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Abstract Under investigation in this paper is a quin-
tic time-dependent coefficient derivative nonlinear
Schrödinger equation for certain hydrodynamic wave
packets or a mediumwith the negative refractive index.
A gauge transformation is found to obtain the equiv-
alent form of the equation. With respect to the wave
envelope for the free water surface displacement or
envelope of the electric field, Painlevé integrable con-
dition, different from that in the existing literature, is
derived, with which the bilinear forms and N -soliton
solutions are constructed. Asymptotic analysis illus-
trates that the interactions between the bright and bound
solitons as well as between the bright solitons and
Kuznetsov–Ma breathers are elastic with certain condi-
tions, while some other interactions are inelastic under
other conditions. Propagation paths and velocities for
the solitons are both affected by the dispersion coeffi-
cient functionwhen the relations among the coefficients
are linear, or affected by the dispersion coefficient, self-
steepening coefficient and cubic nonlinearity functions
when the relations among the coefficients are nonlin-
ear. Under different conditions, bell-shaped solitons
can evolve into the bound solitons or Kuznetsov–Ma
breathers, respectively. Interactions between the bright
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and parabolic (or hyperbolic) solitons are related to
the dispersion coefficient, self-steepening coefficient
and cubic nonlinearity functions. Compression effect
on the propagation paths of the solitons, caused by the
dispersion coefficient, is observed.
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1 Introduction

In recent years, there have been a variety of researches
on the nonlinear evolution equations (NLEEs) [1–
27]. Studies on the interactions of the localized waves
have been extended to the higher-order and higher-
dimensional NLEEs [8–27] and multi-component cou-
pled NLEEs [28–37].

Derivative nonlinear Schrödinger (DNLS) equations
have been investigated due to the applications in plas-
mas, fluids and fiber optics [38–45]. Quintic DNLS
equations have been applied in the media with neg-
ative refractive indices, inhomogeneous plasmas and
hydrodynamic wave packets [46–51]. A quintic time-
dependent coefficient DNLS equation,

iut+λ (t) uxx+iα (t) |u|2ux+μ (t) |u|2u+ν (t) |u|4u = 0,

(1)
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has been used to describe certain hydrodynamic wave
packets [48] or a medium with the negative refractive
index [51], where i = √−1, u(x, t) is the wave enve-
lope for the free water surface displacement or enve-
lope of the electric field [50], μ(t) and ν(t) repre-
sent the cubic and quintic nonlinearities, respectively,
λ(t) denotes the dispersion coefficient, α(t) is the self-
steepening coefficient, t and x denote not only the
slow time and spatial coordinate traveling with the
group velocity in hydrodynamics, but also the prop-
agation distance and retarded time in the context of
optical fiber physics [48,51]. A class of the chirped
soliton-like solutions including the bright and kink soli-
tons for Eq. (1) has been derived via the trial equation
method [51]. Special cases of Eq. (1) have been seen
as follows:

– When [λ(t), α(t), μ(t), ν(t)] = [1, − 1, 0, 1
2 ],

Eq. (1) has been reduced to the Gerdjikov–Ivanov
equation in the Madelung fluid [47]. Constraints
on the soliton types have been derived, including
the bright soliton, dark soliton, up-shifted bright,
upper-shifted bright, gray soliton and black soliton
types [47].

– When λ(t), α(t), μ(t) and ν(t) are the constant
coefficients, Eq. (1) has been reduced to the quin-
tic DNLS equation in hydrodynamics or fiber
optics [48,50], to describe how awater wave packet
deforms and eventually is destroyed as it propagates
shoreward from the deep to shallow water via the
Newton–Raphsonmethod [50]. “Gray” soliton on a
continuous-wave background, i.e., the “dark” local-
izedmodewith a nonzerominimum in the intensity,
has been derived via two integrals of motion [48].

– When [λ(t), α(t), μ(t), ν(t)] = [1, 1, 0, 0],
Eq. (1) has been reduced to the Chen–Lee–Liu
equation for the nonlinear optical pulses in a
quadratic nonlinear crystal involving the self-
steepening without any concomitant self-phase-
modulation [43], with the soliton, breather, multi-
rogue wave and rational solutions constructed [45].

Painlevé analysis has been used to derive the
Painlevé integrable condition and transformation for
the bilinear forms [52–55]. Asymptotic analysis has
been used to investigate the solitons before and after
the interactions, with which the relevant physical prop-
erties of the solitons have been derived [56,57].

However, to our knowledge, under the constraint dif-
ferent from that in Ref. [48], the effects of the time-

dependent coefficients α(t), Λ(t), μ(t) and ν(t) on the
interactions among the solitons for Eq. (1) have not
been investigated. In Sect. 2, we will give the gauge
transformation for an equivalent form of Eq. (1). In
Sect. 3, Painlevé integrable condition for Eq. (1), dif-
ferent from that in Ref. [48], will be derived. In Sect. 4,
we will obtain the bilinear forms and N -soliton solu-
tions for Eq. (1). In Sect. 5, asymptotic analysis on the
interactions among the solitons will be conducted. In
Sect. 6, influence of α(t), Λ(t), μ(t) and ν(t) on the
interactions will be discussed. In Sect. 7, we will give
the conclusions.

