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Abstract In this paper, an adaptive state-feedback
control technique is proposed for a class of unknown
pure-feedback systems. A remarkable feature is that
not only the problem of full-state constraints and pre-
scribed performance tracking is solved together, but
also the design is an approximation-free control scheme
for pure-feedback systems with completely unknown
nonlinearities. These properties will lead to a diffi-
cult task for designing a stable controller. To this
end, a novel prescribed performance-barrier Lyapunov
function is developed to guarantee that all the state
constraints are not violated and the tracking error is
preserved within a specified prescribed performance
bound at all times, simultaneously. Then, by utiliz-
ing the mean value theorem, Nussbaum gain tech-
nique, a low-pass filter and a novel bounded estima-
tion approach at each step of back-stepping procedure,
a novel adaptive dynamics surface control scheme is
developed to remove the difficulties of pure-feedback
characteristic, unknown nonlinearities, unknown con-
trol direction and “explosion of complexity”,which can
guarantee that the proposed design is universal and low-
complexity.Moreover, it is proved that all the signals in
the closed-loop system are global uniformly bounded.
Two simulation studies are worked out to illustrate the
performance of the proposed approach.
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1 Introduction

Robustness and tracking performance are vital indexes
of controller design. Tracking performance is the sys-
tem properties shown in the steady-state and transient
processes, for example, convergence rate, maximum
overshoot and steady-state tracking error. Robustness
is the maintenance ability of tracking performance in
the presence of uncertainties, such as external dis-
turbances, system parameter variations, un-modeled
dynamics, and so on. In particular, for the unknown
nonlinear systems, how to guarantee these perfor-
mances comprehensively is still an open and significant
problem [1]. During the past several decades, back-
stepping technique has been recognized as a powerful
tool to design controller for a larger class of uncertain
nonlinear system, and the robustness and tracking prob-
lem for unknown nonlinear systems has been inten-
sively solved based on back-stepping technique [2–7].
Amain limitation in theseworks is that the progress can
only be applied to systems in the affine form.Compared
with this progress, relatively fewer results are available
for control of pure-feedback systems, which represents
a more general class of triangular systems. The diffi-
culty associated with the control design of pure feed-
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back systems arises from the lack of the appropriate
variables to be used as virtual and/or actual control in
the recursive design procedure. Therefore, control syn-
thesis and stability analysis of pure-feedback systems
are challenging issues and have attracted considerable
research efforts [8–19]. To enhance the robustness of
uncertain nonlinearities or completely unknown non-
linearities, most of these back-stepping-based schemes
were developed based on neural networks (NNs) or
fuzzy logical systems (FLSs). By utilizing the mean
value theorem [8–15], the auxiliary integral method
[16] and the contraction mapping method [17–19], the
original pure-feedback systemwas transformed into an
equivalent model with quasistrict-feedback form. Sub-
sequently, the back-stepping-based control schemewas
developed by employing the NN [8–13,16–18] and
FLS [14,15,19] to approximate the unknown nonlin-
earities of the equivalent strict-feedback form mod-
els. However, the repeated differentiation calculations
of virtual controller in back-stepping may lead to the
problem of “explosion of complexity”, which results in
tremendous calculation burden and undesirable numer-
ical noise in practice. To eliminate this problem, the
dynamic surface control (DSC) was developed in [20]
and extended to unknown pure-feedback systems by
utilizing a low-pass filter for the synthetic input at each
step of back-stepping procedure. By borrowing the fea-
tures that universal approximator (i.e., NN and FLS)
can approximate arbitrary nonlinear continuous func-
tion to a given accuracy, an adaptiveNN-DSCapproach
was formulated for a class of unknown pure-feedback
systems, where the mean value theorem [21–24] and
contraction mapping method [25,26] were employed
to transformed the original systems into strict-feedback
form, respectively. In [27,28], the pure-feedback sys-
tem was transformed into pseudostrict-feedback form
by adopting the contractionmapping approach, then, an
adaptive NN output feedback DSC design [27] and an
adaptive fuzzy output feedback DSC design [28] were
presented for unknown multi-input and multi-output
(MIMO) and single-input and single-output (SISO)
pure-feedback systems, respectively. Unfortunately, all
aforementioned works guarantee convergence of the
steady-state tracking error to a residual set, whose
size depends on explicit design parameters and some
unknown bounded terms, which makes a priori selec-
tion of the design parameters satisfying certain steady-
state behavior practically impossible. Furthermore, the
analytical relationship between transient behavior (i.e.,

convergence rate and maximum overshoot) and design
parameters is difficult to analyze by using mathemat-
ical tool. To formulate the relationship between per-
formance indexes and design parameters as specific
analytical functions, an alternative approach, named
prescribed performance control (PPC) to guarantee the
transient and steady-state performance was first pro-
posed in [29], where prescribed performance bound
(PPB) can characterize the convergence rate,maximum
overshoot andmaximum steady-state error of the track-
ing errors. With the appropriate performance function
and error transformation, the tracking errors can con-
verge to a predefined small residual set with a conver-
gence rate no less than apredefinedvalue andmaximum
overshoot less than a sufficiently small specified con-
stant. Subsequently, PPC methodology was employed
to design adaptive controller for various classes of
unknown nonlinear systems by using NN [30,31] and
FLS [32]. Only a few results are available in the liter-
ature for the PPC of unknown pure-feedback systems.
Two low-complexity global approximation-free con-
trol scheme with prescribed performance for unknown
pure-feedback systems were proposed in [33,34]. An
adaptive robust control with prescribed performance
for a class of unknown pure-feedback systemwas stud-
ied in [35].However, amajor obstacle in the application
scope is that the output and state constraints are not con-
sidered in the above-mentioned results about unknown
pure-feedback systems.

In recent years, adaptive control of nonlinear sys-
tems with output or state constraints has received much
attention. Many significant control schemes have been
developed by utilizing the back-stepping and DSC
approach [36–45]. Since the barrier Lyapunov func-
tion (BLF) candidate was originally proposed in [46],
the BLF-based control scheme has been widely used
for the nonlinear system with state and output con-
straints. By employing the BLF, an adaptive control
scheme was developed to tackle the problem of con-
trol output constraints in [36,37] and time-varying out-
put constraints in [38,39]. An adaptive fuzzy control
approach for a category of uncertain nonlinear systems
with output constraint was developed in [40], and the
problem of output constraint was handled by utilizing
a BLF. A BLF-based adaptive control was developed
for a class of strict-feedback nonlinear systems with
full-state constraints in [41,42] and partial-state con-
straints in [43]. But in the aforementioned works, the
research results are obtained under the condition that
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the considered systems are strict-feedback nonlinear
systems, there are very few existing research results for
unknown pure-feedback systems with state and output
constraints. In [44], for a class of pure-feedback sys-
tems with output constraints, a dynamic surface design
approachbasedon an appropriate integralBLFwas pre-
sented to design an adaptive controller to ensure both
the constraint satisfaction and the desired tracking abil-
ity. In [45], for a class of uncertain pure-feedback para-
metric systems, an adaptive recursive design procedure
was constructed to remove the difficulties for avoiding
nonaffine terms and guarantee that the full-state con-
straints are not violated by introducing BLF with the
error variables.

