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Abstract Reaction delays play an important role in
determining the qualitative dynamical properties of a
platoon of vehicles traversing a straight road. In this
paper, we investigate the impact of delayed feedback
on the dynamics of the classical car-following model
(CCFM). Specifically, we analyze the CCFM in three
regimes—no delay, small delay and arbitrary delay.
First, we derive a sufficient condition for local stabil-
ity of the CCFM in no-delay and small-delay regimes
using control-theoretic methods. Next, we derive the
necessary and sufficient condition for local stability of
the CCFM for an arbitrary delay. We then demonstrate
that the transition of traffic flow from the locally sta-
ble to the unstable regime occurs via a Hopf bifurca-
tion, thus resulting in limit cycles in system dynam-
ics. Physically, these limit cycles manifest as back-
propagating congestion waves on highways. In the
context of human-driven vehicles, our work provides
phenomenological insight into the impact of reaction
delays on the emergence and evolution of traffic con-
gestion. In the context of self-driven vehicles, our work
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has the potential to provide design guidelines for con-
trol algorithms running in self-driven cars to avoid
undesirable phenomena. Specifically, designing con-
trol algorithms that avoid jerky vehicular movements
is essential. Hence, we derive the necessary and suffi-
cient condition for non-oscillatory convergence of the
CCFM. This ensures smooth traffic flow and good ride
quality. Next, we characterize the rate of convergence
of the CCFM and bring forth the interplay between
local stability, non-oscillatory convergence and the rate
of convergence of theCCFM.We then study the nonlin-
ear oscillations in system dynamics that emerge when
the CCFM loses local stability via a Hopf bifurca-
tion. To that end, we outline an analytical framework
to establish the type of the Hopf bifurcation and the
asymptotic orbital stability of the emergent limit cycles
using Poincaré normal forms and the center manifold
theory. Next, we numerically bring forth the supercrit-
ical nature of the bifurcation that result in asymptoti-
cally orbitally stable limit cycles. The analysis is com-
plemented with stability charts, bifurcation diagrams
and MATLAB simulations. Thus, using a combination
of analysis and numerical computations, we highlight
the trade-offs inherent among various system param-
eters and also provide design guidelines for the upper
longitudinal controller of self-driven vehicles.

Keywords Transportation networks · Car-following
models · Time delays · Stability · Convergence · Hopf
bifurcation · limit cycles

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-019-04783-3&domain=pdf
http://orcid.org/0000-0002-3190-9087


186 G. K. Kamath et al.

1 Introduction

Intelligent transportation systems constitute a substan-
tial theme of discussion on futuristic smart cities. A
prospective solution to increase resource utilization is
to use self-driven vehicles, which may also mitigate
traffic congestion [1, Sect. 5.2], [2]. To that end, it is
imperative to design stable control algorithms for these
vehicles. Since a good design process requires an in-
depth understanding of vehicular dynamics, a class of
dynamical models—known as car-followingmodels—
have been developed and studied [3–9].

An important consideration in the study of car-
following models is the delay in the dynamical vari-
ables. Delays arise due to various factors such as sens-
ing, mechanical motions, communication and signal
processing. These delays affect the properties of a
dynamical system in many different ways [10]. Specif-
ically, delays can readily lead to oscillations and insta-
bility [9,11].

In this paper, we study the effect of delayed feedback
on the qualitative dynamical properties of a platoon of
vehicles traversing a straight road without overtaking.
Specifically, we study the effect of delayed feedback
on the classical car-following model (CCFM). In the
context of human-driven vehicles, reaction delays can
be fairly large (of the order of 1 second), with the phys-
iological and the mechanical components being domi-
nant [11]. In contrast, self-driven vehicles tend to have
smaller reaction delays, and are typically due to sens-
ing, computation and actuation [12]. Motivated by this,
we study the CCFM in three regimes—no delay, small
delay and arbitrary delay.

In addition to stability, non-oscillatory convergence
and rate of convergence constitute two properties of
practical interest, which we also explore for the case
of the CCFM. Such conditions could aid in ensuring
smooth traffic flow by avoiding jerky vehicular motion,
thereby improving ride quality. The theoretic analyses
could offer suggestions for design guidelines.

In the context of human-driven vehicles, our work
enhances phenomenological insight into the emer-
gence and evolution of traffic congestion. For instance,
a peculiar phenomenon is observed on highways,
wherein a congestion is formed—seemingly out of
nowhere—which propagates backwards in space. This
gives rise to a wave-like congestion pattern on high-
ways that propagates backwards from the point of its
origin [4,5]. Such a phenomenon is known as a “phan-

tom jam.” It is known that a sudden change in the
driver’s sensitivity (such as a sudden deceleration) can
result in such oscillatory behavior [4,5]. In this paper,
we show that an increase in the driver’s reaction delay
may also lead to similar oscillations.More importantly,
we show that the traffic flow transits into instability due
to a Hopf bifurcation, thus resulting in limit cycles in
system dynamics. These emergent limit cycles phys-
ically manifest as phantom jams. More generally, we
show that the traffic flow may transit into instability
due to a suitable variation in any combination of model
parameters. To capture any complex relation between
various parameters, we introduce a non-dimensional
exogenous parameter in the CCFM, which is set to
unity on the stability boundary. Indeed, wemake use of
this parameter to push the system beyond the stability
region, thus resulting in a bifurcation.

In the context of self-driven vehicles, reaction delays
are envisioned to be smaller than those of a human
driver. Thus, the separation between consecutive self-
driven vehicles in steady state is expected to be smaller
[1, Sect. 5.2]. Hence, the resource utilization can be
improved without any degradation in safety [2]. More
importantly, the parameters of the control algorithm
(called upper longitudinal control algorithm [1, Sect.
5.2]) in self-driven vehicles have to be appropriately
tuned. It is known that a combination of stability and
convergence analyses may be used to design several
aspects of longitudinal control algorithms [1, Sect. 5.2].
Thus, based on a combination of analysis, numerical
computations and simulations, our work may provide
design guidelines for appropriate design of the control
algorithm.

1.1 Related work

Stability properties of car-following models were stud-
ied initially by Chandler et al. [13] and Herman et al.
[14]. The CCFM was proposed by Gazis et al. [3] with
the intention of studying the macroscopic properties
emerging from various drivers’ behavior. Several vari-
ants of the CCFM have since been studied in the litera-
ture; see [13–15]. These works consider the linearized
models and predominantly use transform techniques
to study their stability aspects. For a recent exposition
of linear stability analysis as applied to car-following
models, see [16].

In contrast, Zhang and Jarrett [9] and some of the
references therein treat car-following models from a
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dynamical systems standpoint, and study their stabil-
ity. Specifically, Zhang and Jarrett [9] studies some
stability properties of the CCFM. However, the afore-
mentioned works do not consider the delay in the
self-velocity term. To make the model more real-
istic, we accounted for this delay in our previous
work [6]. Therein, we studied a particular case of
the CCFM called the reduced classical car-following
model (RCCFM) and showed that it loses local stability
via a Hopf bifurcation. This paper extends the results
presented in [6] to the CCFM and also derives con-
ditions that may ensure good ride quality, in addition
to characterizing the time taken by a platoon to reach
its equilibrium. Further, we show that oscillations in
state variables are a manifestation of limit cycles, and
not centers as asserted in [9]. For a recent review on
stability analyses as applied to car-following models,
see [17]. For an exposition on the use of time-delayed
equations for traffic-flowmodeling, see [18]. There has
been a sustained research interest in the general direc-
tion of traffic modeling and analysis; see [17,19–21]
and references.

Note that several dynamical models have also been
studied in the Physics literature beginningwith the opti-
mal velocity model (OVM) [8]. In fact, it is known that
some of these models lose local stability via a Hopf
bifurcation as well [7,22]. Several extensions—such
as multi-anticipation [23,24]—have also been studied
for the OVM. Studies have also tried to deduce macro-
scopic quantities [25] and macroscopic models [26]
when drivers follow some variant of the OVM. How-
ever, this body of literature assumes the vehicles to
be traveling on a single-lane circular loop, thus math-
ematically yielding periodic boundary conditions. In
contrast, the CCFM and related models differ at a fun-
damental level by assuming the vehicular motion on a
single-lane straight road. Thus, we do not attempt to
compare our results with those derived for the OVM
and related models.

From a vehicular dynamics perspective, most upper
longitudinal controllers in the literature assume the
lower controller’s dynamics to be well-modeled by a
first-order control system, in order to capture the delay
lag [1, Sect. 5.3]. The upper longitudinal controllers
are then designed to maintain either constant velocity,
spacing or time gap; for details, see [27] and the refer-
ences therein. Specifically, Rajamani et al. [27] prove
that synchronizationwith the lead vehicle is possible by
using information only from the vehicle directly ahead.

