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Abstract A new simplified parametric model, which
is more suitable for pantograph–catenary dynamics
simulation, is proposed to describe the nonlinear
displacement-dependent damping characteristics of a
pantograph hydraulic damper and validated by the
experimental results in this study. Then, a full math-
ematical model of the pantograph–catenary system,
which incorporates the new damper model, is estab-
lished to simulate the effect of the damping characteris-
tics on the pantograph dynamics. The simulation results
show that large Fconst (saturation damping force of the
damper during compression) and C0 (initial damping
coefficient of the damper during extension) in the pan-
tograph damper model can improve both the raising
performance and contact quality of the pantograph,
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whereas a large C0 has no obvious effect on the lower-
ing time of the pantograph; the nonlinear displacement-
dependent damping characteristics described by the
second item in the new damper model have dominating
effects on the total lowering time, maximum acceler-
ation and maximum impact acceleration of the pan-
tograph. Thus, within the constraint of total lowering
time, increasing the nonlinear displacement-dependent
damping coefficient of the damper will improve the
lowering performance of the pantograph and reduce
excessive impact between the pantograph and its base
frame. In addition, damping performance of the new
damper model would vary with the vehicle speeds,
when operating beyond the nominal-speed range of
the vehicle, the damping performance would dete-
riorate obviously. The proposed concise pantograph
hydraulic damper model appears to be more adap-
tive to working conditions of the pantograph, and
more complete and accurate than the previous single-
parameter linear model, so it is more useful in the con-
text of pantograph–catenary dynamics simulation and
further parameter optimizations. The obtained simula-
tion results are also valuable and instructive for further
optimal specification of railway pantograph hydraulic
dampers.

Keywords Pantograph hydraulic damper · Displace-
ment dependent · Nonlinear damping characteristics ·
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1 Introduction

The pantograph is a key device for current collection in
modern high-speed rail vehicles [1]; an optimal design
of the structural and component parameters of the pan-
tograph will improve the pantograph–catenary inter-
action and enable more stable current collection. A
hydraulic damper is often installed between the base
frame and the lower arm mechanism of a pantograph
to improve the pantograph–catenary interaction quality
and guarantee ideal raising and lowering performance
of the pantograph.

In previous pantograph–catenary dynamics studies,
Pombo and Ambrósio [2] studied the effects of the
pan-head mass, pan-head suspension stiffness and base
frame damping on the pantograph–catenary interaction
quality by establishing a lumped-mass linear dynamic
model of the pantograph. In the pantograph model, the
hydraulic damperwas considered a simple linearmodel
with the damping coefficient as the only parameter. In
many similar studies, in both lumped-mass [3–8] and
multibody [9–11] pantograph models, the hydraulic
damper was also treated as a single-parameter linear
model.

In previous pantograph optimization studies, Zhou
and Zhang [12] optimized the pantograph param-
eters using the sensitivity analysis and experience,
and the optimal results were experimentally vali-
dated. Similar design optimizations [13–16] of the
pantograph parameters were performed using auto-
matic algorithms or robust design techniques. How-
ever, in these works, the pantograph models are
almost lumped-mass linear ones, where the hydraulic
damper is also considered a single-parameter linear
model.

In previous railway hydraulic damper studies, mod-
elling the nonlinear characteristics of railway hydraulic
dampers and analysing their effects on the yawmotion,
stability [17–19] and riding comfort [20–22] of rail
vehicle systems were performed. In a recent study,
Wang et al. [23] built a new full-parametric model to
describe the nonlinear displacement-dependent char-
acteristics of a high-speed rail pantograph damper
and found that the new nonlinear model is more
adaptive and optimal than the conventional single-
parameter linear model by comparing the pantograph
dynamic responses when with different damper mod-
els.

Thus:

(1) The conventional single-parameter linear damper
model is simple and easy to use, but not adaptive
to the changing working conditions of the pan-
tograph, thus, in modern high-speed pantograph
development, a nonlinear damper with
displacement-dependent characteristics in its exten-
sion stroke and low-level saturation damping char-
acteristics in its compression stroke, is usually
specified [23,24].
In addition, during the raising or lowering pro-
cess of the pantograph, the damper angle usually
changes with the motion of the framework, so the
effective damping levels must be modelled and
coupled into the dynamics simulation. Thus, the
accuracy of the simple linear damper model also
need to be improved.

(2) Researchonmodelling thenonlinear displacement-
dependent characteristics of railway pantograph
hydraulic damper is notably limited. Although
a new full-parametric pantograph damper model
[23] was built in recent study, a concise damper
model which is more suitable for pantograph–
catenary dynamics simulation is still expected.

(3) Most existing works concern the problems of
the pantograph–catenary interaction, but the effect
of component characteristics, e.g., the hydraulic
damper characteristics, on the raising and lowering
performance of the pantograph is hardly addressed.

In this work, a new simplified parametric model
is proposed to describe the nonlinear displacement-
dependent damping characteristics of the pantograph
hydraulic damper andvalidatedbyexperimental results.
Then, a full mathematical model of the pantograph–
catenary system, which incorporates the new panto-
graph damper model, is established to simulate the
effect of the damping characteristics on the pantograph
dynamics, and valuable results are obtained. The con-
cise pantograph hydraulic damper model appears to
be more adaptive and optimal than the conventional
single-parameter linear model, so it is more useful in
the context of pantograph–catenary dynamics simula-
tion and parameter optimization. The obtained simula-
tion results are also valuable and instructive for further
optimal specification of pantograph hydraulic dampers.

The paper is structured as follows: a full mathe-
matical modelling of the pantograph–catenary system
with a new simplified parametric damper model is per-
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Effect of the nonlinear displacement-dependent characteristics 3441

formed in Sect. 2, the effect of the damper characteris-
tics on the pantograph dynamics is simulated in Sect. 3,
and conclusions are drawn in the final section.

