
Nonlinear Dyn (2019) 96:123–144
https://doi.org/10.1007/s11071-019-04779-z

ORIGINAL PAPER

Modelling of a vibro-impact self-propelled capsule in the
small intestine

Yao Yan · Yang Liu · Luigi Manfredi · Shyam Prasad

Received: 14 February 2018 / Accepted: 12 January 2019 / Published online: 12 February 2019
© The Author(s) 2019

Abstract This paper studies themodelling of a vibro-
impact self-propelled capsule system in the small
intestinal tract. Our studies focus on understanding the
dynamic characteristics of the capsule and its perfor-
mance in terms of the average speed and energy effi-
ciency under various system and control parameters,
such as capsule’s radius and length, and the frequency
andmagnitude of sinusoidal excitation.Wefind that the
resistance from the small intestine will become larger
once the capsule’s size or its instantaneous velocity
increases. From our extensive numerical calculations,
it is suggested that increasing forcing magnitude or
choosing forcing frequency greater than the natural fre-
quency of the inner mass can benefit the average speed
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of the capsule, and the radius of the capsule should
be slightly larger than the radius of the small intestine
in order to generate a reasonable resistance for cap-
sule progression. Finally, the locomotion of the capsule
along an inclined intestinal tract is tested, and the best
radius and forcing magnitude of the capsule are also
determined.

Keywords Vibro-impact · Non-smooth dynamical
system · Self-propulsion · Capsule endoscope ·
Capsule robot

1 Introduction

Since its introduction into clinical practice 15years
ago, capsule endoscopy (CE) has become the primary
modality for examining the surface lining of the small
intestine, an anatomical site previously considered to
be inaccessible to clinicians. However, all the avail-
able CEs have passive locomotion systems, and their
reliance on peristalsis for passage through the intestine
leads to significant limitations, in particular due to their
unpredictable and variable locomotion velocities. For
example, intermittent high transit speeds lead to incom-
plete visualisation of the intestinal surface, resulting in
the potential for significant abnormalities to be missed.
To improve the proportion of the lining that is visu-
alised, patients must fast for 8–12h before the proce-
dure and for at least 4h after ingestion of the capsule.
In most cases, they are also required to drink 1–2L of
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polyethylene glycol solution 12h before the examina-
tion, in order to clear residual intestinal contents. Fur-
thermore, the time taken for the capsule to pass varies
from 14 to 70h, with a transit time of 2–5h through
the oesophagus and stomach, 2–6h for the small intes-
tine, and 10–59h for the large intestine [1]. Reviewing
the images obtained during such lengthy transit periods
means that the procedure of passive CE is considered
both time-consuming and burdensome for clinicians.
Considering all these drawbacks, an active locomotive
mechanism for CE can dramatically reduce the proce-
dure time and allow the endoscopist to focus the exam-
ination on areas of interest. In this study, we propose
the model of an on-board vibro-impact self-propelled
capsule system for examining the small intestine. The
aim of this study is to understand the dynamics and
efficient control of the system in the small intestinal
environment, so that the results presented in this paper
can be utilised for prototype design and fabrication.

To design a locomotive mechanism for such a small
capsule is a challenging task due to its limited on-board
space. Smart materials [2] and small-scale DC motors
have been used to address this issue. For example, a CE
with three active flexible legs controlled by means of
an on-board microcontroller was constructed by using
shape memory alloy [3]. The micro-actuation concept
of the shape memory alloy was also used for the devel-
opment of a 6-legged endoscopic capsule [4]. Legged
CEs using on-board DCmotors have been designed for
4 legs [5] and 12 legs [6,7]. A small DCmotor has been
included in a small capsule to simultaneously control 8
polymer treads located on the outer surface [8]. In [9], a
legged capsule controlled by anon-boardDCmotor and
a slot-followermechanismwith a lead screwwas devel-
oped. Lin and Yan [10] proposed an inch-like locomo-
tion mechanism by using DC motor-driven legs and
extension/retraction of theCEbody.De Falco et al. [11]
reported theirworkof a swimmingwireless capsule that
utilised four propellers independently activated by DC
motors. In addition to such on-board locomotive mech-
anisms, externalmagnetic fields have also been adopted
for capsule propulsion, see, e.g. [12–14]. Manipulation
of the external magnet can alter the locomotive direc-
tion and orientation of the capsule. Such on-board and
external driving mechanisms make it feasible to either
move a capsule in a limited region or anchor it at a
fixed location. However, the fabrication, manipulation,
system reliability, and cost of such complex devices are
the main barriers of development. Our work addresses

these issues by employing the so-called vibro-impact
self-propulsion approach [15–17]. Its advantages over
the locomotion solutions described above include the
fact that all the components can be located inside the
capsule and no external accessories are required. This
could potentially allow for simpler sterilisation of the
capsule so that make it reusable. In addition, the cost
of the components needed to produce this locomotion
solution is small. Together, these attributes may sig-
nificantly reduce the overall cost of CE, making it an
attractive proposition to healthcare providers in both
developed and developing countries.

The principle of vibro-impact self-propulsion is that
bidirectional rectilinear motion of the capsule can be
obtainedbyutilising internal vibration and impact force
in the presence of external resistance. A prototype of
the capsule robot propelled by internal interactive force
and external friction was designed by Li et al. [18], and
its velocity-dependent frictional resistance inside the
intestine was experimentally investigated [19]. Carta
et al. [20] developed a vibrational propelled capsule
composed of a motor with an eccentric mass, which
can produce a reduction in the friction with the envi-
ronment. Themotion of a complexmicro-robot exhibit-
ing impact and friction was studied numerically and
experimentally using non-smooth multibody dynam-
ics by Nagy et al. [21]. They found that the stiction
and sliding of the robot were governed by the fre-
quency of excitation and the friction, while impact
around the resonant frequency of the oscillator does
not contribute to the propulsion of the robot. Numer-
ical simulations and experimental investigations of a
vibration-driven capsule system under four different
friction models were studied by Wang et al. [22]. This
group have also considered the planar locomotion of a
vibration-driven capsule with two internal masses [23].
In the current paper, we will discuss our vibro-impact
capsule, which employs additional internal impact to
enhance progression [16], and analyse its dynamic
characteristics in a pig small intestine. Numerical stud-
ies [24,25] suggest that forward and backward progres-
sion of the capsule can be controlled under either fast
progression or energy-saving modes in different fric-
tional environments. Preliminary experimental studies
[26,27] have demonstrated that the vibro-impact self-
propulsion technique could be a potential alternative
modality for active CE, and in particular, the provision
of both forward and backward progression can improve
both the quality and the sensitivity of clinical exami-
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nations. It is, therefore, useful to understand how the
vibro-impact self-propelled capsule can be adapted to
the intestinal environment in terms of selection of sys-
tem and control parameters, such as mass ratio, stiff-
ness ratio, and frequency and amplitude of excitation
for prototyping and testing.