This reduces implementation complexity and does not
mandate vehicles to be installed with communication
devices.

However, in the context of autonomous vehicles,
communication systems are required to exchange var-
ious system states required for the control algorithm.
This information is used either for distributed control
[27] or coordinated control [28]. Formation and platoon
stabilities have also been studied considering informa-
tion flow among the vehicles [29,30]. For an extensive
review, see [31].

In contrast to stabilizing platoons of autonomous
vehicles (our scenario), it has been shown that well-
placed, communicating autonomous vehicles may be
used to stabilize platoons of human-driven vehicles as
well [32]. More generally, the platooning problem has
been studied as a consensus problem with delays [33].
Such an approach aids the design of coupling protocols
between interacting agents (in this context, vehicles). In
contrast, we provide design guidelines to appropriately
choose protocol parameters, given a coupling protocol
(the CCFM).

To the best of our knowledge, ours is the first work
to study the practically relevant notions of time taken
by a platoon to equilibrate, and the convergence of
the CCFM in a non-oscillatory fashion, in the trans-
portation setting. Further, although these are local
properties, these (in addition to local stability) may
help provide design guidelines for the upper longitu-
dinal control algorithm. In the context of the OVM,
Gasser et al. [22] have shown that the nonlinear sys-
tem exhibits existence/coexistence of periodic solu-
tions despite conforming to the local stability condition.
However, for the CCFM, our simulations suggest that
satisfying the local stability condition ensures stability
of the nonlinear system as well. Thus, in this paper,
we provide design guidelines for the upper longitudi-
nal control algorithm using a combination of linear and
nonlinear analyses and numerical computations.

1.2 Our contributions

Our contributions can be summarized as follows.

(1) We make the CCFM a more realistic model by
accounting for the delay in the self-velocity term.

(2) We show that, in the absence of reaction delays,
theCCFM is locally stable for all parameter values
of practical interest. When the delays are rather
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small, we derive a sufficient condition for local
stability of the CCFM using a linearization of the
time variable.

(3) We derive the necessary and sufficient condition
for the local stability of the CCFM for an arbi-
trary delay. We then show that, upon violation of
this condition, the CCFM loses local stability via a
Hopf bifurcation. Indeed, this helps us understand
that the oscillations emerge as a consequence of
limit cycles, and centers as asserted in the litera-
ture.

(4) In the case of human-driven vehicles, our work
enhances phenomenological insights into the
emergence and evolution of traffic congestion. For
example, the notion ofHopf bifurcation provides a
mathematical framework to offer a possible expla-
nation for the observed “phantom jams.”

(5) We derive the necessary and sufficient condition
for non-oscillatory convergence of the CCFM.
This is useful in the context of a transportation
network since oscillations lead to jerky vehicu-
lar movements, thereby degrading ride quality and
possibly causing collisions.

(6) We characterize the rate of convergence of the
CCFM, thereby gaining insight into the time
required for the platoon to attain the desired
equilibrium, when perturbed. Such perturbations
occur, for instance, when a vehicle departs from a
platoon.

(7) Wehighlight the three-way trade-off between local
stability, non-oscillatory convergence and the rate
of convergence. Considering this trade-off, we
suggest some guidelines to appropriately choose
parameters for the upper longitudinal control algo-
rithm in self-driven vehicles.

(8) We outline an analytical framework to establish
the type of theHopf bifurcation and the asymptotic
orbital stability of the limit cycles using Poincaré
normal forms and the center manifold theory. Fur-
ther, we numerically bring forth the supercritical
nature of the bifurcation that result in asymptoti-
cally orbitally stable limit cycles.

(9) We corroborate the analytical results with the aid
of stability charts, numerical computations and
simulations conducted using MATLAB.

The remainder of this paper is organized as fol-
lows. In Sect. 2, we introduce the CCFM. In Sects. 3, 4
and 5, we characterize the stable region for the CCFM

in no-delay, small-delay and arbitrary-delay regimes,
respectively. We understand the stable region by char-
acterizing the region of non-oscillatory convergence of
the CCFM in Sect. 6 and the rate of convergence of
the CCFM in Sect. 7. In Sect. 8, we present the local
Hopf bifurcation analysis for the CCFM. In Sect. 9,
we present the simulation results before concluding in
Sect. 10.

2 Models

We begin this section with an overview of the setting
of our work. We then briefly explain the CCFM.

2.1 The setting

We consider a platoon of N + 1 vehicles (having zero
length) traveling on an infinitely long, single-lane road
without overtaking. We number the lead vehicle with
0, its follower 1, and so on. The acceleration of each
vehicle is updated based on the position, velocity and
acceleration of that vehicle and the vehicle directly
ahead. We denote the position of the i th vehicle at
time t by xi (t). Following standard convention, we use
ẋi (t) and ẍi (t) to denote the corresponding velocity
and acceleration. We assume that the acceleration and
velocity profiles of the lead vehicle are known. Specif-
ically, we consider only those leader profiles that con-
verge, in finite time, to ẍ0 = 0 and 0 < ẋ0 < ∞;
that is, there exists a finite T0 such that ẍ0(t) = 0,
ẋ0(t) = ẋ0 > 0, ∀ t ≥ T0. We use the terms “driver”
and “vehicle” interchangeably throughout. Further, we
use SI units throughout.

2.2 The classical car-following model (CCFM)

The CCFM is characterized by each vehicle updating
its acceleration based on the following rule [3]

ẍi (t) = αi
(ẋi (t))m (ẋi−1(t − τ) − ẋi (t − τ))

(xi−1(t − τ) − xi (t − τ))l
, (1)

for i ∈ {1, 2, . . . , N }. Here, αi > 0 represents
the i th driver’s sensitivity coefficient, for each i ∈
{1, 2, . . . , N }. The model parameters m ∈ [−2, 2]
and l ∈ R+ capture the nonlinear dependence of the
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acceleration on the self-velocity term and the headway,
respectively. It is interesting to note that, in its origi-
nal form, the CCFM does not account for delay in the
self-velocity term (ẋi (t))m . While self-velocity might
be available almost immediately, it takes some non-
negligible time to execute the required control action.
Also, from an analytical viewpoint, ignoring delays
(in general) may generate inaccurate results. Thus, we
account for the delay in the self-velocity term. Further,
to make the model more realistic, we assume hetero-
geneity in reaction delays.

It is easy to see from (1) that the state variable
xi (t) → ∞ as t → ∞ for each i . That is, the positions
of all vehicles become unbounded asymptotically. This
is due to the infinite nature of the considered highway.
However, to apply tools from dynamical systems the-
ory, we require bounded state variable. Thus, similar to
[9],weworkwith relative distances (headways) and rel-
ative velocities instead. Therefore, wemake the follow-
ing change of variables: yi (t)+bi = xi−1(t)−xi (t) and
vi (t) = ẏi (t) = ẋi−1(t) − ẋi (t) for i ∈ {1, 2, . . . , N }.
Here, bi denotes the desired equilibrium separation for
the i th pair of vehicles, yi (t) + bi represents the sepa-
ration between vehicles i − 1 and i at time t, and vi (t)
corresponds to the relative velocity of the i th vehicle
with respect to the (i −1)th vehicle at time t . Thus, the
transformed model is

v̇i (t) = βi−1(t − τi−1)vi−1(t − τi−1)

− βi (t − τi )vi (t − τi ),

ẏi (t) = vi (t), (2)

for i ∈ {1, 2, . . . , N }. Here,

βi (t) = αi
(ẋ0(t) − v0(t) − · · · − vi (t))m

(yi (t) + bi )l
.

In the above equations, y0, v0, α0 and τ0 are introduced
for notational brevity and are set to zero. In particular,
note that y0 and v0 are not state variables.

Note that yi (t) + bi , and not yi (t), represents the
headway at time t . In fact, yi (t) represents the spacing
error—the variation of the headway about its equilib-
rium bi . Thus, yi (t) may become negative. However,
the model breaks down when yi (t) + bi becomes zero
for l > 0 [9]. Also, the CCFM possesses an inherent
“repulsion” property, which may be illustrated as fol-
lows. Suppose that the vehicle indexed i approaches

the vehicle indexed i − 1 at a relatively higher veloc-
ity. When the distance becomes very small (mathemat-
ically, < 1 meter), the i th vehicle decelerates rather
rapidly. This can be inferred from (1). This helps avoid
collision (hence the term “repulsion”), thus ensuring
yi (t) + bi > 0.