Despite the efforts made to unknown pure-feedback
systems recently, certain issues still remain open.
Firstly, all aforementioned works about unknown pure-
feedback systems have resorted to universal approxi-
mation theorem to deal with the unknown nonlinear
dynamics of the system. Unfortunately, this univer-
sal approximation-based (i.e., NN and FLS) approach
inherently introduces certain issues affecting con-
troller complexity, closed-loop stability and robustness
[33]. Secondly, the assumption is always very strin-
gent, for example, the signs of control gain are com-
pelled to be known [8–14,16–19,21–28,33,34,45] and
the unknown nonlinear functions satisfy linear-in-the-
parameters (LIP) condition [45]. Finally, there are very
few results about the constrained or prescribed per-
formance control problem of pure-feedback system.
In particular, to the authors’ best knowledge, in the
literature, there are no results reported on the inte-
grated control design for prescribed performance and
state/output constraints, and the previous works for all
the state/output constraints are very conservative due
to the need for a priori knowledge of control direction.

Based on the above discussions, an adaptive DSC
scheme is proposed for a class of unknown pure-
feedback systems with prescribe performance and full-
state constraints. The main contributions of the pro-
posed approach are that:

(1) Reduced design complexity. Different from the
results in [8–14,16–19,21–28] which focus on
approximation-based techniques to tackle the
unknown dynamics, this study frames a novel
adaptive bounded estimation approach to dealwith
the unknown dynamics by combining the mean
value theorem, the supremum norm theory and

DSC, which is approximation-free and can avoid
unnecessary repeated differentiation calculations.
Namely, the proposed control scheme is low-
complexity.

(2) Reduced system prior knowledge and conser-
vatism. Compared with results in [8–14,16–19,
21–28,33,34,45], the knowledge of the sign of
control gain and the LIP condition of unknown
nonlinear functions are not required by employ-
ingNussbaumgain technique and supremumnorm
theory.Meanwhile, the conservatism of traditional
BLF can be removed in this study.

(3) Prescribed performance-barrier Lyapunov func-
tion (PP-BLF). The proposed control scheme con-
stitutes a first approach to solve the problem
of state constraints and prescribed performance
tracking integratedly, which can guarantee that
all the state constraints are not violated, and the
tracking error is preserved within a specified pre-
scribed performance bound at all times, simultane-
ously.Moreover, the proposed control scheme also
constitutes a first approach toward the solution of
the prescribed performance tracking problem and
state-constrained problem for pure feedback sys-
tems.

2 Problem formulation and preliminaries

Consider a class of unknown pure-feedback systems
[8] with full-state constraints as follows
⎧
⎨

⎩

ẋi = fi (x1, . . . , xi+1), i = 1, . . . , n − 1
ẋn = fn(x, u)
y =x1

(1)

where x = [x1, . . . , xn]T ∈ Rn, y ∈ R and u ∈ R
are the states, the output, and the input of system,
respectively; x̄i = [x1, . . . , xi ]T ∈ Ri , fi (x̄i+1), i =
1, . . . , n − 1 and fn(x, u) are unknown nonaffine non-
linear smooth functions. In this study, all the states are
constrained in the compact sets, i.e., |xi | < kci with kci
being a known positive constant. To facilitate design,
let xn+1 = u.

The control objective in this study is to design an
adaptive state feedback controller u such that: (1) All
the signals in the closed-loop system are bounded; (2)
the tracking error z1 = y − yr achieves prescribed
transient and steady-state performance; (3) the full-
state constraints are not violated, i.e., |xi | < kci , where
yr ∈ R is the reference signal.
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To achieve the control goal, the following assump-
tions, lemmas, and definitions are required in the
design.

Assumption 1 For the unknown pure-feedback sys-
tem (1), the function fi is continuously differentiable
and there exists unknown positive constant β̄i, j , i =
1, . . . , n, j = 1, . . . , i + 1 such that
∣
∣
∣
∣
∂ fi (x1, . . . , xi , xi+1)

∂x j

∣
∣
∣
∣ ≤ β̄i, j ,

i = 1, . . . , n, j = 1, . . . , i

0 <

∣
∣
∣
∣
∂ fi (x1, . . . , xi , xi+1)

∂xi+1

∣
∣
∣
∣ ≤ β̄i,i+1,

i = 1, . . . , n

for all (x1, . . . , xn, u) ∈ Rn+1.

Assumption 2 For the unknown pure-feedback sys-
tem (1), the fi (x̄0i+1) is always bounded; that is,
there exists unknown positive constant �i such that∣
∣ fi (x̄0i+1)

∣
∣ ≤�i , where x0j = x j (0), j = 1, . . . , i + 1

and x̄0i+1 = [x01 , . . . , x0i+1]T denote the system initial
conditions.

Assumption 3 [27] For the unknown pure-feedback
system (1), there exists positive constants A0 and
B0 such that the desired trajectory yr, its first-order
derivative ẏr and its second-order derivative ÿr sat-
isfy |yr| ≤ A0 < kc1 and �0 := {[yr, ẏr, ÿr] :
|yr|2 + |ẏr|2 + |ÿr|2 ≤ B0} ∈ R3, ∀t ≥ 0.

Remark 1 a©: Without loss of generality, the stability
results will be valid as long as the states remain within
some compact sets, so the global Lipschitz condition
on fi can be relaxed to a local one in the Assump-
tion 1. Such as fi = 0.1x2i − xi+1 + 0.2 sin(xi xi+1)

also satisfies Assumption 1. b©: From a practical view,
the energy and change rate of nonlinear dynamic
are limited. Thus, Assumption1–3 is reasonable. c©:
In [8–14,16–19,21–28,33,34], the adaptive control
design is required to confirm the signs of control gain,
and the unknown nonlinear function fi (x̄i+1) satisfies
fi (x̄i+1) = θTi ξi (x̄i+1) in [45], These are conservative
for practical application and the problem of state con-
straints. In this study, the signs of control gain and the
function fi do not require to be known.

Definition 1 [47] Any continuous even function N (ζ )
is called Nussbaum-type function when there are the
following properties:

lim
s→∞ sup

1

s

∫ s

0
N (ζ )dζ = +∞ (2)

lim
s→∞ inf

1

s

∫ s

0
N (ζ )dζ = −∞ (3)

There are many functions to be viewed as a Nussbaum-
type function such as eζ

2
cos((π/2)ζ ) and ζ 2 cos(ζ ).

In this study, N (ζ ) = ζ 2 cos(ζ ) is used.