The remainder of this paper is organised as follows:
In Sect. 2, the resistances exerted on the capsule by the
intestinal tract are firstly studied and then employed
in mathematical modelling of the vibro-impact capsule
system. In Sect. 3, bifurcation analysis is performed
to study the influences of various parameters on cap-
sule dynamics and performance in terms of average
velocity and energy efficiency. Finally, some conclud-
ing remarks are drawn in Sect. 4.

2 Mathematical modelling

In this work, we consider the two-degrees-of-freedom
dynamical capsule system as shown in Fig. 1a, where
a movable internal mass m1 is driven by a harmonic
excitation with forcing magnitude Pd and frequency
�. The internal mass interacts with a rigid capsule m2

via a linear springwith stiffness k and a viscous damper
with damping coefficient c. The capsule has a cylindri-
cal body with a hemispherical head and tail. Impact
between the internal mass and a weightless plate con-
nected to the capsule through a secondary spring with
stiffness k1 may occur, once their relative displacement
x1 − x2 is larger than or equal to the gap g1, where x1
and x2 are the absolute displacements of the internal
mass and the capsule, respectively.

2.1 Resistances

As the diameter of the capsule is larger than the inner
diameter of the small intestine, the capsule stretches the
intestinal tract to yield hoop stress. This hoop stress
causes normal and frictional forces on the capsule
yielding environmental resistance which prevents the
progression of the capsule. In addition, the gravity of
the capsule which exerts normal pressure on the intesti-
nal tract also adds additional value to the resistance. It
is therefore that the overall resistance on the capsule
can be written as

Fr = Fhoop + Fgravity, (1)

where Fhoop and Fgravity represent the resistances intro-
duced by hoop stress and capsule gravity, respectively.
As depicted in Fig. 1b, the resistance due to hoop stress
can be written as

Fhoop = − sign(v2)(FHp+FTp+FHf+FBf+FTf), (2)

where v2 is capsule speed, FHp and FTp are the normal
pressures of the intestine on capsule head and tail, and
FHf , FBf and FTf are the frictional forces exerted on
the head, the body, and the tail, along the axial direc-
tion of the capsule, respectively. As the cross section of
the small intestine is expanded by the capsule yielding
tensile stress, hoop stress will depend on the geomet-
ric deformation of the intestinal wall. The geometric
parameters of the capsule are shown in Fig. 1b, where
L is the length of the capsule, Rc is the radius of the
head, the body, and the tail, Ri is the original inner
radius of the intestinal tract, φc is the angle of the point
from where the intestinal tract starts to surround the
capsule, and xc is the distance from the contact point
to the centre of the head (or the tail).

As shown in Fig. 2a, a local frame {x, o, R(x)} is
employed to calculate hoop stress in terms of variation
of the inner intestinal radius, where x ∈ [0, 2xc + L],
xc = Rc cosφc, and cosφc =

√
R2
c − R2

i /Rc. When
the capsule moves in a constant speed, according to
this local frame, the intestine is stretched to yield the
hoop strain given by

ε(x) = Ri − R(x)

Ri
, (3)

and therefore, the hoop stress which can be expressed
using the five-element model [19,28] as

τ(x) = ε(x)

(
E1e

− E1x
η1v2 + E2e

− E2x
η2v2 + E3

)
, (4)

where E1, E2, and E3 represent the elastic property of
the intestine, and η1 and η2 are viscosity coefficients.
It is therefore that, as can be seen from Fig. 2b, the
pressure between the capsule and the intestine due to
hoop stress can be written as

q(x) = τ(x)tm
R(x)

, (5)
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Fig. 1 (Colour online) a Physical model of the vibro-impact capsule in small intestine. b Resistances and geometric parameters of the
capsule. The capsule is depicted in cyan with black shell, and the intestinal tract is displayed in light red

Fig. 2 (Colour online) a Hoop stress on the head and the body of the capsule. b Cross section of the intestinal tract. The intestinal tract
without stretch is depicted in grey, and the tract with stretch is shown in light red

where tm is the mean thickness of the intestine. Con-
sider that for every infinitesimal increment of x as
shown in Fig. 2a, the corresponding normal pressure
can be written as

dp(x) = q(x)dA(x) = q(x)2πR(x)
√
1 + R′(x)2dx,

(6)

where R′(x) is the derivative of R(x) with respect to
x [29]. Thus, the pressure on capsule head along the
x-axis can be expressed as

FHp =
∫ xc

0
cosφ(x)dp(x), (7)

where cosφ(x) = (xc − x)/Rc for x ∈ [0, xc], and
the friction force generated by normal pressure can be
obtained using

FHf =
∫ xc

0
μ sin φ(x)dp(x), (8)

where μ is the Coulomb friction coefficient. Similarly,
the resistance on capsule tail can be obtained using

FTp =
∫ 2xc+L

xc+L
cosφ(x)dp(x), (9)

and

FTf =
∫ 2xc+L

xc+L
μ sin φ(x)dp(x), (10)

where x ∈ [xc+L , 2xc+L] and cosφ(x) = (xc+L−
x)/Rc < 0, which indicates a negative resistance due
to the direction of the pressure on the tail. In addition,
the frictional force on capsule body due to hoop stress
can be written as

FBf =
∫ xc+L

xc
μdp(x). (11)
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Now, applying Eqs. (3–6) to (2), the resistance due
to hoop stress can be written as

Fhoop = − sign(v2)

(∫ xc

0
cosφ(x)dp(x)

+
∫ 2xc+L

xc+L
cosφ(x)dp(x)

+
∫ xc

0
μ sin φ(x)dp(x)

+
∫ xc+L

xc
μdp(x) +

∫ 2xc+L

xc+L
μ sin φ(x)dp(x)

)

= − sign(v2)

(
2π tmE1

(
1

Ri

(
η1|v2|
E1

)2

+
(

μ − xc
Ri

)(
η1|v2|
E1

)
− Ri

+ e
− E1

η1|v2 | xc
(

− 1

Ri

(
η1|v2|
E1

)2
− μ

Rc
Ri

(
η1|v2|
E1

)

