1i Θ

1/2
2i · · · Θ

1/2
Ki ],

Ω
′′ = diag{δ1i I, δ2i I, . . . , δKi I } with ξj (k) = oı (k +

1).

Proof Considering the following Lyapunov mode-
dependent functional when fι = 0 and s(k) = 0

V (x̃(k), k, i) = x̃T(k)

(
L∑

ı=1

oı (k)P
ι
i ı

)

x̃(k) (14)

By the expression of (7), the forward difference defined
as �Vi (k) = E{V (x̃(k +1), k +1, j)}−V (x̃(k), k, i)
can be derived as

�Vi (k)

= x̃T(k + 1)P̄ ι
i x̃(k + 1) − x̃T(k)P ι

i x̃(k)

= x̃T(k)
(
AιT

i P̄ ι
iAι

i−P ι
i

)
x̃(k)+ x̃T(k)AιT

i P̄ ι
iBι

1iω(k)

+ωT(k)BιT
1i P̄ ι

iAι
i x̃(k) + ωT(k)BιT

1i P̄ ι
iBι

1iω(k)

+E{ f (T x̃(k), i)TE ιT
i P̄ ι

iE ι
i f (T x̃(k), i)} (15)

Now, recalling the property

aTMb = tr(baTM) (16)

where a, b are nonzero vectors and M is an arbitrary
matrix with suitable dimensions, one has

E
{
f (T x̃(k), i)TE ιT

i P̄ ι
iE ι

i f (T x̃(k), i)
}

=
K∑

κ=1

[
x̃T(k)T TΘκiT x̃(k)

]
tr(τκiτ

T
κiE ιT

i P̄ ι
iE ι

i )

(17)

Further, (12) implies that tr(τκiτ
T
κiE ιT

i P̄ ι
iE ι

i ) < δι
κi .

Consequently, when w(k) = 0, we have

�Vi (k)≤ x̃T(k)

[

AιT
i P̄ ι

iAι
i−P ι

i+
K∑

κ=1

δι
κiT TΘκiT

]

x̃(k)

= x̃T(k)Φι′
i x̃(k)

(18)

Applying Schur’s complement to (13), it has Φι′
i < 0,

then one has

�Vi (k) ≤ −λmin(−Φι′
i )x̃T(k)x̃(k) ≤ −ξ x̃T(k)x̃(k)

(19)

where ξ = inf{λmin(−Φι′
i )}, i ∈ S, which implies that

‖x̃(k)‖E2
≤

∞∑

k=0

1

ξ

[
V (x̃(k), k, i) − E{V (x̃(k + 1), k + 1, j)}]

≤ E{V (x̃(0), 0, α0} < ∞ (20)

Thus, it can be deduced, from Definition 1, that the
system (7) is SS.

Further, we are going to verify theH∞ performance.
Considering the index Irw = ∑∞

k=0

[
E{rT(k)r(k) −

γ 2ωT(k)ω(k)}] under x̃(0) = 0, which can be written
into
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Irw =
∞∑

k=0

[
E{rT(k)r(k)−γ 2ωT(k)ω(k)}+�Vi (k)

]

+E{V (x̃(0),0, α0)}−E{V (x̃(∞),∞, α∞)}

≤
∞∑

k=0

[
E{rT(k)r(k) − γ 2ωT(k)ω(k)} + �Vi (k)

]

≤
∞∑

k=0

([ x̃T(k) ωT(k) ]Φι′′
i [ x̃T(k) ωT(k) ]T)

(21)

where Φι′′
i = JιT

i Ψ ι
i J

ι
i + VιT

i Πι
iV

ι
i − MιT

i Υ ι
i M

ι
i . It is

obvious that the inequality (13) ensures that Irw < 0,
that is ‖r(k)‖E2 ≤ γ ‖ω(k)‖E2 , which implies the sys-
tem (7) is with an H∞ performance γ . The proof is
completed. ��

Lemma 2 The system (7) is with a prescribed FFS
H−index β, β > 0, to s(k) if there exist matrices
P ι
siı = P ιT

siı > 0, Qι
siı = QιT

siı > 0 and scalars δι
sκi

such that
[− δι

sκi τTκiE ιT
i P̄ ι

si
∗ − P̄ ι

si

]
< 0 (22)

JιT
si Ψ

ι
siJ

ι
si − VιT

si Π
ι
siV

ι
si < MιT

si Υ
ι
siM

ι
si (23)

hold ∀i ∈ S, κ = 1, 2, . . . ,K, and ι = 1, where

Jι
si = [Jι

i1 Jι
si2 ],Vι

si = [Vι
si1 Vι

i2 ],
Mι

si = [Mι
i1 Mι

si2 ],
Πι

si = diag{Ω ′′
s , 0}, Υ ι

si = diag{I,−β2 I },
Ψ ι
si = P ι

si ⊗ diag{0, I } − P̄ ι
si ⊗ diag{I, 0} +Qι

si ⊗ ,ג

with Jι
si2 = [BιT

2i 0 ]T, Vι
si1 = [Ω ′

0 ]T, Mι
si2 =

[DιT
2i I ]T, wherein P̄ ι

si = ∑N
j=1
∑L

ı=1
∑L

j=1 oı (k)

ξj (k)λıi j P
ι
s jj ,P ι

si =∑L
ı=1 oı (k)P

ι
siı ,Ω

′′
s = diag{δs1i I,

δs2i I, . . . , δsKi I }. Furthermore, ג =
[
0 1
1 −2 cos�sl

]

in LF domain, ג =
[

0 e j�sa

e− j�sa −2 cos�sb

]
in MF

domain, ג =
[

0 −1
−1 2 cos�sh

]
in HF domain, wherein

�sa = �s1+�s2
2 , and �sb = �s2−�s1

2 .