2 Equivalent form of Eq. (1)

Motivated by Ref. [58], introducing the gauge transfor-
mation

ũ = ue− 1
2 iκ

∫ |u|2dx , (2)

we hereby find that the equation

i ũt + λ (t) ũxx + iα (t) (|ũ|2ũ)x + μ (t) |ũ|2ũ
+ν (t) |ũ|4ũ = 0 (3)

can be transformed to Eq. (1), where κ = λ(t)
α(t) is

a nonzero real constant. Meanwhile, |ũ| = |u| indi-
cates that Transformation (2) amounts to an amplitude-
dependent phase shift.We have found that Eq. (3) is the
equivalent form of Eq. (1).1

3 Painlevé analysis for Eq. (1)

Motivated by Refs. [53,54], Painlevé integrability for
Eq. (1) can be analyzed via the coupled system,

iut + λ (t) uxx + μ (t) u2v + iα (t) uvux

+ ν (t) u3v2 = 0, (4a)

ivt − λ (t) vxx − μ (t) v2u + iα (t) vuvx

− ν (t) v3u2 = 0, (4b)

where v = u∗ and ∗ denotes the complex conjugate.

1 By the way, Eq. (3) has been demonstrated to belong to the
Kaup–Newell hierarchy [59], and when λ(t) = α(t) = 1 and
μ(t) = ν(t) = 0, Eq. (3) has been reduced to the Kaup–
Newell equation describing the circular polarized nonlinear
Alfvén waves in plasmas [60].
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Motivated by Ref. [55], the solutions for Eq. (4) can
be expanded in terms of the Laurent series, as follows:

u = φ−aγ
+∞∑

j=0

q j
aφ j , v = φ−bβ

+∞∑

j=0

r j
bφ j , (5)

where φ, q j and r j are the analytic functions with
respect ro x and t , j is a nonnegative integer, a and
b are both the real constants, while γ and β are both
the positive integers.

The leading orders of the solutions for Eq. (4) are
assumed as

u ∼ qa0 φ−aγ , v ∼ rb0 φ−bβ, (6)

where r0 and q0 are nonzero in the neighborhood of a
non-characteristic movable singularity manifold. Sub-
stituting Expressions (6) into Eq. (4) and balancing the
highest-order nonlinear and linear terms, we obtain

a γ + b β = 1, (7a)

q0
a r0

b = 2i(1 − 2aγ )
λ (t)

α (t)
φx , (7b)

and derive the variable-coefficient constraint as

α(t)2 + 4(2aγ − 1)2

3aγ (aγ − 1)
λ (t) ν (t) = 0. (8)

Then, to find the resonances, substituting

u∼q0
aφ−aγ +q j

aφ−aγ+ j , v∼r0
bφ−bβ +r j

bφ−bβ+ j

(9)

into Eq. (4), wemake the sumof the termswith the low-
est power of φ in Eqs. (4a) and (4b) to vanish, respec-
tively. Due to the arbitrariness of the corresponding q j

and r j for the resonance point j , we can obtain

( j − 3) ( j − 2) j ( j + 1)
16(2aγ − 1)4

9a2γ 2(aγ − 1)2
ν(t)2λ(t)2 = 0.

(10)

Due to Eq. (10), the resonances occur at j = −1, 0, 2
and 3, while j = −1 corresponds to the arbitrariness
of φ.

To find the compatibility conditions for Eq. (4), We
truncate Expression (5) at j = 3 as

u = φ−aγ
3∑

j=0

q j
aφ j , v = φ−bβ

3∑

j=0

r j
bφ j , (11)

and substitute Expressions (11) and Constraint (8) into
Eq. (4). We make the coefficients of φ−aα−2− j in
Eq. (4a) and φaα−3− j in Eq. (4b) at j = 0, 2 and
3 to vanish, so that we find that the compatibility con-
dition at j = 0, 2 and 3 is satisfied identically with
a = 1

2 (1 ± √
3), b = 1

2 (1 ∓ √
3) and γ = β = 1. The

compatibility condition is derived from Constraint (8),
as

α(t)2 + 8λ (t) ν (t) = 0, (12)

which is different from that in Ref. [48]. Therefore,
under variable-coefficient constraint (12), Eq. (1) is
Painlevé integrable.

4 Bilinear forms and soliton solutions for Eq. (1)

Due to Constraint (12), introducing the transformation

u = g

f
, (13)

substituting Eqs. (13) into (1), we derive the bilinear
forms for Eq. (1) as

[
i Dt + λ (t) D2

x

]
(g · f ) = 0, (14a)

λ (t) Dx
(
f · f ∗) − 1

2
iα (t) |g|2 = 0, (14b)

λ (t) D2
x

(
f · f ∗) − 1

2
iα (t) Dx

(
g · g∗) − μ (t) |g|2 = 0,

(14c)

where g and f are the complex differential functions
and the bilinear operators Dt and Dx are defined by [1,
2,61]

Dp
x D

q
t (Φ · Ψ ) =

(
∂

∂x
− ∂

∂x ′

)p(
∂

∂t
− ∂

∂t ′

)q

× Φ (x, t) Ψ
(
x ′, t ′

)|t ′=t,x ′=x ,

(15)

where Φ(x, t) is a differentiable function with respect
to x and t , Ψ (x ′, t ′) is a differentiable function with
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respect to the formal variables x ′ and t ′, while p and q
are both the positive integers.