+ Rc +
(

E1
η1|v2| − μ

Ri

) ∫ 0

−xc
e
− E1ξ

η1|v2 |
√
R2
c − ξ2dξ

)

+ e
− E1

η1|v2 | (xc+L)

(
1

Ri

(
η1|v2|
E1

)2
+ μ

Rc
Ri

(
η1|v2|
E1

)

− Rc +
(

E1
η1|v2| − μ

Ri

) ∫ xc

0
e
− E1ξ

η1|v2 |
√
R2
c − ξ2dξ

)

+ e
− E1

η1|v2 | (2xc+L)

(
− 1

Ri

(
η1|v2|
E1

)2

−
(

μ + xc
Ri

)(
η1|v2|
E1

)
+ Ri

))

+ 2π tmE2

(
1

Ri

(
η2|v2|
E2

)2

+
(

μ − xc
Ri

)(
η2|v2|
E2

)
− Ri

+ e
− E2

η2 |v2 | xc
(

− 1

Ri

(
η2|v2|
E2

)2
− μ

Rc
Ri

(
η2|v2|
E2

)

+ Rc +
(

E2
η2|v2| − μ

Ri

) ∫ 0

−xc
e
− E2ξ

η2 |v2 |
√
R2
c − ξ2dξ

)

+ e
− E2

η2 |v2 | (xc+L)

(
1

Ri

(
η2|v2|
E2

)2

+ μ
Rc
Ri

(
η2|v2|
E2

)
− Rc +

(
E2

η2|v2| − μ

Ri

)

×
∫ xc

0
e
− E2ξ

η2 |v2 |
√
R2
c − ξ2dξ

)

+ e
− E2

η2 |v2 | (2xc+L)

(
− 1

Ri

(
η2|v2|
E2

)2

Table 1 Physical parameters of the pig small intestine (adopted
from [28])

Parameter Value Unit

Ri 3.9 (mm)

tm 3 (mm)

E1 7 (kPa)

E2 6.3 (kPa)

E3 9.2 (kPa)

η1 125.9 (kPa s)

η2 10.3 (kPa s)

μ 0.08 (–)

−
(

μ + xc
Ri

) (
η2|v2|
E2

)
+ Ri

))

+ 2π tmE3μ

(
xc − R2

c
Ri

tan−1
(
xc
Ri

)
− L

Rc − Ri
Ri

))
.

(12)

The frictional resistance caused by the gravity of the
capsule can be given as

Fgravity = − sign(v2) (m1 + m2) gμ cos γ, (13)

where g and γ are the acceleration due to gravity and
the inclination of the intestine, respectively.

Physical parameters of the pig small intestinal tract
used in the following simulations are listed in Table 1.
Based on these parameters, calculations of the resis-
tances due to hoop stress and the gravity of the capsule
with respect to capsule velocity are presented in Fig. 3,
where Fhoop in Fig. 3a is a typical Stribeck friction and
Fgravity in Fig. 3b is a classical Coulomb friction. Fig-
ure 3c, d illustrates variations of the resistance caused
by the hoop stress Fhoop in terms of capsule’s radius Rc

and length L , respectively. From these two figures, one
can observe that both the threshold and the maximal
value of the resistance will increase if either Rc or L
increases, and the resistance Fhoop is more sensitive to
capsule’s radius Rc.

2.2 Equations of motion

As depicted in Fig. 1, a periodic external force,
Pd cos(�t), is applied on the inner massm1 to drive the
capsule m2. The inner mass interacts with the capsule
via a damped spring at the tail and a secondary spring
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Fig. 3 Resistances introduced by a the hoop stress Fhoop and b
capsule’s gravity Fgravity as a function of the capsule velocity v2

calculated for Rc = 4 (mm), L = 10 (mm), g = 9.81 (m/s2) and

m1 + m2 = 0.04 (kg). Variations of the hoop resistance Fhoop
under varying c radius Rc and d length L

at the head of the capsule. Due to the gap between
the mass and the secondary spring, g1, the interac-
tion between m1 and m2 keeps switching between two
phases: no contact (x1 − g1 − x2 < 0) and contact
(x2 − g1 − x1 ≥ 0). Therefore, the mutual interactive
force between the inner mass and the capsule can be
calculated as

Fi =
{

−c(ẋ1 − ẋ2) − k(x1 − x2), for x1 − g1 − x2 < 0

−c(ẋ1 − ẋ2) − k(x1 − x2) − k1(x1 − g1 − x2), for x2 − g1 − x1 ≥ 0
(14)

or

Fi = −c(ẋ1 − ẋ2)− k(x1 − x2)− H1k1(x1 − g1 − x2),

(15)

where H1 is the Heaviside function given by

H1 =H(x1 − g1 − x2). (16)

Here, a detailed considerationof these switchingphases
can be found from [16,24]. Finally, the comprehensive
equations of motion for the vibro-impact capsule sys-
tem are written as

ẋ1 = v1,

v̇1 = 1
m1

[Pd cos(�t) + Fi ] − g sin γ,

ẋ2 = v2,

v̇2 = − 1
m2

[Fi − Fhoop − Fgravity] − g sin γ.

(17)
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3 Bifurcation analysis

As described by Eq. (17), a periodic driving force is
implemented to overcome the environmental resistance
for capsule progression. Intuitive speaking, a large driv-
ing force and a small resistance are preferred for fast
capsule progression. As can be seen from Fig. 3, resis-
tance becomes larger once the radius or the length of
the capsule increases. Therefore, our bifurcation anal-
ysis in this paper will focus on the driving force and
the dimension of the capsule system. For bifurcation
diagrams, we have adopted the velocity v∗

1–v
∗
2 , which

is a projection of the Poincaré map on the v1–v2 axis,
as a function of the magnitude/frequency of the driving
force. Calculations were performed for 300 cycles of
the driving force, and the data for the first 280 cycles
were omitted to ensure steady-state responses, whereas
the next 20 values of the relative velocity, v∗

1–v
∗
2 , were

plotted in bifurcation diagrams.
In order to study the capsule’s performance in the

small intestine, the average speed of progression given
by

vavg = x2(NT ) − x2(0)

Nt
(18)

and the energy efficiency expressed as

xE = x2(NT ) − x2(0)∫ NT
0 Pd cos(�t)dt

(19)

were calculated, where N and T = 2π
�

are the number
of cycles and the period of driving force, respectively.
For simplicity, the abbreviation P-m-n is used to denote
the period-m motion with n impacts per period of the
driving force.