Lemma 1 [48] Let V (t) and ζ(t) be smooth functions
defined on [0, t f ) with V (t) ≥ 0, ∀t ∈ [0, t f ), and
N (ζ ) is a smooth Nussbaum-type function. If the fol-
lowing inequality holds

V (t) ≤ c + e−μt
∫ t

0
(
 (x(τ )) N (ζ ) + 1) ζ̇eμτdτ

(4)

where μ > 0, 
 (x(τ )) is a time-varying parame-
ter which takes values in the unknown closed inter-
vals I : = [l−, l+] with 0 /∈ I , and c repre-
sents some suitable constant, then V (t), ζ(τ ) and∫ t
0 
 (x(τ )) N (ζ )ζ̇dτ must be bounded on [0, t f ).
Lemma 2 [49] Suppose 0 ≤ t f ≤ ∞ and that x :
[0, t f ] → RN is a solution of the closed-loop system.
If x is a bounded solution, then t f = ∞.

Lemma 3 (Youngs inequality [15])For∀(m, n) ∈ R2,
the following inequality holds:

mn ≤ ς p

p
|m|p + 1

qςq
|n|q (5)

where ς > 0, p > 1, q > 1 and (p − 1)(q − 1) = 1.

Lemma 4 For the unknown nonlinear function
fi (x̄i+1), i = 1, . . . , n of system (1), there exists
unknown constant ξi, j ∈ [x0j , x j ], i = 1, . . . , n, j =
1, . . . , i + 1, such that

fi (x̄i+1) =
i∑

j=1

βi, j (x j − x0j ) − βi,i+1x
0
i+1

+βi,i+1xi+1 + fi (x̄
0
i+1) (6)

where βi, j = (∂ fi/∂x j )|(0,...,ξi, j ,...,xi ,xi+1).

Proof By adding and subtracting the term fi (x̄0i+1),
then the fi (x̄i+1) can be described as:

fi (x̄i+1) = fi (x1, . . . , xi+1) − fi (x
0
1 , x2, . . . , xi+1)

+ fi (x
0
1 , x2, . . . , xi+1)

− fi (x
0
1 , x

0
2 , x3, . . . , xi+1)
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+ · · · + fi (x
0
1 , . . . x

0
i , xi+1)

− fi (x̄
0
i+1) + fi (x̄

0
i+1) (7)

Subsequently, since the fi (x̄i+1) is continuous and
differentiable for all (x1, . . . , xi , xi+1) ∈ Ri+1 and
the initial value fi (x̄0i+1) are bounded, the fi (x̄i+1)

can be expressed as the following form with ξi, j ∈
[x0j , x j ], i = 1, . . . , n, j = 1, . . . , i +1 ultimately by
using mean value theorem.

fi (x̄i+1) =
(
∂ fi
∂x1

∣
∣
∣
∣
(ξi,1,x2...,xi ,xi+1)

)

∗ (x1 − x01 )

+
(
∂ fi
∂x2

∣
∣
∣
∣
(x01 ,ξi,2,x3...,xi ,xi+1)

)

∗ (x2 − x02 ) + · · ·

+
(

∂ fi
∂xi+1

∣
∣
∣
∣
(x01 ,...,x

0
i ,ξi,i+1)

)

∗ (xi+1 − x0i+1) + fi (x̄
0
i+1) (8)

which together with the βi, j =
(∂ fi/∂x j )|(0,...,ξi, j ,...,xi ,xi+1), i = 1, . . . , n, j = 1,
. . . , i + 1 gives the Eq. (6).

This concludes the proof. 
�

3 Prescribed performance-Barrier Lyapunov
function

3.1 Prescribed performance function

PPC was first proposed in [29]. PPC is achieved if the
tracking error z1 = y− yr evolves strictly within a pre-
defined region that is bounded by a decaying function
of time, i.e., prescribed performance function (PPF).
The definition of PPF is given as follows.

Definition 2 [29]. A continuous function ρ(t) is called
PPF if

(i) ρ(t) is positive and strictly decreasing;
(ii) limt→∞ ρ(t) = ρ∞. In this paper, the following

exponential function is chosen as PPF

ρ(t) = (kb1 − ρ∞)e−�t + ρ∞ (9)

where kb1 = kc1 −A0 > ρ∞ is the boundedness of
tracking error z1, ρ∞ > 0 and � > 0 are appropri-
ately prescribed scalars. Then, the aforementioned

second objective is obviously equivalent to the fol-
lowing mathematical inequality:

− ρ(t) < z1 < ρ(t), ∀t > 0 (10)

The constant ρ∞ represents the maximum allow-
able size of the tracking error z1 at the steady
state, which may even be set arbitrarily small, thus
accomplishing practical convergence of z1 to zero.
Moreover, the decreasing rate of ρ(t), which is
determined by the constant �, imposes a lower
bound on the required speed of convergence of
z1. Therefore, the appropriate selection of the PPF
ρ(t) imposes performance characteristics on the
tracking error z1.

Remark 2 To integrate PPF with BLF, the mathemati-
cal expression of prescribed performance is given as (9)
and (10) which introduce parameter kb1 . Different from
the results in [29–32] which employ an error transfor-
mation technique to transform the constrained tracking
error (10) into an unconstrained one, this study inte-
grates the constrained tracking error (10) into BLF (i.e.,
PP-BLF) to achieve PPC and state-constrained control,
simultaneously.

3.2 BLF and PP-BLF

To avoid the violation of output constraints, we employ
a BLF with the following definitions.

Definition 3 [36] V (x) as a scalar function defined
with respect to the system ẋ = f (x) on an open region
D including the origin, is a BLF if it has the following
properties.

(1) V (x) is continuous, positively definite, and has
continuous first-order partial derivatives at every
point of D.

(2) V (x) → ∞ as x approaches the boundary of D.
(3) V (x) ≤ d, ∀t ≥ 0 along the solution of ẋ = f (x)

with x(0) ∈ D, where d is some positive constant.

To prevent the states or outputs of system from vio-
lating their constraints, one kind of traditional BLF is
always defined in the following form with a compact
set �z = {zi : |zi | < kbi , i = 1, . . . , n}:

Vbi = 1

2
ln

k2bi
k2bi − z2i

, i = 1, . . . , n (11)
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where kb1 > 0 is the bounded of z1, kbi > 0, i =
2, . . . , n is a design constant, and the kbi and zi will
be determined later on. However, the traditional BLF
is incapable of the requirement of prescribed perfor-
mance. In order to guarantee that the tracking error
z1 satisfies predefined inequality (10), the PP-BLF is
developed in this study,which can be defined as follows
with a compact set �z1 = {z1 : |z1/ρ(t)| < 1}.
Vb1 = 1

2
ln

1

1 − (z1/ρ(t))2
(12)

The following lemma formalizes the result for (11) and
(12) barrier functions and is used in the control design
and analysis for pure-feedback system (1) to guaran-
tee that state constraints and prescribed performance
scalars are not violated.