Proof Under zero initial conditions and LF domain,
pre- and post-multiplying the inequality (23) by
[x̃T(k) sT(k)] and its transpose, it is obvious that the

following inequality can be obtained

E
(
x̃T(k)P ι

si x̃(k) − x̃T(k + 1)P̄ ι
si x̃(k + 1)

− x̃T(k)
∞∑

k=0

δι
sκiT TΘκiT x̃(k) − rT(k)r(k)

+ β2sT(k)s(k) + x̃T(k + 1)Qι
si x̃(k)

+ x̃T(k)Qι
si x̃(k+1)−2 cos�sl x̃

T(k)Qι
si x̃(k)

)
≤0

(24)

On the one hand, for matrices P ι
siı > 0, define an

energy functionalVsi (k) = x̃T(k)(
∑L

ı=1 oı (k)P
ι
siı )x̃(k)

as the same form of (14), then from the inequality (22)
and the proof to Lemma 1, one can prove �Vsi (k) ≤
[x̃T(k) sT(k)]Φι′

si [x̃T(k) sT(k)]T < 0 easily, where

Φι′
si = JιT

si (P̄ ι
i ⊗ diag{I, 0} − P ι

si ⊗ diag{0, I })Jι
si −

VιT
si Π

ι
siV

ι
si , that means the sum of the first three items

in the left side of inequality (24) is larger than zero,
which yields that

E
(− rT(k)r(k) + β2sT(k)s(k) + I f

) ≤ 0 (25)

where I f = x̃T(k + 1)Qι
si x̃(k) + x̃T(k)Qι

si x̃(k + 1) −
2 cos�sl x̃T(k)Qι

si x̃(k).
On the other hand, recalling the property (16) again

and then summing I f from k = 0 to ∞, we have

∞∑

k=0

I f =
∞∑

k=0

(
tr
((
x̃(k)x̃T(k + 1) + x̃(k + 1)x̃T(k)

− 2 cos�sl x̃(k)x̃
T(k)

)
Qι

si

)
(26)

Under zero initial conditions and LF domain, per-
forming some calculations and Euler’s formula on the
constraint (10), we have

∞∑

k=0

(
x̃(k)x̃T(k + 1) + x̃(k + 1)x̃T(k)

− 2 cos�sl x̃(k)x̃
T(k)

) ≥ 0

(27)

Thus, for Qι
si > 0, we have

∑∞
k=0

(
x̃(k)x̃T(k + 1) +

x̃(k + 1)x̃T(k) − 2 cos�sl x̃(k)x̃T(k)
)
Qι

si ≥ 0, which
implies

∑∞
k=0 I f ≥ 0. Summing the inequality (25)

from k = 0 to ∞, one can easily obtain ‖r(k)‖E2 ≥
β‖s(k)‖E2 holds, that is the system (7) is with a LF
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stochastic H−index. By the similar process, the con-
ditions for MF and HF can be obtained naturally by
choosing the suitable frequency parameters, and it is
omitted here. The proof is completed. ��
Remark 7 If the systemconsidered in this paper is a lin-
ear one rather thanMJS, i.e., the system is independent
on i , and it is without the nonlinear items f

(
x(k), αk

)
,

the condition in Lemma 2 can be reduced to the con-
dition of GKYP lemma shown in [27]. Through such
conditions, the finite frequency performance require-
ment has been transferred into time-domain conditions,
which facilitated the design procedure.

Following the idea of Lemmas 1–2, the analysis con-
ditions to capture the sensitivity performance to f (k)
and the robustness performance to s(k) can be easily
derived, which are shown in the following two corol-
laries.

Corollary 1 The system (7) is with a prescribed FFS
H∞ performance γd , γd > 0, to s(k) if there exist
matrices P ι

diı = P ιT
diı > 0, Qι

diı = QιT
diı > 0 and

scalars δι
dκi such that

[−δι
dκi τTκiE ιT

i P̄ ι
di

∗ −P̄ ι
di

]
< 0 (28)

JιT
diΨ

ι
diJ

ι
di − VιT

diΠ
ι
diV

ι
di < MιT

diΥ
ι
diM

ι
di (29)

hold ∀i ∈ S, κ = 1, 2, . . . ,K, and ι = 0, where

Jι
di = [Jι

i1 Jι
si2 ],Vι

di = [Vι
di1 Vι

i2 ],
Mι

di = [Mι
i1 Mι

si2 ],
Πι

di = diag{Ω ′′
d , 0}, Υ ι

di = diag{−I, γ 2
d I },

Ψ ι
di = P ι

di ⊗ diag{0, I } − P̄ ι
di ⊗ diag{I, 0}

+ Qι
di ⊗ ג

with Vι
di1 = [Ω ′

0 ]T, Ω
′′
d = diag{δd1i I, δd2i I, . . . ,

δdKi I }, P̄ ι
di = ∑N

j=1
∑L

ı=1
∑L

j=1 oı (k)ξj (k)λıi j P
ι
d jj ,

and P ι
di =∑L

ı=1 oı (k)P
ι
diı .