Since equations of form (2) are hard to analyze, we
obtain sufficient conditions for their stability by ana-
lyzing them in the neighborhood of their equilibria. To
that end, note that v∗

i = 0, y∗
i = 0 i = 1, 2, . . . , N

is an equilibrium for system (2). Linearizing (2) about
this equilibrium, we obtain

v̇i (t) = β∗
i−1vi−1(t − τi−1) − β∗

i vi (t − τi ),

ẏi (t) = vi (t), (3)

for i ∈ {1, 2, . . . , N }. Here, β∗
i = αi (ẋ0)m/(bi )l

denotes the equilibrium coefficient for the i th vehicle.
Notice from (3) that the evolution of vi (t), in the

vicinity of its equilibrium, is not affected by the evolu-
tion of yi (t). Further, yi (t) can be obtained by integrat-
ing vi (t). Thus, we drop the variables {yi (t)}Ni=1 when
dealing with the linearized system. This yields

v̇i (t) = β∗
i−1vi−1(t − τi−1) − β∗

i vi (t − τi ). (4)

In Sects. 3 through 7 of this paper, we study system (4)
to deduce various conditions for the CCFM. It may
be noted that (4) is similar in form to the linearized
RCCFM [6, Eq. (3)]. However, the equilibrium coeffi-
cient β∗

i now accounts for the nonlinearity parameter
l ∈ R+.

3 The no-delay regime

In this section, we consider the idealistic case of drivers
that can react instantaneously to stimuli. This results
in zero reactions delays, and hence the linear model
described by system (4) boils down to the following
system of ordinary differential equations (ODEs):

v̇i (t) = β∗
i−1vi−1(t) − β∗

i vi (t), (5)

for i ∈ {1, 2, . . . , N }. This can be succinctly written in
matrix form as follows:

V̇(t) = AV(t), (6)
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where V(t) = [v1(t) v2(t) . . . vN (t)]T ∈ R
N , and

A ∈ R
N×N . The matrix A, known as the dynam-

ics matrix [34, Sect. 2.2], is a lower-triangular matrix,
given by:

Ai j =

⎧
⎪⎨

⎪⎩

−β∗
i , i = j,

β∗
j , i = j + 1,

0, elsewhere.

Tocharacterize the stability of system (5),we require
the eigenvalues of the dynamics matrix corresponding
to system (6) to be negative [35, Theorem 5.1.1]. Since
A is a lower-triangular matrix, the characteristic poly-
nomial is given by the product of the diagonal elements
of the matrix (λI − A) [36, Lemma 6.9.1]. Therefore,
we have

f (λ) = det(λI − A) =
N∏

i=1

(
λ + β∗

i

) = 0. (7)

That is, the eigenvalues corresponding to system (5)
are located at −β∗

i , i ∈ {1, 2, . . . , N }. Note that, from
physical constraints, αi > 0 and bi > 0 ∀i . This
ensures β∗

i > 0 ∀i, for all physically relevant systems.
Hence, the corresponding eigenvalues will lie in the
open left half of the Argand plane, thereby ensuring
the stability of system (4) for all physically relevant
values of the parameters.

4 The small-delay regime

In this section,we analyze system (2) in the small-delay
regime. A way to obtain insight for small delays is to
conduct a linearization on the time variable. Thus, we
obtain a system of ODEs, which serves as an approxi-
mation to the original infinite-dimensional system (4),
for small delays. We derive the criterion for this sys-
tem of ODEs to be stable, thereby emphasizing the
design trade-off inherent among various system param-
eters and the reaction delay.

We begin by applying the Taylor series approxima-
tion to the time-delayed state variables thus: vi (t −
τi ) ≈ vi (t) − τi v̇i (t). Using this approximation for
terms in (4), and re-arranging the resulting equations,
we obtain

v̇i (t) + β∗
i−1τi−1

1 − β∗
i τi

v̇i−1(t) = β∗
i−1

1 − β∗
i τi

vi−1(t) − β∗
i

1 − β∗
i τi

vi (t),

(8)

for i ∈ {1, 2, . . . , N }. This can be succinctly written in
matrix form as

BV̇(t) = AsV(t), (9)

where V(t) = [v1(t) v2(t) . . . vN (t)]T ∈ R
N . The

matrix As is as defined

Asi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− β∗
i

1−β∗
i τ∗

i
, i = j,

β∗
j

1−β∗
i τ∗

i
, i = j + 1,

0, elsewhere,

and B is given by

Bi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, i = j,
−β∗

j τ j

1−β∗
i τi

, i = j + 1,

0, elsewhere.

Note that B is a lower-triangular matrix with unit diag-
onal entries. Hence, it is invertible, and the inverse is
also a lower-triangular matrix having unit diagonal ele-
ments. Also, since A is a lower-triangular matrix as
well, the dynamics matrix corresponding to system (8),
i.e., Ã = B−1As, is a lower-triangular matrix since it is
the product of two lower-triangular matrices [37, Sect.
1.4]. Further, due to the said structures, the diagonal
elements of Ã are given by

Ãii = β∗
i

1 − β∗
i τi

, i ≥ 1. (10)

Therefore, the characteristic polynomial corresponding
to system (8) is the product of the diagonal entries of
the matrix (λI − Ã) [36, Lemma 6.9.1]. That is,

f (λ) = det (λI − Ã) =
N∏

i=1

(
λ + Ãii

)
= 0. (11)

This shows that the eigenvalues of system (8) are
located at − Ãii , i ∈ {1, 2, . . . , N }. Hence, for sys-
tem (8) to be stable, the diagonal entries of its dynamics
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matrix Ã have to be positive. From (10), this is satisfied
if and only if

β∗
i τi < 1, i ∈ {1, 2, . . . , N }. (12)

Hence, the above equation represents the necessary and
sufficient condition for stability of the time-linearized
system (8). Further, as noted in Sect. 2, (12) is a
sufficient condition for local stability of the CCFM,
described by system (2).

5 Hopf bifurcation

Having studied system (2) in the no-delay and the
small-delay regimes, in this section, we focus on the
arbitrary-delay regime. We derive the necessary and
sufficient condition for the local stability of system (2)
and show that the corresponding traffic flow transits
from the locally stable to the unstable regime via a
Hopf bifurcation [38].

5.1 Transversality condition

Hopf bifurcation is a phenomenon wherein a nonlinear
dynamical system loses/regains stability as a conse-
quence of a pair of conjugate eigenvalues crossing the
imaginary axis in the Argand plane [10, Chap. 11, The-
orem 1.1]. Mathematically, a Hopf bifurcation analy-
sis is a rigorous way of proving the emergence of limit
cycles in nonlinear dynamical systems.

In order to ascertain whether the CCFM undergoes
a stability loss via a Hopf bifurcation, we follow [39]
and introduce an exogenous, non-dimensional param-
eter κ > 0. A general system of delay differential
equations ẋ(t) = f (x(t), x(t − τ1), . . . , x(t − τn)) is
modified to ẋ(t) = κ f (x(t), x(t − τ1), . . . , x(t − τn))

with the introduction of the exogenous parameter. Spe-
cific to the CCFM, introducing κ in (2) yields

v̇i (t) = κβi−1(t − τi−1)vi−1(t − τi−1)

− κβi (t − τi )vi (t − τi ),

ẏi (t) = κvi (t), (13)

for each i ∈ {1, 2, . . . , N }. Linearizing this about the
all-zero equilibrium, and dropping yi ’s, we obtain

v̇i (t) = κβ∗
i−1vi−1(t − τi−1) − κβ∗

i vi (t − τi ), (14)

for i ∈ {1, 2, . . . , N }. The characteristic equation asso-
ciated with (14) is [6, Eq. (15)]

λ + κβ∗
i e

−λτi = 0. (15)

Ensuring that all roots of (15) lie in the open left
half of the Argand plane guarantees the stability of sys-
tem (14) [35, Theorem 5.1.1]. Thus, to characterize the
local stability of system (13), we search for a conjugate
pair of eigenvalues of (15) that crosses the imaginary
axis in the Argand plane. This would, in turn, push the
system into an unstable regime. Therefore, substituting
λ = jω, where j = √−1, in (15) yields

κβ∗
i cos(ωτi ) = 0, and ω − κβ∗

i sin(ωτi ) = 0.