3.1 Influence of intestinal resistances

Our first numerical study has focused on the dynamics
of the capsule under various magnitudes of the driv-
ing force, Pd, as shown in Fig. 4. As can be seen
from Fig. 4a, most of the capsule responses are P-1-
1, except the P-2-2 motion for Pd ∈ [2.7, 6.7] (mN). In
Fig. 4b, our calculations show that the average progres-
sion speed of the capsule increases with the increase
in magnitude of the driving force until Pd ≥ 14.4
(mN) from where the capsule gradually slows down

its forward motion. When Pd ≤ 0.4 (mN), the driving
force is too small such that the capsule cannot over-
come its intestinal resistances. Thereafter, as shown in
Fig. 4c, the energy efficiency, xE , experiences a rapid
growth until Pd = 2.7 (mN) when a period doubling
of the capsule is encountered. It is obvious that the P-
2-2 motion weakens capsule’s performance in terms
of energy consumption. As the magnitude of the driv-
ing force increases further, a reverse period doubling
is observed at Pd = 6.6 (mN) followed by a P-1-1
response of the capsule with decreased energy effi-
ciency.

When the radius of the capsule increases slightly
from Rc = 3.91 (mm) to4 (mm), the bifurcationpattern
presented in Fig. 5a becomes more complex. After the
first perioddoubling recorded at Pd = 6.6 (mN), a graz-
ing bifurcation occurs to yield the coexistence of P-2-2
and P-2-3 motions for Pd ∈ [6.8, 9]. The P-2-2 motion
disappears next, leaving only the P-2-3 motion which
then bifurcates into a P-4-6 motion through the second
period doubling at Pd = 8.5 (mN) as shown in Fig. 5g,
n. As the magnitude of the driving force Pd increases,
the motion of the capsule becomes chaotic as shown
in Fig. 5h, o. Thereafter, two successive bifurcations
of reverse period doubling are observed at Pd = 12.4
and 14.6 (mN), which yield a P-4-6 and P-2-3 motions
as demonstrated in Fig. 5i, j, respectively. Comparing
the average velocity shown in Fig. 5b, as the thresh-
old of the resistances elevated by the increase in cap-
sule’s radius, Rc, the starting point of capsule progres-
sion is postponed from Pd = 0.5 (mN) to 1.2 (mN),
which means that a larger driving force is required to
overcome the external resistance. With respect to the
increase of Pd, the average capsule velocity, vavg, keeps
growing, with a sudden jump induced by the grazing
bifurcation at Pd = 7 (mN). It is remarkably shown in
Fig. 5b that a larger resistance (i.e. a larger radius of
the capsule) does not always result in a slower capsule
progression. When Pd keeps increasing beyond 14.2
(mN), the average velocity of the capsule for Rc = 4
(mm) is faster than the one for Rc = 3.91 (mm). How-
ever, as shown in Fig. 5c, the capsule with a smaller
radius presents much higher energy efficiency.

As the radius of the capsule, Rc, increases further, as
shown in Fig. 6, the responses of the capsule become
simpler compared to the responses obtained for Rc = 4
(mm). As can be seen from Fig. 6a, b, both cases are
dominated by period-twomotion and the timeof impact
per period of excitation switches from three to two via
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Fig. 4 (Colour online) a
Bifurcation diagram, b
average velocity, and c
energy efficiency
constructed for varying the
magnitude of the driving
force, Pd calculated for
Rc = 3.91 (mm), L = 10
(mm), m1 = 0.001 (kg),
m2 = 0.003 (kg), k = 1
(N/m), k1 = 9 (N/m),
c = 0.001 (Ns/m), g1 = 1
(mm), � = 31 (rad/s), and
γ = 0 (rad). d–f The
trajectories of the capsule
system on the phase plane
(x1–x2, v1–v2), and g–i the
time histories of the inner
mass (black lines) and the
capsule (red lines) for
Pd = 2.6 (mN), 5 (mN),
and 8 (mN), respectively.
The locations of the impact
surface are shown by
vertical black lines, and
Poincaré sections are
marked by blue dots

grazing bifurcation. To illustrate the coexistence of two
different attractors observed in Fig. 6, the region for
Pd ∈ [6.8, 9] in Fig. 6b was marked by netted blue to
indicate the coexisting P-2-3 and P-2-2 motions. Their
corresponding basins of attraction at Pd = 7 (mN), 8
(mN), and 9 (mN) are presented in Fig. 6e–g, respec-
tively, where the initial displacement and velocity of
the capsule were fixed as zero, with only the initial
conditions of x1 and v1 varying. As can be seen from
the basins, there are two white regions for the initial
conditions leading to P-2-3 motion with all the other
purple region resulting in P-2-2 motion. As the forc-

ing magnitude increases, the basin of P-2-3 shrinks
slightly.

It also can be observed fromFig. 6c that the contribu-
tion of P-1-1 to capsule progression for both Rc = 4.2
(mm) and 4.4 (mm) is nearly invisible as their result-
ing driving forces are insufficient to make considerable
progression for the entire capsule system. In general,
the enlargement of Rc increases the resistances in the
intestinal tract and the energy dissipation of the cap-
sule, so degrades its energy efficiency.However, Fig. 6c
shows that the capsule with a larger radius might result
in a faster average velocity when the driving force is
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(k) (l) (m)

(d) (e) (f)

(a)

(c)

(b)

(g) (h) (i) (j)

(n) (o) (p) (q)

Fig. 5 (Colour online) a Bifurcation diagram, b average veloc-
ity, and c energy efficiency constructed for varying themagnitude
of the driving force, Pd calculated for Rc = 4 (mm), L = 10
(mm), m1 = 0.001 (kg), m2 = 0.003 (kg), k = 1 (N/m), k1 = 9
(N/m), c = 0.001 (Ns/m), g1 = 1 (mm), � = 31 (rad/s), and
γ = 0 (rad). Coexisting attractors are marked by circles. d–j

The trajectories of the capsule system on the phase plane (x1–
x2, v1–v2), and k–q the time histories of the inner mass (black
lines) and the capsule (red lines) for Pd = 5 (mN), 6.9 (mN),
8 (mN), 9 (mN), 10 (mN), 13 (mN) and 15 (mN), respectively.
The locations of the impact surface are shown by vertical black
lines, and Poincaré sections are marked by red dots
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(a)

