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Abstract In this paper, we introduced a new dual-
mode nonlinear Schrödinger (DMNLS) equation with
nonlinearity Kerr of types square-root law and dual-
power law. The new model consists of three parame-
ters defined as dissipative, nonlinearity and the phase
velocity. Also, this model describes propagations of
two simultaneously directional waves instead of sin-
gle wave as in the standard Schrödinger model. We
determined the necessary conditions on the dissipative
nonlinearity parameters that produce soliton solutions
of DMNLS. Finally, a graphical analysis regarding the
effect of the phase velocity on the shapes of the obtained
dual-waves is accomplished.
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1 Introduction

Recently, a new family of nonlinear equations under
the name “two-mode” or “dual-mode” have been estab-
lished. Themembers of this family are nonlinear partial
differential equations of second order in the time coor-
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dinate. It describes the propagations of two different
nonlinear wave modes simultaneously. The KdV equa-
tion of second order in time was the first established
two-mode equation [1,2]

utt − s2uxx +
(

∂

∂t
− αs

∂

∂x

)
uux

+
(

∂

∂t
− βs

∂

∂x

)
uxxx = 0, (1.1)

where u = u(x, t) is a field function, s the interac-
tion phase velocity, α the nonlinearity factor, and β

the dispersive factor with s ≥ 0, |α| ≤ 1, |β| ≤ 1,
and we refer to Eq. (1.1) as the two-mode KdV equa-
tion (TMKdV). The TMKdV has been constructed as
a related topic to Hirota–Satsuma model [3], which
describes the interaction of two long waves with dif-
ferent dispersion factors and concluded that if there is
no interaction between these two waves, no effect of
one wave on the other, then these waves obey the KdV
equations. Indeed, if s = 0 in (1.1) “no interaction”
and integrating once with respect to the time t , we get
the standard KdV equation

ut + uux + uxxx = 0. (1.2)

Inspired by TMKdV (1.1), Korsunsky andWazwaz [1,
4] suggested a two-mode generator learned as follows.
Any nonlinear equation obeys the form

ut + N (u, ux , . . .) + L(uxx , uxxx , . . .) = 0, (1.3)
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where N , L are, respectively, the nonlinear and linear
operators. Then, the two-mode version of (1.3) takes
the form

utt − s2uxx +
(

∂

∂t
− αs

∂

∂x

)
N (u, ux , . . .)

+
(

∂

∂t
− βs

∂

∂x

)
L(uxx , uxxx , . . .) = 0. (1.4)

Consequently, some new real-valued two-mode mod-
els are established [5–12] and soliton–kink, multiple
soliton–kink solutions are obtained to these models by
applying simplified Hirota and tanh-expansion meth-
ods. The contributions on two-mode equations con-
ducted in the aforementioned studies were limited to
extract only solitary wave solutions restricted with
some constraint conditions. Motivated by the existing
literature, there was only one attempt to extend the
two-mode concept on complex-valued model. In [13],
a two-mode Schrödinger (TMNLS) with power Kerr
law is established and both dark and singular soliton
solutions are obtained. Therefore, we aim to further
explore TMNLS with different types of the Kerr laws
and conduct some graphical justifications.

The nonlinear Schrödinger (NLS) is a physical
model that plays a key role in engineering sciences,
dynamics and nonlinear optics. The general form of
NLS reads [14–17]

iqt + 1

2
qxx + F(|q|2)q = 0, (1.5)

where the function F is the nonlinearity Kerr func-
tion and q is a complex-type envelope function. In this
context, we consider two types of F : the square-root
law when F(τ ) = √

τ and the dual-power law when
F(τ ) = τ + vτ 2.

Now, by means of Eqs. (1.3) and (1.4), the gener-
alized dual-mode Schrödinger is second order in time
and has the form

i
(
qtt − s2qxx

)
+ 1

2

(
∂

∂t
− βs

∂

∂x

)
{qxx }

+
(

∂

∂t
− αs

∂

∂x

)
{F(|q|2)q} = 0, (1.6)

The dual-mode (1.6) (DMNLS) models the spread of
directional absorption or amplification of dual-wave
pulses with distributed dispersion and nonlinearity and
interaction phase velocity. We aim to study the dynam-
ics of DMNLS for two types of the real-valued alge-

braic function F . The square-root Kerr

i
(
qtt − s2qxx

)
+ 1

2

(
∂

∂t
− βs

∂

∂x

)
{qxx }

+
(

∂

∂t
− αs

∂

∂x

)
{|q|q} = 0, (1.7)

and the dual-power Kerr

i
(
qtt − s2qxx

)
+ 1

2

(
∂

∂t
− βs

∂

∂x

)
{qxx }

+
(

∂

∂t
− αs

∂

∂x

)
{(|q|2 + v|q|4)q} = 0. (1.8)

Equation (1.7) is used to study soliton turbulence, and
Eq. (1.8) describes the interaction between Langmuir
waves and electrons [18].