Corollary 2 For the system (7) in faulty case, it is with
a prescribed FFS H−index β f , β f > 0, to f (k) if there
exist matrices P ι

f i ı = P ιT
f i ı > 0, Qι

f i ı = QιT
f i ı > 0 and

scalars δι
f κi such that

[
−δι

f κi τTκiE ιT
i P̄ ι

f i
∗ −P̄ ι

f i

]

< 0 (30)

JιT
f iΨ

ι
f iJ

ι
f i − VιT

f iΠ
ι
f iV

ι
f i < MιT

f iΥ
ι
f iM

ι
f i (31)

hold ∀i ∈ S, κ = 1, 2, . . . ,K, and ι = 1, where

Jι
f i = [Jι

i1 Jι
f i2 ],Vι

f i = [Vι
f i1 Vι

i2 ],
Mι

f i = [Mι
i1 Mι

f i2 ],
Πι

f i = diag{Ω ′′
f , 0}, Υ ι

f i = diag{I,−β2
f I },

Ψ ι
f i = P ι

f i ⊗ diag{0, I } − P̄ ι
f i ⊗ diag{I, 0}

+ Qι
f i ⊗ ג f

with Jι
f i2 = [BιT

3i 0 ]T, Vι
f i1 = [Ω ′

0 ]T, Mι
f i2 =

[DιT
3i I ]T, wherein P̄ ι

f i = ∑N
j=1
∑L

ı=1
∑L

j=1 oı (k)

ξj (k)λıi j P
ι
f jj , P ι

f i = ∑L
ı=1 oı (k)P

ι
f i ı , Ω

′′
f = diag

{δ f 1i I, δ f 2i I, . . . , δ fKi I }. Furthermore, ג f =[
0 1
1 −2 cos� f l

]
in LF domain, ג f =

[
0 e j� f a

e− j� f a −2 cos� f b

]
in MF domain, ג f =

[
0 −1

−1 2 cos� f h

]
in HF domain, wherein � f a =

� f 1+� f 2
2 , and � f b = � f 2−� f 1

2 .

3.2 Fault detection filters synthesis

Basedon the conclusions in above subsection, the linear
conditions to design the FD filters will be developed
thoroughly in this subsection.

Lemma 3 For the known scalar ε and the realmatrices
Y , M, F, and E with appropriate dimensions subject-
ing FTF ≤ ε2 I , the inequality Y + He(MFE) < 0
holds if and only if there exists a scalar σ > 0 such
that Y + σMMT + 1

σ
ε2ETE < 0.

Theorem 1 The system (7) is with a prescribed LF
stochastic H− index β, β > 0, to s(k) if there exist

matrices P ιT
siı = P ι

siı =
[
P ι
si1ı ∗

P ι
si2ı P ι

si3ı

]
> 0, QιT

siı =

Qι
siı =

[
Qι

si1ı ∗
Qι

si2ı Q
ι
si3ı

]
> 0, Yi , Mi , Ni , Gi , X3i ,

A f i , B1 f i , B2 f i , C f i ,D f i and scalars δι
sκi and εs such

that
⎡

⎣
− 1

Kδι
sκi ∗ ∗

P̄ ι
si1E

ι
iτκi −P̄ ι

si1
P̄ ι
si2E

ι
iτκi −P̄ ι

si2 −P̄ ι
si3

⎤

⎦ < 0 (32)
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⎡

⎢⎢⎢
⎢⎢⎢
⎣

Γs11 ∗ ∗ ∗ ∗ ∗
Γs21 Γs22 ∗ ∗ ∗ ∗
0 Γs32 −I ∗ ∗ ∗

Γs41 Γs42 −v̄2Gi Γs44 ∗ ∗
0 Γs52 0 0 Γs55 ∗
0 Γs62 0 Γs64 0 −εs I

⎤

⎥⎥⎥
⎥⎥⎥
⎦

< 0 (33)

hold ∀i ∈ S, κ = 1, 2, . . . ,K, and ι = 1, where

Γs11 =
[−P̄ ι

si1 ∗
−P̄ ι

si2 −P̄ ι
si3

]
,

Γs21 =
[

Qι
si1−Yi QιT

si1−Ni

Qι
si2−Mi Qι

si3−Ni

]
,

Γs22 =
[
Γ 1
s22 ∗

Γ 2
s22 Γ 3

s22

]
, Γs32 = [−GT

i −GT
i

]
,

Γs41 = [−v̄1Yi −v̄1Ni
]
, Γs42 = [Γ 1

s42 Γ 2
s42

]
,

Γs44 = β2 I + He(v̄1Yi B2i + v̄1B2 f i ) + εs D
T
2i D2i ,

Γs52 = X3i ⊗ Ω
′T , Γs62 =

[
BT
1 f i + DT

f i BT
1 f i + DT

f i

]

Γs55 = −Ω
′′
s − He(X3i ⊗ diag{I, I, . . . , I }K),

Γs64 = BT
1 f i v̄

T
1 + DT

f i v̄
T
2

withΓ 1
s22 = P ι

si1−2 cos�sl Qι
si1+He(Yi Ai )+εsCT

i Ci ,
Γ 2
s22 = P ι

si2−2 cos�sl Qι
si2 + Mi Ai + AT

f i + CTf i ,
Γ 3
s22 = P ι

si3−2 cos�sl Qι
si3 +He(A f i + C f i ), Γ 1

s42 =
BT
2iYT

i + BT
2 f i + v̄1Yi Ai + εs DT

2iCi , and Γ 2
s42 =

BT
2iYT

i + BT
2 f i + v̄1A f i + v̄2C f i .

