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Abstract An initially unstable equilibrium position
of a system can be stabilized by introducing a para-
metric excitation. This is especially of interest for sup-
pressing self-excited vibrations, and the effect is known
as parametric anti-resonance which can be observed
close to the parametric combination frequencies. For
the stability analysis, linearized mechanical systems
with an arbitrary number of degrees of freedom and
time-periodic damping and stiffness matrices are ana-
lyzed. To approximate stability maps analytically, the
method of averaging is applied. A state-space repre-
sentation is outlined which lifts the restriction of sym-
metric stiffness and damping matrices in the common
approaches. The eigenvalues of the slow flow are used
to determine stability. Close to a parametric combina-
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tion frequency, these can change significantly. Restrict-
ing the analysis to a single parametric resonance fre-
quency may lead to unsatisfactory and even contra-
dictory stability maps due to the local approximation.
Therefore, a novel approach, that is capable to account
for the interference between the averaged eigenvalues,
is outlined and motivated in an engineering manner.
To verify the potential of this approach, two example
systems from rotor dynamics are revisited.

Keywords Parametric excitation · Averaging ·
Stability · Rotor dynamics

1 Introduction

Parametrically excited systems have been studied
extensively in mathematics and engineering applica-
tions (see, e.g., [1–5]). A well-known example of a
parametrically excited system is the Mathieu equation.
It can describe the linearized equations of motion of a
simple pendulum with a periodically moving support
or the transverse oscillations of a beam with a pulsat-
ing axial load [6,7]. The trivial solution of the Mathieu
equation can be destabilized by parametric excitation.
Another system with such a destabilizing effect due to
parametric excitation is the Jeffcott rotor with a breath-
ing crack [8]. Unstable parameter regions caused by
parametric excitation are known as parametric reso-
nances. This effect has also been studied in [1,5,9].
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In systems with two or more degrees of freedom,
a parametric excitation may have a stabilizing effect.
This beneficial effect was discovered and described
by Tondl in [4,10]. This idea was generalized to the
concept of damping by parametric excitation [11,12]
which describes the process of introducing a well-
chosen parametric excitation to increase the overall
system damping of a general system. As described in
[11–13], this effect can be interpreted as a coupling of
certain modal degrees of freedom which allows for a
more efficient usage of the existing system damping. If
the trivial solutions of an unstable linear time-invariant
system can be stabilized in certain parameter regions
by introducing parametric excitation, these regions are
called parametric anti-resonances. Among others, the
studies of interaction of self-excited and parametric
vibrations have been continued in [11,14–16].

In the physics literature, a similar effect of the para-
metric excitation was observed investigating unsta-
ble periodic orbits of a chaotic attractor. In [17], it
is described that a well-chosen time-varying param-
eter can stabilize some of these periodic orbits, and
therefore the trajectories settle on the stabilized peri-
odic orbits. The method, however, relies on real-time
exact state feedback, which is difficult to realize in an
experimental setup. Adding a parametric excitation to
the Duffing oscillator can also prevent the intersec-
tion of stable and unstable manifolds, as shown in
[18] by Melnikovs method. This analysis, however,
becomes infeasible for general high-dimensional sys-
tems.Experimental andnumerical studies [19–21] have
further shown that the phase difference between the
unstable periodic orbit and the parametric excitation
can be crucial for the success of stabilizing a peri-
odic orbit. Analytical results, however, have not been
reported. These methods are summarized as (phase)
control of chaos.

Two well-known examples for self-excited vibra-
tions in rotor dynamics are inner damping and the
effects due to journal bearings (see e.g., [8]). Applica-
tions and numerical verifications of beneficial effects
of parametric anti-resonances in rotor dynamics can
be found in, e.g., [15,22–25]. In particular, damp-
ing by parametric excitation has been implemented
experimentally for a rotor in magnetic bearings dur-
ing the passage through resonance [26]. Recent pub-
lications [27–30] indicate the potential to suppress
the self-excited vibrations occurring in fluid-film bear-
ings. Thereby, the operating range of rotors in jour-

nal bearings is enlarged. Further potential applications
are the suppression of self-excited vibrations occurring
in air bearings [31], clearance-excitations induced by
air-gaps between rotating and non-rotating parts [32],
or friction-inducedvibrations such as break squeal [33].

Parametric resonance and parametric anti-resonance
can only be observed if the frequency of parametric
excitation is in the vicinity to either one of the funda-
mental parametric resonance frequencies or the para-
metric combination frequencies [3,5]. This can be con-
firmed analytically by applying the method of aver-
aging [11,12,16,29], whereby the linear time-varying
system is approximated by a linear time-invariant sys-
tem on a certain time scale. Therefore, the stability
analysis is performed by standard eigenvalue compu-
tation. In [11–13], the method of averaging has further
been used to understand the occurrence of paramet-
ric anti-resonances and interpret the underlying phys-
ical reasons. Generally, the application of the method
of averaging is computationally less costly compared
to analysis relying on the numerical calculation of the
monodromy matrix. This allows for parameter studies
even in high-dimensional systems.

The studies [11,12,16] perform the averaging for
equations of motion in second-order form with decou-
pled linear part. However, common rotor dynamic
effects such as gyroscopic forces, inner damping or
journal bearings are described by systems with non-
symmetric system matrices [8], whereby the decou-
pling of the linear part in second-order form is infeasi-
ble. To overcome these limitations, an averaging pro-
cess in the state-space representation (i.e., first-order
form) has been developed recently [29,34,35]. Fur-
thermore, in [29] numerical evidence was presented,
that the averaging in the state-space representation
leads to more accurate results than the more common
approaches [11,12,16] even for systems with symmet-
ric system matrices.