Note that the N -soliton solutions for Eq. (1) are
marked as uN , where N is a positive integer. Based on
Eqs. (13) and (14), expanding f and g, the N -soliton
solutions for Eq. (1) can be expressed as

uN = g

f
, (16)

with

f = 1 +
N∑

n=1

ε2n f2n, g =
N∑

n=1

ε2n−1g2n−1, (17)

where n is a positive integer and ε is a formal expansion
parameter.

4.1 One-soliton solutions for Eq. (1)

Truncating Eq. (17) at N = 1 and setting ε = 1, we
solve Eq. (14) and obtain the analytic one-soliton solu-
tions for Eq. (1) as

u1 = g1
1 + f2

= m1

2
√
m12

sech
[
Re(θ1) + ln

√
m12

]
eiIm(θ1),

(18)

with

θ1 = k1x + ik21

∫
λ(t)dt, g1 = m1e

θ1 ,

f2 = m12e
θ1+θ∗

1 , k1 = i
m1m12m∗

1α (t)

8[Im(m12)]2λ (t)
+ i

μ (t)

α (t)
,

where m1 and m12 are the complex constants, Im(•)

and Re(•) denote the imaginary and real parts of •,
respectively. Particularly, Im(m12) �= 0.

4.2 Two-soliton solutions for Eq. (1)

Truncating Eq. (17) at N = 2 and setting ε = 1, similar
to the process in Sect. 4.1, we can derive the analytic
two-soliton solutions for Eq. (1) as

u2 = g1 + g3
1 + f2 + f4

, (19)

with

θ j = k j x + ik2j

∫
λ(t)dt + δ j , g1 = eθ1 + eθ2 ,

g3 = m123e
θ1+θ2+θ∗

1 + m124e
θ1+θ2+θ∗

2 ,

f2 = m13e
θ1+θ∗

1 + m24e
θ2+θ∗

2 + m23e
θ2+θ∗

1

+m14e
θ1+θ∗

2 ,

ms1,s2+2 =
[
iks1α (t) + μ (t)

]

2
(
ks1 + k∗

s2

)2
λ (t)

,

f4 = m1234e
θ1+θ2+θ∗

1 +θ∗
2 ,

ms1,s2,s3+2 =
(
ks1 − ks2

)2 [
ik∗

s3α (t) + μ (t)
]

2
(
ks1 + k∗

s3

)2(
ks2 + k∗

s3

)2
λ (t)

,

m1234 = (k1 − k2)2
(
k∗
1 − k∗

2

)2
[ik2α (t) + μ (t)]

4
(
k1 + k∗

1

)2(
k2 + k∗

1

)2(
k1 + k∗

2

)2(
k2 + k∗

2

)2

× [ik1α (t) + μ (t)] λ(t)−2,

where δ j ’s ( j = 1, 2) are the real constants, s1 < s2
and s1, s2, s3 = 1, 2.

4.3 Three-soliton solutions for Eq. (1)

Truncating Eq. (17) at N = 3 and setting ε = 1, similar
to the process in Sect. 4.2, we can derive the analytic
three-soliton solutions for Eq. (1) as

u3 = g1 + g3 + g5
1 + f2 + f4 + f6

, (20)

with

g1 = eθ1 + eθ2 + eθ3 ,

f6 = m123456 e
θ1+θ2+θ3+θ∗

1 +θ∗
2 +θ∗

3 ,

g5 = m12345e
θ1+θ2+θ3+θ∗

1 +θ∗
2

+ m12346e
θ1+θ2+θ3+θ∗

1 +θ∗
3

+ m12356e
θ1+θ2+θ3+θ∗

2 +θ∗
3 ,

g3 = m124e
θ1+θ2+θ∗

1 + m125e
θ1+θ2+θ∗

2

+ m126e
θ1+θ2+θ∗

3 + m134e
θ1+θ3+θ∗

1

+ m135e
θ1+θ3+θ∗

2 + m234e
θ2+θ3+θ∗

1

+ m235e
θ3+θ2+θ∗

2 + m136e
θ1+θ3+θ∗

3

+ m236e
θ2+θ3+θ∗

3 ,

f2 = m14e
θ1+θ∗

1 + m25e
θ2+θ∗

2 + m15e
θ1+θ∗

2

+ m24e
θ2+θ∗

1 + m36e
θ3+θ∗

3 + m34e
θ3+θ∗

1

+ m35e
θ3+θ∗

2 + m26e
θ2+θ∗

3 + m16e
θ1+θ∗

3 ,

f4 = m1245e
θ1+θ2+θ∗

1 +θ∗
2 + m1346e

θ1+θ3+θ∗
1 +θ∗

3

+ m2356e
θ3+θ2+θ∗

3 +θ∗
2 + m1246e

θ1+θ2+θ∗
1 +θ∗

3

+ m1256e
θ1+θ2+θ∗

2 +θ∗
3 + m1345e

θ1+θ3+θ∗
1 +θ∗

2

+ m1356e
θ1+θ3+θ∗

2 +θ∗
3 + m2345e

θ3+θ2+θ∗
1 +θ∗

2
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+ m2346e
θ3+θ2+θ∗

1 +θ∗
3 ,

ms1,s2+3 = iks1α (t) + μ (t)