Proof It is clear, from Lemma 2, that the conditions
(22)–(23) guarantee the system (7) can be with a FFS
H−index β. Expanding the inequality (22), the condi-
tion (32) can be easily derived. Further, we will focus
on linearizing the inequality (23), which can be trans-
formed into

JιT
si

([
Ψ ι
si 0
0 0

]
−
[
0 0
0 VιT

si Π
ι
siV

ι
si+MιT

si Υ
ι
siM

ι
si

])
Jι
si ≤0

(34)

where Jι
si =

[
Jι
i1 Jι

si2
0 I

]
, and then it can be equivalent

to

([
Ψ ι
si 0
0 0

]
−
[
0 0
0 VιT

si Π
ι
siV

ι
si + MιT

si Υ
ι
siM

ι
si

])

+ He

⎛

⎜
⎝

⎡

⎣
−I
AιT

i
BιT
2i

⎤

⎦

⎡

⎣
0
X1i

v1X1i

⎤

⎦

T
⎞

⎟
⎠ ≤ 0

(35)

by applying Finsler’s Lemma [18], where X1i is the
introduced slack matrix and v1 is a given scalar. And
then, the above inequality can be transformed into

⎡

⎢
⎢
⎣

I 0 0
0 I 0
0 Cι

i Dι
2i

0 0 I

⎤

⎥
⎥
⎦

T

Γ 1
ss

⎡

⎢
⎢
⎣

I 0 0
0 I 0
0 Cι

i Dι
2i

0 0 I

⎤

⎥
⎥
⎦ ≤ 0 (36)

where

Γ 1
ss =

[
Ψ ι
si 0
0 −Υ ι

si

]
− diag{0, VιT

si Π
ι
siV

ι
si , 0}

+ He(
[−I Aι

i 0 Bι
2i

]T [
0 X T

1i 0 X T
1iv

T
1

]
)

Exploiting Finsler’s Lemma again, (36) is equivalent
to

Γ 1
ss+He

([
0 Cι

i −I Dι
2i

]T [
0 X T

2i 0 X T
2iv

T
2

]) ≤ 0

(37)

where X2i is the additional slack matrix. Further, the
above inequality can be rewritten into

⎡

⎢
⎢⎢⎢
⎣

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 Ω

′T
s 0 0

⎤

⎥
⎥⎥⎥
⎦

T

Γ 2
ss

⎡

⎢
⎢⎢⎢
⎣

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 Ω

′T
s 0 0

⎤

⎥
⎥⎥⎥
⎦

≤ 0 (38)

where Γ 2
ss = diag

{
Γ 1
ss + diag{0, VιT

si Π
ι
siV

ι
si , 0},

−Ω
′′
s

}
. Utilizing the same preceding method adopted

above, the inequality (38) is equivalent to

Γ 2
ss + He

([
0 Ω

′T
s 0 0 −I

]T [
0 0 0 0 X3i

]) ≤ 0

(39)

where X3i is the slack matrix introduced by Finsler’s
lemma.

Without loss of generality, decomposing the matri-
ces X1i , X2i and the vectors v1, v2 into the form of

X1i =
[
Yi Ni

Mi Ni

]
, X2i =

[
Gi
Gi

]
, and v1 = [

v̄1 0
]
,

v2 = [ v̄2 0
]
. We expand the left part of equation (37)

and rewrite it into the sum form of two parts. One part
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is the items with �ι, and the other is the left items with-
out �ι. Recalling the fact of �T

ι �ι ≤ I , applying the
Lemma 3, and defining the new variables

A f i = Ni A f i , B1 f i = Ni B1 f i , B2 f i = Ni B2 f i ,

C f i = GiC f i , D f i = Gi D f i (40)

the condition (33) can be derived. The proof is com-
pleted. ��

Remark 8 Theorem 1 has presented the conditions to
capture the LF stochastic H−index. FromLemma2, the
conditions ensuring the desired MF and HF stochastic
H− indices can be easily derived by utilizing different
ג and following the same proof process of Theorem 1.