2 Mathematical modelling of the
pantograph–catenary system with a new damper
model

Figure 1 illustrates the kinematical schemeandparame-
ters of the pantograph–catenary system.The upper arm,
lower arm, guiding rod, coupling rod and hydraulic
damper are considered a united multibody mechanism,
i.e., a framework with the points A, B, C , D, N , P
as internal joints; the pantograph head includes a mass
mh and a suspension with stiffness kh and damping
ch; the pantograph head is connected with the multi-
body framework by joint E . The moving pantograph–
catenary interaction is simplified as a variable stiffness
kc, so the dynamic interaction force between the pan-
head and the catenary can be readily obtained.

For the actuating system has a pneumatic actuator,
complex control valves and connecting pipes, the mod-
elling and effects of the actuating system on the panto-
graph dynamics will be addressed by another research

topic. In this work, for simplicity, it is assumed that the
pneumatic actuator can supply immediate uplift force
and moment with no time delays, and this assumption
does not influence the evaluation of damper nature on
the pantograph dynamics.

2.1 Multibody dynamic model of the pantograph
framework

2.1.1 Relationships between key kinematic parameters

To model the multibody dynamics of the pantograph
framework, it is necessary to first deduce the kinematic
relationships between the components of the frame-
work. Using the parameters and coordinates in Fig. 1b
and only considering the vertical motion of the panto-
graph, it is easy to deduce the positions and angles of
all nodes in the framework in terms of the raising angle
α of the lower arm.

For example, the raising angle of the coupling rod
in terms of α can be formulated by

θ2 (α) = 2 arctan
k2 +

√
−k21 + k22 + k23
k1 + k3

(1)

Fig. 1 Schematic illustrations of the configuration (a), geometry and parameters (b) of the pantograph–catenary system
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Where
⎧⎨
⎩
k1 = l22 − l21 − l23 − h02 − l02 + 2l0l3 cosα − 2h0l3 sin α

k2 = −2l1l3 sin α − 2h0l1
k3 = −2l1l3 cosα + 2l0l1 (2)

and the raising angle of the connection rod BC in terms
of α can also be written as

θ1(α) = arctan
−l1 sin θ2 + h0 + l3 sin α

l1 cos θ2 + l0 − l3 cosα
(3)

The displacement of joint E , which is also a crucial
parameter, can be deduced as follows

ye(α) = h0 + l3 sin α + l4 sin(θ1 − β) (4)

2.1.2 Multibody dynamic model of the pantograph
framework

In Fig. 1b, all rods are considered rigid bodies; because
the masses of the guiding rod and connection rod BC
are small, the guiding rod is negligible, and the connec-
tion rod BC can be considered a rod with no mass and
no moment of inertia. Thus, the multibody dynamics
of the pantograph framework can be described by the
following Lagrange differential equation

d

dt

(
∂L

∂α̇

)
− ∂L

∂α
= GF (5)

where L is the Lagrangian function and L = T −U ; T
is the kinetic energyof the framework;U is the potential
energy of the framework when the potential energy in
the plane across point A is considered to be zero.
Thus, according to Fig. 1b, we obtain

T = 1

2
J1θ̇

2
2 + 1

2
J3α̇

2 + 1

2
J4θ̇

2
1

+1

2
m4

[
l23 α̇

2 + 2l3lm4α̇θ̇1 cos(α + θ1 − β)
]

(6)

and

U = m1glm1 sin θ2 + m3g(lm3 sin α + h0)

+m4g[h0 + l3 sin α + lm4 sin(θ1 − β)] (7)

In Eq. (5), GF is the generalized force, which
includes interaction forces from the pantograph head
and hydraulic damper and the uplift moment from the
pneumatic actuator. According to the principle of vir-
tual work, GF can be formulated [25] by

GF = Mα + k4[kh(yh − ye − lh)

+ ch(ẏh − ẏe) + mhg] − Fdk5 (8)

where coefficients k4 and k5 are defined as variations
of the displacement of joint E ye to α and hydraulic

damper length s toα, respectively; k4 and k5 arewritten
as

k4 = δye
δα

, k5 = δs

δα
(9)

Referring to Fig. 2, we can calculate the dynamic
damper length s in terms of α in Eq. (9) as follows

s (α)=
√

[xd + l cos(α + γ )]2 + [yd + l sin(α + γ )]2
(10)

Thus, we substitute Eqs. (6)–(10) into Eq. (5) to
obtain a dynamic model of the framework in terms of
α

Jf(α)α̈ +Uf(α)α̇2 + Cf(α)α̇ + Ff(α) = Mα(α)

(11)

where the effective moment of inertia Jf of the frame-
work, coefficient Uf , effective damping coefficient Cf

of the framework, generalized force Ff of the frame-
work and uplift moment Mα from the pneumatic actu-
ator can be described as follows

Jf(α) = J1k6
2 + J3 + J4k

2
7

+m4[l23 + 2k7l3lm4 cos(α + θ1 − β)] (12)

Uf(α) = J1k6k8 + J4k7k9

+m4[k9l3lm4 cos(α + θ1 − β)

− k7(1 + k7)l3lm4 sin(α + θ1 − β)] (13)

Cf(α) = d(Fdk5)

dα̇
(14)

Fig. 2 Geometric parameters to calculate the motion of the
hydraulic damper
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Ff(α) = m1glm1k6 cos θ2 + m3glm3 cosα

+m4g[l3 cosα + lm4k7 cos(θ1 − β)]
+ k4[kh(yh − ye − lh) + ch(ẏh − ẏe)

+mhg] (15)

Mα(α) = m1glm1k6 cos θ2 + m3glm3 cosα

+m4g[l3 cosα + lm4k7 cos(θ1 − β)]
+ k4(Fu + mhg) (16)

where coefficients k6 and k7 are defined as the varia-
tions of the coupling rod raising angle θ2 to α and the
angle of the connecting rod BC to horizontal line θ1 to
α, respectively; k6 and k7 are written as

k6 = δθ2

δα
, k7 = δθ1

δα
(17)

Coefficients k8 and k9 are defined as

k8 = dk6
dα

, k9 = dk7
dα

(18)