From the first equality, we infer that ωτi = (2n + 1)π
2

for n = 0, 1, 2, . . .. Thus, the second equality implies
that κβ∗

i = ω for n = 0, 2, 4, . . .. Therefore, the con-
ditions that ensure the existence of a conjugate pair of
eigenvalues on the imaginary axis are

ω0 = (2n + 1)
π

2τi
, n = 0, 1, 2, . . . , (16)

κcr = (2n + 1)
π

2β∗
i τi

, n = 0, 2, 4, . . . , (17)

where κcr is the critical value of κ at ω = ω0.
Note that using the change of variables z = λτi ,

the characteristic equation (15) can be transformed to
zez + a = 0, where a = κβ∗

i τi . From [40], it is known
that for such a system, when a < π/2, the real part
of all eigenvalues are negative. Further, for a = π/2,
there exists a simple conjugate pair of eigenvalues on
the imaginary axis, whereas all other eigenvalues have
negative real parts. For the CCFM, this translates to the
following: (a) for κ < κcr , the system is stable, and (b)
when κ = κcr , there is exactly one pair of conjugate
eigenvalues on the imaginary axis, while the remain-
ing eigenvalues have negative real parts. We next show
that a further increase in the non-dimensional param-
eter would cause the eigenvalues to move right in the
Argand plane, thus leading to a loss of local stability via
a Hopf bifurcation. Indeed, this would also imply that
κ < κcr is then the necessary and sufficient condition
for local stability of the CCFM.

To ascertainwhether the eigenvalues cross the imag-
inary axis with increase in κ, we verify the transver-
sality condition of the Hopf spectrum [10, Chap. 11,
Theorem 1.1]. That is, we check if
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Fig. 1 Variation in the locally stable regions of the CCFM as
a function of the nonlinearity parameter l; a plot of (20) when
c = 1 and bi > 1. a is for m < 0, whereas b is for m > 0. For

visual clarity, we restrict m to the range [0.8, 2]. As l increases,
the CCFM becomes resilient to instability since bi > 1

Re

[
dλ

dκ

]

κ=κcr


= 0 (18)

holds for each n ∈ {0, 2, 4, . . .}. To that end, we dif-
ferentiate (15) with respect to κ, and perform algebraic
manipulations to obtain

Re

[
dλ

dκ

]

κ=κcr

= 2β∗
i τ 2i ω2

0

(2n + 1)(1 + τ 2i ω2
0)π

> 0, (19)

for n ∈ {0, 2, 4, . . .}. This implies that system (13)
undergoes a Hopf bifurcation at κ = κcr for each
n ∈ {0, 2, 4, . . .}. Hence, κ < κcr when n = 0 is
the necessary and sufficient condition for system (13)
to be locally stable.

First, note that κ = κcr represents the stability
boundary (also called theHopf boundary). Toobtain the
stability boundary of the CCFM, we set κcr = 1; that
is, we tune the system parameters such that 2β∗

i τi = π .
Next, notice that the CCFM loses local stability when
the very first pair of eigenvalues (the pair correspond-
ing to n = 0) crosses the imaginary axis in the Argand
plane. Since the derivative in (19) is positive for even
values of n, further increase in κ cannot restore sta-
bility. And lastly, note that (17) captures the inverse
relation between the reaction delay and the sensitiv-
ity parameter on the Hopf boundary. Hence, we set
αiτi = c, a real constant, in order to study the trade-
off between the leader’s profile ẋ0, and the nonlinearity

parameters l and m. The resulting necessary and suffi-
cient condition for the local stability of system (2) is

(ẋ0)m

(bi )l
<

π

2c
. (20)

Notice that we recover the necessary and sufficient con-
dition for the local stability of the RCCFM [6, Eq. (20)]
if (i) the nonlinearity parameter l is set to zero, or (i i)
the equilibrium headway bi is set to unity. For these
cases, the inference drawn in [6] holds: When m > 0,
slow lead vehicles stabilize the system, and form < 0,
fast lead vehicles are required to ensure system stabil-
ity. From Fig. 1a, b, notice that the above inference
holds for l > 0 as well. However, note that the nonlin-
earity parameter l affects the resilience of the CCFM
to instability. Specifically, if the equilibrium headway
bi > 1, then the locally stable region expands with an
increase in l. However, when bi < 1, the locally stable
region shrinks with an increase in l.

5.2 Discussion

A few comments are in order.

(1) The foregoing analysis serves to clarify that the
oscillations in state variables are amanifestation of
limit cycles (isolated closed orbits in phase space)
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that emerge due to aHopf bifurcation, and not cen-
ters (family of concentric closed orbits) as asserted
in [9]. Further, as pointed out in the Introduc-
tion, these emergent limit cycles physically man-
ifest themselves as back-propagating congestion
waves, known as “phantom jams.” Thus, the anal-
ysis presented in this paper offers an explanation
for this oft-observed phenomenon.

(2) Note that κ is an exogenous parameter introduced
to aid the analysis. When the system operates on
the edge of stability, this parameter is used to drive
the system unstable in a controlled manner, as
described in the foregoing analysis.

(3) Feedback systems are known to lose stabilitywhen
gain parameters are varied in a suitable manner
[1, Sect. 3.7]. Therefore, to verify that the bifur-
cation phenomenon exhibited by the CCFM is not
an artifact of the exogenous parameter, we prove
the transversality condition of the Hopf spectrum
with respect to a systemparameter. For theCCFM,
it can easily be shown, following the derivation in
Sect. 5.1, that the CCFM undergoes a Hopf bifur-
cation when any of αi , τi , ẋ0, l or m is suitably
varied.

(4) Note that the D-partitioning and its “dual”
τ -decomposition approaches [41, Sect. 3.3] have
been used extensively in the literature to study
local stability properties of delay differential equa-
tions. While the former assumes the delay to be
fixed and independent of other parameters, the
latter allows only the delay to be varied. In con-
trast, our approach allows stability analysis to
be conducted by a continuous variation of any
parameter (including the exogenous parameter).
Additionally, the use of an exogenous parameter
as the bifurcation parameter captures any inter-
dependence among model parameters, and gen-
erally simplifies the resulting algebra. Further,
note that the bifurcation approach helps under-
stand how local stability is lost and also approxi-
mates the trajectory of the CCFM in the vicinity
of the equilibrium using nonlinear terms (up to
third order in most cases)—key additions in com-
parison with other widely used approaches. This
helps deduce the asymptotic orbital stability of the
emergent limit cycles. Section 8 presents such an
analysis for the CCFM.

(5) Substituting n = 0 in (17), and letting κ = 1
on the stability boundary, the necessary and suffi-

cient condition for the local stability of system (2)
becomes

β∗
i τi <

π

2
. (21)

Note that when τi = 0, (21) is trivially satisfied.
This, in turn, implies that the CCFM is stable for
all parameter values, in the absence of reaction
delays as seen in Sect. 3. However, as the delay
increases, (21) will be violated, thus resulting in
loss of local stability of the CCFM. This, in turn,
validates our claim that delays play an important
role in determining the qualitative behavior of the
CCFM.

(6) Note that the time linearization technique used in
Sect. 4 may yield erroneous stability conditions;
see [42,43]. Therefore, the validity of any result
obtained by using such a small-delay approxima-
tion should be verified on a case-by-case basis. For
the CCFM, we note by comparing (12) and (21)
that applying linearization to the time variable
does yield a valid stability condition.

(7) Note that (21) coincides with the necessary and
sufficient condition derived in [9, Sect. 3.1]. In
fact, the characteristic equation of form (15) (with
κ = 1) arises in several applications includ-
ing population dynamics [44], engineering [10],
consensus dynamics [45] and vehicular dynam-
ics [9]. In general, such equations have been
analyzed using both time-domain [35,44] and
spectral-domain methods [9,41]. However, to the
best of our knowledge, none of these works apply
the method used in this paper. Further, note that
the evolution equations are nonlinear time-delay
equations. Hence, the analysis goes beyond that of
a linear time-delay system; see Sect. 8 for details.

6 Non-oscillatory convergence

In this section, we characterize the region correspond-
ing to non-oscillatory convergence. Mathematically,
this amounts to ensuring that the eigenvalues corre-
sponding to system (4) are negative real numbers.
Qualitatively, non-oscillatory convergence avoids jerky
vehicularmotion since relative velocities andheadways
constitute dynamical variables. Such results could help
ensure the smooth flow of traffic and hence improve
the ride quality.
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In the above spirit, following [46], we derive the
necessary and sufficient condition for non-oscillatory
convergence of the CCFM. The characteristic equation
pertaining to system (4), after dropping the subscript
“i” for convenience, is f (λ) = λ + β∗e−λτ = 0 [6,
Eq. (8)]. Substituting λ = −σ − jω and simplifying,
we obtain

σ = β∗eστ cos(ωτ), and ω = β∗eστ sin(ωτ). (22)

These, in turn, yield tan(ωτ) = ω/σ . To ensure that
ω = 0 is the only solution of this equation, the
necessary and sufficient condition is στ ≥ 1. Re-
writing (22), we have

β∗τeστ

(
sin(ωτ)

ωτ

)

= 1.