2 Dual-mode Schrödinger with square-root Kerr

The envelope function q = q(x, t) in (1.7) is of
complex-valued type, so we may write q as

q(x, t) = eiη p(ζ ), (2.1)

where η = λ(x + wt) and ζ = x − ct . Substituting
(2.1) in (1.7) and separating real and imaginary parts
will lead us to a system of two differential equations
with p being the dependent real-valued function and ζ

the independent variable

0 = λ2(2s2 + sβλ − w(2w + λ))p(ζ )

+ 2(w − sα)λp2(ζ ) + (2c2 − 2s2

− 2cλ + wλ − 3sβλ)p′′(ζ ),

0 = (λ(4s2 + 4cw + cλ − 2wλ + 3sβλ)

− 4(c + sα)p(ζ ))p′(ζ ) − (c + sβ)p′′′(ζ ). (2.2)

Now we seek solutions to the above system by
employing two methods: the tanh-expansion and the
Kudryashov expansion schemes.

2.1 Tanh-solution I

The tanh-scheme suggests the solution of (2.2) to be of
the form

p(ζ ) =
n∑

i=0

aiY
i , (2.3)
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Fig. 1 Multiplicative of the dual-waves obtained for the real part of q(x, t) (2.6) by increasing the phase velocity: s = 0.5, 1, 2, 3
respectively

where Y = tanh(μζ ) and satisfies the followings rela-
tions

Y ′ = μ(1 − Y 2),

Y ′′ = −2μ2Y (1 − Y 2),

Y ′′′ = −2μ3(1 − Y 2)(1 − 3Y 2). (2.4)

Balancing the terms p2 and p′′ or pp′ and p′′′ gives
n = 2 in (2.3). We insert (2.3) and (2.4) in (2.2) and
collect coefficients of the samepower ofY . Setting each
obtained coefficient to zero will produce a nonlinear
algebraic system in the unknowns a0, a1, a2, λ, μ, w

and c. By solving this algebraic system, we obtain the
following outcomes

α = β = ±1,

a0 = 0, a1 = free, a2 = −3μ2,

c = −βs, λ = −2w, μ = free, w = βs. (2.5)

Therefore, the tanh-solution of DMNLS with square-
root Kerr law (1.7) is given by

q(x, t) = e−2is(x±st)
(
a1 tanh(μ(x ± st))

−3μ2 tanh2(μ(x ± st))
)

. (2.6)

Graphical analysis regarding (2.6) reveals that the
increase in the phase velocity is accompanied by a
clone of the dual-waves in a multiplicative manner, see
Fig. 1.
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Fig. 2 Behaviors of dual-waves obtained for the real part of q(x, t) (2.14) by increasing the phase velocity: s = 1, 2, 3, respectively

2.2 Kudryashov solution I

We aim to apply Kudryashov expansion technique
[19,20] to study more possible solutions to (1.7). This
scheme suggests the solution of (2.2) as a polynomial
of the variable Y

p(ζ ) =
n∑

i=0

AiY
i , Y = Y (ζ ). (2.7)

The variable Y satisfies the differential equation

Y ′ = μY (Y − 1). (2.8)

Solving (2.8) gives

Y (ζ ) = 1

1 − deμζ
. (2.9)

The index n is to be determined by applying order bal-
ance procedure which is in our case n = 2, and accord-
ingly, we write (2.7) as

p(ζ ) = A0 + A1Y + A2Y
2. (2.10)

Differentiating both (2.8) and (2.10) implicitly leads to

Y ′′ = μ2Y (Y − 1)(2Y − 1),

Y ′′′ = μ3Y (Y − 1)(6Y 2 − 6Y + 1), (2.11)

and

p′(z) = A1Y
′ + 2A2YY

′,
p′′(z) = A1Y

′′ + 2A2(YY
′′ + (Y ′)2),

p′′′(z) = A1Y
′′′ + 2A2(3Y

′Y ′′ + YY ′′′) (2.12)

Now, we insert (2.8) through (2.12) in (2.2) to get a
polynomial in Y . By setting each coefficient of Y i to

zero, a nonlinear algebraic system is obtained. Seeking
a solution to this system, we get

α = β = γ = ±1,

A0 = 0, A1 = −A2 = 3m2,

λ = −2s, c = w = sγ, μ = free. (2.13)

Therefore, a new solution of DMNLS (1.7) is

q(x, t) = −3μ2e−2is(x±st)

×
(

1

1 − deμ(x±st)
− 1

)
1

1 − deμ(x±st)
.