In the pantograph dynamics research, sometimes it
is more interesting to study the dynamicmodel in terms
of the displacement of joint E , i.e., ye; hence, except for
using Eq. (4), it is easy to deduce and use the following
relations to transform α to ye

α̇ = 1

k4
ẏe, α̈ = 1

k4
ÿe + k10

k24
ẏ2e (19)

where coefficient k10 is defined as

k10 = −dk4
dα

(20)

2.2 Dynamic model of the pantograph head with
catenary interaction

Referring to Fig. 1b and according to Newton’s sec-
ond law, the dynamic model of the pantograph head is
written as

mh ÿh = −kh(yh − ye − lh) − ch(ẏh − ẏe) − Fc

(21)

where the pantograph–catenary interaction force Fc
can be further written as

Fc =
{
kc(yh − yc), yh ≥ yc
0, yh < yc

(22)

where kc is the changeable catenary stiffness and given
by the following model [26]

kc(v, t) = k0

[
1 + a1 cos

(
2πv

Lc
t

)
+ a2 cos

(
2πv

Ld
t

)

+ a3 cos
2
(
2πv

Lc
t

)
+ a4 cos

2
(

πv

Lc
t

)

+ a5 cos
2
(

πv

Ld
t

)]
(23)

Equation (23) describes the fluctuating stiffness of
the catenary in terms of the pantograph moving speed
and time; it is a law fitted from the finite element model
of the common Chinese catenary [26].

Thus, as shown in Fig. 1b, the dynamics of the panto-
graph head and catenary are coupled by kc; the dynam-
ics of the pantograph head and framework are coupled
by joint E , i.e., the dynamic forces from the panto-
graph head act on the framework through joint E , and
in return the framework motions affect the pantograph
head also through joint E .

2.3 A new simplified parametric pantograph damper
model

The pantograph damper has nonlinear displacement-
dependent damping characteristics. Figure 3a shows
that when the pantograph is in the normal working
position, the damper has the shortest length, vibrates
with very small amplitudes, and provides the panto-
graph with a low level of damping.

When the pantograph is lowered, the damper is
extended and the fluids in the damper are displaced
from the left chamber of the piston to the right cham-
ber of the piston through the orifices in the rod. At the
beginning of the extension, the damper produces small
damping forces. However, with continuing extension
of the damper, the orifices in the rod are sequentially
obstructed by the guide seat, and the pressure in the
left chamber of the piston increases, so the damper pro-
duces notably high damping forces to stop the panto-
graph hitting the vehicle roof.

When the pantograph is raised, the damper is com-
pressed and the fluids in the damper are displaced from
the inner tube to the reservoir through the foot valve
with small resistances. In this process, the damper also
provides the pantograph with a low level of damping.

A full-parametric model of the pantograph damper
has been built in the literature [23]; however, in the pan-
tograph dynamics simulation, a simplified parametric
model would be wieldier and more efficient.
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Fig. 3 a Cross section of the pantograph damper; b engineering drawing of the cross sections and dimensions of the orifices in the rod

2.3.1 Damping performance in the extension stroke

During the extension stroke of the damper, referring to
Fig. 3, it is easy to write the following fluid continuity
equations

Qwork = Ax ẋ(t) = Cd1An

[
2

ρ
(P − Pi)

]1/2
(24)

Qwork = Cd1Af

(
2

ρ
Pi

)1/2

(25)

where the pressure action area Ax of the piston during
the extension stroke of the damper and the constant
cross-section area Af of the orifices in the rod for fluids
outflow are written as

Ax = π

4

(
D2 − d2

)
, Af = π

4

(
2d2

2 + 2d3
2 + d4

2
)

(26)

The changeable cross-section area An of the orifices in
the rod for fluids inflow is described by

An = π

4

(
d0
2 + nd1

2
)

, n = 0, 1, . . . 6 (27)

We combine Eqs. (24) and (25) to obtain

P = ρAx
2
(
Af

2 + An
2
)

2Cd1
2Af

2An
2 ẋ2(t) (28)

Thus, the damping force during the extension stroke of
the damper is

Fd = PAx = ρAx
3
(
Af

2 + An
2
)

2Cd1
2Af

2An
2 ẋ2(t) (29)

if defining a constant

k11 = ρAx
3

2Cd1
2Af

2 (30)

it is easy to obtain

Fd = k11

(
1 + Af

2

An
2

)
ẋ2(t) (31)

Therefore, the damping coefficient of the pantograph
damper during extension can be written as

Cext = k11

(
1 + Af

2

An
2

)
ẋ(t) (32)

Eq. (32) indicates that the damping coefficient of the
damper during extension is governed by its displace-
ment in relation to parameter An , and its speed ẋ(t).

2.3.2 Damping performance in the compression
stroke

During the compression stroke of the damper, referring
to Fig. 3, it is also easy to write the following fluid
continuity equation
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Qwork = Ac ẋ(t) = Cd1

(π

4
d0

2
) (

2

ρ
P

)1/2

+Cd2
[
2πrsCeCw

∣∣r=rs

× P

E(h13 + h23 + · · · + hn3)

] (
2

ρ
P

)1/2

(33)

where the pressure action area Ac of the piston during
the compression stroke of the damper is written as

Ac = π

4
d2 (34)

the amount of fluid that passes through the small con-
stant orifice d0 in the inner tube is very small and on
a different scale, when compared with the amount of
fluid that passes through the compression shim-stack
valve in the foot valve assembly. Thus, if we neglect
the flow relating to constant orifice d0 in Eq. (33) and
define a constant for the shim-stack valve

k12 = 2πCd2rsCeCw
∣∣r=rs

E(h13 + h23 + · · · + hn3)

√
2

ρ
(35)

it is easy to solve Eq. (33) and obtain

P =
(
Ac

k12

) 2
3

[ẋ(t)]
2
3 (36)

Hence, the damping force during the compression
stroke of the damper is

Fd = PAc = Ac

(
Ac

k12

)2
3

[ẋ(t)]
2
3 (37)

We continue to define a constant

k13 = Ac

(
Ac

k12

) 2
3

(38)

to obtain

Fd = k13 [ẋ(t)]
2
3 (39)

Thus, the damping coefficient of the pantographdamper
during compression can be written as

Ccom = k13 [ẋ(t)]
− 1

3 (40)

2.3.3 A new simplified parametric pantograph
damper model

Equation (32) indicates that the nonlinear damping
coefficient of the damper during extension is affected
by its speed ẋ(t), however, before the orifices in the
rod begin to be sequentially shielded by the guide seat,
the rod has the largest inflow area An which makes the
product of the first two items in Eq. (32) be the smallest,
and thus, the influence of speed ẋ(t) to the variation of
damping coefficientCext would beweak in this process.