Remark 3 In fact, the time-varying BLF in [38] can
solve the problem of prescribed performance, but
the relationship between BLF and PPB cannot be
expressed clearly. Moreover, only strict-feedback sys-
tem is considered with LIP condition in [38].

Lemma 5 [36,38] For any χ1, any positive constant
kbi and any zi ∈ R satisfying |χ1| < 1 and |zi | <
kbi , i = 1, 2, . . . , n, we have

ln
k2bi

k2bi − z2i
≤ z2i

k2bi − z2i
, ln

1

1 − χ2
1

≤ χ2
1

1 − χ2
1

(13)

Proof The inequality (13) can be verified easily based
on the Lemma 2 in [36,38]. The proof is omitted here
due to the limited space. 
�
Lemma 6 [37] For any positive constant �, let S =
{s ∈ R : |s| < �} ⊂ R and N = Rl × S ⊂ Rl+1 be
open sets. Consider the system

η̇ = h(t, η) (14)

where η = [ω, s]T ∈ N and h : R+ × N → Rl+1 is
piecewise continuous in t and locally Lipschitz in η ,
uniformly in t , on R+ × N. Suppose that there exists
functions U : Rl × R+ → R+ and Vb : S → R+,
continuously differentiable and positive definite in their
respective domains, such that

Vb → ∞ as |s| → � (15)

ϒ1(‖ω‖) ≤ U (ω, t) ≤ ϒ2(‖ω‖) (16)

where ϒ1 and ϒ2 are class K∞ functions. Let V (η) =
Vb(s)+U (ω, t) and s(0) ∈ S. If the inequality holds:

V̇ = ∂V

∂η
h ≤ −μV + σ (17)

where μ and σ are positive constants, then s(t) ∈
S,∀t ∈ [0,∞).

Proof The proof is omitted here due to the limited
space. Interested readers can follow the similar pro-
cedures of the proof of Lemma 1 in [36]. 
�

4 Main results

4.1 Control scheme

In this section, the approximation-free PP-BLF-based
control scheme for systems (1) is designed step-by-step
in the presence of unknown dynamics and full-state
constraints.

Step 1 Define the tracking error as z1 = x1 − yr and
invoking (6), it has

ż1 = ẋ1 − ẏr = β1,1(x1 − x01 )

−β1,2x
0
2 + β1,2x2 + f1(x̄

0
2 ) − ẏr

= ϕT1ψ1 + β1,2x2 − ẏr (18)

where ϕ1 = [β1,1, β1,2, f1(x̄02 )]T and ψ1 = [x1 −
x01 ,−x02 , 1]T. Since the β1,1, β1,2 and f1(x̄02 ) are
bounded by Assumption 1 and 2, the ‖ϕ1‖ is also
bounded. With the supremum norm theory in mild, let

ϑ1 = sup
t≥0

‖ϕ1‖2 (19)

Design the virtual control α1 as

α1 = N (ζ1)�1 (20)

�1 = κ1χ1 − ẏr − ρ−1ρ̇z1 + ρ−1χ1

1 − χ2
1

+
(
ρ−1χ1

1 − χ2
1

ϑ̂1‖ψ1‖2
)

/
(2δ21) (21)

where χ1 = z1/ρ(t). The parameter updating laws are
designed as

ζ̇1 = ρ−1χ1�1
/
(1 − χ2

1 ) (22)

˙̂
ϑ1 = γ1

⎡

⎣−ϑ̂1 +
(
ρ−1χ1

1 − χ2
1

)2

‖ψ1‖2
/
(2δ21)

⎤

⎦ (23)

where κ1, δ1 and γ1 are designed positive constants,
ϑ̂1 denotes the estimation of ϑ1.

To avoid repeatedly differentiating α1, which leads
to the so-called “explosion of complexity”, the DSC
technique in [20] is employed here. Namely, introduce
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a new variable α1 and let α1 pass through a first-order
filter with time constant g1 to gain α1

g1α̇1 + α1 = α1, α1(0) = α1(0) (24)

By defining the output errorφ1 of this filter and tracking
error z2 as

φ1 = α1 − α1 (25)

z2 = x2 − α1 (26)

Differentiating φ1 yields

φ̇1 = α̇1 − α̇1 = −φ1

g1
− α̇1

= −φ1

g1
+

[

−∂N (ζ1)

∂ζ1
ζ̇1�1 − N (ζ1)

(
∂�1

∂x1
ẋ1

+∂�1

∂z1
ż1 + ∂�1

∂ρ1
ρ̇1 − ÿr + ∂�1

∂ρ̇1
ρ̈1 + ∂�1

∂ϑ̂1

˙̂
ϑ1

)]

= −φ1

g1
+ T1(z1, z2, φ1, ρ1, ϑ̂1, yr, ẏr, ÿr) (27)

All of variables of the function T1 are from compact
sets and T1 is a smooth function, so the |T1| has its
maximum value T 1, i.e., |T1| ≤ T 1 with T 1 being an
unknown constant (Please refer to [20] f or details).

Then, consider the PP-BLF in (12) and choose the
following Lyapunov function candidate

V1 = Vb1 + 1

2γ1
ϑ̃2
1 + 1

2
φ2
1 (28)

where γ1 is a designed positive constant, ϑ̃1 = ϑ̂1 −ϑ1
is the estimation error. Define a set�χ1 = {χ1 : |χ1| <
1}. In the set �χ1 = {χ1 : |χ1| < 1}, V1 is continuous.
Then, in the view of (12), (18), (20), (21), (22), (25),
and (26), differentiating (28) yields

V̇1 = ρ−1χ1

1 − χ2
1

[
ϕT1ψ1 + β1,2(z2 + φ1)+ β1,2N (ζ1)�1

+�1 − �1 − ẏr − ρ−1ρ̇z1
]

+ ϑ̃1
˙̂
ϑ1

γ1
+ φ1φ̇1

= − κ1
ρ−1χ2

1

1 − χ2
1

−
(
ρ−1χ1

1 − χ2
1

)2

+ β1,2ρ
−1χ1

1 − χ2
1

(z2 + φ1) + [
β1,2N (ζ1) + 1

]
ζ̇1

−
(
ρ−1χ1

1 − χ2
1

)2

ϑ̂1‖ψ1‖2
/
(2δ21) + ϑ̃1

˙̂
ϑ1

γ1

+ ρ−1χ1

1 − χ2
1

ϕT1ψ1 + φ1φ̇1 (29)

where ρ is the abbreviation for ρ(t). Consider (19),
(27) and Assumption 1, using the Youngs inequality,
we have

ρ−1χ1

1 − χ2
1

ϕT1ψ1 ≤
(
ρ−1χ1

1 − χ2
1

)2

ϑ1‖ψ1‖2
/
(2δ21)+

δ21

2

(30)