Theorem 2 The system (7) is SS and with a prescribed
H∞ performance γ , γ > 0, toω(k) if there exist matri-

ces P ιT
i ı = P ι

i ı =
[
P ι
i1ı ∗

P ι
i2ı P ι

i3ı

]
> 0, Yi , Mi , Ni , Gi ,

X3i , A f i , B1 f i , B2 f i , C f i , D f i and scalars δι
κi and ε

such that
⎡

⎣
− 1

Kδι
κi ∗ ∗

P̄ ι
i1E

ι
iτκi −P̄ ι

i1
P̄ ι
i2E

ι
iτκi −P̄ ι

i2 −P̄ ι
i3

⎤

⎦ < 0 (41)

⎡

⎢⎢⎢
⎢⎢⎢
⎣

Γ11 ∗ ∗ ∗ ∗ ∗
Γ21 Γ22 ∗ ∗ ∗ ∗
Γ31 Γ32 Γ33 ∗ ∗ ∗
0 Γ42 0 Γ44 ∗ ∗

Γ51 0 0 DT
f i v̄

T
2 −ε I ∗

0 Γ62 0 0 0 Γ66

⎤

⎥⎥⎥
⎥⎥⎥
⎦

< 0 (42)

hold ∀i ∈ S, κ = 1, 2, . . . ,K, and ι = 0, 1, where

Γ11 =
[

P̄ ι
i1 − He(Yi ) ∗

P̄ ι
i2 − Mi − N T

i P̄ ι
i3 − He(Ni )

]
,

Γ21 =
[
AT
i YT

i AT
i MT

i
AT

f i AT
f i

]
,

Γ22 =
[−P ι

i1 + εCT
i Ci ∗

−P ι
i2 −P ι

i3

]
,

Γ31 = [ BT
1iYT

i BT
1iMT

i

]
, Γ32 = [ εDT

1iCi 0
]
,

Γ33 = −γ 2 I + εDT
1i D1i , Γ42 = [0 v̄2C f i

]
,

Γ44 = I−He(v̄2Gi ),

Γ51 =
[
BT
1 f i BT

1 f i

]
, Γ62=X3i ⊗ Ω

′T

Γ66 = Ω
′′ − He(X3i ⊗ diag{I, I, . . . , I }K).

Proof Lemma 1 has presented the conditions to guar-
antee the SS and desired H∞ performance to ω(k).
Equation (41) can be derived directly from (12). Fur-
ther, we rewrite the inequality (13) into

JιT
i

([
Ψ ι
i 0
0 0

]
+
[
0 0
0 VιT

i Πι
iV

ι
i − MιT

i Υ ι
i M

ι
i

])
Jι
i≤ 0

(43)

where Jι
i =

[
Jι
i1 Jι

i2
0 I

]
, and then it can be equivalent

to

([
Ψ ι
i 0
0 0

]
+
[
0 0
0 VιT

i Πι
iV

ι
i − MιT

i Υ ι
i M

ι
i

])

+ He

⎛

⎜
⎝

⎡

⎣
−I
AιT

i
BιT
1i

⎤

⎦

⎡

⎣
X1i

0
0

⎤

⎦

T
⎞

⎟
⎠ ≤ 0

(44)

from Finsler’s Lemma. We go on to split the above
inequality into the form of

⎡

⎢⎢
⎣

I 0 0
0 I 0
0 Cι

i Dι
1i

0 0 I

⎤

⎥⎥
⎦

T

Γ
′

⎡

⎢⎢
⎣

I 0 0
0 I 0
0 Cι

i Dι
1i

0 0 I

⎤

⎥⎥
⎦ ≤ 0 (45)

where

Γ
′ =
[

Ψ ι
i 0
0 −Υ ι

i

]
+ diag{0, VιT

i Πι
iV

ι
i , 0}

+ He(
[−I Aι

i 0 Bι
1i

]T [X T
1i 0 0 0

]
)

Then, utilizing Finsler’s Lemma again, one has (45) is
equivalent to

Γ
′ + He

([
0 Cι

i −I Dι
1i

]T [
0 0 X T

2iv
T
2 0
]) ≤ 0

(46)

Subsequently, for the item of VιT
i Πι

iV
ι
i , we adopt the

same dealing method with the proof for Theorem 1,
the condition (42) can be easily achieved. The proof is
completed. ��

Further from Corollaries 1–2, following the similar
route to prove Theorem 1 and choosing relative sys-
tem matrices, the linear and solvable conditions can be
derived, which are given in the following two theorems.
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Theorem 3 For the system (7) in fault-free case, i.e.,
�ι = I and ε = 0, it is with a prescribed LF stochastic
H∞ performance γd , γd > 0, to s(k) if there exist

matrices P ιT
diı = P ι

diı =
[
P ι
di1ı ∗

P ι
di2ı P ι

di3ı

]
> 0, QιT

diı =

Qι
diı =

[
Qι

di1ı ∗
Qι

di2ı Q
ι
di3ı

]
> 0, Yi , Mi , Ni , Gi , X3i ,

A f i , B1 f i , B2 f i , C f i , D f i and scalars δι
dκi such that

the following inequalities

⎡

⎣
− 1

Kδι
dκi ∗ ∗

P̄ ι
di1E

ι
iτκi −P̄ ι

di1
P̄ ι
di2E

ι
iτκi −P̄ ι

di2 −P̄ ι
di3

⎤

⎦ < 0 (47)