To perform the averaging process, a single paramet-
ric resonance frequency has to be chosen at the begin-
ning of the approximation process. If the investigated
frequency range of parametric excitation contains mul-
tiple parametric resonance frequencies, it is not trivial
which one to choose. In higher-dimensional systems,
this is more challenging, since for linear systems the
number of parametric resonance frequencies increases
quadratically with the number of degrees of freedom. If
the eigenvalues of the system without parametric exci-
tation are close to each other, the parametric resonance
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frequencies are also close. Restricting the frequency
interval such that it contains only one parametric reso-
nance frequency may lead to a limited interval for the
frequency of parametric excitation. Recent investiga-
tions [34] indicate that treating each parametric reso-
nance frequency independently might lead to contra-
dictory results. In [29], it is highlighted that certain
stability maps can only be explained by the interaction
of multiple parametric resonance frequencies.

To analyze parametrically excited systemswith non-
symmetric system matrices in a frequency range of
parametric excitation containing multiple parametric
resonance frequencies, a novel approach is presented.
Due to the non-symmetric system matrices, the pro-
cedure of [29] is applied, where the system is trans-
formed to state space and the method of averaging is
then applied. To account for interfering parametric res-
onance frequencies, the eigenvalues of the averaged
system are investigated. Relying on this eigenvalues an
algorithm is proposed to determine the stability of the
system with interfering parametric resonance frequen-
cies. Thereby, it is assumed that the averaged system
results from applying the method of averaging in state
space. However, the procedure can be easily adopted
to alternative, more common averaging approaches. To
illustrate the potential of the approach, two rotor sys-
tems from the literature are re-investigated.

2 The process of averaging

Startingwith the equation ofmotion of a linearmechan-
ical system, it is then transformed to a computationally
convenient form to which the method of averaging is
applied. Subsequently, the stability of the system is dis-
cussed.

2.1 Equation of motion

In engineering applications, the linearized equation of
motion of a parametrically excited system is given by

Mq̈ + B(t) q̇ + K(t)q = 0,

B(t + T ) = B(t), K(t + T ) = K(t). (1)

The mass matrix M is assumed to be non-singular
and constant, t denotes the time and q a vector of
generalized coordinates. The matrices K and B corre-
spond to the stiffness and damping coefficient matrix.
These matrices are of general structure and can be non-
symmetric. Examples for asymmetry in rotor systems

are the presence of gyroscopic forces, inner damping or
journal bearings [8]. The number of degrees of freedom
of system (1) is denoted by N . The frequency of para-
metric excitation is given by �P = 2π/T . Utilizing
the complex Fourier series expansion of the periodic
matrices, Eq. (1) can be rewritten as

Mq̈ + B0 q̇ + K0q

= −ε

K∑

k=1

[(
Kk+eik�P t + Kk−e−ik�P t

)
q

+
(
Bk+eik�P t + Bk−e−ik�P t

)
q̇
]
. (2)

The superscript k indicates the kth coefficient of the
Fourier series expansion and ± the sign of the asso-
ciated exponential. It is assumed that the time-varying
part is small compared to the constant part, which is
denoted by the small parameter ε. The eigenvalues λ j

and the state-space eigenvectors v j of the system (2)
without parametric excitation (ε = 0) are defined by
([

0 I
−M−1K0 −M−1B0

]
− λnI

)
vn = 0,

n = 1, . . . , 2N , V = [v1, . . . , v2N ] . (3)

The truncation of the Fourier series in Eq. (2) is cho-
sen such that K is well above the double of the max-
imum imaginary part of the eigenvalues λn divided
by the parametric excitation frequency �P , i.e., K �
2maxn (Im [λn]) /�P . This truncation is chosen such
that the ignored terms in the Fourier expansion do
not contribute in the outlined averaging process of
first order, which is discussed in the following section.
The matrix V consists of the eigenvectors of the time-
invariant part of system (1), and therefore it decouples
the time-invariant part. Defining the modal coordinates
z = V[qT, q̇T]T, Eq. (2) is transformed to

ż = �z − ε

K∑

k=1

(
Pk+eik�P t + Pk−e−ik�P t

)
z,

� = diag(λ1, . . . , λ2N ), (4)

whereby it is assumed, that the constant state-space
matrix is semi-simple, i.e., the matrix� is diagonal. Its
entries are the eigenvalues λn (cf. Eq. (3)). The trans-
formation of the matrices Kk± and Bk± generates the
matrices of parametric excitation Pk±. Generally, they
are not diagonal and couple the modal degrees of free-
dom. Equation (4) for the nth modal degree of freedom
is given by
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żn = λnzn − ε

2N∑

m=1

K∑

k=1

(
Pk+
nm eik�P t

+ Pk−
nm e−ik�P t

)
zm, n = 1, . . . , 2N . (5)

Linear systems with time-periodic coefficients arise
in the stability investigations of periodic orbits in gen-
eral. Therefore, if the equation of variation along the
periodic orbit can be expressed in the form of sys-
tem (4) (diagonalizable constant part and small time-
varying part), the outlined procedure can be applied.
More specifically, in the case of (phase) control of chaos
(c.f. [19–21]) the linearization about an unstable peri-
odic orbit needs to be computed. In the following, the
focus lies on parametrically excited mechanical sys-
tems.