β1,2ρ
−1χ1z2

1 − χ2
1

≤ 1

2

(
ρ−1χ1

1 − χ2
1

)2

+ 1

2
β̄2
1,2z

2
2 (31)

β1,2ρ
−1χ1φ1

1 − χ2
1

≤ 1

2

(
ρ−1χ1

1 − χ2
1

)2

+ 1

2
β̄2
1,2φ

2
1 (32)

φ1φ̇1 = φ1

(

−φ1

g1
− α̇1

)

≤ − φ2
1

g1
+ φ2

1

2
+ T 2

1

2

≤ − φ2
1

g1
+ φ2

1

2
+ T

2
1

2
(33)

Substituting (30), (31), (32) and (33) into (29), we have

V̇1 = − κ1
ρ−1χ2

1

1 − χ2
1

−
(

1

g1
− 1

2
− β̄2

1,2

2

)

φ2
1

+ 1

2
β̄2
1,2z

2
2 + [

β1,2N (ζ1) + 1
]
ζ̇1

−
(
ρ−1χ1

1 − χ2
1

)2

ϑ̃1‖ψ1‖2
/
(2δ21)

+ ϑ̃1
˙̂
ϑ1

γ1
+ δ21

2
+ T

2
1

2
(34)

According to (23), it is easy to obtain

−
(
ρ−1χ1

1 − χ2
1

)2

ϑ̃1‖ψ1‖2
/
(2δ21) + ϑ̃1

˙̂
ϑ1

γ1
= −ϑ̃1ϑ̂1

= − ϑ̃2
1 − ϑ̃1ϑ1 ≤ −1

2
ϑ̃2
1 + 1

2
ϑ2
1 (35)

Substituting (35) into (34), we have

V̇1 ≤ − κ1
ρ−1χ2

1

1 − χ2
1

− 1

2
ϑ̃2
1 −

(
1

g1
− 1

2
− β̄2

1,2

2

)

φ2
1

+ [
β1,2N (ζ1) + 1

]
ζ̇1 + 1

2
β̄2
1,2z

2
2

+1

2
ϑ2
1 + δ21

2
+ T

2
1

2
(36)

From Lemma 5, it is the fact that ln 1
1−χ2

1
≤ χ2

1
1−χ2

1
in

the interval |χ1| < 1, and the fact ρ−1 ∈ [k−1
b1
, ρ−1∞ ),

we have
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V̇1 ≤ −μ1V1 + ε1 + [
β1,2N (ζ1) + 1

]
ζ̇1 + 0.5β̄2

1,2z
2
2

(37)

where μ1 = min{2κ1k−1
b1
, γ1, 2g

−1
1 − 1 − β̄2

1,2} > 0

and ε1 = 0.5ϑ2
1 + 0.5δ21 + 0.5T

2
1.

Step i, i = 2, . . . , n − 1. Define the variable
ϕi = [βi,1, . . . , βi,i , βi,i+1, fi (x̄0i+1)]T, ψi = [x1 −
x01 , . . . , xi−x0i ,−x0i+1, 1]T, zi = xi−αi−1, and invok-
ing (6), it also has

żi = ẋi − α̇i−1 = ϕTi ψi + βi,i+1xi+1 − α̇i−1 (38)

Similarly, the βi, j , j = 1, . . . , i + 1 and fi (x̄0i+1) are
bounded, so the ‖ϕi‖ is also bounded. With the supre-
mum norm theory in mild again, let

ϑi = sup
t≥0

‖ϕi‖2 (39)

Design the virtual control αi as

αi = N (ζi )�i (40)

�i = κi zi − α̇i−1 + zi
k2bi − z2i

+
(

zi
k2bi − z2i

ϑ̂i‖ψi‖2
)

/
(2δ2i ) (41)

where κi and δi are designed positive constants. The
parameter updating laws are designed as

ζ̇i = zi�i
/
(k2bi − z2i ) (42)

˙̂
ϑi = γi

⎡

⎣−ϑ̂i +
(

zi
k2b1 − z2i

)2

‖ψi‖2
/
(2δ2i )

⎤

⎦ (43)

Similar to Step 1, to avoid repeatedly differentiating αi ,
we introduce a new variable αi and let αi pass through
a first-order filter with time constant gi to gain αi .

gi α̇i + αi = αi , αi (0) = αi (0) (44)

By defining the output error of this filter and tracking
error zi+1 as

φi = ᾱi − αi (45)

zi+1 = xi+1 − ᾱi (46)

Similar to Step 1, we can obtain that

φ̇i = −φi

gi
+ Ti (z1, . . . , zi , φ1, . . . , φi ,

ρ1, ϑ̂1, . . . , ϑ̂i , yr, ẏr, ÿr) (47)

and |Ti | has its maximum value T i , i.e., |Ti | ≤ T i with
T i being an unknown constant.

Then, consider the BLF in (11) and choose the fol-
lowing Lyapunov function candidate

Vi = Vbi + 1

2γi
ϑ̃2
i + 1

2
φ2
i (48)

where γi is a designed positive constant, ϑ̃i = ϑ̂i − ϑi
and kbi is specified later on. In the set�zi = {zi : |zi | <
kbi }, Vi is continuous. Then, we obtain V̇i from (11),
(38), (40), (41), (42), (45), and (46) as

V̇i = − κi
z2i

k2bi − z2i
−

(
zi

k2bi − z2i

)2

+ βi,i+1zi
k2bi − z2i

(zi+1 + φi )

+ [
βi,i+1N (ζi ) + 1

]
ζ̇i

−
(

zi
k2bi − z2i

)2

ϑ̂i‖ψi‖2
/
(2δ2i )

+ ϑ̃i
˙̂
ϑ i

γi
+ zi

k2bi − z2i
ϕTi ψi + φi φ̇i (49)

Consider (39), (47) and Assumption 1, using the
Youngs inequality, we have

zi
k2bi − z2i

ϕTi ψi ≤
(

zi
k2bi − z2i

)2

ϑi‖ψi‖2
/
(2δ2i )+

δ2i

2

(50)

βi,i+1zi zi+1

k2bi − z2i
≤ 1

2

(
zi

k2bi − z2i

)2

+ 1

2
β̄2
i,i+1z

2
i+1 (51)

βi,i+1ziφi
k2bi − z2i

≤ 1

2

(
zi

k2bi − z2i

)2

+ 1

2
β̄2
i,i+1φ

2
i (52)

φi φ̇i = φi

(

−φi

gi
− α̇i

)

≤ −φ2
i

gi
+ φ2

i

2
+ T

2
i

2
(53)

Substituting (50), (51), (52) and (53) into (49), we have

V̇i ≤ − κi
z2i

k2bi − z2i
−

(
1

gi
− 1

2
− β̄2

i,i+1

2

)

φ2
i

+ 1

2
β̄2
i,i+1z

2
i+1 + [

βi,i+1N (ζi )+ 1
]
ζ̇i

−
(

zi
k2bi − z2i

)2

ϑ̃i‖ψi‖2
/
(2δ2i )