2λ (t)
(
ks1 + k∗

s2

)2 ,

ms1,s2,s3+3 =
[
ik∗

s3α (t) + μ (t)
] (
ks1 − ks2

)2

2λ (t)
(
ks1 + k∗

s3

)2(
ks2 + k∗

s3

)2 ,

ms1,s2,s3+3,s4+3 =
(
ks1 − ks2

)2(
k∗
s3 − k∗

s4

)2

4λ(t)2
(
ks1 + k∗

s3

)2(
ks1 + k∗

s3

)2

×
∏

j=s1,s2

[
ik jα (t) + μ (t)

]

(
ks2 + k∗

s4

)2(
ks2 + k∗

s4

)2 ,

m1,2,3,s1+3,s2+3 = (k1 − k2)2(k1 − k3)2(k3 − k2)2

4λ(t)2(k j + k∗
s2)

2(k j + k∗
s1)

2

× (
k∗
s1 − k∗

s2

)2 ∏

j=s1,s2

[
ik jα (t) + μ (t)

]
,

m123456 = |k3 − k2|4|k1 − k2|4|k3 − k1|4
8λ(t)3

∏3
j=1 (k j + k∗

1)
2(k j + k∗

2)
2(k j + k∗

3)
2

×
3∏

j=1

[
ik jα (t) + μ (t)

]
,

where θ j = k j x + ik2j
∫

λ(t)dt + δ j , δ j ’s ( j =
1, 2, 3) are the real constants, s1 < s2, s3 < s4 and
s1, s2, s3, s4 = 1, 2, 3.

4.4 N -soliton solutions for Eq. (1)

Substituting Eqs. (17) into (14), we solve Eq. (14). The
analytic N -soliton solutions for Eq. (1),

uN = g

f
, (21)

are obtained under Constraint (12), while g and f in
Eq. (21) are transformed to

g =
N∑

n=1

ε2n−1

⎡

⎣
g∑

Nρ,N ′
η−N

ΓN1,...,Nn ,N ′
1,...,N

′
n−1

× exp

⎛

⎝
n∑

ρ=1

θNρ +
n−1∑

η=1

θ∗
N ′

η−N

⎞

⎠

⎤

⎦, (22a)

f = 1 +
N∑

n=1

ε2n

⎡

⎣
f∑

Nρ,N ′
η−N

ΓN1,...,Nn ,N ′
1,...,N

′
n

× exp

⎛

⎝
n∑

ρ=1

θNρ +
n∑

j=1

θ∗
N ′

η−N

⎞

⎠

⎤

⎦, (22b)

with

θn = knx + ωn(t) + δn, ωn(t) = ik2n

∫
λ(t)dt,

ΓN1,...,Nn ,N ′
1,...,N

′
n−1

=
∏n−1

ρ=1

[

ik∗
N ′

ρ′
α(t) + μ(t)

]

[2λ(t)]n−1 ∏
1≤ρ≤n,

1≤ρ′≤n−1

(

kNρ + k∗
N ′

ρ′

)2

×
ρ �=η,ρ′ �=η′

∏

1≤ρ,η≤n,

1≤ρ′,η′≤n−1

[
(
kNρ − kNη

)2
(

k∗
N ′

ρ′ −N − k∗
N ′

η′ −N

)2
]

,

ΓN1,...,Nn ,N ′
1,...,N

′
n

=
∏n

ρ=1

[
ikNρ α(t) + μ(t)

]

[2λ(t)]n
∏

1≤ρ,ρ′≤n

(

kNρ + k∗
N ′

ρ′

)2

×
ρ �=η,ρ′ �=η′

∏

1≤ρ,η,ρ′,η′≤n

[
(
kNρ − kNη

)2
(

k∗
N ′

ρ′ −N − k∗
N ′

η′ −N

)2
]

,

where θNρ , θN ′
η−N ∈ {θn}Nn=1, N1 < Nn < N ′

1 <

N ′
n , ΓN1 = 1, kn’s are the complex constants, θNρ ’s

(θNη ’s) are different with each other and
∑g

Nρ,N ′
η−N

(
∑ f

Nρ,N ′
η−N ) indicates the sum of all the possibili-

ties of
∑n

ρ=1 θNρ + ∑n−1
η=1 θ∗

N ′
η−N (

∑n
ρ=1 θNρ + ∑n

η=1

θ∗
N ′

η−N ) for n. g and f contain
∑N

n=1 C
n
NC

n−1
N and

∑N
n=1 C

n
NC

n
N + 1 terms, respectively. When ε = 1,

we can obtain the N -soliton solutions for Eq. (1) via
Eq. (22).