Thus, referring to Eq. (32), if Cext could be consid-
ered a constant in this process and defined as C0, it
would be more concise and meaningful in engineering.
Extensive numerical simulations show that the differ-
ence between the assumed linear model C0 and the
nonlinear model described by Eq. (32) in this process
is not obvious.

However, when the orifices in the rod begin to be
sequentially shielded, the damping coefficient becomes
larger and more complex, so Eqs. (31) and (32) are
more appropriate to describe the significantly nonlinear
behaviour in this process.

When the damper is compressed, the compression
shim-stack valve in the foot valve assembly performs
like a relief valve, so the damping force would quickly
become constant after saturation. Equation (39) also
indicates that the speed ẋ(t)weakly affects the damping
force, so Fd can be considered a constant in this process
and defined as Fconst.

Thus, a new simplified parametric pantograph
damper model is proposed as follows

Fd =

⎧
⎪⎨
⎪⎩

C0 ẋ(t), if ẋ(t) ≥ 0,− sa
2 ≤ x(t) <

( sa
2 − s1

)
,

k11
(
1 + Af

2

An
2

)
[ẋ(t)]2 , n = 0, 1, . . . , n − 1, if ẋ(t) ≥ 0,

( sa
2 − s1

) ≤ x(t) ≤ sa
2 ,

Fconst, if ẋ(t) < 0.

(41)

Equation (41) is a concisemodelwith apparent phys-
ical meaning to describe the nonlinear displacement-
dependent damping characteristics of the pantograph
damper. For a given type of pantograph damper, the
second item in Eq. (41) can be subdivided according to
the concrete configuration of the orifice network. For
example, for the damper structure in Fig. 3, Eq. (41)
can be concretely written as
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Fd =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 ẋ(t), if ẋ(t) ≥ 0,− sa
2 ≤ x(t) <

( sa
2 − s1

)
,

k11
(
1 + Af

2

A5
2

)
[ẋ(t)]2 , if ẋ(t) ≥ 0,

( sa
2 − s1

) ≤ x(t) <
[( sa

2 − s1
) + 
s1

]
,

k11
(
1 + Af

2

A4
2

)
[ẋ(t)]2 , if ẋ(t) ≥ 0,

[( sa
2 − s1

) + 
s1
] ≤ x(t) <

[( sa
2 − s1

) + 
s2
]
,

k11
(
1 + Af

2

A3
2

)
[ẋ(t)]2 , if ẋ(t) ≥ 0,

[( sa
2 − s1

) + 
s2
] ≤ x(t) <

[( sa
2 − s1

) + 
s1 + 
s2
]
,

k11
(
1 + Af

2

A2
2

)
[ẋ(t)]2 , if ẋ(t) ≥ 0,

[( sa
2 − s1

) + 
s1 + 
s2
] ≤ x(t) <

[( sa
2 − s1

) + 2
s2
]
,

k11
(
1 + Af

2

A1
2

)
[ẋ(t)]2 , if ẋ(t) ≥ 0,

[( sa
2 − s1

) + 2
s2
] ≤ x(t) <

[( sa
2 − s1

) + 
s1 + 2
s2
]
,

k11
(
1 + Af

2

A0
2

)
[ẋ(t)]2 , if ẋ(t) ≥ 0,

[( sa
2 − s1

) + 
s1 + 2
s2
] ≤ x(t) ≤ sa

2 ,

Fconst, if ẋ(t) < 0.

(42)

where A0–A5 can be calculated using Eq. (27). In addi-
tion, according to Fig. 3, we have

s = s0 + x(t), ṡ = ẋ(t) (43)

Thus, the above simplified parametric damper model
can be easily coupled with the pantograph dynamics
model and used for pantograph dynamics simulations.

2.3.4 Damper model validation

Both computer simulation and experimental research
(Fig. 4) were performed to verify the proposed sim-
plified parametric pantograph damper model, and the
results are shown in Fig. 5.

Figure 5a compares the tested nominal-speed force
vs. displacement (Fd−x(t)) characteristics with the

simulated Fd−x(t) characteristics of a high-speed rail
pantograph hydraulic damper (Type: J6H36-02-00).
Figure 5a demonstrates that the test result is consistent
with the simulation result, except for small biases in
lower-level damping forces, and the biases are notably
small and tolerable. In addition, the tested damping
force sometimes appears less stable than the simulated
damping force, which is common in practical product
tests.

In section “a–b”, the pantograph begins to be low-
ered, so the damper begins to extend. Because all ori-
fices in the rod are available to charge the fluids, the
damping force slowly increases although the excitation
speed improves, so this is good for fast descending of
the pantograph.

Fig. 4 Bench testing of a
high-speed rail pantograph
hydraulic damper

123



Effect of the nonlinear displacement-dependent characteristics 3447

Fig. 5 a A comparison of
testing and simulation
results of the nominal-speed
force vs. displacement
(Fd−x(t)) characteristics of
a high-speed rail pantograph
hydraulic damper (Type:
J6H36-02-00, with a
harmonic excitation of
displacement amplitude of
±24.38 mm, a frequency of
0.65 Hz and a velocity
amplitude of ±0.1 m/s) and
b numerical simulation
results of Fd−x(t) at
different excitation speed
amplitudes

(a)

(b)

However, in section “b–c”, the orifices in the rod
begin to be sequentially shielded, so the damping
forces rapidly increase, and the descending speed of
the pantograph quickly decreases. In section “c–d”,
although only the constant orifice in the inner tube
works, the pantograph speed is approaching zero, so
the damping force quickly descends to zero, and the
pantograph is stopped and rests on the compartment
roof.