In the literature [36–38], the method of averaging is
formulated for second-order systems. Equation (5) is
of first-order form; however, the averaging process can
be adapted, as shown in the next section.

2.2 Transformation and averaging

In the following, the averaging procedure developed
in [14,16] is adapted to the state-space representa-
tion (cf. Eq. (5)), which allows the analysis of sys-
tems with non-symmetric stiffness and damping matri-
ces. The standard procedure of averaging (see [36,37])
introduces a small detuning ��P of the excitation fre-
quency, by

�P = �P0 + ε��P + O(ε2), �P0 �= 0, (6)

where the frequency �P0 determines a resonant man-
ifold in whose vicinity the results of method of aver-
aging are valid. Usually, this frequency is determined
by systems frequencies [37], and in the upcoming
derivations an explicit expression for choices of�P0 is
obtained. Furthermore, a dimensionless time τ = �P t
and normalized eigenvalues λ̄n = λn/�P0 are intro-
duced. Utilizing these notations and the detuning (6),
the Taylor series expansion of Eq. (5) for small ε can
be computed to

z′n = λ̄nzn − ε

�P0

[
2N∑

m=1

K∑

k=1

(
Pk+
nm eik τ

+ Pk−
nm e−ik τ

)
zm + ��P λ̄n zn

]
+ O(ε2), (7)

where the prime denotes the derivative with respect
to the dimensionless time. For system (7), a har-
monic ansatz with a time-dependent amplitude of the
form

zn = un(τ )eiτ Im
[
λ̄n

]
, (8)

ismade. It is the state-space equivalent to the amplitude-
phase transformation [37], which is also applied in the
method of slowly varying phase and amplitude (see
[6,38]). Rescaling the real part of each eigenvalue by
the small systems parameter ε (Re [λn] �→ εRe [λn]),
the first-order approximation of system (7) is given by

u′
n = − ε

�P0

[
2N∑

m=1

K∑

k=1

(
Pk+
nm eik τ

+ Pk−
nm e−ik τ

)
eiτ(Im[λ̄m ]−Im[λ̄n ])um

+ (i��P Im[λ̄n] − Re[λ̄n]�P0)un

]

+O(ε2). (9)

Since the number of periodic functions in Eq. (9) is
finite, the systemof first-order differential equations (9)
can be expressed in the standard form

u̇ = εf(u, t) = ε

K̃∑

k=1

fk(u, t) + O(ε2)

fk(u, t + Tk) = fk(u, t). (10)

The method of averaging can be applied to systems
of the form of Eq. (10) [36]. The averaged system is
given by averaging each of the periodic functions on
the right-hand side of Eq. (10) over its period

˙̂u = ε

K̃∑

k=1

1

Tk

Tk∫

0

fk(û, t)dt. (11)

The difference of the solution of the averaged sys-
tem (11) and the original system (10) is of
order ε (û − u = O(ε)) on the time scale 1/ε. Proofs
and further treatment can be found in, e.g., [36,37] and
higher-order approximations in [14,34,37]. Averaging
the harmonic functions of Eq. (9) will always give zero,
unless the exponent of the exponential function van-
ishes. This is the case if

k�P0 = ∓Im[λn] ± Im[λm]. (12)

123



An approach to account for interfering parametric resonances and anti-resonances 1841

These frequencies are called parametric resonance fre-
quencies in the following. The parameter k denotes the
order of the parametric resonance frequency. The para-
metric resonance frequencies are determined by the
imaginary parts of the eigenvalues of the underlying
system with constant coefficients and not by the eigen-
frequencies as they are defined in the literature (e.g.,
[3,5]). The difference, however, is in second order in
ε. The averaged system will generally depend on the
parametric resonance frequencies. Due to the defini-
tion (6), the parametric resonance frequencies are not
zero.

The choice K � 2maxn (Im [λn]) /�P in the
Fourier expansion (2) is justified by assuming the exis-
tence of a parametric resonance frequencies above the
truncation frequency, i.e., with k = k∗ > K . Eq. (12)
yields

�P0 = ∓Im [λn] ± Im [λm]

k∗

≤ 2maxn=1,...,2N (Im [λn])

K

 �P , (13)

which contradicts the closeness of �P and �P0 from
Eq. (6). For higher-order averaging, the truncation can
be adjusted.

2.3 The averaged system

The parametric resonance frequency is given by the
choice of two specific indices n = ñ and m = m̃.
Averaging yields to
[
û ′̄
n

û′
m̄

]
= − ε

�P0

[
σn̄ Pk±

n̄,m̄

Pk∓
m̄,n̄ σm̄

] [
ûn̄
ûm̄

]
,

σn = i
Im [λn] ��P

�P0
− Re [λn] . (14)

The indices n̄ and m̄ in Eq. (14) can be taken from
Table 1. In the case of a fundamental parametric res-
onance frequency (first line of Table 1), two modal
coordinates with complex conjugate eigenvalues are
coupled (ûñ and ûñ+N ). In the case of a parametric
combination frequency, the replacements for n̄ and m̄
can be found in the line two (difference) and line three

(sum) of Table 1. Two 2× 2 systems arise, for instance
in the case of a parametric combination frequency of
difference type, the coordinate ûñ is coupled with ûm̃
and ûñ+N with ûm̃+N , whereas the coordinates ûm̃ and
ûñ+N are decoupled from ûñ+N and ûm̃+N . It can be
shown that the two decoupled 2×2 are complex conju-
gates [34], and therefore the stability type of the trivial
fixed point is the same for both systems. This holds
similarly for the summation type.