(b)

(f)

(e)

(g)

(c)

(d)

Fig. 6 (Colour online) Bifurcation diagrams for a Rc = 4.2
(mm) and b 4.4 (mm), c average velocity, and d energy efficiency
constructed for varying the magnitude of the driving force, Pd,
where the rest of the parameters were chosen as L = 10 (mm),

m1 = 0.001 (kg), m2 = 0.003 (kg), k = 1 (N/m), k1 = 9
(N/m), c = 0.001 (Ns/m), g1 = 1 (mm), � = 31 (rad/s), γ = 0
(rad). Coexisting attractors are marked by circles. e–g Evolution
of basins of attraction for the blue netted area of b

sufficiently large. In addition, xE for Rc = 4.4 (mm)
in Fig. 6d is negative for Pd ∈ [4.9, 5.7] (mN), which
demonstrates a slow backward motion of the capsule.

As can be seen from Fig. 2, the capsule length,
L , has a significant influence on the resistance in the
intestinal tract. Intuitively, the longer of the capsule,
the larger resistance in the tract, so that the slower
of capsule progression. Figure 7 presents the aver-
age speeds and the energy efficiencies of the capsule
for various lengths of the capsule, and different peri-
odic responses of the capsule are marked in the fig-
ure. As can be seen from Fig. 7a, period doubling
is critical for capsule progression, since the period-
one motions produced by small driving force cannot
overcome the resistances in the tract, but visible pro-
gression can be observed after the period-doubling
bifurcation from P-1-1 to P-2-2. As Pd increases,
the P-2-2 motion on each curve successively bifur-
cates into P-2-3 via grazing bifurcation, except for
the red curve for L = 11 (mm). In addition, the

green and purple curves for long capsules (L = 14
(mm) and 17 (mm)) undergo another grazing bifurca-
tion when the driving force is sufficiently large, which
switches P-2-3 into P-2-2 again. Comparing both vavg
and xE , our calculations prove that a shorter capsule
has faster average speed and better efficiency for energy
consumption.

To sum up, it can conclude that increasing the driv-
ing force will benefit the average velocity of the cap-
sule but can decrease its corresponding energy effi-
ciency. It has also shown that increasing the capsule’s
size will enlarge the resistances on the capsule intro-
ducing more period-two responses for the system. The
occurrence of period-two motion always slows down
the capsule and decreases its energy efficiency. How-
ever, this does not mean that the capsule’s size needs
to be as small as possible, because larger resistances
can restrain capsule’s backward motion and produce
faster progression when the driving force is sufficiently
large.
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Fig. 7 (Colour online) a
Average velocity and b
energy efficiency as
functions of Pd calculated
for Rc = 4.3, m1 = 0.001
(kg), m2 = 0.003 (kg),
k = 1 (N/m), k1 = 9 (N/m),
c = 0.001 (Ns/m), g1 = 1
(mm), � = 31 (rad/s), and
γ = 0 (rad)

(a)

(b)

3.2 Influence of the magnitude and frequency of the
driving force

Figure 8 shows bifurcation diagram and average veloc-
ity of the capsule as functions of the driving fre-
quency,�. In order to use resonance to enhance capsule
progression, the branching parameter, �, was varied
around the natural frequency of the inner mass, i.e.

ωn =
√

k

m1
= 31.62 (rad/s).

When driving frequency is relatively low (� < 30
(rad/s)), it can be seen from Fig. 8a that the capsule
undergoes a series of successive grazing bifurcations
as� increases. Panels (c–f) demonstrate these bifurca-
tions showing the variation of capsule dynamics from
P-1-4 to P-1-1. These successive grazing bifurcations
induce a number of “jumps” on the average speed of
the capsule as presented in Fig. 8b, which remarkably
shows that vavg reaches its local maximum after each
“jump”. As� increases (� > 30 (rad/s)), a period dou-
bling which leads to a P-2-3 motion and a sudden drop
on vavg can be observed at� = 30.4 (rad/s). Thereafter,
two coexisting P-2-3 and P-2-2 motions were recorded
for � = 32.2 (rad/s). The P-2-2 motion bifurcates
again into a P-1-1 motion at � = 33 (rad/s) through a
reverse period doubling, and the average speed of cap-
sule progression, vavg, keeps increasing as the forcing
frequency increases.

As shown in Fig. 9, once the driving force is grad-
ually increased, the dynamics of the capsule becomes

more complex, with several regions having multistable
dynamics. When Pd is 12 (mN), the bifurcation pat-
tern of the system is almost the same as the one for
Pd = 8 (mN), except the cascade period doubling on
the period-2 branch, which induces a small parametric
window of chaos. Further increasing Pd to 16 (mN)
makes bifurcation pattern more complex as stronger
excitation incurs larger-amplitude vibration involving
two nonlinearities, impact and friction. As a result,
Fig. 9b displays more period-doubling bifurcations for
relatively low� (� < 30 (rad/s)).When� is relatively
high (� > 30 (rad/s)), the parametric regime for P-1-1
can be shrunk as the driving force increases.

It can be seen fromFig. 9c that, when Pd = 16 (mN),
the average progression of the capsule is remarkably
reduced once period-2 motion occurs. Comparing the
average velocities for different magnitudes of the driv-
ing force when � > 40 (rad/s), it shows that high fre-
quency and large magnitude of the driving force cannot
improve capsule progression, and this in turn degrades
the energy efficiency of the capsule as shown in Fig. 9d.
According to Fig. 9c, d, it can be concluded that the best
regime for the frequency of the driving force is the P-1-
2 motion around � = 20 (rad/s), where a compromise
between average speed and energy efficiency can be
made.