In section “d–e–a”, the pantograph is raised, so
the damper is compressed. Because the compres-
sion shim-stack valve in the foot valve assembly
plays a dominate role and acts as a relief valve in
this process, the damper supplies a low-level and
approximately constant damping force to the
pantograph.
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Fig. 6 The MATLAB/Simulink model for pantograph–catenary dynamics simulation

Figure 5b continues to demonstrate the numer-
ical simulation results of the Fd−x(t) character-
istics of the damper at different excitation speed
amplitudes.

Thus, the proposed new simplified parametricmodel
is validated by experimental results; the concise model
accurately captures the nonlinear displacement-
dependent damping characteristics of the pantograph
hydraulic damper, and it also appears more com-
plete than the conventional single-parameter damper
model.

3 Effect of the damper characteristics on the
pantograph dynamics

3.1 The simulation model

A detailed MATALB/Simulink model was developed
using the deduced full mathematical model of the
pantograph–catenary system in Sect. 2, with which
the proposed new simplified parametric pantograph
damper model was coupled. The Simulink model is

shown in Fig. 6, and the parameter values used for the
dynamics simulation are summarized in “Appendix”.

Before simulation, the vehicle speed and simula-
tion time should be set, for instance 150 km/h and
10 s; the initial heights of the collector from the
base frame in the raising, operating and lowering pro-
cesses are, respectively, set to be 0.27 m, 1.719 m
and 1.719 m, and that of the joint E from the base
frame in the raising, operating and lowering pro-
cesses are, respectively, set to be 0.17 m, 1.629 m and
1.629 m.

The ODE 3 solver with a time step of 0.001 s and a
relative accuracy of 0.1% was employed in the simula-
tion, and the relative accuracy of the parameter matrix
is higher than 0.4%. In a computer with anAMDRyzen
5 2600X processor, the machine time are, respectively,
4.17 s, 11.46 s and 3.49 s when simulating a 5 s raising
process, a 20 s operating process and a 5 s lowering
process.

In the following simulation, three cases of damper
characteristics were used. Case 1 has high-level damp-
ing characteristics with C0 = 15.57 kN s/m, maxi-
mum damping performance at section “b–c–d”, which
can be calculated by the second item in Eq. (41),
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Fig. 7 Instantaneous
collector height yh (a) and
contact force Fc (b) during
the raising process of the
pantograph

(a)

(b)

and Fconst = 927.7 N. Case 2 has medium-level
damping characteristics with C0 = 9.50 kN s/m,
medium damping performance at section “b–c–d”, and
Fconst = 480 N. Case 3 has low-level damping char-
acteristics with C0 = 4.00 kN s/m, minimum damp-
ing performance at section “b–c–d”, and Fconst =
31 N.

3.2 Raising performance

When the pantograph is raised (the vehicle is station-
ary), the damper is compressed and works in sec-
tion “d–e–a” as shown in Fig. 5a, the Fconst in Eq.
(41) represents the level of damping in section “d–e–
a”.
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Fig. 8 Maximum contact
force and raising time
during the raising process of
the pantograph

Figure 7 demonstrates the instantaneous current col-
lector height and contact force of the pantograph when
it is raised. Figure 7a shows that the pantograph with
a small Fconst (Case 3) is quickly raised, but the col-
lector fluctuates with large amplitudes, and for a long
time after its first impact with the catenary, the con-
tact (impact) forces during fluctuation are large, as
shown in Fig. 7b. The pantograph with a high-level
Fconst (Case 1) is quickly stabilized (Fig. 7a), although
it is raised for a relatively longer time, and the con-
tact forces are small and quickly stabilized (Fig. 7b).
The performance of the pantograph with a medium-
level Fconst (Case 2) is between that of Cases 3 and
1.

Figure 8 summarizes the concrete indices of the pan-
tograph when it is raised and shows that Case 3 has
the highest maximum contact force and longest raising
time of the pantograph, Case 1 has the lowestmaximum
contact force and shortest raising time of the panto-
graph, and the indices in Case 2 are between those of
Cases 3 and 1.

Thus, from the viewpoint of raising performance,
Fconst in the pantograph damper model Eq. (41) should
not be designed to be too small or zero; otherwise,
severe impacts between the pan-head and the cate-
nary and a longer stabilization time of the pantograph

will be induced; in other words, Fconst has an optimal
value.

3.3 Operating performance

When the pantograph is operating, i.e., the panto-
graph is holding and moving on the catenary, the
pantograph and hydraulic damper experience both
high-frequency-low-amplitude vibrations and
low-frequency-big-amplitude discrete disturbances.
The hydraulic damper works in sections “a–b” and “d–
e–a” (Fig. 5a) during the operating process, so both
parameters C0 and Fconst in Eq. (41) are crucial to the
contact quality of the pan-head and catenary.

3.3.1 Pulse responses of the pantograph

The pulse responses of pantograph reflect the sta-
bilization ability of the pantograph against distur-
bances. When the pantograph is subject to a posi-
tive force pulse input, the response of contact force
Fc and its power spectrum density (PSD) are demon-
strated in Fig. 9. Figure 9a shows that the panto-
graph with large C0 and Fconst (Case 1) is more eas-
ily stabilized in contact force than that with smaller
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Fig. 9 Force pulse response
of contact force Fc (a) and
PSD of Fc (b) when the
pantograph is holding with
the catenary

(a)

(b)

C0 and Fconst (Cases 2 and 3). Figure 9b also shows
that the pantograph with large C0 and Fconst has
weaker energies at the main frequencies of 2.6 Hz
and 5.2 Hz than the pantograph with smaller C0 and
Fconst.