+ ϑ̃i
˙̂
ϑ i

γi
+ δ2i

2
+ T

2
i

2
(54)

According to (43), it is easy to obtain
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−
(

zi
k2bi − z2i

)2

ϑ̃i‖ψi‖2
/
(2δ2i ) + ϑ̃i

˙̂
ϑ i

γi

≤ −1

2
ϑ̃2
i + 1

2
ϑ2
i (55)

Substituting (55) into (54), we have

V̇i ≤ −κi
z2i

k2bi − z2i
−

(
1

gi
− 1

2
− β̄2

i,i+1

2

)

φ2
i − 1

2
ϑ̃2
i

+ [
βi,i+1N (ζi ) + 1

]
ζ̇i + 1

2
β̄2
i,i+1z

2
i+1

+1

2
ϑ2
i + δ2i

2
+ T

2
i

2
(56)

From Lemma 5, it is the fact that ln
k2bi

k2bi
−z2i

≤ z2i
k2bi

−z2i
in

the interval |zi | < kbi , we have

V̇i ≤ −μi Vi + εi

+ [
βi,i+1N (ζi ) + 1

]
ζ̇i + 0.5β̄2

i,i+1z
2
i+1 (57)

where μi = min{2κi , γi , 2g−1
i − 1 − β̄2

i,i+1} > 0 and

εi = 0.5ϑ2
i + 0.5δ2i + 0.5T

2
i .

Step n Define the variable zn = xn − αn−1, ϕn =
[βn,1, . . . , βn,n, βn,n+1, fn(x̄0n+1)]T, ψn = [x1 − x01 ,
. . . , xn − x0n ,−u0, 1]T with u0 = u(0), and invoking
(6) with u = xn+1, it has

żn = ẋn − α̇n−1 = ϕTnψn + βn,n+1u − α̇n−1 (58)

Similarly, the ‖ϕn‖ is also bounded. With the supre-
mum norm theory in mild again, let

ϑn = sup
t≥0

‖ϕn‖2 (59)

Then, consider the BLF in (11) again and choose the
following Lyapunov function candidate

Vn = Vbn + 1

2γn
ϑ̃2
n (60)

where γn is a designed positive constant, ϑ̃n = ϑ̂n−ϑn ,
ϑ̂n denotes the estimation ofϑn and kbn is specified later
on. In the set�zn = {zn : |zn| < kbn }, Vn is continuous.
Then, we obtain V̇n from (11) and (58) as

V̇n = zn
k2bn − z2n

(
ϕTnψn + βn,n+1u − α̇n−1

)
+ ϑ̃n

˙̂
ϑn

γn

(61)

Design the actual control u as

u = N (ζn)�n (62)

�n = κnzn − α̇n−1 + 1

2

zn
k2bn − z2n

+
(

zn
k2bn − z2n

ϑ̂n‖ψn‖2
)

/
(2δ2n) (63)

where κn and δn are designed positive constants. The
parameter updating laws are designed as

ζ̇n = zn�n
/
(k2bn − z2n) (64)

˙̂
ϑn = γn

⎡

⎣−ϑ̂n +
(

zn
k2bn − z2n

)2

‖ψn‖2
/
(2δ2n)

⎤

⎦ (65)

Using (62), (63) and (64), the (61) can be rewritten as

V̇n = − κn
z2n

k2bn − z2n
− 1

2

(
zn

k2bn − z2n

)2

−
(

zn
k2bn − z2n

)2

ϑ̂n‖ψn‖2
/
(2δ2n)

+ ϑ̃n
˙̂
ϑn

γn
+ zn

k2bn − z2n
ϕTnψn

+ [
βn,n+1N (ζn) + 1

]
ζ̇n (66)

Consider (59) and Assumption 1, using the Youngs
inequality, we have

zn
k2bn − z2n

ϕTnψn ≤
(

zn
k2bn − z2n

)2

ϑn‖ψn‖2
/
(2δ2n)+

δ2n

2

(67)

Substituting (67) into (66), we have

V̇n ≤ − κn
z2n

k2bi − z2n
+ δ2n

2

−
(

zn
k2bn − z2n

)2

ϑ̃n‖ψn‖2
/
(2δ2n)

+ ϑ̃n
˙̂
ϑn

γn
+ [

βn,n+1N (ζn) + 1
]
ζ̇n (68)

According to (65), it is easy to obtain

−
(

zn
k2bn − z2n

)2

ϑ̃n‖ψn‖2
/
(2δ2n) + ϑ̃n

˙̂
ϑn

γn

≤ −1

2
ϑ̃2
n + 1

2
ϑ2
n (69)
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Substituting (69) into (68), we have

V̇n ≤ −κn
z2n

k2bn − z2n
− 1

2
ϑ̃2
n

+ [
βn,n+1N (ζn) + 1

]
ζ̇n + 1

2
ϑ2
n + δ2n

2
(70)

From Lemma 5, it is the fact that ln
k2bn

k2bn−z2n
≤ z2n

k2bn−z2n
in

the interval |zn| < kbn , we have

V̇n ≤ −μnVn + εn + [
βn,n+1N (ζn) + 1

]
ζ̇n (71)

where μn = min{2κn, γn} and εn = 0.5ϑ2
n + 0.5δ2n .

4.2 Performance analysis of the closed-loop system

The main results of this study are summarized as the
following theorem where it is proved that the afore-
mentioned control scheme solves the control problem
of the system (1).

Theorem 1 Consider the closed-loop system consist-
ing of the system (1) obeying Assumptions1–3, the vir-
tual controllers αi , i = 1, 2, . . . , n − 1 in (20), (21),
(40) and (41), the actual controller u in (62) and (63),
and the update laws in (22), (23), (42), (43), (64) and
(65) are constructed. If the following conditions hold:

(C1) Choosing appropriate design parameters
κi , δi , γi , i = 1, . . . , n and gi , i = 1, . . . , n − 1 such
that

kc1>kb1 + ȳr, kci+1>kbi+1+αmi , i=1, . . . , n−1

(72)

where ȳr = max(|yr|) and αmi = max(|αi |).
(C2) the initial state x0i , i = 1, . . . , n − 1 satisfies:

|z1(0)| < kb1, |zi (0)| < kbi , i = 2, . . . , n (73)

where z1(0) = x01 − yr(0) and zi (0) = x0i − αi (0).
Then, the following properties hold:

(i) All the signals in the closed-loop system are
bounded;

(ii) The tracking error z1 = y−yr is preservedwithin
a specified prescribed performance bound at all
times, i.e., −ρ(t) < z1 < ρ(t), ∀t > 0.

(iii) the full-state constraints are not violated, i.e.,
|xi | < kci , i = 1, . . . , n.