3.3 Influence of the natural frequency of the innermass

If the stiffness of the primary spring or the weight of
the inner mass varies, the natural frequency of the inner

123



134 Y. Yan et al.

(j) (k) (l) (m)

(c) (d) (e) (f)

(a)

(g) (h) (i)

(n) (o) (p)

Fig. 8 (Colour online) a Bifurcation diagram and b average
velocity constructed for varying the frequency of the driving
force,�, calculated for Rc = 4 (mm), L = 10 (mm),m1 = 0.001
(kg), m2 = 0.003 (kg), k = 1 (N/m), k1 = 9 (N/m), c = 0.001
(Ns/m), g1 = 1 (mm), γ = 0 (rad), and Pd = 8 (mN). Coex-
isting attractors are denoted by circles. c–i The trajectories of

the capsule system on the phase plane (x1–x2, v1–v2), and j–p
present the time histories of the inner mass (black lines) and the
capsule (red lines) for � = 13 (rad/s), 15 (rad/s), 20 (rad/s), 28
(rad/s), 32 (rad/s), 32.4 (rad/s), and 34 (rad/s). The locations of
the impact surface are shown by vertical solid lines, and Poincaré
sections are marked by blue dots

mass,ωn, will be changed. Then, the driving frequency,
�, should be adjusted accordingly to match such vari-
ations. In this subsection, we will study the influence
of the natural frequency of the inner mass on capsule
dynamics by varying the stiffness of the primary spring
and the weight of the inner mass. Firstly, bifurcation
diagrams for k = 0.5 (N/m), 0.7 (N/m), and 0.9 (N/m)

under variation of the driving frequency, �, are shown
in Fig. 10a–c, respectively. As can be seen from these
figures, the range for the driving frequency was chosen
in the vicinity of its corresponding natural frequency,
� ∈ [ωn − 10, ωn + 10]. In general, these bifurcations
are very similar, and the only difference is that the larger
the stiffness of the primary spring, the less the number

123



Modelling of a vibro-impact self-propelled capsule 135

Fig. 9 (Colour online)
Bifurcation diagrams for a
Pd = 12 (mN), b Pd = 16
(mN), c average velocity,
and d energy efficiency as
functions of the driving
frequency, �, calculated for
Rc = 4, L = 10 (mm),
m1 = 0.001 (kg),
m2 = 0.003 (kg), k = 1
(N/m), k1 = 9 (N/m),
c = 0.001 (Ns/m), g1 = 1
(mm) and γ = 0 (rad).
Coexisting attractors are
denoted by circles

(a)

(b)

(c)

(d)

of the period doubling. In addition, for the same type
of capsule dynamics, say P-1-2 motions in Fig. 10a–c,
the capsule with a smaller k has larger average velocity.
Regardless of the stiffness of the primary spring, the
fastest progression was achieved just after the occur-
rence of the grazing bifurcationwhen the capsule bifur-
cates fromP-1-3 toP-1-2motion. Figure 10d shows that
the efficiencies of the capsule for different stiffness are
very close, so changing the stiffness of the primary
spring does not affect the efficiency of the system.

Apart from the stiffness of the primary spring, the
weight of the inner mass, m1, also affects the natu-
ral frequency of the inner mass. When m1 is increased
from 0.001 (kg) to 0.003 (kg), as shown in Fig. 11, the
number of period-doubling bifurcations reduces. Since
period-two motion retards capsule velocity, it can be
observed from Fig. 11d that the capsule has a faster
average velocity when its inner mass is heavier. How-
ever, the efficiency of the capsule is not affected by
m1 as their local maxima are very close as shown in
Fig. 11e.

In summary, both grazing bifurcation for � < ωn

and period doubling for � near ωn were observed.

When � is much larger than ωn, the capsule has P-1-1
motion, and increasing � will degrade the energy effi-
ciency of the system. When the magnitude of the driv-
ing force is increased, the average speed of the capsule
is sensitive to the frequency of the driving force, and
its energy efficiency will decrease. If the stiffness of
the primary spring is reduced or the weight of the inner
mass is increased, i.e. decreasing the natural frequency
of the inner mass, the average speed of the capsule can
be enhanced while maintaining the energy efficiency
unchanged.

3.4 Influence of the stiffness of the secondary spring

The stiffness of the secondary spring is another con-
trol parameter affecting the performance of the cap-
sule. As shown in Fig. 12, hardening the secondary
spring enlarges the parametric region of period-two
motion degrading the average speed of the capsule. For
k1 = 4 (N/m), there is only a small region for P-2-2
motion. When k1 was increased to 8 (N/m), the region
was expanded and a grazing bifurcation for the switch-
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Fig. 10 (Colour online)
Bifurcation diagrams for a
k = 0.5 (N/m), b k = 0.7
(N/m), c k = 0.9 (N/m), d
average velocity, and e
energy efficiency as
functions of the driving
frequency, � − ωn,
calculated for Rc = 4 (mm),
L = 10 (mm), m1 = 0.002
(kg), m2 = 0.003 (kg),
k1 = 9 (N/m), c = 0.001
(Ns/m), g1 = 1 (mm),
γ = 0 (rad), and Pd = 12
(mN)

(a)

(b)

(c)

(d)

(e)

ing from P-2-3 to P-2-2 was recorded. When k1 = 12
(N/m), an additional period doubling from P-2-2 to P-
4-6 was observed. Comparing the average velocity of
the capsule, as can be seen from Fig. 12d, the capsule
with a stiffer secondary spring has faster average speed
when the driving frequency is low (i.e. before the graz-
ing bifurcation fromP-1-2 to P-1-1), but slower average
speed for high driving frequency (i.e. after the grazing
bifurcation). Similar trend can be observed from the
energy efficiency presented in Fig. 12e. It can be seen
that, after the grazing bifurcation from P-1-2 to P-1-1,
the energy efficiencies of the capsules with different
secondary springs are similar, but the period-doubling
bifurcation degrades the performance of the capsule.
After the reverse period doubling, i.e. when the dynam-
ics of the capsule bifurcates into P-1-1 motion, the cap-

sule with a stiffer secondary spring has better energy
efficiency.

3.5 Influence of the contact gap

The influence of the contact gap between the inner
mass and the secondary spring is considered in this
subsection. Firstly, a negative gap, g1 = −3 (mm),
representing a prestressed secondary spring, is studied,
and its bifurcation diagram as a function of the forc-
ing frequency, �, is presented in Fig. 13. The bifurca-
tion diagram shown in Fig. 13a has similar bifurcation
pattern as the previous ones (i.e. a grazing bifurcation
followed by a period doubling), but around � = 25
(rad/s), which is slightly higher than the natural fre-
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Fig. 11 (Colour online)
Bifurcation diagrams for a
m1 = 0.001 (kg), b
m2 = 0.002 (kg), c
m3 = 0.003 (kg), d average
velocity, and e energy
efficiency as functions of the
driving frequency, � − ωn,
calculated for Rc = 4 (mm),
L = 10 (mm), m2 = 0.003
(kg), k = 1 (N/m), k1 = 9
(N/m), c = 0.001 (Ns/m),
g1 = 1 (mm), γ = 0 (rad)
and Pd = 12 (mN)

quency of the inner mass, the capsule has chaotic and
period-3 motions.