⎡

⎢⎢⎢⎢
⎣

Γd11 ∗ ∗ ∗ ∗
Γd21 Γd22 ∗ ∗ ∗
0 Γd32 −γ 2

d I ∗ ∗
0 Γd42 v̄2D f i D2i Γd44 ∗
0 Γd52 0 0 Γd55

⎤

⎥⎥⎥⎥
⎦

< 0 (48)

hold for all i ∈ S, κ = 1, 2, . . . ,K, and ι = 0, where

Γd11 =
[−P̄ ι

di1 ∗
−P̄ ι

di2 −P̄ ι
di3

]
,

Γd21 =
[

Qι
di1 − Yi QιT

di2 − Ni

Qι
di2 − Mi Qι

di3 − Ni

]
,

Γd22 =
[
Γ 1
d22 ∗

Γ 2
d22 Γ 3

d22

]
,

Γd32 =
[
Γ 1
d32 BT

2iMT
i + DT

2iBT
1 f i + BT

2 f i + DT
2iDT

f i

]
,

Γd42 = [−GT
i + v̄2D f iCi −GT

i + v̄2C f i
]
,

Γd44 = I − He(v̄2Gi ), Γd52 = X3i ⊗ Ω
′T ,

Γd55 = −Ω
′′
d − He(X3i ⊗ diag{I, I, . . . , I }K)

withΓ 1
d22 = P ι

di1−2 cos�sl Qι
di1+He(Yi Ai+B1 f iCi ),

Γ 2
d22 = P ι

di2−2 cos�sl Qι
di2+Mi Ai+B1 f iCi+AT

f i+
CTf i +D f iCi ,Γ 3

d22 = P ι
di3−2 cos�sl Qι

di3+He(A f i +
C f i ), and Γ 1

d32 = BT
2iYT

i +DT
2iBT

1 f i +BT
2 f i +DT

2iDT
f i .

Theorem 4 For the system (7) in faulty case, it
is with a prescribed LF stochastic H−index β f ,
β f > 0, to f (k) if there exist matrices P ιT

f i ı =

P ι
f i ı =

[
P ι
f i1ı ∗

P ι
f i2ı P ι

f i3ı

]

> 0, QιT
f i ı = Qι

f i ı =
[
Qι

f i1ı ∗
Qι

f i2ı Q
ι
f i3ı

]

> 0, Yi ,Mi ,Ni , Gi , X3i ,A f i , B1 f i ,

B2 f i , C f i , D f i and scalars δι
f κi and ε f such that

⎡

⎢
⎣

− 1
Kδι

f κi ∗ ∗
P̄ ι

f i1E
ι
iτκi −P̄ ι

f i1
P̄ ι

f i2E
ι
iτκi −P̄ ι

f i2 −P̄ ι
f i3

⎤

⎥
⎦ < 0 (49)

⎡

⎢⎢⎢⎢
⎢⎢
⎣

Γ f 11 ∗ ∗ ∗ ∗ ∗
Γ f 21 Γ f 22 ∗ ∗ ∗ ∗
0 Γ f 32 −I ∗ ∗ ∗

Γ f 41 Γ f 42 −v̄2Gi Γ f 44 ∗ ∗
0 Γ f 52 0 0 Γ f 55 ∗
0 Γ f 62 0 Γ f 64 0 −ε f I

⎤

⎥⎥⎥⎥
⎥⎥
⎦

< 0 (50)

hold ∀i ∈ S, κ = 1, 2, . . . ,K, and ι = 1, where

Γ f 11 =
[

−P̄ ι
f i1 ∗

−P̄ ι
f i2 −P̄ ι

f i3

]

,

Γ f 21 =
[

Qι
f i1 − Yi QιT

f i2 − Ni

Qι
f i2 − Mi Qι

f i3 − Ni

]

,

Γ f 22 =
[
Γ 1

f 22 ∗
Γ 2

f 22 Γ 3
f 22

]

,

Γ f 32 = [−GT
i −GT

i

]
, Γ f 41 = [−v̄1Yi −v̄1Ni

]
,

Γ f 42 =
[
BT
1 f i+DT

f i+v̄1Yi Ai BT
1 f i +DT

f i +v̄1A f i +v̄2C f i

]
,

Γ f 44 = β2
f I + He(v̄1B1 f i + v̄2D f i ),

Γ f 52 = X3i ⊗ Ω
′T
f ,

Γ f 55 = −Ω
′′
f − He(X3i ⊗ diag{I, I, . . . , I }K),

Γ f 62 =
[
BT
1 f i + DT

f i BT
1 f i + DT

f i

]
,

Γ f 64 = BT
1 f i v̄

T
1 + DT

f i v̄
T
2

with Γ 1
f 22 = P ι

f i1− 2 cos� f l Qι
f i1 + He(Yi Ai ) +

ε f CT
i Ci , Γ 2

f 22 = P ι
f i2−2 cos� f l Qι

f i2 + Mi Ai +
AT

f i + CTf i , and Γ 3
f 22 = P ι

f i3− 2 cos� f l Qι
f i3 +

He(A f i + C f i ).

Remark 9 It is noticed from the Theorems 1–4 that
some given vectors v̄1 and v̄2 are needed to derive the
linear solvable conditions, and of course, different val-
ues will result in different performance levels. Particu-
larly, but without loss of generality, it can be chosen as
a unit vector.