5 Asymptotic analysis

Without loss of generality, we conduct the asymptotic
analysis on the two-soliton solutions and three-soliton
solutions, i.e., u2 and u3, for illustrating the solitonic
interactions.

For the two-soliton solutions, when m1234 �= 0, we
have the following:
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234 T.-T. Jia et al.

Table 1 Properties of the solitonic interaction for the two-soliton solutions

Solitons
S2,ζ (ζ = 1, 2)

Widths W2,ζ Amplitudes A2,ζ Velocities V2,ζ Initial phases P∓
2,ζ ( j �= ζ ) Phase shifts Δ2,ζ =

|P−
2,ζ − P+

2,ζ |

S−
2,ζ

1
|Re(kζ )|

|mζ |
2
√|mζ,ζ+2| 2λ(t)Im(kζ ) − Λa

ζ
−1

Re(kζ )
ln

√
mζ,ζ+2

2
Re(kζ )

ln |k1−k2|
|k2+k∗

1 |

S+
2,ζ

1
|Re(kζ )|

|mζ |
2
√|mζ,ζ+2| 2λ(t)Im(kζ ) − Λa

ζ
−1

Re(kζ )
ln

√
m1234√
m j, j+2

Propagation paths Φ−
2,ζ : Re(θζ ) + ln

√
mζ,ζ+2 = const. Φ+

2,ζ : Re(θζ ) + ln
√
m1234√
m j, j+2

= const.

aΛζ = 1
2λ(t)Re(kζ )[kζ α(t)−iμ(t)]

{
kζ

[
λ(t)α(t)′ − α(t)λ(t)′

] − i
[
λ(t)μ(t)′ − μ(t)λ(t)′

]}
, where •′ = ∂t•

(1) Before the interaction (t → −∞):

S−
21 = m1

2
√
m13

sech
[
Re(θ1) + ln

√
m13

]
eiIm(θ1),

[Re(θ2) → −∞, Re(θ1) → 0] , (23a)

S−
22 = m2

2
√
m24

sech
[
Re(θ2) + ln

√
m24

]
eiIm(θ2),

[Re(θ1) → −∞, Re(θ2) → 0] , (23b)

(2) After the interaction (t → +∞):

S+
21 = m124

2
√
m24

√
m1234

sech

[

Re(θ1) + ln
√
m1234√
m24

]

eiIm(θ1),

[Re(θ2) → +∞, Re(θ1) → 0] , (24a)

S+
22 = m123

2
√
m13

√
m1234

sech

[

Re(θ2) + ln
√
m1234√
m13

]

eiIm(θ2),

[Re(θ1) → +∞, Re(θ2) → 0] , (24b)

where S−
2,ζ ’s (or S

+
2,ζ ’s) denote the asymptotic expres-

sions for the two solitons S2,ζ ’s (ζ = 1, 2) before
(or after) the interaction for u2, respectively. Based on
Eqs. (23) and (24), the relevant properties of each soli-
ton during the interaction for u2, including the widths
W2,ζ , amplitudes A2,ζ , velocities V2,ζ , initial phases
P∓
2,ζ , phase shiftsΔ2,ζ and propagation pathsΦ∓

2,ζ , are
listed in Table 1, where the first subscript corresponds
to the two-soliton solutions, while the second subscript
corresponds to the ζ th soliton within the two-soliton
solutions.

For the three-soliton solutions, when m123456 �= 0,
we have the following:
(3) Before the interaction (t → −∞):

S−
31 = 1

2
√
m14

sech
[
Re(θ1) + ln

√
m14

]
eiIm(θ1),

[Re(θ3),Re(θ2) → −∞,Re(θ1) ∼ 0] , (25a)

S−
32 = 1

2
√
m25

sech
[
Re(θ2) + ln

√
m25

]
eiIm(θ2),

[Re(θ3),Re(θ1) → −∞,Re(θ2) ∼ 0] , (25b)

S−
33 = 1

2
√
m36

sech
[
Re(θ3) + ln

√
m36

]
eiIm(θ3),

[Re(θ2),Re(θ1) → −∞,Re(θ3) ∼ 0] , (25c)

(4) After the interaction (t → +∞):

S+
31 = eiIm(θ1)m12356

2
√
m2356

√
m123456

× sech

[

Re(θ1) + ln
√
m123456√
m2356

]

,

[Re(θ3),Re(θ2) → +∞,Re(θ1) ∼ 0] , (26a)

S+
32 = eiIm(θ2)m12346

2
√
m1346

√
m123456

× sech

[

Re(θ2) + ln
√
m123456√
m1346

]

,

[Re(θ3),Re(θ1) → +∞,Re(θ2) ∼ 0] , (26b)

S+
33 = eiIm(θ3)m12345

2
√
m1245

√
m123456

× sech

[

Re(θ3) + ln
√
m123456√
m1245

]