When the driving frequency is low, � < 12.96
(rad/s), the capsule experiencesP-1-4motion as demon-
strated in Fig. 13d, m, and bifurcates into P-1-3 via a
grazing bifurcation. The capsule bifurcates from P-1-3
to P-1-2 via the second grazing bifurcation recorded at
� = 16.66 (rad/s) with the coexistence of P-1-3 and
P-1-2 motions recorded for � ∈ [16.26, 16.66] (rad/s)
and then from P-1-2 to P-2-4 through a period dou-
bling at � = 16.86 (rad/s). For � = 18.26 (rad/s), a
reverse period doubling occurs and the capsule expe-
riences P-1-2 again until � = 23.86 (rad/s), where
a cascade of period-doubling bifurcations leads the
capsule to a chaotic motion for � ∈ [24.26, 25.96]
(rad/s) including a small window of P-3-5 motion for
� ∈ [24.46, 25.06] (rad/s). As the frequency increases,

a cascade of reverse period-doubling bifurcations was
recorded, and the capsule eventually settles down at a
P-1-1 motion.

The maximum average speed of the capsule can be
obtained at where the grazing bifurcation from P-1-3
to P-1-2 occurs as shown in Fig. 13b. As the frequency
increases, the average speed of the capsule decreases.
When the frequency was increased to� = ωn = 22.36
(rad/s), capsule speed was enhanced again by the res-
onance. As can be observed from Fig. 13c, the P-1-
1 motion after the reverse period doubling has the
best efficiency in energy consumption. However, the
energy efficiency of the P-1-2 motion (for the max-
imum average speed) is not far from the best effi-
ciency obtained by the P-1-1 motion, so the P-1-2
motion is a better choice in terms of both performance
indices.
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Fig. 12 (Colour online)
Bifurcation diagrams for a
k1 = 4 (N/m), b k1 = 8
(N/m), c k1 = 12 (N/m), d
average velocity, and e
energy efficiency as
functions of the driving
frequency, �, calculated for
Rc = 4 (mm), L = 10
(mm), m1 = 0.002 (kg),
m2 = 0.003 (kg), k = 1
(N/m), c = 0.001 (Ns/m),
g1 = 1 (mm), γ = 0 (rad),
and Pd = 12 (mN)

Bifurcation diagrams for different gaps under vari-
ation of the forcing frequency are shown in Fig. 14. As
the gap increases, bifurcations of the capsule become
simpler. For example, as can be seen from Fig. 14a, the
regions for chaotic motion and coexisting P-1-3 and P-
1-2 motions were significantly shrunk compared to the
one for g1 = −3 (mm). When the gap becomes posi-
tive as shown in Fig. 14b, c, chaotic motions are com-
pletely removed and only period-two motions exist.
Comparing the average velocity of the capsule shown
in Fig. 14d, it can be seen that local maxima of the aver-
age velocities for different gaps can be obtained after
each grazing bifurcation, and the capsule with g1 = 3
(mm) has the maximal average velocity after its graz-
ing bifurcation fromP-1-2 to P-1-1. Energy efficiencies
presented in Fig. 14e demonstrate that the capsuleswith
different gaps have similar efficiencies for energy con-

sumption after their grazing bifurcations from P-1-2 to
P-1-1.

3.6 Progression in an inclined intestine

Our previous studies have focused on the capsule pro-
gression along a horizontal small intestinal tract. In
the real environment, as the gastrointestinal tract is
folded inside human body, it may require the capsule to
progress along an inclined intestine, i.e. γ > 0. Influ-
ence of the inclined slope on capsule progression is
studied here by calculating the average velocity of the
capsule as a function of the forcing magnitude as pre-
sented in Fig. 15. It can be seen that the capsule has
zero average velocity for all the inclined slopes when
driving force is small. As the magnitude of the driving
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Fig. 13 (Colour online) a
Bifurcation diagram, b
average velocity, and c
energy efficiency as
functions of the forcing
frequency, �, calculated for
Rc = 4 (mm), L = 10
(mm), m1 = 0.002 (kg),
m2 = 0.003 (kg), k = 1
(N/m), k1 = 9 (N/m),
c = 0.001 (Ns/m), Pd = 12
(mN), γ = 0 (rad), and
g1 = −3 (mm). d–l and
m–u illustrate phase
trajectories and time
histories for � = 12.86
(rad/s), 12.96 (rad/s), 17.56
(rad/s), 22.96 (rad/s), 24.66
(rad/s), 25.66 (rad/s), 25.76
(rad/s), 27.46 (rad/s), and
29.06 (rad/s), respectively

(a)

(b)

(c)

(m) (n) (o) (p)

(d) (e) (f) (g)

(h) (i) (j) (k)

(q) (r) (s) (t)

(l)

(u)

force increases, forward progression of the capsule can
be observed,where the capsulemoves faster for smaller
angle of the slope. It is worth noting that a larger driv-
ing force does not always lead to a faster progression,
especially when the angle of the slope is large, e.g.
γ = 0.25 (rad) and 0.35 (rad), which yields backward

progression (negative average velocity of the capsule)
as the driving force increases.

To progress forward along an inclined intestine, the
capsule needs to overcome its own gravity, and the
only external resource it can utilise is the environmen-
tal resistance. According to Fig. 3c, the capsule with a
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Fig. 14 (Colour online)
Bifurcation diagrams for a
g1 = −1 (mm), b g1 = 1
(mm), c g1 = 3 (mm), d
average velocity, and e
energy efficiency as
functions of the forcing
frequency, �, calculated for
Rc = 4 (mm), L = 10
(mm), m1 = 0.002 (kg),
m2 = 0.003 (kg), k = 1
(N/m), k1 = 9 (N/m),
c = 0.001 (Ns/m), Pd = 12
(mN), and γ = 0 (rad).
Coexisting attractors are
denoted by circles

(a)

(b)

(c)

(d)

(e)

larger radius is required to generate larger resistance so
that the capsule can progress forward along a steeper
slope. This study is shown in Fig. 16, where the aver-
age velocity of the capsule was calculated as a function
of the forcing magnitude under variations of capsule’s
radius. As can be seen from Fig. 16a, when the forc-
ing magnitude increases, the average speed of the cap-
sule starts to successively increase from zero to a pos-
itive value. However, the capsule with Rc = 4.1 (mm)
firstly slows down its forward progression and begins
to move backward when Pd = 28.4 (mN). When Rc

is 4.2 (mm), the capsule moves slower than that for
Rc = 4.1 (mm) when Pd < 13.9 (mN), but has a
better progression when Pd ≥ 13.9 (mN). Similar phe-
nomenon can be observed when Rc is increased to 4.3
(mm), which yields a faster progression than that for

Rc = 4.2 (mm) once Pd ≥ 29.2 (mN). Based on our
calculations, the capsule with Rc = 4.2 (mm) and the
forcing magnitude, Pd ∈ [13.9, 29.2) (mN), is the rea-
sonable dimension and operational regime for capsule
design and control.