If the resonance condition for the upper sign in the
second column of Table 1 is fulfilled, then the upper
signs in Eq. (14) are valid. Analogous holds for the
lower signs. Equation (14) is only valid if none of the
other eigenvalues have the same imaginary part as λñ
and λm̃ . If this is the case, the averaged system will
generally have more dimensions [34] and cannot be
written in the form of Eq. (14). However, the proposed
process can easily be adapted.

For all other coordinates n �= n̄, m̄, the averaged
system simplifies to

û′
n = − ε

�P0
σn ûn . (15)

3 Stability analysis

In this section, the stability of the trivial solution of
the averaged system is investigated. Since the averaged
system is time invariant, an extension of the Hurwitz
criterion for complex-valued polynomials [39] can be
used to derive conditions for stability on the detun-
ing ��P (see e.g., [11,14,23]). In general, the influ-
ence of parametric excitation is observed in a vicinity of
the parametric resonance frequencies (cf. e.g., [3,4]).
However, the coefficient matrix in Eq. (14) depends
on the choice of �P0 and its evaluation at different
parametric resonance frequencies �P0 might lead to
a different stability conclusion. So, even contradictory
stability maps might arise. To overcome this problem,
an approachmotivated in an engineeringmanner is pro-
posed. It accounts for all relevant parametric resonance
frequencies in a specific region of the stability map.
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Table 1 Indices for
system (14) depending on
the parametric resonance
frequency given by the
eigenvalues λñ and λm̃ ; +N
denotes the complex
conjugated eigenvalue

Resonance frequency Resonance condition Replacement indices

n̄ m̄

Fundamental 2 Im[λ̄n̄] ∓ k = 0 ñ ñ + N

Combination difference Im[λ̄n̄] − Im[λ̄m̄ ] ∓ k = 0 ñ m̃

m̃ + N ñ + N

Combination sum Im[λ̄n̄] + Im[λ̄m̄ ] ∓ k = 0 ñ m̃ + N

m̃ ñ + N

After transforming the averaged Eqs. (14) and (15)
to the original time, their eigenvalues (ρn) are inves-
tigated. In the case of n = n̄ or n = m̄, these are
determined by

ρn̄,m̄ = ε

[
Re[λn̄] + Re[λm̄]

2
− i��P

Im[λ̄n̄] + Im[λ̄m̄]
2

± 1

2

√
[Re[λn̄] − Re[λm̄] − i��P (Im[λ̄n̄] − Im[λ̄m̄])]2 + 4Pk±

n̄m̄ Pk∓
m̄n̄

]

+O(ε2)

= ρm,� − iρm,� ± √
�ρ� + i�ρ� + O(ε2). (16)

The indices forwhich the resonance condition ismet
are given in Table 1. For the other indices, ρn is com-
puted from Eq. (15). Since the indices n̄ and m̄ depend
on�P0 and��P , the eigenvalues ρ will generally also
depend on these parameters. It can be observed that a
parametric combination frequency determined by the
indices ñ and m̃ introduces damping in the modal coor-
dinates uñ , um̃ , uñ+N and um̃+N . This is consistent
with the observations [11]. Furthermore, investigating
Eq. (16) reveals, if the parametric excitation lowers the
real part of an eigenvalue, the real part of the another
eigenvalue is always increased. The stability gain in
some modal degree of freedomwill always cause a sta-
bility loss in another modal coordinate. This matches
with the observations and interpretations described in
[11].

If the parametric resonance frequency (�P0) is
fixed, only the parameter ��P can be varied. From
the linear Eq. (6), it is obvious that ��P can be
replaced by �P . Therefore, the eigenvalues ρn can
be visualized over the frequency of parametric excita-
tion �P , which is a physically meaningful parameter.
A schematic drawing of several eigenvalues is given in
Fig. 1. To distinguish between the eigenvalues ρn aris-

ing from different choices of �P0, a new superscript r
(r = 1, . . . , R) is introduced. The eigenvalue ρ

(r)
n is

the eigenvalue of nth modal degree of freedom of the

averaged system due to the r th parametric resonance
frequency (�(r)

P0).
In Fig. 1, it is assumed thatλmax and its complex con-

jugate are the only eigenvalues with positive real part,
and thus the trivial equilibrium of system (1) without
parametric excitation is unstable. As observed earlier,
the real part of the eigenvalues of the averaged sys-
tem ρn can change due to the parametric excitation.
For stability of the averaged system (14), it is therefore
necessary that the real parts of ρ

(r)
max and its complex

conjugated cross the Re[ρ(r)
n ] = 0 line. Then, a para-

metric resonance can be observed.
This is shown in Fig. 1, where the first paramet-

ric combination frequency �
(1)
P0 is determined by the

eigenvaluesλmax andλn1 . If this frequency is chosen for
�P0 in the detuning (6), ρ