,

[Re(θ2),Re(θ1) → +∞,Re(θ3) ∼ 0] , (26c)

where S−
3,ξ ’s (or S

+
3,ξ ’s) denote the asymptotic expres-

sions for the three solitons S3,ξ ’s (ξ = 1, 2, 3) before
(or after) the interaction for u3, respectively. Based on
Eqs. (25) and (26), the relevant properties for each soli-
ton during the interaction for u3, including the widths
W3,ξ , amplitudes A3,ξ , velocities V3,ξ , initial phases
P∓
3,ξ , phase shifts Δ3,ξ and propagation paths Φ∓

3,ξ are
listed inTable 2,where thefirst subscript corresponds to
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Table 2 Properties of the solitonic interaction for the three-soliton solutions

Solitons
S3,ξ (ξ = 1, 2, 3)

Widths W3,ξ Amplitudes A3,ξ Velocities V3,ξ Initial phases
P∓
3,ξ ( j < k) ( j �= k �= ξ)

Phase shifts
Δ3,ξ = |P−

3,ξ − P+
3,ξ |

S−
3,ξ

1
|Re(kξ )|

1
2
√|mξ,ξ+3| 2λ(t)Im(kξ ) − Λa

ξ

− lnmξ,ξ+3
2Re(kξ )

2
Re(kξ )

ln
|kξ −k j ||kξ −kk |
|k∗

ξ +k j ||k∗
ξ +kk |

S+
3,ξ

1
|Re(kξ )|

1
2
√|mξ,ξ+3| 2λ(t)Im(kξ ) − Λb

ξ

− ln
m123456

m j,k, j+3,k+3
2Re(kξ )

Propagation
paths

Φ−
3,ξ : Re(θξ ) + ln

√
mξ,ξ+3 = const. Φ+

3,ξ : Re(θξ ) + ln
√
m123456√

m j,k, j+3,k+3
= const.

aΛξ = 1
2λ(t)Re(kξ )[kξ α(t)−iμ(t)]

{
kξ

[
λ(t)α(t)′ − α(t)λ(t)′

] − i
[
λ(t)μ(t)′ − μ(t)λ(t)′

]}
, where •′ = ∂t•

the three-soliton solutions, while the second subscript
corresponds to the ξ th soliton within the three-soliton
solutions.

Based on Tables 1 and 2, the widths WN ,�, ampli-
tudes AN ,� and velocities VN ,� (N = 2, 3 and � =
ζ, ξ ) keep unchanged after the interaction, and then the
interaction between (or among) the two (or three) soli-
tons may be elastic or inelastic with the phase shifts
ΔN ,�’s when m1234 �= 0 (or m123456 �= 0). AN ,�, P

∓
N ,�

and VN ,� are related to α(t), λ(t) and μ(t) while the
WN ,� and ΔN ,� are related to the wave numbers k�’s
but not α(t), λ(t) and μ(t).

When Λ� = 0, α(t) = ρ1λ(t) = ρ2μ(t), where ρ1
and ρ2 are the constants. The VN ,� andΦ∓

N ,� (N = 2, 3
and � = ζ, ξ ) for each soliton can be reduced as

VN ,� = 2λ(t) Im(k�), (27)

and

Φ−
N ,� : Re(k�)

[

x − 2Im(k�)

∫
λ(t)dt

]

+ 1

2
ln

(1 + ik�ρ2)ρ1

8Re(k�)2ρ2
= const., (28a)

Φ+
N ,� : Re(k�)

[

x − 2Im(k�)

∫
λ(t)dt

]

+ 1

2
ln

(1 + ik�ρ2)ρ1

8Re(k�)2ρ2

+ 2 ln
1,·,̂�,·,N∏

N ′

|k� − kN ′ |
|k� + k∗

N ′ | = const., (28b)

where �̂ indicates the � is omitted. Particularly, the
AN ,� and P∓

N ,� (N = 2, 3) are only related to k�’s,
while the velocities are related to λ(t) and k�’s under

Λ� = 0. According to Eq. (28), Φ∓
N ,� for each soliton

are related to λ(t) and k�’s.
When Λ� �= 0, the relations among α(t), λ(t) and

μ(t) are nonlinear. The VN ,� and Φ∓
N ,� (N = 2, 3 and

� = ζ, ξ ) for each soliton are related to α(t), β(t),μ(t)
and k� and derived from Tables 1 and 2, as

VN ,� = 2λ(t) Im(k�) − k�

[
λ(t)α(t)′ − α(t)λ(t)′

]

2λ(t)Re(k�)
[
k�α(t) − iμ(t)

]

+ i
[
λ(t)μ(t)′ − μ(t)λ(t)′

]

2λ(t)Re(k�)
[
k�α(t) − iμ(t)

]
(29)

and

Φ−
N ,� : Re(k�)

[

x − 2Im(k�)

∫
λ(t)dt

]

+ 1

2
ln

[μ(t) + ik�α(t)]
8Re(k�)2λ(t)

= const., (30a)

Φ+
N ,� : Re(k�)

[

x − 2Im(k�)

∫
λ(t)dt

]

+ 1

2
ln

[μ(t) + ik�α(t)]
8Re(k�)2λ(t)

+ 2 ln
1,·,̂�,·,N∏

N ′

|k� − kN ′ |
|k� + k∗

N ′ | = const., (30b)

which are more complex than those in Eqs. (27) and
(28) under Λ� = 0, i.e., α(t) = ρ1λ(t) = ρ2μ(t).