4 Conclusions and future work

In this paper, we studied the modelling of a vibro-
impact self-propelled capsule system moving in the
small intestine. Our studies focused on exploring the
dynamics of the system and its performance in terms
of the average velocity and energy efficiency under var-
ious system and control parameters, such as the forcing
frequency and magnitude of excitation, the natural fre-
quency of the inner mass, the contact gap between the
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 15 a Average velocity as a function of the forcing magni-
tude, Pd, calculated for Rc = 4 (mm), L = 10 (mm),m1 = 0.001
(kg), m2 = 0.003 (kg), k = 1 (N/m), k1 = 9 (N/m), c = 0.001
(Ns/m), g1 = 1 (mm), and � = 22 (rad/s). Extra windows

demonstrate phase trajectories and time histories of the capsule
for Pd = 10 (mN), b, f γ = 0.05 (rad), c, g 0.15 (rad), d, h 0.25
(rad), and e, i 0.35 (rad)

inner mass and the secondary spring, and the capsule’s
radius and length.Wealso considered the capsule’s pro-
gression along an inclined intestine and its optimum
design and control parameters.

Under the assumption that the intestinal tract fully
contacts with capsule surface, the intestinal resistance
exerted on the capsule can be modelled using hoop
strain and stress. It was found that the resistance and
its threshold become larger when the capsule’s size
or its instantaneous velocity increases. We also found
that strengthening the forcing magnitude of excita-
tion can benefit the average velocity of the capsule,
but will lead to low energy efficiency. Increasing the
radius and length of the capsule could result in resis-
tance enhancement, which can simplify its bifurcation
pattern, enlarge the parametric regime of period-two
motion, and decrease capsule’s average velocity and
energy efficiency. However, if the magnitude of the
driving force is sufficiently large, the capsule having
a larger resistance can achieve a faster forward pro-
gression.

Our investigation on the natural frequency of the
inner mass shows that, when the driving frequency
is relatively lower than its natural frequency, suc-
cessive grazing bifurcations will occur, and this will
decrease the times of impact at each period but dras-
tically increase the average velocity of the capsule.
When the forcing frequency is chosen to be in the
vicinity of the natural frequency, period doubling can
be observed, which leads to sudden drops of average
velocity and energy efficiency. As the forcing magni-
tude is increased, average velocity will be decreased
at low forcing frequencies while be increased at high
forcing frequencies (i.e. the frequency greater than the
natural frequency). Our calculations also reveal that
reducing the natural frequency of the inner mass can
improve capsule’s average velocity. However, this will
not affect the energy efficiency of the system.

The stiffness of the secondary spring and the contact
gap between the inner mass and the secondary spring
was studied under variation of forcing frequency. For a
stiffer secondary spring, the capsule has a faster average
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 16 a Average velocity as a function of the forcing mag-
nitude, Pd, calculated for L = 10 (mm), m1 = 0.001 (kg),
m2 = 0.003 (kg), k = 1 (N/m), k1 = 9 (N/m), c = 0.001
(Ns/m), g1 = 1 (mm), � = 22 (rad/s), and γ = 0.2 (rad). Extra

windows demonstrate phase trajectories and time histories of the
capsule for Pd = 30 (mN), b, g Rc = 4.1 (mm), c, h 4.2 (mm),
d, i 4.3 (mm), e, j 4.4 (rad), and f, k 4.5 (mm)

velocity under a low driving frequency, while a slower
progression when the driving frequency becomes high
(i.e. the frequency greater than its natural frequency).
The dynamics of the capsule is complicated under a
prestressed secondary spring, leading to a small win-
dow of chaos and period-threemotionwhen the forcing
frequency is a branching parameter. When the gap is
increased, the parametric regime of period-one motion
can be enlarged,which can simplify the dynamics of the
capsule. Our studies also indicate that the local max-
ima of the average velocities for different gaps can be
obtained after each grazing bifurcation, and the cap-
sule with g1 = 3 (mm) has the maximal average speed
after its grazing bifurcation from period-one with two
impacts to period-one motion with one impact. Fur-
thermore, varying the contact gap cannot improve the
energy efficiency of the system.

Ourfinal study focused on the locomotion of the cap-
sule along an inclined intestinal tract. As themagnitude
of the driving force increases, the capsule canmove for-
ward on a slope with an inclined angle up to γ = 0.35

(rad). However, larger magnitude of the driving force
will not help capsule’s forward progression, especially
for a steeper slope, e.g. γ = 0.35 (rad). It was found
that, along a steeper slope, the capsule always has a
slower velocity due to gravity and insufficient resis-
tance. To overcome gravity, the capsule with Rc = 4.2
(mm) and the forcing magnitude, Pd ∈ [13.9, 29.2)
(mN), is a reasonable choice for locomotion control.

In conclusion, our numerical studies based on a pig
small intestine with the radius of Ri = 3.9 (mm) sug-
gest the following optimum design and control param-
eters as a design guideline, capsule’s radius Rc = 4.2
(mm) and length L = 10 (mm), forcing frequency
� > 30 (rad/s) and magnitude Pd > 15 (mN), nat-
ural frequency of the inner mass ωn < 25 (rad/s), stiff-
ness of the secondary spring k1 = 4 (N/m), and the
gap between the inner mass and the secondary stiff-
ness g1 = 3 (mm).

Future works include prototype design and fabrica-
tion, test rig design, and experimental testing of the
capsule prototype. Design and fabrication of the cap-
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sule prototype will be based on the numerical studies
in this paper, and an artificial intestinal environment
will be built for experimental testing of the prototype.
Research findings along this direction will be reported
in a separate publication in due course.
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