Figure 10 demonstrates the displacement pulse
response of the pantograph collector height yh and its
PSD when the pantograph is holding with the catenary,
and indicates that the pantograph with large C0 and
Fconst (Case 1) is more easily stabilized in collector
height and has weaker energies at the main frequencies

of 1 Hz and 2.6 Hz than that with smaller C0 and Fconst
(Cases 2 and 3).

3.3.2 Dynamic contact performance of the
pantograph and catenary

Figure 11 demonstrates the instantaneous current col-
lector height yh and its PSD when the pantograph
moves between the fifth and the seventh spans of
the catenary at a speed of 200 km/h. The panto-
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Fig. 10 Displacement
pulse response of collector
height yh (a) and PSD of yh
(b) when the pantograph is
holding with the catenary

(a)

(b)

graph with large C0 and Fconst (Case 1) has lower
vibration amplitudes in collector height (Fig. 11a)
and weaker energy at the main frequency of 2.6 Hz
(Fig. 11b) than that with smaller C0 and Fconst
(Cases 2 and 3). However, the energy intensities at
the main frequencies of 0.85 Hz and 1.77 Hz do
not show remarkable differences among the three
cases.

Figure 12 demonstrates the instantaneous contact
force Fc and its PSD when the pantograph moves
between the fifth and the seventh spans of the cate-
nary at a speed of 200 km/h. Figure 12 shows that the

pantographwith largeC0 and Fconst (Case 1) has lower-
level fluctuating amplitudes in contact force (Fig. 12a)
and weaker energy at the main frequency of 2.6 Hz
(Fig. 12b) than that with smaller C0 and Fconst (Cases
2 and 3). The differences in energy intensity at other
main frequencies are not obvious among the three
cases.

Figure 13 summarizes and compares the contact
force distributions of the pantograph when the pan-
tograph has different levels of C0 and Fconst. When
60 N ≤ Fc ≤ 80 N, the contact force is con-
sidered in the normal [27] contact zone, as shown
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Fig. 11 Instantaneous
current collector height yh
(a) and PSD of yh (b) when
pantograph moves between
the fifth to the seventh spans
of the catenary at a speed of
200 km/h

(a)

(b)

in Figs. 9a and 12a. When Fc > 80 N or Fc <

60 N, the contact force is considered higher or lower
than the normal value. If Fc > 90 N, the con-
tact force is considered too high and may dam-
age the pan-head and catenary; if Fc < 50 N,
the contact force is considered too low and the
pan-head is about to lose contact with the cate-
nary.

Figure 13 shows that the percentage of normal
contact forces of the pantograph with large C0 and
Fconst (Case 1) is over 66.5% (Fig. 13a) and that
of extreme contact forces is below 2.5% (Fig. 13b).
However, the percentage of normal contact forces of

the pantograph with small C0 and Fconst (Case 3)
is only 39.3% (Fig. 13a) and that of extreme con-
tact forces exceeds 21% (Fig. 13b). The percent-
ages of Case 2 are between those of Cases 3 and
1.

Thus, from the viewpoint of contact quality, largeC0

and Fconst in the pantograph dampermodel (Eq. 41) can
increase the percentage of normal contact forces and
reduce that of extreme contact forces. In other words,
it can improve the pantograph–catenary contact quality.
In engineering, C0 and Fconst should not be designed
to be too small or zero.
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Fig. 12 Instantaneous
contact force Fc (a) and
PSD of Fc (b) when the
pantograph moves between
the fifth to the seventh spans
of the catenary at a speed of
200 km/h

(a)

(b)

Figure 14 compares the instantaneous contact force
Fc and its PSD when the pantograph operates at differ-
ent vehicle speeds and with a medium-level damper,
the medium-level damper is more suitable for a nom-
inal vehicle speed range between 120 to 180 km/h.
Figure 14 demonstrates that the damper has the best
damping performance in obtaining better pantograph–
catenary contact quality at the speed of 160 km/h,
but the damping performance deteriorates obviously
when the pantograph operates beyond the nominal-
speed range.

The statistic result of contact forces in Fig. 15 also
verifies that a maximum percentage of normal [27]

contact forces and a minimum percentage of abnor-
mal contact forces of the pantograph and catenary are
obtainedwhen the damper operates at the vehicle speed
of 160 km/h.

3.4 Lowering performance

When the pantograph is lowered (the vehicle can be
stationary or moving), the damper is extended and
works in section “a–b–c–d” as shown in Fig. 5a. If
we divide section “a–b–c–d” into “a–b” and “b–c–
d”, C0 represents the damping performance in sec-
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Fig. 13 Normal contact
force distributions (a) and
extreme contact force
distributions (b) of the
pantograph

tion “a–b”, and the second item in Eq. (41) rep-
resents the damping performance in section “b–c–
d”.

Figure 16a and b shows the instantaneous height ye
of joint E and velocity ẏe of joint E when the panto-
graph is lowered. As an example (Case 1), Fig. 16b
shows the lowering process of the pantograph; sec-
tions “a–b” and “b-c-d” correspond to sections “a–b”
and “b–c–d” in Fig. 5a, respectively. In section “a–
b”, the pantograph descends against a relatively small
damping of C0, so the pantograph speed increases;
however, in section “b–c–d”, because the pantograph
is subject to a very large nonlinear damping, the
pantograph speed is drastically reduced in section
“b–c” and decreases to zero in section “c–d” when
the pantograph impacts the base frame. Figure 16b
also illustrates the lowering times t1 in section “a–
b” and t2 in section “b–c–d”; the sum of t1 and
t2 is equal to the total lowering time of the panto-
graph.

Figure 16b indicates that speed of the pantograph
with high-level damping (Case 1) is quickly reduced
but requires a longer time to reach zero, whereas
the speed of the pantograph with low-level damp-
ing (Case 3) is slowly reduced but quickly reaches
zero. However, because of the considerable impact of

the pantograph and base frame in Case 3, the final
speeds fluctuate drastically. The final impact inten-
sity is also observed in Fig. 16c, where the pan-
tograph with low-level damping (Case 3) has the
largest velocity impact energy at the main frequency
of 2.6 Hz.