Remark 4 According to (20), (21), (24), (40), (41),
(44) and the properties of low-pass filter, we known
that αi , i = 1, . . . , n − 1 is a continuous function of
ϑ̂i , x̄i , ρ, ρ̇, yr, ẏr and ÿr. Because the boundedness of
ϑ̂i , x̄i , ρ, ρ̇, yr, ẏr and ÿr, the αi is bounded due to the
continuous function properties and moreover assumed
to be |αi | ≤ αmi with a positive constant αmi . We also
can prove the boundedness of αi by employing Lya-
punov stability theory later on.

Remark 5 The given constrained constants kci i =
1, . . . , n need to satisfy feasibility condition (72),
we can choose kb1 = kc1 − A0, then it is obvious
that kc1 > kb1 + ȳr according to the Assumption 3.
From the (20), (21), (40) and (41), we known that
αi , i = 1, . . . , n − 1 can be derived step-by-step in
back-stepping design, and then we also can gain αi
step-by-step. Subsequently, similar to [43], using the
Matlab routine function 〈 f mincon.m〉, we can com-
pute the maximum solution kbi > 0, i = 2, . . . , n
which satisfy inequality kci+1 > kbi+1 + αmi , i =
1, . . . , n−1 in (72). The computational process is sim-
ilar to that in [43] and is omitted here due to the limited
space.

Proof Multiplying (71) by eμn t and integrating over
[0, t], we have

Vn ≤ cn + e−μn t
∫ t

0

[
βn,n+1N (ζn) + 1

]
ζ̇ne

−μnτdι

(74)

where cn = Vn(0)+ εn/μn . With the aid of Lemma 1,
we can known that Vn and ζn are bounded, and zn, ϑ̂n
and

∫ t
0

[
βn,n+1N (ζn) + 1

]
ζ̇ndι are bounded.

Suppose that there exists unknown positive constant
z̄n such that |zn| ≤ z̄n , and defining ε̄n−1 = εn−1 +
0.5β̄2

n−1,n z̄
2
n . Consider step n − 1 and let in i = n − 1

in (57), multiplying both sides by eμn−1t , we have

Vn−1 ≤ cn−1 + e−μn−1t

∫ t

0

[
βn−1,nN (ζn−1) + 1

]
ζ̇n−1e

−μn−1τdι (75)

where cn−1 = Vn−1(0) + ε̄n−1/μn−1. Thus, we can
conclude from (75) that Vn−1, ζn−1, zn−1, ϑ̂n−1 and∫ t
0

[
βn−1,nN (ζn−1) + 1

]
ζ̇n−1dι are bounded by using

Lemma 1 again. Similarly, repeating n − 1 times
backwardly, we can prove in turn that Vi , ζi , zi , ϑ̂i
and

∫ t
0

[
βi,i+1N (ζi ) + 1

]
ζ̇idι, i = 1, . . . , n − 2 are
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Table 1 Comparison of
proposed controller of
existing controller

Method Controller Parameters

PP-BLF-based

α1 = N (ζ1)�1

�1 = κ1χ1 − ẏr − ρ−1ρ̇z1 + ρ−1χ1
1−χ2

1

+
(
ρ−1χ1
1−χ2

1
ϑ̂1‖ψ1‖2

)
/
(2δ21)

u = N (ζ2)�2

�2 = κ2z2 − α̇1 + 1
2

z2
k2b2

−z22

+
(

z2
k2b2

−z22
ϑ̂2‖ψ2‖2

)
/
(2δ22)

κ1 = 2.5
κ2 = 2
g1 = 0.001
γ1 = γ2 = 2
δ1 = δ2 = 1
kb2 = 1.047

The parameter updating laws ˙̂
ϑi , ζ̇i

are in (22), (23), (64) and (65) with n = 2.

Non-BLF/PPC-based

α1 = N (ζ1)�1

�1 = κ1z1 − ẏr +
(
ϑ̂1‖ψ1‖2

)
z1

/
(2δ21)

u = N (ζ2)�2

�2 = κ2z2 − α̇1 +
(
ϑ̂2‖ψ2‖2

)
z2

/
(2δ22)

κ1 = 35
κ2 = 0.5
g1 = 0.001
γ1 = 10
γ2 = 5
δ1 = δ2 = 1

Similarly to PP-BLF-based method, the parameter

updating laws ˙̂
ϑi , ζ̇i can be obtained easily.

BLF-based in Ref. [45]

α1 = −κ1z1 + 1
2

z1�1
k2b1

−z21

+
(

z1
k2b1

−z21
ϑ̂1ψ1(x1)

)
/
(2δ21)

u = −κ2z2 + 1
2

z2�2
k2b2

−z22

+
(

z2
k2b2

−z22
ϑ̂2ψ2(x̄2)

)
/
(2δ22)

κ1 = 1.3
κ2 = 2
g1 = 0.001
γ1 = γ2 = 2
δ1 = 6
δ2 = 3
kb2 = 1.252

Please refer to [45] for the details of �i , ψi (x̄i ),
˙̂
ϑi
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−0.5

0

0.5

1

Time(s)

y
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BLF Ref.[45]
No BLF/PPC
y

r
k

c10 0.5 1

0.5

0.6

Fig. 1 The output y and reference signal yr

bounded. From (20), (21), (25), (40), (41), (45), (62)
and (63), the virtual controllersαi , αi , i = 1, . . . , n−1
and actual controller u are bounded, namely, we have
proved property (i) All the signals in the closed-loop
system are bounded.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Time(s)

x 2

PP−BLF
BLF Ref.[45]
No BLF/PPC
k

c2

1 1.5 2
−3
−2
−1

0
1

Violation of constraints

Fig. 2 The state x2

Letυn be the upper bound of
∣
∣
[
βn,n+1N (ζn)+1

]
ζ̇n

∣
∣,

and from (71), we have

V̇n ≤ −μnVn + σn (76)
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Fig. 3 The tracking error z1 and PPB

where σn = εn + υn . According to Lemma 6, we
can obtain that |zn| < kbn . Similarly, Let υi be the
upper bound of

∣
∣
[
βi,i+1N (ζi )+ 1

]
ζ̇i

∣
∣, and form (37)

and (57), we have

V̇i ≤ −μi Vi + σi , i = 1, . . . , n − 1 (77)

where σi = εi + υi + 0.5β̄2
i,i+1 z̄

2
i+1 with z̄i+1 being

the upper bound of |zi+1| , i = 1, . . . , n − 1. Accord-
ing to Lemma 6 again and again, we can obtain that
|z1/ρ(t)| < 1 and |zi | < kbi , i = 2, . . . , n from (12)
and (11), i.e., (ii) The tracking error z1 = y − yr is
preserved within −ρ(t) < z1 < ρ(t), ∀t > 0. 
�
Remark 6 The cyclic argument may arise from the
Nussbaum-type function for unknown control direc-
tion and BLF for constraints, so the Lemmas 1, 2 and 6

are employed to handle the problem of cyclic argu-
ment and extend the solution of the closed-loop system
to infinity.