6 Discussion

Due to Constraint (12), α(t)λ(t)ν(t) �= 0. According
to Solutions (18), we can obtain the width, amplitude,
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Table 3 Properties of the one-soliton solutions

Soliton Width Amplitude Initial phase Velocity Propagation path

u1
1

|Re(k1)|
|m1|

2
√|m12| − 1

Re(k1)
ln

√
m12 2λ(t)Im(k1) Re(θi ) + ln

√
m12 = const.

Fig. 1 Interactions between the two solitons for (19) under Con-
straint (12); a k1 = 1− i , k2 = 1−2i and α(t) = λ(t) = μ(t) =
t ; b the same as a except that k2 = 1; c the same as a except

that α(t) = λ(t) = μ(t) = −t ; d the same as a except that
α(t) = λ(t) = μ(t) = t2

Fig. 2 Interactions among the three solitons for (20) under Constraint (12) with k3 = 1− 2i , α(t) = λ(t) = μ(t) = t2; a k1 = 1− 3i
and k2 = 1 − i ; b k1 = 1 and k2 = 1 − i ; c k1 = 1 and k2 = 1.3; d the same as a except that α(t) = λ(t) = μ(t) = t

initial phase, velocity and propagation path for the one-
soliton solutions, listed in Table 3.

Because the formation of the interaction requires
two or more solitons, we will analyze the interactions
via Solutions (19) and (20) for Eq. (1). For simplicity,
if δ j ’s ( j = 1, 2, 3) are not mentioned in the figure
captions for Solutions (19) and (20), then δ j = 0. We
can see the solitons in Figs. 1–7. We will analyze the
interactions under the conditions Λ� = 0 and Λ� �= 0,
respectively. When Λ� = 0, i.e., α(t) = ρ1λ(t) =
ρ2μ(t), the solitonic interactions are shown in Figs. 1–
4.

When ρ1 = ρ2 = 1 and Im(kζ )’s are fixed, accord-
ing to Eq. (27), parabolic solitons change the propaga-
tion directions as λ(t) changes from t to −t (or t2 to
−t2), as shown in Fig. 1a, c. According to Eq. (28),
the function types of λ(t) and the values of Im(k2)

can both affect the propagation paths, e.g., λ(t) = t in
Fig. 1a versus λ(t) = t2 in Fig. 1d, while Im(k2) = −2
in Fig. 1a versus Im(k2) = 0 in Fig. 1b. Particularly,
V2,ζ indicates that the corresponding solitonpropagates
along the t direction, as shown in Fig. 1b.

Whenρ1 = ρ2 = 1, the interactions between/among
the bright and parabolic (or hyperbolic) solitons for
the two (or three)-soliton solutions are displayed in
Fig. 1 (or 2). Figure 2 shows the similar propagation
phenomena to Fig. 1, except that when two of V3,ξ ’s
(ξ = 1, 2, 3) are equal to zero, the corresponding two
bright solitons interact with the hyperbolic soliton, as
shown in Fig. 2c, and then the two bright solitons inter-
act with each other and result in the bound solitons.

For the two-soliton solutions, with ρ1 = ρ2 = 1,
λ(t) = 1 and k2 = −2, the propagation varies from
the interaction between the bright and Kuznetsov–Ma

123



On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation 237

Fig. 3 Interactions between the bright soliton and breathers for (19) under Constraint (12) with k2 = −2; a k1 = −1 and α(t) =
λ(t) = μ(t) = 1 (elastic); b k1 = 1 and α(t) = λ(t) = μ(t) = 1 (elastic); c k1 = 1 and α(t) = λ(t) = μ(t) = t (inelastic)

Fig. 4 Interactions among the bright soliton and Kuznetsov–
Ma breathers for (20) under Constraint (12) with k1 = 1,
k2 = 0.3, k3 = 0.4, δ1 = 5, δ2 = 1.6 and δ3 = −3; a

α(t) = λ(t) = μ(t) = 1; b α(t) = μ(t) = 1 and λ(t) = 2
3 ; c

α(t) = 1, λ(t) = 2
3 and μ(t) = 1

20 ; d α(t) = 4, λ(t) = 2
3 and

μ(t) = 1
20

breathers to the bound solitons, which corresponds to
the change of k1 from −1 to 1, i.e., Fig. 3a to 3b. Com-
pared with the two solitons in Fig. 3b, when λ(t) = t ,
the two solitons interact with each other and result in
the bound solitons, as displayed in Fig. 3c.

For the three-soliton solutions, Fig. 4 shows that
the interaction between the bright and Kuznetsov–Ma
breathers evolves to the interaction between the bright
and bound solitons. When ρ1 = ρ2 = 1, δ1 = 5,
δ2 = 1.6, δ3 = −3, k1 = 1, k2 = 0.3 and k3 = 0.4,
the bright soliton propagates with the Kuznetsov–Ma
breathers in parallel with α(t) = λ(t) = μ(t) = 1,
as shown in Fig. 4a. Compared with Fig. 4a, Fig. 4b
displays that the propagation period changes longer
with λ(t) = 2

3 . Compared with Fig. 4b, Fig. 4c reveals
that the Kuznetsov–Ma breathers evolve to the bound
solitons with μ(t) = 1

20 . Compared with Fig. 4c,
Fig. 4d indicates that the amplitudes of the three soli-
tons become lower with α(t) = 4.