Figure 17 demonstrates the instantaneous accelera-
tion ÿe of joint E and PSD of ÿe when the pantograph
is lowered. Figure 17a shows that the pantograph with
a high-level damping (Case 1) has the largest maxi-
mum acceleration in the speed reduction process, i.e.,
section “b–c” of Fig. 16b, and the smallest maximum
impact acceleration in the final process, i.e., section
“c–d” of Fig. 16b. Figure 17a also shows that the pan-
tographwith low-level damping (Case 3) has the largest
maximum impact acceleration in the final process. In
the frequency domain, Fig. 17b obviously shows that
the pantograph in Case 3 has the largest acceleration
impact energies at the main frequencies of 9.2 Hz and
13.8 Hz.

Figure 18 demonstrates the instantaneous vertical
momentum and PSD of the vertical momentum of the
pantograph when the pantograph is lowered. In the
main section of speed reduction “b–c”, the pantograph
with a high-level damping (Case 1) has the largest
vertical momentum (Fig. 18a) and vertical momen-
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Fig. 14 Instantaneous
contact force Fc (a) and
PSD of Fc (b) when the
pantograph operates at
different vehicle speeds
(Damper:
C0 = 9.50 kN s/m, medium
damping performance at
section “b–c–d”, and
Fconst = 480 N)

(a)

(b)

tum energies (Fig. 18b) at the main frequencies of
0.2Hz and 1.2Hz.However, in the final impact process,
the pantograph with low-level damping (Case 3) has
the largest vertical momentum (Fig. 18a) and vertical
momentum energies (Fig. 18b) at the main frequency
of 4.2Hz.

Figure 19 summarizes the lowering time in terms
of t1 and t2, maximum acceleration and maximum
impact acceleration of the pantograph during the low-
ering process. Figure 19a indicates that the differ-
ences in lowering time t1 in the first stage “a–b”

are not obvious among the three cases, so the damp-
ing coefficient C0 has no obvious effect on the low-
ering time of the pantograph. Figure 19a also indi-
cates that the higher level of damping in section “b–
c–d” of the damper corresponds to a longer total low-
ering time of the pantograph. In other words, the
damping performance in section “b–c–d” (Fig. 5a and
the second item in Eq. 41) of the damper has an
obvious effect on the lowering time of the panto-
graph.
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Fig. 15 Normal contact
force distributions (a) and
extreme contact force
distributions (b) of the
pantograph at different
operating speeds (Damper:
C0 = 9.50 kN s/m, medium
damping performance at
section “b–c–d”, and
Fconst = 480 N)
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Figure 19b, c shows that the higher level of damping
in section “b–c–d” of the damper corresponds to the
larger maximum acceleration and smaller maximum
impact acceleration of the pantograph. In other words,
the speed of the pantograph with high-level damping
(Case 1) is quickly reduced, and the pantograph ismore
softly dropped on the base frame, but a longer total
lowering time (Fig. 19a) is induced by the high-level
damping.

Therefore, from the viewpoint of lowering perfor-
mance, the damping coefficient C0 in section “a–b”
of the damper has no obvious effect on the low-
ering time of the pantograph, whereas the nonlin-
ear damping characteristics in section “b–c–d” of
the damper, which are described by the second item
in Eq. (41), have dominating effects on the total
lowering time, maximum acceleration and maximum
impact acceleration of the pantograph. Thus, within
the constraint of the total lowering time, increasing the
damping characteristics in section “b–c–d” will obvi-
ously improve the lowering performance of the panto-
graph.

4 Concluding remarks

(1) A new simplified parametric model, which is more
suitable for pantograph–catenary dynamics sim-
ulation, was proposed to describe the nonlinear
displacement-dependent damping characteristics
of a pantograph hydraulic damper and validated by
experimental results. A full mathematical model
of the pantograph–catenary system, which incor-
porated the new damper model, was established to
simulate the effect of the damping characteristics
on the pantograph dynamics, which includes the
raising, operating and lowering performance of the
pantograph.

(2) The simulation results show that large values of
Fconst and C0 in the pantograph damper model
have three benefits: increased response quality of
the pantograph when the pantograph is raised;
avoidance of excessive impact between the pan-
head and the catenary; and improved pantograph–
catenary contact quality by increasing the per-
centage of normal contact forces and reducing
the percentage of extreme contact forces. A large
C0 value has no obvious effect on the lower-
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Fig. 16 Instantaneous
height ye (a) and velocity ẏe
(b) of joint E and PSD of ẏe
(c) when the pantograph is
lowered

(a)

(b)

(c)
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Fig. 17 Instantaneous
acceleration ÿe of joint E
(a) and PSD of ÿe (b) when
the pantograph is lowered

ing time of the pantograph; thus, in engineering
design, C0 and Fconst should not be too small or
zero.

(3) The nonlinear damping characteristics described
by the second item in the new damper model have
dominating effects on the total lowering time,max-
imum acceleration and maximum impact accel-
eration of the pantograph. Thus, within the con-
straint of total lowering time, increasing the sec-
ond item damping characteristics of the damper
will improve the lowering performance of the pan-
tograph and reduce excessive impact between the
pantograph and its base frame.

(4) A set of optimal damper parameters would be ben-
eficial to the pantograph–catenary system dynam-
ics; however, damping performance of the new
damper model would vary with the vehicle speeds,
when operating beyond the nominal-speed range of
the vehicle, the damping performance would dete-
riorate obviously.