(1)
max, ρ

(1)
max+N , ρ

(r)
n1 and ρ

(r)
n1+N

differ from the corresponding eigenvalues λn for non
vanishing coefficients P±

nm (cf. Eq. (16)). Such a case
is indicated by the gray lines in Fig. 1. It can be shown
that ρ(r)

n and ρ
(r)
n+N are complex conjugates [34]. So it is

sufficient to show one of them. If the frequency of para-
metric excitation is in the interval S(1), then the trivial
solution of averaged system is stable, whereas the triv-
ial solution of the systemwithout parametric excitation
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ΩP

Re [λmax]

0

Re [λn1 ]

Re [λn2 ]

S(1) S(2)

S

Ω(1)
P0 Ω(2)

P0

Re ρ
(1)
max

Re ρ
(2)
max

Re [ρmax]

Re ρ
(1)
n1

Re ρ
(2)
n2

S(1) and S(2):
Stability intervals from an iso-
lated treatment of the paramet-
ric excitation frequencies
Ω(1)

P0= |Im [λmax] ± Im [λn1 ] | and
Ω(2)

P0= |Im [λmax] ± Im [λn2 ] |
S: stability interval based on
Eq. (18)

Fig. 1 Sketch of the eigenvalues of the averaged system (16) and the parameters defined in Eq. (18) for neighboring parametric
combinations frequencies

is unstable (Re [λmax] > 0). Thus, a parametric anti-
resonance is observed in this interval. The interval S(1)

can also be obtained by applying the Hurwitz criterion
to Eq. (14), as this is done in, e.g., [11,12,29].

Investigating Eq. (16) for large ��P and revers-
ing the rescaling of Re [λn] reveals that Re

[
ρr
n

]
tends

toward Re [λn]. The parameter ��P0 is the difference
between the choice of the parametric resonance fre-
quency �P0 and the actual frequency of parametric
excitation�P (cf. Eq. (6)). The eigenvalues of the aver-
aged systemdiffer significantly from the corresponding
eigenvalues λn if these are sufficiently close to a para-
metric resonance frequency. Only in this region, the
stability of the system (1) is influenced by parametric
excitation. Consequently, parametric anti-resonances
and parametric resonances can be observed only in
the vicinity of a parametric excitation frequency (see
[3,4,7]).

The eigenvalues λmax and λn2 (n1 �= n2) contribute
toward the second combination frequency �

(2)
P0. The

dashed black lines in Fig. 1 indicate a schematic evolu-
tion of the real part of corresponding eigenvalues ρ

(2)
max

and ρ
(2)
n2 . Choosing �

(2)
P0 as parametric resonance fre-

quency in the averaging process leads to the stability
interval S(2). Figure 1 illustrates that the stability inter-
vals arising from different parametric resonance fre-
quencies not necessarily coincide.

The difference between the real parts of the averaged
system (ρ(r)

n ) and λn is defined by

�ρ(r)
n = Re

[
ρ(r)
n

]
− Re [λn]

=
{
f (r)
n (��P ) if n = n̄, m̄

0 if n �= n̄, m̄.
(17)

This parameter can be interpreted as a measure of
damping (negative or positive) which is caused by
the r th parametric resonance frequency at the nth coor-
dinate. To account for possible interactions between
different parametric resonance frequencies, the param-
eters �ρ

(r)
n are added at constant values of the fre-

quency �P . The approximation
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ρ̃n = Re [λn] +
R∑

r=1

�ρ(r)
n , (18)

determines the stability with respect to the overlying
region between R parametric resonance frequencies.
The trivial solution of system (1) is stable if ρ̃n is neg-
ative for all coordinates. Through the summation in
Eq. (18), the influence of all interacting parametric res-
onance frequencies is approximated and resolves the
contradictions in the stability intervals due to a dif-
ferent choice of �P0. The parameter ρ̃max is shown
as black solid line in Fig. 1. It is highlighted that the
overall stability interval is not simply the union of
both stability intervals (S(1) and S(2)). In the exam-
ple showed in Fig. 1, it is greater than the union of the
individual stability intervals. If the Re[ρm] = 0 line
in Figure 1 is lowered, such that it does not intersect
with the Re[ρ(1)

max] and Re[ρ(2)
max] curves but still with

the ρ̃max curve from the summation (18), the result-
ing parametric anti-resonance can only be explained
by the interference of the two parametric resonance
frequencies. An isolated treatment would fail to pre-
dict this parametric anti-resonance. Similar cases can
be constructed for the arise of parametric resonances
and significant interference of a neighboring paramet-
ric resonance and anti-resonance. Although reasoning
is indicated by observing the eigenvalues of the aver-
aged system, the outlined process is motivated empir-
ically. A strict mathematical proof is subject to future
research.

4 Numerical examples

Two rotor systems from the literature are re-investigated
to highlight the potential of the proposed approach. The
first one was proposed in [15]. The second system is
a Jeffcott rotor in journal bearings with adjustable gap
geometry as studied in [28–30].