Now, with the aid of the derived conditions in Theo-
rems 1–4, a set of feasible solutions to the proposed
design scheme can be obtained by the optimization
problem stated as follows for acceptable γ and γd :
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max asβ + afβ f

s.t. (32), (33), i ∈ S, κ = 1, 2, . . . ,K, ι = 1
(41), (42), i ∈ S, κ = 1, 2, . . . ,K, ι = 0, 1
(47), (48), i ∈ S, κ = 1, 2, . . . ,K, ι = 0
(49), (50), i ∈ S, κ = 1, 2, . . . ,K, ι = 1

(51)

where as and af are given weighting scalars subjecting
to as +af = 1. After getting the solutions, the FD filter
gains can be calculated according to (40).

The following algorithm presents the process to
solve the above optimization problem.
Algorithm 1

Step 1. Solving the following optimization problems
to obtain the optimal values of the robustness
performance indices γ and γd ,

min γ

s.t. (41), (42), i ∈ S, κ = 1, 2, . . . ,K, ι = 0, 1

min γd
s.t. (47), (48), i ∈ S, κ = 1, 2, . . . ,K, ι = 0

Step 2. For the γ and γd derived in Step 1, solving
(51). If it is solvable, break. Otherwise go to
Step 3.

Step 3. Increasing the values of γ and γd steply and
separately, then solving (51). If it is solvable,
break. Otherwise cycling in this step.

Remark 10 Normally, the scalars as and af are deter-
mined empirically according to the fault type that fre-
quently occurred. For example, if the faults with large
amplitude always occur, they can be chosen as as = 0.5
and af = 0.5. And if the faults with small amplitude
always occur, we should increase the value of as to
strengthen the FD ability.

3.3 Detection threshold

After generating the residual signals, the last step is
to determine the threshold and construct the detection
logic. In this paper, the threshold Jth will be chosen as

Jth= sup
f (k)=0,s(k)=0

Jr(τ ) (52)

where Jr(τ ) represents the average energy of the resid-
ual over the time window [k0, kτ ], which is denoted by

Jr(τ )=
√√√√1

τ

kτ∑

k=k0

rT(k)r(k). (53)

And then the detection logic can be made through

Jr(τ ) ≥ Jth ⇒ Alarm

Remark 11 It should be emphasized that Jth is just an
ideally choice. In practice, it should be adjusted by
J̄th = Jth+�J , where J̄th means the adopted value, and
�J represents the worst-case value of systems related
to dynamic inversion, such as parasitism in power sys-
tems. Furthermore, it is different for diverse systems,
which do not cause Jr(τ ) to exceed J̄th.

4 Simulation examples

Here, a simulation example will be presented to vali-
date the effectiveness of the proposed FDmethod. Con-
sidering the highly maneuverable aircraft technology
(HiMAT) vehicle given in [32], choosing two operat-
ing points within the flight envelopes, whose trim con-
ditions are shown in Table 2, as the switching modes,
and the sampling period T = 1s, a switched system
model under the reference input s(k) can be derived as
the form of

x(k + 1) = Ai x(k)+Ei f
(
x(k), i

)+B1iw(k)+B2i s(k)

y(k) = Ci x(k)+D1iw(k)+D2i s(k) (54)

where x(k) = [x1(k) x2(k)], which represents the
attack angle (deg) and the pitch rate (deg/s), respec-
tively. The corresponding system matrices are

[
A1 B11 B21 E1

C1 D11 D21

]
=

⎡

⎣
− 0.0213 − 0.0035 0.0170 − 0.0881 0.0036 − 0.0076
0.0832 − 0.0047 − 0.0775 0.3817 − 0.0151 0.0296
0.4000 0.2000 0.1010 0.5001

⎤

⎦

[
A2 B12 B22 E2

C2 D12 D22

]
=

⎡

⎣
− 0.0200 − 0.0036 −0.0177 0.0500 0.0006 0.0059
0.0752 − 0.0061 0.0579 − 0.0552 − 0.0092 − 0.0193
0.3400 0.1500 −0.1010 0.5001

⎤

⎦

In addition, it is assumed that the derived system
is switched under the direction of nonhomogeneous
Markov chain with S = {1, 2} and TP been in a poly-
tope, whose vertices are
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Table 2 Trim condition for two operator points of HiMAT

Operation points 1 2

Mach number 0.6 0.9

Altitude (ft) 20000 25000

Attack angle (◦) 1.48 4.27

Table 3 Comparison of β and β f for different �sl and � f l

�sl = � f l = 0 �sl = � f l = 0.005 �sl = � f l = 1/(2π)

β = 0.3072 β = 0.3073 β = 0.2894

β f = 0.3329 β f = 0.3330 β f = 0.3140

Table 4 Comparison of β and β f under different γ and γd

γ = γd = 0.81 γ = γd = 0.9 γ = γd = 1 γ = γd = 2

β = 0.2425 β = 0.2950 β = 0.3072 β = 0.3879

β f = 0.2594 β f = 0.3215 β f = 0.3329 β f = 0.3911

Λ1 =
[
0.45 0.55
0.68 0.32

]
, Λ2 =

[
0.2 0.8
0.14 0.86

]
,

Λ3 =
[
0.47 0.53
0.73 0.27

]

Further, oι(k), ι = 1, 2, 3 are assumed to be as o1(k) =
0.7, o2(k) = 0.3 cos2(k), o3(k) = 0.3 sin2(k). And
thus, one has Λ(k) = 0.1Λ1 + 0.3 cos2(k)Λ2 +
0.3 sin2(k)Λ3.