(2.14)

Figure 2 presents the behavior of the dual-waves for
the real part of (2.14) when s = 1, 2, 3, respectively.

3 Dual-mode Schrödinger with dual-power Kerr

We follow the same steps considered in the preceding
section. Substituting (2.1) in (1.8) produces the system

0 = λ2(2s2 + sβλ − w(2w + λ))p(ζ )

+ 2(w − sα)λp3(ζ ) + 2mλ(w − sα)p5(ζ )

+ (2c2 − 2s2 − 2cλ + wλ − 3sβλ)p′′(ζ ),

0 = (λ(4s2 + 4cw + cλ − 2wλ + 3sβλ)

− 6(c + sα)p2(ζ ) − 10m(c + sα)p4(ζ ))p′(ζ )

− (c + sβ)p′′′(ζ ). (3.1)

We solve (3.1) by applying the tanh-technique. Con-
sidering the suggested solution given in (2.3) and per-
forming the balance step, we get m = 1

2 which is not
applicable for the tanh-scheme. Therefore, we intro-
duce the following new transformation

p(ζ ) = f
1
2 (ζ ). (3.2)
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Fig. 3 Multiplicative of the dual-waves obtained for the real part of q(x, t) (3.6) by increasing the phase velocity: s = 0.1, 1, 3, 5,
respectively

Nowwe replace p(ζ ) in (3.1) by f (ζ ) to retrieve a new
system

0 = λ2(2s2 + sβλ − w(2w + λ)) f 2(ζ )

+ 2(w − sα)λ f 3(ζ ) + 2mλ(w − sα) f 4(ζ )

− 1

4
(2c2 − 2s2 − 2cλ + wλ − 3sβλ)

(( f ′(ζ ))2 − 2 f (ζ ) f ′′(ζ )),

0 = 1

2
f 2(zeta) f ′(ζ )(λ(4s2 + 4cw

+ cλ − 2wλ + 3sβλ) − 6(c + sα) f (ζ )

− 10m(c + sα) f 2(ζ )) − 1

8
(c + sβ)(3( f ′(ζ ))3

− 6 f (ζ ) f ′(ζ ) f ′′(ζ ) + 4 f 2(ζ ) f ′′′(ζ )). (3.3)

The tanh-solution of this new system is

f (ζ ) = b0 + b1Y. (3.4)

Y is defined as in (2.4). Inserting (3.4) in (3.3) and
performing the algebraic computations, we arrive at
the following results

α = β = ±1,

b0 = 0, b1 = free,

c = −βs, λ = free, μ = free, w = βs.

(3.5)

Accordingly, the tanh-solution of DMNLS with dual-
power Kerr law (1.8) is given by

q(x, t) = eλi(x+βst)
√
b1 tanh(μ(x + βst)). (3.6)
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Fig. 4 2D profile solutions for the DMNLS with dual-power Kerr law obtained in (3.6)

3D plots of the real part of the obtained solution
(3.6) asserts the multiplicative phenomena by gradu-
ally increasing in the phase velocity, see Fig. 3.

Conclusion

A new dual-mode Schrödinger (DMNLS) equation
with nonlinearity Kerr laws of types square-root and
dual-power is introduced for the first time. The new
model describes the propagation of two different waves
with embedded interaction phase velocity. Solitary
dual-wave solutions are obtained to DMNLS equation
by means of two different schemes: the tanh-expansion
and Kudryashov expansion techniques.

3D plots of the obtained solutions are provided.
Also, we studied geometrically the impact of the phase
velocity on the interaction between the obtained dual-
waves and concluded an intersecting physical phe-
nomenon: doubling the number of these obtained dual-
waves by increasing the phase velocity within the same
coordinates region.

To study the formality and nature of the resulting
waves of this model, we consider 2D profile solutions
for the dual-power Kerr law depicted in (3.6) and con-
clude that both waves have the same shape and we may
refer to these two waves as right-wave and left-wave as
shown in Fig. 4.

The insights of the current work’s findings can
be linked to the development of transmitting data
through telecommunication integrated systems. The
phenomenon of doubling the dual-waves may be used
as a carrier wave of certain data transmitted to different
directions.
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