The benchmark stability maps are based on the Flo-
quet theory, which is summarized briefly in the follow-
ing. Detailed treatments can be found in e.g., [6,37,40].
System (1) can be transformed to a 2N dimensional
system with time-periodic coefficients of the form

ẋ = A(t)x, A(t) = A(t + T ). (19)

According to Floquet’s theorem, the system (19) can be
transformed into an equivalent time-invariant system

with the transformation x(t) = L(t)y(t). The matrix
L(t) is time periodic, non-singular and equal to the
identity at initial time t = t0 = 0. The resulting system
is

ẏ = L−1(t)
[
A(t)L(t) − L̇(t)

]
y = Cy,

L(t + T ) = L(t), L(0) = I. (20)

If computable, the stability of the resulting time-
invariant system (20) can be determined by standard
eigenvalue computations of the matrix C. In general,
however, the transformation matrix L(t) is not com-
putable in closed form [40]. With the solution to linear
time-invariant system (20), the solution to system (19)
at t = T with initial condition x0 is given by

x(T ) = L(T )eCT x0 = eCT x0 = �(T )x0, (21)

where the matrix �(T ) is the monodromy matrix.
Equation (21) reveals C = 1/T ln(�(T )), and there-
fore the eigenvalues of the matrix C, which determine
the stability of system (20), respectively, the equivalent
system (19), can be obtained by the eigenvalues of the
monodromy matrix. The trivial solution of system (19)
is asymptotically stable, if and only if all eigenvalues
of the monodromy matrix are less than one in magni-
tude.

To solve Eq. (21) for the monodromy matrix,
Eq. (19) is numerically integrated for a set of 2N lin-
early independent initial conditions for one period.Col-
lecting these results and the initial conditions in the
matricesXT andX0, themonodromymatrix is obtained
as �(T ) = XTX

−1
0 . The numerical integration is car-

ried out with the ode45 or ode15s numerical integration
routines of the software package MATLAB.

4.1 Rotor system proposed by Tondl and Ecker

In [15], Tondl and Ecker propose a self-excited rotor
system with parametric excitation, which is further
studied in [41,42]. The system served as a basic study
to indicate the capability of damping by paramet-
ric excitation for self-excited rotor systems. Stabil-
ity maps, however, have only been obtained numeri-
cally.

The rotor system, depicted in Fig. 2, consists of two
bearinghousingswithmassmh andone rigid rotor (mr).
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Fig. 2 Rigid rotor model with flexible bearing mounts

All three masses have two translational degrees of free-
dom perpendicular to the rotating axis of the rotor. In
addition, the rotor mass has two rotational degrees of
freedom (φx and φy), whose axis coincides with the
transverse degrees of freedom. The moment of inertia
of the rotor with respect to these axis is given by �a ,
while the moment of inertia of the rotor with respect to
the z-axis is given by �p.

The vector of generalized coordinates is given by
qT = [xr , yr , φx , φy, xb1, yb1, xb2, yb2]. The symmet-
ric system matrices and numerical values can be found
in “Appendix A”. The skew-symmetric part of the
damping matrix and the skew-symmetric part of the
stiffness matrix, denoted by G and N, are proportional
to the rotor speed (�) and are given by

G(�) = ��p

�r

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 − 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N(�) = σb�

�2
r
cb

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 − 1 0 − 1
− 2 0 0 0 1 0 1 0
0 0 0 2l2 l 0 − l 0
0 0 − 2l2 0 0 l 0 − l
0 − 1 − l 0 0 1 0 0
1 0 0 − l − 1 0 0 0
0 − 1 l 0 0 0 0 1
1 0 0 l 0 0 − 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(22)

where l denotes the axial distance between the center
of the rotor and the journal bearings. The parameter�r

denotes a reference frequency, cb the damping of the
housing and σb controls the effect of self-excitation.
Numerical values can be found in “Appendix A” . The
asymmetry in the dampingmatrix arises due to the rota-
tion of the center mass about the angles φx and φy

(gyroscopic effect). The bearings forces are modeled
phenomenologically having linear visco-elastic prop-
erties and non-conservative follower forces depending
on the rotor speed. The follower forces are proportional
to the stiffness forces, but shifted by 90-degree in phase
in complex notation. The arising matrix of the follower
forces in real-valued coordinates is skew-symmetric
(seeEq. (22)). The asymmetric stiffnessmatrixN desta-
bilizes the trivial solution of the system.

It is assumed that the stiffness of the bearing sup-
ports can be varied with the frequency �P and the
amplitude ε (k(t) = kh(1 + ε cos(�P t))), thereby the
termsK1± = kh/(2�2

r )diag(0, 0, 0, 0, 1, 1, 1, 1) in the
Fourier series expansion in Eq. (2) arise. The systems
equation of motion is in the form of Eq. (2). The deriva-
tion of the systems equation of motion, the detailed
description of physical quantities and the set of param-
eters used can be found in [15]. The numerical values
are also given in “Appendix A”.

The trivial solution of rotor system without para-
metric excitation (ε = 0) is stable, if the dimensionless
rotor speed is below a critical value of �̄crit = 0.82. In
the following, the bar indicates that the corresponding
frequencywas non-dimensionalized by the systems ref-
erence frequency. Following the procedure from [15],
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Fig. 3 Comparison of
different stability
predictions for the rotor
system [15]
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the stability is analyzed by numerical calculation of the
monodromymatrix and the Floquetmultipliers [6]. The
resulting stability areas are plotted in Fig 3. A para-
metric anti-resonance at a dimensionless rotor speed
of �̄P = 2 and a parametric resonance at �̄P = 2.8
can be observed.

Since two relevant parametric resonance frequen-
cies are close to each other, an interaction is very
likely and the proposed algorithm is utilized to ana-
lyze the stability. The frequencies for the evalua-
tion of Eqs. (16), (17) and (18) are the parametric
combination frequencies �̄

(1)
P0 = Im[λ̄5] − Im[λ̄1]

and �̄
(2)
P0 = Im[λ̄6] + Im[λ̄1]. The numbering of the

eigenvalues is according to [15]. Above the thick solid
line, the parameter ρ̃1 is positive and the trivial equilib-
rium of the rotor is unstable. The proposed analytical
prediction matches well with the numerical calcula-
tions.