Next, for the sake of illustrating the system perfor-
mances can be influenced by signal frequency, solving
the optimization problem (51) with γ = γd = 1 under
a1 = 0.8 and a2 = 0.2, the derived indices β and
β f for different �sl and � f l are shown in Table 3.
From which, it is not difficult to see that the signal
frequency affects the system performance definitely.
And the signals in high frequency results in worse per-
formance. Further, we are going to show the mutual
restrictions between each performance by solving the
optimization problem (51) under different situations
with different γ and γd when a1 = 0.8 and a2 = 0.2
for �sl = � f l = 0. The results are shown in Table 4.

One can see, from Table 4, that the larger γ and γd
are, the larger β and β f can be obtained. That means it
is contrary between the sensitivity performance β, β f

and the attenuation performance γ , γd , and they can-
not achieve the optimal identification simultaneously.

0 10 20 30 40 50 60 70 80 90 100

1

1.5

2

time k

m
od

e
α k

Fig. 1 The values of αk at each time instant k

Thus, one should find an equilibrium point between
them when designing the practical FD systems.

It should be stated here that this is the first attempt to
develop the FDmethod in a finite frequency domain for
nonhomogeneous MJSs with nonlinearities, especially
with sensor failures. Though there are some results con-
cerned on the finite frequency FDmethod, they are pro-
posed for linear systems. Thus in this section, no com-
parison can be done meaningfully. In the following, to
show the effectiveness of the proposedmethod, the sys-
tem will be simulated for acceptable robustness level,
i.e., γ = γd = 1 when a1 = 0.8 and a2 = 0.2. In such
situation, from Table 4, it is shown that β = 0.3072,
β f = 0.3329. The filter gains are not listed here. Fur-
ther, for the Λ(k) given above, a series of sequence αk

can be produced. Without loss of generality, the one
shown in Fig. 1 will be adopted in this simulation.

Furthermore, themodel given in [33] will be utilized
to generate thewindgust signal as the disturbanceω(k),
i.e., ω(s) = W(s)d, where d is Gaussian white noise
and W(s) represents a random vertical gust process
with the following form

W(s) =
√
3U0σ 2

w

πLw

U0√
3Lw

+ s
[
U0
Lw

+ s
]2

where U0 means the trim velocity (fps) of the vehicle,
σw denotes the rms vertical gust velocity (fps), Lw rep-
resents the characteristic length of turbulence (ft). One
usual thunderstorm is with the value of σw = 23 fps,
and Lw = 1900 ft. Within the above sequence αk and
wind disturbance ω(k), the system will be simulated
under the following four fault cases, which are, respec-
tively, corresponded to the fault types that (5) covered.

Case 1. The outage fault with parameters � = 0
and f = 0 occurred when 30 < k < 70. The residual
signal and its evaluation function are shown in Fig. 2.
From the figure, one can see Jr(τ ) > Jth when k = 32.
That is to say, the occurred fault can be detected two
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Fig. 2 Residual and its evaluation function at fault case 1
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Fig. 3 Residual and its evaluation function at fault case 2
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Fig. 4 Residual and its evaluation function at fault case 3

steps after it occurred, which shows the effectiveness
of the developed FD method.

Case 2. The loss of effectiveness fault under the
situation of � = 0.8 and f = 0 occurred when 30 <

k < 70. The residual signal and its evaluation function
are given in Fig. 3. It is shown, from which, that the
Jr(τ ) exceeded the threshold Jth when k = 32. Itmeans
the fault can be detected effectively and timely by the
proposed FD method.

Case 3. The stuck fault with parameters � = 0 and
f = 1 occurred on the sensor when 30 < k < 70.
Figure 4 presents the residual and its evaluation func-
tion. It is clear that the occurred fault could be detected
timely since Jr(τ ) > Jth when k = 32.
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Fig. 5 Residual and its evaluation function at fault case 4

Case 4. The drift fault under the case of � = 1 and
f = 0.5 occurred on the sensor when 30 < k < 70.
The residual signal and its evaluation function are given
in Fig. 5. It is shown that Jr(τ ) exceeds the threshold
Jth at k = 32, which indicates the occurred fault can be
detected successfully by the investigated FD approach.

In conclusion, from the simulation results for the
above four faulty cases, we can see that even though
there is a small time delay of detection after the fault
occurred, the proposedFDmethodworkswell for every
kind of fault that the model (5) covers. Such results
exhibit the effectiveness of the proposed FD strategy.

5 Conclusion

In this study, the finite frequency FD problem has
been presented for a class of nonhomogeneous MJSs
with nonlinearities and sensor failures. Firstly, a novel
model was presented to describe the sensor failures,
and the FD scheme has been proposed for such
kinds of sensor faults with the aid of finite fre-
quency stochastic performance indices. Then, suffi-
cient conditions to capture the desired performances
were developed in terms of linear matrix inequali-
ties, in which the nonlinearities and nonhomogeneous
Markov switching were dealt into solvable items. Sub-
sequently, the filter gains were characterized by solv-
ing an optimization problem. Finally, an application
to the HiMAT vehicle has been presented to show
the effectiveness of the proposed method. In addi-
tion, when the systems experience time delays as the
types in [34–36] when transferring the information,
the research of the FD method in finite frequency
domain for such class of systems will be our future
work.
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