In the limit ω → 0, the term within the brackets rep-
resents sinc(0) = 1. Moreover, the exponential term
is bounded by e since στ ≥ 1. Hence, the boundary
of non-oscillatory convergence is β∗τe = 1, and the
corresponding necessary and sufficient condition for
non-oscillatory convergence is

β∗τ ≤ 1

e
. (23)

Notice that the region in the parameter space
described by (23) is a strict subset of the region
described by (21). Therefore, from these two equations,
we can summarize the conditions for the local stability
of the CCFM as follows.

(1) If β∗τ ∈ [0, π/2), the system is locally stable.
(2) Additionally, if β∗τ ∈ [0, 1/e], the system con-

verges asymptotically to the equilibrium in a non-
oscillatory fashion.

(3) Contrarily, if β∗τ ∈ (1/e, π/2), the state vari-
able oscillates about the equilibrium, converging
asymptotically.

Note that, despite differing in the method of deriva-
tion, (23) agrees with the condition for non-oscillatory
condition derived in [9, Sect. 3].

7 Rate of convergence

Rate of convergence is an important performance met-
ric that dictates the time a dynamical system takes to

attain the desired equilibrium, when perturbed. In the
context of a transportation network, it is related to the
time required to attain the uniform traffic flow, once the
traffic flow is perturbed (by events such as the depar-
ture of a vehicle from the platoon). Following [47], we
characterize the rate of convergence for the CCFM.

The characteristic equation pertaining to system (4),
with the subscript “i” dropped for ease of exposition, is
f (λ) = λ + β∗e−λτ = 0 [6, Eq. (8)]. In time domain,
this corresponds to a system ẋ(t) = −β∗x(t − τ),

where x is an arbitrarily chosen dynamical variable.
The rate of convergence of such a system is the recip-
rocal of the smallest among σ1, σ2 and σ3, where these
quantities are obtained by solving the equations [47,
Theorem 2]

στ = 1,

σ τe−στ = β∗τ,
m

sin(m)
e− m

tan(m) = β∗τ, m = στ tan(m),

respectively. The rate of convergence is maximum at
τ ∗ = 1/(β∗e). For τ < τ ∗, the rate of convergence
increases, whereas it decreases for τ > τ ∗ [47].

We solve the above equations using MATLAB to
illustrate the variations in the rate of convergence for
the CCFM, as the reaction delay is varied. To that end,
we consider a tagged vehicle following a lead vehicle
with an equilibrium velocity of 10. The tagged vehicle
has a sensitivity coefficient of α = 0.7 and tries to
maintain an equilibrium headway of 20.We fixm = 2,
and consider l ∈ {0.8, 1, 1.2}.

The rate of convergence for this system is plotted
in Fig. 2. It can be seen that the rate of convergence
increases with τ for τ < τ ∗, and decreases when the
reaction delay is varied beyond τ ∗. Also, note that the
condition for the maximum rate of convergence coin-
cides with the boundary for non-oscillatory conver-
gence of the CCFM, β∗τ ∗e = 1. Hence, it would be
optimal to choose parameters satisfying this equation.
The said figure portrays τ ∗ only for the l = 1 case.

However, in practice, system parameters may vary.
This will result in a shift of the operating point of the
CCFM and may result in a trade-off between the rate
of convergence and non-oscillatory convergence of the
CCFM. Notice from Fig. 2 that, for a given value of
nonlinearity parameter l, the rate of convergence is not
symmetric about τ ∗. In the vicinity of τ ∗, if the oper-
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Fig. 2 Variation in the rate of convergence of the CCFM as the
reaction delay is increased, for l ∈ {0.8, 1, 1.2}

ating point of the CCFM shifts to the left of τ ∗, the
system retains its non-oscillatory behavior and the rate
of convergence reduces drastically. On the other hand,
if the operating point of the CCFM shifts to the right
in the vicinity of τ ∗, the system converges to the equi-
librium in an oscillatory fashion, but the reduction in
the rate of convergence is not as drastic. However, if
the reaction delay increases considerably beyond τ ∗,
then not only does the system exhibit oscillatory con-
vergence, it may also converge to the equilibrium very
slowly. This is portrayed in Fig. 2 using τ1 = τ ∗/3 and
τ2 = 3τ ∗, for l = 1. Clearly, the rate of convergence
at τ2 is much lesser than that at τ1.

Finally, notice from Fig. 2 that, an increase in l leads
to a decrease in the rate of convergence. However, as
discussed in Sect. 5.1, an increase in l makes the sys-
tem relatively resilient to instability since b1 = 20 > 1.
Thus, there is a three-way trade-off involving the sys-
tem’s resilience to instability, rate of convergence and
non-oscillatory convergence. Note that Fig. 2 brings
forth this trade-off for a fixed set of parameters. How-
ever, the same is true for other parameter values as
well.

Note that the characteristic equation captures the
closed-loop pairwise interaction in the platoon. To
characterize the time taken by a platoon to reach an
equilibrium (denoted by T e

CCFM ), we first define the
time taken by the i th pair of vehicles in the platoon
following the standard control-theoretic notion of “set-
tling time.” That is, by tei (ε), we denote the minimum
time taken by the time-domain trajectory of the i th
pair to enter, and subsequently remain within, the ε-
band around its equilibrium. For simplicity, we drop

the explicit dependence on ε. Then, the platoon dynam-
ics is said to converge to the uniform flow when the
dynamics of each pair has settled inside the ε-band of
its respective equilibrium. Therefore, we have

T e
CCFM = max

i=1,2,...,N
tei . (24)

Here, given ε > 0, tei is computed for the pair that
has the least rate of convergence. This, in turn, yields
T e
CCFM . Note that the convergence of the CCFM is

asymptotic, i.e., the system does not (strictly) converge
to the equilibrium in finite time. Hence, we make use
of the settling time concept.

8 Hopf bifurcation analysis

In the previous sections, we have characterized the sta-
ble region for the CCFM, and studied two of its most
important properties; namely, non-oscillatory conver-
gence and the rate of convergence.Wehave also proved,
by means of the transversality condition of the Hopf
spectrum (19), that system (2) loses stability via a Hopf
bifurcation. In this section, we study the CCFM when
it is pushed just beyond the stable region. We charac-
terize the type of the bifurcation and the asymptotic
orbital stability of the emergent limit cycles, follow-
ing closely the style of analysis presented in [38], by
using Poincaré normal forms and the center manifold
theory.

We begin by definingμ = κ −κcr . Thus, the system
undergoes aHopf bifurcation atμ = 0,where κ = κcr .
Henceforth,we considerμ as the bifurcationparameter.
Note that changing κ from κcr to κcr +μ,whereμ > 0,
pushes the system in to its unstable regime.

Next, we expand the RHS of (13) about the all-zero
equilibrium using Taylor’s series, to obtain

v̇i (t) = −κβ∗
i vi,t (−τi ) + κβ∗

i−1v(i−1),t (−τi−1)

− m

ẋ0
β∗
i−1v

2
(i−1),t (−τi−1) + m

ẋ0
β∗
i v2i,t (−τi )

− m

ẋ0
β∗
i−1

i−2∑

n=1

vn,t (−τi−1)v(i−1),t (−τi−1)

+ m

ẋ0
β∗
i−1

i−1∑

n=1

vn,t (−τi )vi,t (−τi )

+ l

bi
β∗
i vi,t (−τi )yi,t (−τi )
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− m(m − 1)

2(ẋ0)2
β∗
i v3i (−τi )

− l

bi−1
β∗
i−1v(i−1),t (−τi−1)y(i−1),t (−τi−1)

− m(m − 1)β∗
i

2(ẋ0)2

i−1∑

n,k=1

vi,t (−τi )vn,t (−τi )vk,t (−τi )

+ m(m − 1)β∗
i−1

2(ẋ0)2

i−2∑

n,k=1

(v(i−1),t (−τi−1)

× vn,t (−τi−1)vk,t (−τi−1))

− 2m(m − 1)

3(ẋ0)2
β∗
i

i−1∑

n=1

v2i,t (−τi )vn,t (−τi )

+ 2m(m − 1)β∗
i−1

3(ẋ0)2

i−2∑

n=1

v∗
(i−1),t (−τi−1)vn,t (−τi−1)

− lm

3(bi )(ẋ0)
β∗
i

i−2∑

n=1

vi,t (−τi )vn,t (−τi )yi,t (−τi )

+ lmβ∗
i−1

3(bi−1)(ẋ0)

i−1∑

n=1

(v(i−1),t (−τi−1)vn,t (−τi−1)

× y(i−1),t (−τi−1)) + m(m − 1)

2(ẋ0)2
β∗
i−1v

3
i−1(−τi−1)

− lm

3(ẋ0)(bi )
β∗
i v2i,t (−τi )yi,t (−τi )

+ lm

3(ẋ0)(bi−1)
β∗
i−1v

2
(i−1),t (−τi−1)y(i−1),t (−τi−1)

ẏi (t) = κvi (t), (25)

where we use vi,t (−τi ) to denote vi (t − τi ).
Henceforth, we denote the space of all functions

from A to B that are differentiable k times, with each
derivative being continuous, by Ck (A; B). For conve-
nience, we also use C to denote C0.