(5) The proposed concise pantograph hydraulic
damper model appears to be more adaptive to
working conditions of the pantograph, and more
complete and accurate than the previous single-
parameter linear model, it is therefore more use-
ful in pantograph–catenary dynamics simulations
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Fig. 18 Instantaneous
vertical momentum (a) and
PSD of the vertical
momentum (b) of the
pantograph when the
pantograph is lowered

(a)

(b)

and further parameter optimizations. The obtained
simulation results are also useful and instructive
for optimal specification of pantograph hydraulic
dampers. However, this work was performed by

neglecting the performance and time delay of the
pneumatic actuating system, so it will be interest-
ing to incorporate the pneumatic system dynamics
in the next study.
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Fig. 19 Lowering time in
terms of t1 and t2 (a),
maximum acceleration (b)
and maximum impact
acceleration (c) of the
pantograph
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Appendix

Parameters and values in the pantograph–catenary dynamics modelling and simulation

Notation (Unit) Description Value Remarks

m1 (kg) Coupling rod mass 3.90
J1 (kg m2) Coupling rod moment of inertia 1.88
l1 (m) Coupling rod length 1.20
lm1 (m) Length from the centre of gravity of the coupling rod to joint A 6.03E−001
θ2(

◦) Angle from the coupling rod to level Variable
l2 (m) Length of connecting rod BC 3.40E−001
θ1(

◦) Angle from the connecting rod BC to level Variable
m3 (kg) Lower arm mass 2.10E+001
J3 (kg m2) Lower arm moment of inertia 1.75E+001
l3 (m) Lower arm length 1.58
lm3 (m) Length from the centre of gravity of the lower arm to joint D 7.93E-001
α(◦) Rising angle of the lower arm (pantograph) Variable
h0 (m) Vertical distance of joints A and D 1.30E−001
l0 (m) Horizontal distance of joints A and D 7.20E−001
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Notation (Unit) Description Value Remarks

m4 (kg) Upper arm mass 1.60E+001
J4 (kg m2) Upper arm moment of inertia 2.02E+001
l4 (m) Upper arm length 1.95
lm4 (m) Length from the centre of gravity of the upper arm to

joint C
9.14E−001

β(◦) Angle from the connecting rod BC to upper arm 1.15E+001
ye (m) Height of joint E Variable
mh (kg) Pan-head mass 5.00
kh (N/m) Equivalent stiffness of the pan-head suspension 7.60E+003
ch (N/m) Equivalent damping coefficient of the pan-head

suspension
5.00E+001

lh (m) Height between the collector and joint E 1.00E−001
yh (m) Height of the pantograph collector Variable
yc (m) Height of the catenary 1.70
Lc (m) Span length of the catenary 6.30E+001
Ld (m) Dropper interval 9.00
kc (N/m) Catenary stiffness Variable
k0 (N/m) Static stiffness of the catenary 3.6845E+003
a1 Coefficient 4.665E−001
a2 Coefficient 8.32E−002
a3 Coefficient 2.603E−001
a4 Coefficient −2.801E−001
a5 Coefficient −3.364E−001
Fc (N) pantograph–catenary contact force Variable
v (km/h) Vehicle speed 2.00E+002
L Lagrangian function Function
T (J) Kinetic energy of the framework Variable
U (J) Potential energy of the framework Variable
GF (N m) Generalized force Variable
Jf (kg m2) Equivalent moment of inertia of the framework Variable
Uf (N s2/m) Coefficient of ẏ2e in dynamic model of the framework Variable
Ff (N m) Equivalent generalized force of the framework Variable
Mα (N m) Uplift moment Variable
Fu (N) Static uplift force 7.00E+001
Cf (N s/m) Equivalent damping coefficient of the framework Variable
Fd (N) Damping force of the hydraulic damper Variable
g(m/s2) Acceleration of gravity 9.80
l (m) Length of the connection rod DP 1.80E−001
xd (m) Horizontal distance between point P and joint N 3.50E−001
yd (m) Vertical distance between joints D and N 0.00 Joints D and N are on the same

level
s (m) Instantaneous length of the hydraulic damper Variable
γ (◦) Angle from the connection rod DP to lower arm 5.56E+001
s0 (m) Hydraulic damper length when the pantograph is

completely raised
3.65E-001

x(t) (m) Instantaneous displacement of the hydraulic damper Variable
k1 − k13 Coefficients Variable The unit depends on concrete

meaning of the coefficient
t (s) Time Variable
Ac(m2) Pressure action area of the piston during the

extension stroke of the damper
Variable

Af (m2) Cross-section area of the orifices in the rod for fluid
outflow

Variable

A1 − An(m2) Changeable cross-section area of the orifices in the
rod for fluid inflow

Variable n = 1, 2, . . .6 in this work

Ax(m2) Pressure action area of the piston during the
compression stroke of the damper

Variable
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Notation (Unit) Description Value Remarks

Ccom (N s/m) Damping coefficient of the damper
during compression

Variable

Cd1 Discharge coefficient of the orifice 7.20E−001
Cd2 Discharge coefficient of the

shim-stack valve
6.10E−001

Ce Equivalent-pressure correction
factor

3.15E−001 FEA identified

Cext (N s/m) Damping coefficient of the damper
during extension

Variable

Cw(m6/N) Deflection coefficient of the shim Variable
C0 (N s/m) Initial damping coefficient of the

damper during extension
Variable

D (m) Piston diameter 3.60E−002
E (Pa) Elastic modulus of the shim 2.00E+011
Fconst (N) Damping force of the damper

during compression
Variable

P (Pa) Instantaneous working pressure of
the damper

Variable

Pi (Pa) Instantaneous pressure in the
hollow passage of the rod

Variable

Qwork(m3/s) Instantaneous working flow of the
damper

Variable

d (m) Rod diameter 1.58E−002
d0 (m) Diameter of the orifice in the inner

tube
6.00E−004

d1 (m) Diameter of the orifice in the rod
for fluid inflow

1.10E−003

d2 (m) Diameter of the orifice in the rod
for fluid outflow

1.20E−003

d3 (m) Diameter of the orifice in the rod
for fluid outflow

1.10E−003

d4 (m) Diameter of the orifice in the rod
for fluid outflow

1.10E−003

h1 − hn (m) Thickness of the shims in a
shim-stack

5.00E−004

rs (m) Outer radius of the shim 8.00E−003
sa (m) Displacement amplitude of the

damper
5.00E−002

s1 (m) Distance from the first orifice in
the rod to point (0, sa/2)

2.10E−002


s1 (m) Orifice interval 1.40E−003

s2 (m) Orifice interval 3.20E−003
ρ (kg/m3) Oil density 8.75+002
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