Choosing the single frequency �̄
(1)
P0 to be parame-

ter �P0 in the averaging process and thereby ignoring
a possible interference, the dashed stability boundary
arises. It is predicted that the trivial solution of the rotor
is unstable if the system configurations are above the
dashed curve. The choice of �P0 = �̄

(2)
P0 results in the

dash-dotted stability boundaries. From the theory, the
analytical prediction is valid for a small detuning from

the reference �P0. However, the proposed summation
in Eq. (18) extends the validity by taking into account
the interference.

4.2 Flexible rotor in adjustable journal bearings

The operating speed range of rotors in journal bearings
is limited up to the onset speed of instability, which
arises due to self-excitation inducedby the journal bear-
ings [8]. For rotors with flexible shafts, the oil whip
phenomenon can occur,which leads to large deflections
and thus represents a danger to such rotors. Promising
results of damping by parametric excitation of rotor
system through magnetic bearings [15,23,43], as well
as experiments of rotors in journal bearings with a
passively adjustable geometry [44], inspired extensive
studies of a Jeffcott rotor in journal bearings with a
semi-active adjustment of the gap geometry [25,28–
30]. The purpose of these studies is to increase the
operating speed range through damping by paramet-
ric excitation. The gap geometry is varied periodically
to parametrically excite the system and suppress the
fluid induced instability. Experimental evidence was
presented in [25], and industrial rotors have been fur-
ther investigated in [27,45].
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The Jeffcott rotor is a simplifiedmodel of real-world
rotors, which is frequently used to study elementary
rotor dynamical phenomena [8]. Contrary to the rotor
discussed in the previous section, the Jeffcott rotor con-
sists of a flexible shaft (stiffness k) with a centered disk
of massms . At both ends of the shaft, a journal of mass
mZ is mounted. It is assumed that all masses are per-
fectly balanced. The coordinates are vW and wW for
the geometric center of the disk and vL and wL for the
journals in the plane perpendicular to the rotor axis.
The equation of motion for a constant rotational speed
� is given by

⎡

⎢⎢⎣

mS

mS

2mZ

2mZ

⎤

⎥⎥⎦

⎡

⎢⎢⎣

v̈W

ẅW

v̈L

ẅL

⎤

⎥⎥⎦

+

⎡

⎢⎢⎣ 2byy(t;�) 2byz(t;�)

2bzy(t;�) 2bzz(t;�)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

v̇W

ẇW

v̇L

ẇL

⎤

⎥⎥⎦

+

⎡

⎢⎢⎣

k − k
k − k

− k k + 2kyy(t;�) 2kyz(t;�)

− k 2kzy(t;�) k + 2kyy(t;�)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

vW

wW

vL
wL

⎤

⎥⎥⎦ = 0,

(23)

where the stiffness coefficients kyy , kyz , kzy and kzz
and the damping coefficients byy , byz , bzy and bzz arise
through a linearization of the journal bearings forces.
Figure 4 shows an adjustable lemonbore bearing in hor-
izontal design [30]. While the lower segment is fixed,
the upper one can be moved vertically. Due to a har-
monic adjustment, the gap h is varied and as a con-
sequence, the stiffness and damping properties of the
fluid film change periodically.

The calculation of the bearing forces is performed
for individual segments by numerical integration (finite
volume method) of the Reynolds differential equation
of lubricating film theory, see e. g., [46,47]. It describes
the pressure distribution p(ϑ, x) in the bearing as a
function of the radial coordinate ϑ and the axial coor-
dinate x . Integrating the pressure distribution yields the
forces acting on the journal, Fz and Fy . The fluid-film
forces depend on vertical and horizontal positions (vL
and wL ), and the corresponding velocities of the jour-
nal are in general expressed by a nonlinear relationship
Fz,y = Fz,y(vL , wL , v̇L , ẇL).

For stability analysis, these forces are linearized
around the equilibrium position (vL ,0, wL ,0, 0, 0).
Thereby, the stiffness coefficients kyy , kyz , kzy and kzz
as well as the damping coefficients byy , byz , bzy and

0

z

y

h

vL

wL

ϑ

ad
ju
st
m
en

t

Fig. 4 Lemon bore bearing in horizontal construction design;
adjustment of the upper segment [25,30]

bzz arise, which alter periodically due to the harmonic
adjustment (cf. Eq. (23)). All eight coefficients depend
on geometrical and physical properties of the bearing
(e.g., radii, width, oil viscosity, rotational speed and
load) as well as on the amplitude of the adjustment. The
cross-coupling stiffness is usually unequal (kyz �= kzy)
[8,46,47], therefore system (23) is non-symmetric. A
detailed treatment and the set of parameters of the sys-
tem can be found in [25,28].

Utilizing the proposed approach, the stability of
the system is analyzed and compared with numerical
results in Fig. 5.1 Again, the prediction according to
Eq. (18) matches well with the results from numeri-
cal studies. The dimensionless onset speed of stability
without parametric excitation is �̄P ≈ 2.2. A para-
metric anti-resonance arises in the vicinity of �̄

(1)
P0 =

Im[λ̄3] − Im[λ̄1]. The stability area is significantly
shrunk by the presence of �̄

(2)
P0 = Im[λ̄3] + Im[λ̄1].