We define the state of the CCFM at time t as
S(t) = [v1(t) v2(t) . . . vN (t) y1(t) y2(t) . . . yN (t)].
Then, note that (2) can be written as:

dS(t)

dt
= LμSt (θ) + F(St (θ), μ), (26)

where t is positive and μ is a real quantity. Further,
define τ = max

i
τi > 0. Then, we have

St (θ) = S(t + θ), S : [−τ, 0] −→ R
2N , θ ∈ [−τ, 0].

Here, Lμ : C ([−τ, 0];R2N
) −→ R

2N is a one-
parameter family of continuous, bounded linear func-

tionals, while the operator F : C ([−τ, 0];R2N
) −→

R
2N is an aggregation of the nonlinear terms. Further,

we assume that F(St , μ) is analytic, and that F and
Lμ depend analytically on μ, when |μ| assumes small
values. We now cast (26) in the standard form of an
operator differential equation (OpDE):

dSt
dt

= A(μ)St + RSt , (27)

since the dependence here is on St alone rather than
both St and S(t). Thus, we first transform the linear
problem dS(t)/dt = LμSt (θ). Riesz representation
theorem [48, Theorem6.19] guarantees the existence of
a 2N ×2N matrix-valued measure η(·, μ)which takes
in elements of B (C ([−τ, 0];R2N

))
as an input, with

the property that every component of this measure has
bounded variation. Hence, for φ ∈ C ([−τ, 0];R2N

)
,

we can represent the linear problem as

Lμφ =
0∫

−τ

dη(θ, μ)φ(θ). (28)

Specifically for (26), we have

LμSt =
0∫

−τ

dη(θ, μ)S(t + θ).

Keeping in mind the structure of the linearized sys-
tem (4), we define

dη =
[

Ã 0N×N

κ IN×N 0N×N

]

dθ,

where

( Ã)i j =

⎧
⎪⎨

⎪⎩

−κβ∗
i δ(θ + τi ), i = j,

κβ∗
i δ(θ + τi ), i = j + 1, j ≥ 1,

0, otherwise.

For φ ∈ C1 ([−τ, 0];C2N
)
, we define

A(μ)φ(θ) =

⎧
⎪⎨

⎪⎩

dφ(θ)
dθ , θ ∈ [−τ, 0),
0∫

−τ

dη(s, μ)φ(s) ≡ Lμ, θ = 0,

(29)
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and

Rφ(θ) =
{
0, θ ∈ [−τ, 0),

F(φ, μ), θ = 0.

With the abovedefinitions,weobserve that dSt/dθ ≡
dSt/dt . That is, we have cast (26) in the standard form
of OpDE (27). Note that, going forward, it suffices
to consider the aforementioned equations at the crit-
ical value of the bifurcation parameter. Therefore, we
impose μ = 0 hereon. We begin by finding the eigen-
vector of A(0) having an eigenvalue λ(0) = jω0.
That is, we look for a 2N × 1 vector (denoted by
q(θ)) such that A(0)q(θ) = jω0q(θ) holds. We
assume: q(θ) = [1 φ1 φ2 · · · φ2N−1]T e jω0θ . In order
to solve the eigenvalue equations, we require the fol-
lowing assumption: −κβ∗

1 e
− jω0τ1 = jω0φ0. Then, for

i ∈ {1, 2, . . . N − 1}, and k ∈ {N , N + 1, . . . 2N − 1},

φi = κβ∗
i e

− jω0τi φi−1

jω0 + κβ∗
i+1e

− jω0τi+1
, and φk = κΘφ2N−k

jω0
,

where we set φ0 = 1 for notational brevity. Here, Θ =
j (e− jω0τ − 1)/ω0.
Net, we define the adjoint operator ofA as follows:

A∗(0)φ(θ) =

⎧
⎪⎨

⎪⎩

− dφ(θ)
dθ , θ ∈ (0, τ ],

0∫

−τ

dηT (s, 0)φ(−s), θ = 0,

where dηT is the transpose of dη.
The operatorA∗ maps real-valued functions defined

over [−τ, 0] to a 2N -dimensional complex vector.
Indeed, if ν is an eigenvalue of A, then ν∗ is
an eigenvalue of A∗. Therefore, to find the eigen-
vector of A∗(0) corresponding to − jω0, we solve
A∗(0)p(θ) = − jω0 p(θ). We assume: p(θ) =
B[ψ2N−1 ψ2N−2 ψ2N−3 · · · 1]T e jω0θ . Simplifying
the above operator equation, we obtain for i ∈
{1, 2, · · · N − 1},

ψN = κΘ̃ψ0

κβ∗
Ne

jω0τN − jω0
, ψi = − jω0, and

ψN+i = κβ∗
2N−i e

jω0τ2N−i + κΘ̃ψN−i

κβ∗
2N−i e

jω0τ2N−i − jω0
,

where we set ψ0 = 1 for notational brevity. Also, Θ̃ =
j (e jω0τ − 1)/ω0.
We know that the inner product between p and q

must be unity [38]. Evaluating this by using the above-
mentioned expressions, we obtain an expression for B.

For any q in the domain of A and p in the domain
of A∗, we define the inner product as

〈p, q〉 � p̄ · q −
0∫

θ=−τ

θ∫

ζ=0

p̄T (ζ − θ)dηq(ζ ) dζ,

(30)

where the overbar represents the complex conjugate
and the “·” represents the regular dot product. The value
of B such that the inner product between the eigenvec-
tors of A and A∗ is unity can be shown to be

B = 1

ζ1 + ζ2 + ζ3 + ζ4
,

where

ζ1 = Θ
∗ N−1∑

i=0

κψN φ̄i , ζ2 = −κβ∗
NφN−1ψN τNe

jω0τN ,

ζ3 =
N−1∑

i=1

κβ∗
i τi e

jω0τi φi−1(ψ2N−i − ψ2N−i−1) and

ζ4 =
2N−1∑

i=0

ψ2N−1−i φ̄i .

In the above, we define φ0 = ψ0 = 0 for notational
brevity.

For St , a solution of (27) at μ = 0, we define

z(t) = 〈p(θ),St 〉, and zw(t, θ)

= St (θ) − 2Real(z(t)q(θ)).

Then, on the center manifold C0, we have w(t, θ) =
w(z(t), z̄(t), θ), where

w(z(t), z̄(t), θ) = w20(θ)
z2

2
+ w02(θ)

z̄2

2
+ w11(θ)zz̄ + · · · . (31)

For the center manifold C, the vectors z and z̄ locally
point along p and p̄, respectively. Further,w is real if St
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is. And in such a case, we obtain only real solutions. As
a consequence of the existence of C0, we can rewrite
the standard form of an OpDE (27) as an ODE in one
complex variable on the center manifold. Specifically,
at the critical value of the bifurcation parameter, the
said ODE can be written as

ż(t) = 〈p,ASt + RSt 〉 ,

= jω0z(t) + p̄(0).F (w(z, z̄, θ) + 2Real(z(t)q(θ))) ,

= jω0z(t) + p̄(0).F0(z, z̄), (32)

= jω0z(t) + g(z, z̄). (33)

The term g can be written as

g(z, z̄) = p̄(0).F0(z, z̄)

= g20
z2

2
+ g02

z̄2

2
+ g11zz̄ + g21

z2 z̄

2
+ · · · .

(34)

Note that, from the definition of w, we have ẇ =
Ṡt − żq− ˙̄zq̄ . This can be simplified using (27) and (33)
as:

ẇ =
{
Aw − 2Real( p̄(0).F0q(θ)), θ ∈ [−τ, 0),

Aw − 2Real( p̄(0).F0q(0)) + F0, θ = 0.

Using (31), we rewrite this as

ẇ = Aw + H(z, z̄, θ), (35)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H02(θ)

z̄2

2
+ H11(θ)zz̄

+ H21(θ)
z2 z̄

2
+ · · · . (36)

Note that ẇ = wz ż + wz̄ ˙̄z is true in the vicinity of
the origin, on the center manifold. Thus, we use (31)
and (33) in place ofwz ż. Further, we equate this to (35)
and obtain

(2 jω0 − A)w20(θ) = H20(θ), (37)

− Aw11 = H11(θ), (38)

− (2 jω0 + A)w02(θ) = H02(θ). (39)

Observe that

St (θ) = w20(θ)
z2

2
+ w02(θ)

z̄2

2
+ w11(θ)zz̄

+ zq(θ) + z̄q̄(θ) + · · · .