Based on the fact that ρ(t) = (kb1 −ρ∞)e−�t +ρ∞
is positive and strictly decreasing and −ρ(t) < z1 <

ρ(t), we have −kb1 < z1 < kb1 . Then from x1 =
z1 + yr and |yr| < A0, we have −kb1 − A0 < x1 <

kb1 + A0. Thus, we can obtain that −kc1 < x1 < kc1
according to the fact kb1 = kc1−A0. From thedefinition
of zi , i = 2, . . . , n, we known that xi = zi +αi−1, then
based on |zi | < kbi , |αi−1| ≤ αmi−1 and condition (72):
kci > kbi + αmi−1, we can obtain |xi | < kci , i.e., we
have proved property (iii).

5 Simulation result

To clarify and verify the performance of the proposed
approximation-free PP-BLF-based adaptive control
scheme, we present some simulation studies in this
section. In the simulation, the unknown systems are
assumed that (i) Numerical example and (ii) Single-
link robot.

5.1 Numerical example

Consider the following pure-feedback nonlinear sys-
tems

Fig. 4 The adaptive
parameters ζ1 and ζ2
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Fig. 5 The adaptive
parameters ϑ1 and ϑ2
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⎨

⎩

ẋ1 = 0.1x21 − x2 + 0.2 sin(x1x2)
ẋ2 = 0.2x1x2 + x1 + 2u + 0.01u3

y = x1

(78)

where the states are constrained in |x1| < kc1 = 0.8
and |x2| < kc2 = 2.5. The initial values are x01 =
0.6, x02 = −0.1, u(0) = 0, ζ1(0) = 0.3, ζ2(0) =
0.1, ϑ1(0) = 0.1 and ϑ2(0) = 0.1, the reference sig-
nal is yr = 0.5 cos(t/5) with A0 = 0.5 and kb1 =
kc1 − A0 = 0.3, it is easy to know that the z1(0)
satisfies |z1(0)| < kb1 . For the control performance
requirements, we allow steady-state error no more than
0.005, minimum speed of convergence as obtained by
the exponential e−6t . Then, the performance function
can be given as ρ(t) = (kb1 − 0.005)e−6t + 0.005.

In the simulation, to show the superiority, the inves-
tigated PP-BLF-based controller is compared with a
non-BLF/PPC-based control scheme and a BLF-based
control scheme proposed in [45]. The concrete con-
troller and design parameters are shown in Table 1.
Similar to [43], the parameter kb2 is computed by uti-
lizing theMatlab function 〈 f mincon.m〉 to satisfy fea-
sibility condition (72) for the proposed PP-BLF-based
control scheme and satisfy feasibility condition in [45]
(Please refer to Theorem 1 in [45] for details) for BLF-
based control scheme.

Remark 7 Compared with results in [45], the proposed
PP-BLF-based control scheme can solve the problemof
state constraints, prescribed performance tracking and
“explosion of complexity” integratedly, and the knowl-

edge of the sign of control gain and the LIP condition
of unknown nonlinear functions are not required from
the Table 1.

Figures 1, 2, 3, 4, 5 and 6 show the simulation results.
Figures 1 and 2 show that the output can accurately
track the desired signals. Simultaneously, the PP-BLF-
based and BLF-based adaptive control scheme can
guarantee that the full-state constraints are not violated.
However, the non-BLF/PPC-based control schemecan-
not guarantee that full-state constraints are not vio-
lated (State x2 breaks the constraint in Fig. 2). Fig-
ure 3 shows the system output tracking error and it
can be seen from the figure that the tracking error
with prescribed performance is achieved all the time
by using the proposed PP-BLF-based controller, and
the non-BLF/PPC-based and BLF-based in [45] con-
trol scheme cannot achieve the prescribed performance
all the time. The estimation value of ζ1, ζ2, ϑ1 and ϑ2
is shown in Figs. 4 and 5, which are easily asymptotic
with respect to the zero point. The control signals are
show in Fig. 6.

5.2 Single-link robot

The single-link robot dynamic equations are
{
Mq̈ + 1

2mgl sin q = u
y = q

(79)
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where M is the moment of inertia, q is the angle, u
is the input torque, g is the gravity acceleration, m
and l are the mass and the length of the link. The
robot parameters are m = l = 1,M = 0.5 and
g = 0.8. Let x1 = q, x2 = q̇ , we can gain that
f (x1, x2) = x2, f (x1, x2, u) = (u − 1

2mgl sin x1)/M
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Fig. 9 The tracking error z1 and PPB

and y = x1. The states are constrained in |x1| <

kc1 = 1 and |x2| < kc2 = 1.5. The initial val-
ues are x01 = 0.5, x02 = 0.1, u(0) = 0, ζ1(0) =
0.3, ζ2(0) = 0.1, ϑ1(0) = 0.1 and ϑ2(0) = 0.1,
the reference signal is yr = 0.5 cos(t/5) with A0 =
0.5 and kb1 = kc1 − A0 = 0.5, it is easy to
know that the z1(0) satisfies |z1(0)| < kb1 . Then,
the PPF is selected as ρ(t) = (kb1 − 0.02)e−4t +
0.02.

The design parameters are chosen as κ1 = 2.05,
κ2 = 5, γ1 = 2, γ1 = 2, σ1 = 1, σ2 = 1, g1 =
0.001. Similar to [43], we can obtain kb2 = 1.103
by using Matlab routine. The simulation results are
obtained in Figs. 7, 8, 9, 10 and 11. From these
figures, we can see that the prescribed performance
and state constraints requirements can be guaranteed
with the investigated PP-BLF-based adaptive con-
troller. However, the non-BLF/PPC-based and BLF-
based controller cannot achieve these two indexes
together.

6 Conclusions

In this paper, a novel approximation-free PP-BLF-
based adaptive control technique has been proposed for
unknown pure-feedback nonlinear systems with full-
state constraints. By employing the mean value the-
orem, the systems are transformed into linear struc-
ture form. Then, a novel back-stepping design is devel-
oped with the aid of use BLF, PP-BLF, Nussbaum-
type function and supremum norm theory to elimi-
nate the difficult problems of unknown dynamics, full-
state constraints and prescribed performance require-
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Fig. 10 The adaptive
parameters ζ1 and ζ2

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Time(s)
ζ

1 PP−BLF
BLF Ref.[45]
No BLF/PPC

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Time(s)

ζ
2

PP−BLF
BLF Ref.[45]
No BLF/PPC

Fig. 11 The adaptive
parameters ϑ1 and ϑ2
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ments. We have proved that all the signals in the
closed-loop system are uniformly bounded and the
tracking error is preserved within a specified pre-
scribed performance bound without violating the con-
straints. Finally, simulation results have demonstrated
the feasibility and validity of the proposed control
scheme.
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