The accuracy of the stability region estimated by treat-
ing �̄

(1)
P0 isolated is not satisfactory (see gray line in

Fig. 5). Considering only �̄
(2)
P0 in the averaging pro-

cess, no parametric anti-resonance or resonance is esti-
mated. However, ignoring this frequency completely
will lead to unsatisfactory results. Furthermore, the
loss of stability around a dimensionless excitation fre-
quency of �̄P ≈ 3 can be related to the fundamental
parametric resonance consisting of λ3 and its complex

1 The underlying system matrices in the notation of Eq. (2) are
provided as electronic supplementary material.
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Fig. 5 Stability map for a
rotor system in journal
bearings with adjustable
geometry (see also
[28–30] or [34])
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conjugate. Also in the vicinity of this frequency, the
analytic approximation matches well with the numeri-
cal results. To enhance the prediction further, the over-
damped eigenvalue λ̄7 is considered as well. The sys-
tem matrices differ from Eq. (14), but the algorithm
is essentially the same and details can be found in
[34].

The depicted analytic results in Fig. 5 arise from
the method of averaging of first order. Higher-order
terms are not considered (see also Sect. 2.2). The con-
vergence of the perturbation method is concluded from
the good agreement with the numerical results. Aver-
aging of higher order does not qualitative change the
stability boundaries of Fig. 5, and merely a conver-
gence of the analytical predictions to the numerical
result was observed in [34]. For instance, averaging of
second order will perturb the obtained stability bound-
aries by O(ε2) (see also [14]).

By applying the method of averaging, the enlarged
stability interval can be related to the occurrence of two
parametric combination frequencies. Furthermore, the
computational effort is significantly reduced compared
to the numerical studies because the calculation of the
monodromy matrix relying on numerical integration is
omitted.

The stability region of a parametric anti-resonance
can be significantly shrunk if a second parametric reso-
nance frequency is in the immediate vicinity. This can
have critical impacts for design purposes. The interac-
tion can be approximated by Eq. (18), but not by the
isolated treatment of each parametric resonance fre-
quency.

5 Conclusions

The method of averaging is applied to construct a time-
invariant first-order approximation to a linear system
with parametric excitation and non-symmetric stiff-
ness and damping matrices. Performing the averag-
ing in the state space, the limitation of common aver-
aging approaches [11,12,16] to symmetric stiffness
and damping matrices is circumvented. The location
of the parametric anti-resonances and the coupling of
modes by parametric excitation are confirmed analyti-
cally by studying the eigenvalues of the averaged sys-
tem. An empirically motivated approach to account for
multiple interacting parametric resonance frequencies
is outlined. It relies on an summation of the eigen-
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values of the averaged system. Its potential is veri-
fied by applying the approach to two rotor systems.
The approximation of the interference of the stabil-
ity areas of multiple parametric resonance frequencies
matches well with numerical results and shows a clear
improvement in the prediction compared to the sta-
bility boundaries relying on a single parametric reso-
nance frequency. The interference of multiple paramet-
ric resonance frequencies is approximated sufficiently
well.

The proposed algorithm is reasoned, and its power
by numerical examples outlined. However, a mathe-
matical proof needs to be provided, which is subject to
future research.

Acknowledgements The authors acknowledge RichardMark-
ert for the fruitful discussions on this research topic.

A: System matrices and parameters for the rotor
system proposed by Tondl and Ecker

The non-dimensional systemmatrices for the rotor sys-
tem proposed by Ecker and Tondl [15] are given in
notation of Eq. (2) by

M = diag(mr,mr , θa, θa,mh,mh,mh,mh, ),

K0 = 1

�2
r

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2kb 0 0 0 − kb 0 − kb 0
0 2kb 0 0 0 − kb 0 − kb
0 0 2l2kb 0 0 − lkb 0 lkb
0 0 0 2l2kb lkb 0 −lkb 0

− kb 0 0 lkb kb + kh 0 0 0
0 − kb − lkb 0 0 kb + kh 0 0

− kb 0 0 − lkb 0 0 kb + kh 0
0 − kb lkb 0 0 0 0 kb + kh

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ N,

B0 = 1

�r

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2cb 0 0 0 − cb 0 − cb 0
0 2cb 0 0 0 − cb 0 − cb
0 0 2l2cb 0 0 − lcb 0 lcb
0 0 0 2l2cb lcb 0 − lcb 0

−cb 0 0 lcb cb + ch 0 0 0
0 − cb − lcb 0 0 cb + ch 0 0

− cb 0 0 − lcb 0 0 cb + ch 0
0 − cb lcb 0 0 0 0 cb + ch

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ G,

(24)

Table 2 Brief description and numerical values of the parame-
ters of the rotor system proposed in [15]

Parameter Description Dimensionless
numerical value

mr Rotor mass 1

mh Housing mass 0.1

θa Moment of inertia of the
rotor mass w.r.t. the x-
and y-axis

0.2

θp Moment of inertia of the
rotor mass w.r.t. the z-axis

0.15

l Distance between rotor and
housing

1

kb Bearing stiffness 0.1

kh Housing stiffness 0.5

cb Bearing damping 0.025

ch Housing damping 0.055

σb Self-excitation parameter 0.5

ε Parameter of parametric
excitation

0.25

�r Reference frequency 1

where the skew-symmetric matrices are given in
Eq. (22). Numerical values and a brief description of
the physical parameters are summarized in Table 2.
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