In order to approximate the system dynamics, it suf-
fices to use the coefficients of z2, z̄2, z2 z̄, and zz̄ [38].
Thus, henceforth, we only make use of these terms in
various required expansions.

To understand the effect of quadratic and cubic terms
of theTaylor’s series expansion,we substitute the afore-
mentioned terms appropriately in the nonlinear terms
of (25) and separate the terms as required. Therefore,
for each i ∈ {1, 2, . . . , 2N }, we have the nonlinearity
term to be

Fi = F20i
z2

2
+ F02i

z̄2

2
+ F11i zz̄ + F21i

z2 z̄

2
, (40)

where, for i ∈ {1, 2, . . . , N }, the coefficients are given
by

F20i = − 4

(
m

ẋ0
+ l

bi−1

)

β∗
i−1e

−2 jω0τi−1

+ 4

(
m

ẋ0
+ l

bi

)

β∗
i e

−2 jω0τi ,

− 4

(
m

ẋ0

)

β∗
i−1(i − 2)e−2 jω0τi−1

+ 4

(
m

ẋ0

)

β∗
i (i − 1)e−2 jω0τi

F02i = − 4

(
m

ẋ0
+ l

bi−1

)

β∗
i−1e

2 jω0τi−1

+ 4

(
m

ẋ0
+ l

bi

)

β∗
i e

2 jω0τi ,

− 4

(
m

ẋ0

)

β∗
i−1(i − 2)e2 jω0τi−1

+ 4

(
m

ẋ0

)

β∗
i (i − 1)e2 jω0τi

F11i = − 2

(
m

ẋ0
+ l

bi−1

)

β∗
i−1 + 2

(
m

ẋ0
+ l

bi

)

β∗
i ,

F21i = − 2

(
m

ẋ0
+ l

bi−1

)

β∗
i−1w20(i−1)(−τi−1)e

jω0τi−1

− 4

(
m

ẋ0
+ l

bi−1

)

β∗
i−1w11(i−1)(−τi−1)e

− jω0τi−1

+ 2

(
m

ẋ0
+ l

bi

)

β∗
i w20i (−τi )e

jω0τi
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+ 4

(
m

ẋ0
+ l

bi

)

β∗
i w11i (−τi )e

− jω0τi

−
(
m

ẋ0

)

β∗
i−1

i−2∑

n=1

w20n(−τi−1)e
jω0τi−1

−
(
m

ẋ0

)

β∗
i−1

i−2∑

n=1

w20(i−1)(−τi−1)e
jω0τi−1

−
(
2m

ẋ0

)

β∗
i−1

i−2∑

n=1

w11n(−τi−1)e
− jω0τi−1

−
(
2m

ẋ0

)

β∗
i−1

i−2∑

n=1

w11(i−1)(−τi−1)e
− jω0τi−1

+
(
m

ẋ0

)

β∗
i

i−1∑

n=1

(w20n(−τi ) + w20i (−τi ))e
jω0τi

+
(
2m

ẋ0

)

β∗
i

i−1∑

n=1

(w11n(−τi ) + w11i (−τi ))e
− jω0τi

− (2e− jω0τi β∗
i )

(
2m(m − 1)(i − 1)

3(ẋ0)2
+ lm(i − 1)

3(bi )(ẋ0)

)

− (2e− jω0τi β∗
i )

(
lm

3(bi )(ẋ0)

)

+ (2e− jω0τi−1β∗
i−1)

(
lm

3(bi−1)(ẋ0)

)

− (2e− jω0τi β∗
i )

(
m(m − 1)

2(ẋ0)2
+ m(m − 1)(i − 1)2

(ẋ0)2

)

+ (2e− jω0τi−1β∗
i−1)

(
m(m − 1)

2(ẋ0)2
+ m(m − 1)(i − 2)2

(ẋ0)2

)

+ (2e− jω0τi−1β∗
i−1)

(
2m(m − 1)(i − 2)

3(ẋ0)2
+ lm(i − 2)

3(bi−1)(ẋ0)

)

.

Next, we writeF0 = [F1 F2 · · · FN ]T . From this,
g is obtained as

g(z, z̄) = p̄(0).F0 = B̄
N∑

l=1

ψ̄N−lFl . (41)

Plugging in Fi ’s from (40) in (41), we obtain

gx = B̄
N∑

l=1

ψ̄N−lFxl , (42)

where x ∈ {20, 02, 11, 21}. Using (42), the cor-
responding coefficients can be computed. Note that
obtaining g21 requires w20(θ) and w11(θ). To that end,
we simplify H as

H(z, z̄, θ) = −Real ( p̄(0).F0q(θ)) ,

= −
(

g20
z2

2
+ g02

z̄2

2
+ g11zz̄ + · · ·

)

q(θ)

−
(

ḡ20
z̄2

2
+ ḡ02

z2

2
+ ḡ11zz̄ + · · ·

)

q̄(θ).

This is true for θ ∈ [−τ, 0). By comparing with (36),
we obtain

H20(θ) = −g20q(θ) − ḡ20q̄(θ), (43)

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (44)

From (29), (37) and (38), we obtain:

ẇ20(θ) = 2 jω0w20(θ) + g20q(θ) + ḡ02q̄(θ), (45)

ẇ11(θ) = g11q(θ) + ḡ11q̄(θ). (46)

The solution to above ODEs is given by

w20(θ) = − g20
jω0

q(0)e jω0θ − ḡ02
3 jω0

q̄(0)e− jω0θ + e e2 jωθ ,

(47)

w11(θ) = g11
jω0

q(0)e jω0θ − ḡ11
jω0

q̄(0)e− jω0θ + f, (48)

where e and f are to be determined.
We define F̃20 � [F201 F202 · · · F20N ]T . Equat-

ing (37) and (43) yields 2 jω0e − A (
e e2 jω0θ

) = F̃20.
On simplifying this operator equation, we obtain

ei = F20i − κβ∗
i−1ei−1

2 jω0 + κβ∗
i

, and, eN+i = F20(N+i) + κτei
2 jω0

,

(49)

for i ∈ {1, 2, . . . , N }. Here, we set e0 = 0 for nota-
tional brevity.

We next define F̃11 � [F111 F112 · · · F11N ]T and
equate (38) to (44), to obtain Af = −F̃11. In order to
solve this, we make the following assumption:

F20iτ + κβ∗
i−1fi−1 + β∗

i F11(N+i) = 0,
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for i ∈ {1, 2, . . . , N−1}.With this assumption, solving
the aforementioned operator equation yields, for i ∈
{1, 2, . . . , N },

fi = F11i + κβ∗
i−1fi−1

κβ∗
i

, and, fN+i = c, (50)

where c is an arbitrary constant, set to zero for simplic-
ity. We also set f0 = 0 for notational brevity.

Substituting for e and f from (49) and (50) in (47)
and (48), respectively, we obtain w20(θ) and w11(θ).
These help compute g21. Byα

′
(0),wedenote the veloc-

ity of the eigenvalue in the Argand plane, given by (19).
Thus, we can compute

c1(0) = j

2ω0

(

g20g11 − 2|g11|2 − 1

3
|g02|2

)

+ g21
2

,

μ2 = −Re[c1(0)]
α

′
(0)

, β2 = 2Re[c1(0)].

Here, c1(0) is known as the Lyapunov coefficient
and β2 is the Floquet exponent. These quantities are
useful since they help infer the type of theHopf bifurca-
tion and the asymptotic orbital stability of the emergent
limit cycles [38]. Specifically, we have

(i) If μ2 > 0, then the bifurcation is supercritical,
while if μ2 < 0, then the bifurcation is subcritical.

(ii) If β2 > 0, then the limit cycle is asymptotically
orbitally unstable, whereas if β2 < 0, then the limit
cycle is asymptotically orbitally stable.

Some details of the derivation can be found in the
technical report [49].

To obtain some insight into the type of the Hopf
bifurcation and the asymptotic orbital stability of the
emergent limit cycles for theCCFM,wemakeuse of the
scientific computation software MATLAB to compute
μ2 and β2 using the above equations. The parameter
values chosen and the corresponding values of μ2 and
β2 are as summarized below.