When Λ� �= 0, i.e., the relations among α(t), λ(t)
and μ(t) are nonlinear; the solitonic interactions are
shown in Figs. 5–7.

With α(t) = μ(t) = t and λ(t) = t3, when
Im(k�) = 0, VN ,� = − 1

Re(k�)
1
t (N = 2, 3 and � =

ζ, ξ ) and then the corresponding soliton propagation is
not parallel to the t coordinate, as shown in Fig. 5b and

6b (or Figs. 5c, 6c), while AN ,� = Re(k�)

[1+Re(k�)2] 14
|t | and

then the amplitude is proportional to |t |, as shown in
Figs. 5 and 6. Amplitudes and velocities of the three
solitons change with t during the interaction, implying
that the interactions are inelastic.

With the other parameters fixed, Φ2,ζ ’s (ζ = 1, 2)
are affected by the integral of λ(t) with respect to t
and the propagation directions for the two solitons are
mutually opposite, as shown in Fig. 7. Propagation path
of the two-soliton solutions in Fig. 7c is similar to that
in Fig. 7a except that it is compressed by 50% in the
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Fig. 5 Inelastic interactions between the solitons for (19) under Constraint (12) with α(t) = μ(t) = t and λ(t) = t3; a k1 = 1− i and
k2 = 2 − i ; b k1 = 1 and k2 = 2 − i ; c k1 = 1 and k2 = 2

Fig. 6 Inelastic interactions among the solitons for (20) under Constraint (12) with α(t) = μ(t) = t and λ(t) = t3; a k1 = 1 − i ,
k2 = 2 − i and k3 = 3 − i ; b k1 = 1, k2 = 2 − i and k3 = 3 − i ; c k1 = 1, k2 = 2 and k3 = 3

Fig. 7 Inelastic interactions for (19) under Constraint (12) with α(t) = μ(t) = sin(t), k1 = 1 + i and k2 = 2 − i ; a λ(t) = sin(t); b
λ(t) = sin(2t); c λ(t) = 1

2 sin(2t)

x and t directions, respectively, which is caused by
λ(t) = 1

2 sin(2t).

7 Conclusions

In this paper, attention has been focused on a quin-
tic time-dependent coefficient DNLS equation, i.e.,

Eq. (1), for certain hydrodynamic wave packets or a
medium with the negative refractive index. We have
found Gauge transformation (2) to obtain the equiv-
alent form of Eq (1), i.e., Eq. (3). With respect to
u, the wave envelope for the free water surface dis-
placement or envelope of the electric field, we have
obtained variable-coefficient constraint (12), differ-
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ent from that in Ref. [48], via the Painlevé analysis,
derived N -soliton solutions (21) via bilinear forms (14)
and analyzed the solitonic interactions for two-soliton
solutions (19) and three-soliton solutions (20) via the
asymptotic analysis. Properties for the one-, two- and
three-soliton solutions are listed in Tables 1, 2 and 3,
respectively.

Based on the asymptotic analysis, classifying the
interactions under different conditions, we have
revealed two cases of the interactions between (or
among) the two (or three) solitons:

Case 1: Relations among the self-steepening coeffi-
cient α(t), dispersion coefficient λ(t) and
cubic nonlinearity μ(t) are linear. Accord-
ing to Eqs. (27) and (28), velocities VN ,�’s
(N = 2, 3, � = 1, 2, 3) and propagation paths
Φ∓

N ,�’s of the solitons have been both demon-
strated to be correlated with λ(t). When the
propagation paths are x = const., the cor-
responding solitons have been observed to
propagate along the t direction, as shown in
Figs. 1 and 2. With the phase shifts ΔN ,�’s
changing, we have found that the two solitons
in parallel change to the bound solitons, as
shown in Fig. 3. It has been observed that the
Kuznetsov–Ma breathers change to the bound
solitons withμ(t) = 1

20 while the propagation
period increases asλ(t) decreases, as shown in
Fig. 4. Interactions are elastic when α(t), λ(t)
and μ(t) are constants, as shown in Fig. 4.

Case 2: Relations among α(t), λ(t) and μ(t) are non-
linear. According to Eqs. (29) and (30), ampli-
tude AN ,�, velocityVN ,� and propagation path
Φ∓

N ,� of the soliton have been demonstrated to
be correlated with α(t), λ(t) andμ(t). Ampli-
tudes AN ,�’s, velocities VN ,�’s and propaga-
tion paths Φ∓

N ,�’s of the two or three solitons
change with t during the interactions, imply-
ing that the interactions are inelastic, as shown
in Figs. 5 and 6. We have found that there is
a compression effect on the propagation paths
of the two solitons, which is caused by λ(t),
as shown in Fig. 7.
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