(1) N = 3, α1 = 0.8, α2 = 0.6, α3 = 0.5,
τ1 = 0.2, τ2 = τcr ≈ 0.26, τ3 = 0.6, b1 = 5,
b2 = 10, b3 = 15, m = 2, l = 1, ẋ0 = 5.
The computed values are μ2 = 2.77× 10−48 and
β2 = −1.51× 10−47. These values imply that the
2nd vehicle undergoes a supercritical Hopf bifur-
cation leading to asymptotically orbitally stable
limit cycles.

(2) N = 4, α1 = 0.5, α2 = 0.6, α3 = 0.7, α4 = 0.8,
τ1 = 0.5, τ2 = 0.4, τ3 = τcr ≈ 0.45, τ4 = 0.3,
bi = 20, i ∈ {1, 2, 3, 4}, l = 1, m = 2, ẋ0 = 10.
The computed values are μ2 = 5.39× 10−18 and
β2 = −1.71×10−17. Thus, the 3rd vehicle under-
goes a supercritical Hopf bifurcation leading to
asymptotically orbitally stable limit cycles.

(3) N = 10, αi = 0.6, i ∈ {1, 2, . . . , 10}, τi =
0.4 ∀i 
= 5, τ5 = τcr ≈ 0.07, bi = 25,
i ∈ {1, 2, . . . , 10}, l = 1, m = 2, ẋ0 = 30.
The computed values are μ2 = 1.6 × 10−32 and
β2 = −3.14 × 10−31. Note that the 5th vehicle
undergoes a supercritical Hopf bifurcation lead-
ing to asymptotically orbitally stable limit cycles.

(4) N = 50, αi = 0.6, i ∈ {1, 2, . . . , 50}, τi =
0.5 ∀i 
= 25, τ25 = τcr ≈ 1.05, bi = 10,
i ∈ {1, 2, . . . , 50}, l = 1, m = 2, ẋ0 = 5.
The computed values are μ2 = 9.1 × 10−39 and
β2 = −1.24× 10−38. Therefore, the 25th vehicle
undergoes a supercritical Hopf bifurcation lead-
ing to asymptotically orbitally stable limit cycles.

Indeed, computations for a wide range of parameter
values show that the CCFM loses local stability via a
supercritical Hopf bifurcation, and leads to asymptot-
ically orbitally stable limit cycles. This is in line with
results for theRCCFMpresented in [49,Version 3], and
generalizes them to the CCFM. Further, the supercrit-
ical nature of the bifurcation suggests that, if at all the
CCFM were to lose stability, one could regain stabil-
ity by an appropriate variation of any parameter as per
the stability condition (21). In turn, this could help the
upper longitudinal controller regain stability, in case
the system were to lose stability.

Next, we present numerically constructed bifurca-
tion diagrams to understand the effect of various param-
eters on the amplitude of the limit cycle.

8.1 Bifurcation diagrams

We next present bifurcation diagrams, numerically
constructed using the scientific computation software
MATLAB. We implement a discrete version of sys-
tem (13) with update time Ts = 0.01 s. We then record
the amplitude of the relative velocity in steady state
by varying the non-dimensional parameter κ in the
range [1, 1.05]. The resulting plot of the envelope of the
relative velocity as a function of the non-dimensional
parameter is called a bifurcation diagram.
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Fig. 3 Bifurcation diagram: Variation in the amplitude of rela-
tive velocity of the CCFM as the non-dimensional parameter κ

is varied, for l ∈ {0.95, 1, 1.05}

For illustration, we consider a single vehicle follow-
ing a lead vehicle whose equilibrium velocity is 10. For
the follower vehicle, we initialize the parameters as fol-
lows.α1 = 0.7,b1 = 20 andm = 2.We set the reaction
delay τ1 = τcr ≈ 0.45 to ensure that κcr = 1. Next, we
vary the non-dimensional parameter in the vicinity of
unity, and record the resulting amplitude of the relative
velocity for l = 0.95, 1, 1.05. The resulting bifurcation
diagram is portrayed in Fig. 3.

It can be inferred from Fig. 3 that, there is no mono-
tonicity in the amplitude of relative velocity with an
increase in the nonlinearity parameter l. This is unlike
the result presented in [6], wherein monotonicity of
the amplitude of relative velocity with an increase inm
was shown numerically, for l = 0 (the RCCFM).While
Fig. 3 was constructed for m = 2, extensive computa-
tions reveal a lack of monotonicity in the amplitude of
limit cycle with an increase in l.

9 Simulations

We now present the simulation results for the CCFM
that serve to corroborate our analytical findings. We
make use of the scientific computation software MAT-
LAB to implement a discrete version of system (2) with
update time Ts = 0.01 s, thus simulating the CCFM.

We initialize the parameters with the following val-
ues. N = 4, α1 = 0.5, α2 = 0.6, α3 = 0.7,
α4 = 0.8, τ1 = 0.5, τ2 = 0.4, τ3 = τcr ≈ 0.45
and τ4 = 0.3. The leader’s velocity profile is consid-
ered to be 10(1− e−10t ), thus ensuring an equilibrium

v(
t)
,y
(t
)
( ×

10
− 3
)

Time (in seconds)

−1
0

0
10

60 65 70

v3(t)
y3(t)

Fig. 4 Simulations: Emergence of limit cycles in the spacing
error y(t) and the relative velocity v(t), as predicted by the anal-
ysis

velocity of 10. Further, we fixm = 2, l = 1 and desired
headways bi = 20 ∀i . Figure 4 shows the emergence of
limit cycles in the state variables of the third vehicle, as
predicted by our analysis. Also notice the phase shift
between the relative velocity and headway solutions,
as a consequence of obtaining the latter by integrating
the former.

Next,we validate that theCCFMdoes indeed exhibit
non-oscillatory convergence to the all-zero equilib-
rium, as predicted by (23). We also compare the rate of
convergence when the reaction delay satisfies τ < τ ∗
and τ > τ ∗, as discussed in Sect. 7. We make use of
the same parameter values as above, except for reaction
delays; these are identically set to τ1 = 1/(3eβ∗) and
τ2 = 3/(eβ∗). Figure 5a, b portray the solutions for
relative velocity and headway, respectively. To ensure
comparison with Fig. 2, these plots correspond to the
third vehicle, i.e., α = 0.7 s−1 and l = 1. Notice that τ1
and τ2, which are not in the vicinity of τ ∗ correspond-
ing to the third vehicle, as seen from Fig. 2. Hence,
the solutions corresponding to τ1 attain their equilibria
much faster than those pertaining to τ2.

10 Concluding remarks

In this paper, we highlighted the importance of delayed
feedback in determining the qualitative dynamical
properties of a platoon of vehicles traversing an infi-
nite highway. Specifically, we analyzed the classical
car-following model (CCFM) in three regimes—no
delay, small delay and arbitrary delay. In the absence of
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Fig. 5 Simulations:Non-oscillatory and oscillatory solutions of the CCFM. a Portrays the relative velocity solutions, whereas b shows
the spacing error solutions. These serve to validate our analytical insight

delays, the CCFM was shown to be always locally sta-
ble. Then, the analysis for small-delay regime yielded
a sufficient condition for the local stability of the
CCFM, whereas we obtained the necessary and suf-
ficient condition for the local stability of the CCFM in
the arbitrary-delay regime.

We then proved that the CCFM undergoes a loss
of local stability via a Hopf bifurcation, thus result-
ing in the emergence of limit cycles in system dynam-
ics. Physically, these limit cycles manifest as back-
propagating congestion waves on highways. Thus, in
the context of human-driven vehicles, where param-
eters cannot be tuned, our work enhances the phe-
nomenological insight into “phantom jams.” Therein,
we used an exogenous and non-dimensional parameter
to capture any inter-dependence among various param-
eters.

We then derived the necessary and sufficient con-
dition for non-oscillatory convergence of the CCFM.
Designing control algorithms that conform to this con-
dition ensures that jerky vehicular motions are avoided,
thus guaranteeing smooth traffic flow and improving
ride quality. Next, we characterized the rate of con-
vergence of the CCFM and highlighted the three-way
trade-off between local stability, non-oscillatory con-
vergence and the rate of convergence.

Finally, we studied the nonlinear oscillations in sys-
tem dynamics that emerge as the CCFM undergoes a
Hopf bifurcation. To that end, we outlined an analyti-
cal framework to establish the type of the Hopf bifur-
cation and the asymptotic orbital stability of the limit

cycles usingPoincaré normal forms and the centerman-
ifold theory. We then numerically brought forth the
supercritical nature of the bifurcation resulting in stable
limit cycles. Stability charts, numerically constructed
bifurcation diagrams and MATLAB simulations were
used to complement the analyses. Additionally, using a
combination of numerics and analysis, we highlighted
various trade-offs inherent among various parameters.
Thus, we provided design guidelines for the upper lon-
gitudinal control algorithm of a self-driven vehicle.
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