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Abstract This paper investigates the low-velocity
impact response of functionally graded multilayer
nanocomposite plates reinforced with a low content of
graphene nanoplatelets (GPLs) in which GPLs are ran-
domly oriented and uniformly dispersed in the polymer
matrix within each individual layer with GPL weight
fraction following a layer-wise variation along the
plate thickness. The micromechanics-based Halpin–
Tsai model is used to evaluate the effective material
properties of the GPL-reinforced composite (GPLRC),
and the modified nonlinear Hertz contact theory is uti-
lized to define the contact force between the spherical
impactor and the GPLRC target plate. The equations of
motion of the plate are derived within the framework of
the first-order shear deformation plate theory and von
Kármán-type nonlinear kinematics and are solved by
a two-step perturbation technique. The present analy-
sis is validated through a direct comparison with those
in the open literature. A parametric study is then per-
formed to study the effects of GPL distribution pattern,
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weight fraction, geometry and size, temperature vari-
ation as well as the radius and initial velocity of the
impactor on the low-velocity impact response of func-
tionally graded GPLRC plates.
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1 Introduction

In recent years, using graphene as reinforcing
nanofillers in polymer composites has attracted increas-
ing attention. Previous studies demonstrated that
graphene and its derivatives significantly outperform
carbon nanotubes (CNTs) in improving the mechani-
cal properties of polymer nanocomposites mainly due
to their bigger surface area which provides much bet-
ter load transfer capability. Rafiee et al. [1] reported
in their experiments that the strength and stiffness
of the epoxy nanocomposites reinforced with only
0.1% weight fraction (wt%) of GPLs are almost the
same as those of the epoxy nanocomposites rein-
forced with 1.0 wt% of CNTs. Fang et al. [2] man-
ufactured polystyrene/graphene nanocomposites and
demonstrated that an addition of 0.9 wt% graphene
sheets increases the tensile strength and Young’s mod-
ulus by 70% and 57%, respectively. Zhao et al. [3]
added 1.8 wt% of graphene oxide in poly(vinyl alco-
hol) (PVA) matrix and found that the Young’s modulus
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of graphene-reinforced PVA composite film is almost
ten times greater than that of the PVA matrix. In addi-
tion, graphene and its derivatives also offer relative
lower manufacturing costs, better dispersion, and less
agglomeration than CNTs, making them outstanding
reinforcement materials in improving the mechanical
properties of polymeric materials.

Owing to their lightweight and superior mechani-
cal properties, graphene-reinforced polymer nanocom-
posites have emerged as one of the most promising
areas in developing advanced lightweight engineer-
ing structures. Extensive theoretical and experimen-
tal investigations have been conducted on the manu-
facturing, characterization, and structural behavior of
polymer nanocomposites, and in all these studies, the
graphene nanofillers are randomly orientated and uni-
formly dispersed. Chandra et al. [4] studied the free
vibration of graphene/polymer composites by using a
multiscale finite element method that models graphene
andpolymermatrixwith the atomistic and conventional
continuum finite element methods, respectively. Cran-
ford [5] investigated the buckling-induced delamina-
tion of mono- and bilayer graphene-based composites
by employing a hybrid atomistic andmolecular dynam-
ics approach. Rissanou et al. [6] employed atomistic
molecular dynamic simulation method to analyze the
structural and dynamic behaviors of several graphene-
based polymer nanocomposites with graphene sheets
of different sizes. Rafiee et al. [7] presented an exper-
imental study to measure the critical buckling loads
of GPL/epoxy composite beams with fixed bound-
ary conditions and observed that an addition of only
0.1 wt% of GPLs increases the critical buckling load
by 52%. Their study also demonstrated that the the-
oretical results based on the classical Euler-buckling
model are in reasonable agreement with the measured
buckling loads, showing that the traditional contin-
uum modeling method is desirable for GPL/Epoxy
composite structures. Most recently, Yang and his co-
workers [8–17] introduced the concept of multilayer
functionally graded materials (FGMs) into graphene-
reinforced polymer nanocomposites in which GPLs
are uniformly distributed in polymer matrix within
each individual layer with GPL weight fraction vary-
ing layer to layer along the thickness direction. They
found that the mechanical properties of the poly-
mer/GPL nanocomposites can be further improved if
GPLs are non-uniformly distributed in the polymer
matrix according to an appropriately chosen distribu-

tion pattern. They have investigated the free and forced
vibrations [8], linear and nonlinear bending [9–11],
buckling and postbuckling [11–14], dynamic stabil-
ity [15], large-amplitude vibration [16,17] of func-
tionally graded multilayer GPL-reinforced composite
(GPLRC) beams and plates. Guo et al. [18,19] dis-
cussed the free vibration and nonlinear bending of
laminated GPLRC quadrilateral plates based on the
element-free IMLS-Ritz method.

By employing Reddy’s higher-order shear deforma-
tion theory, Shen et al. [20–22] studied the nonlin-
ear bending, buckling and postbuckling, and nonlin-
ear vibration of functionally graded composite lami-
nated beams and plates reinforcedwith graphene sheets
under a uniform temperature field. Kiani and Mirzaei
[23–25] adopted a non-uniform rationalB-spline-based
isogeometric finite element method to analyze the
buckling, postbuckling, and large-amplitude free vibra-
tion of composite laminated plates with graphene
reinforcements in thermal environment. They also
employed a conventional Ritz method and the simple
polynomials as the basic functions to investigate the
nonlinear thermal stability of temperature-dependent
laminated beams reinforced with graphene sheets [26].
Sahmani andAghdam [27,28] used nonlocal strain gra-
dient models to study nonlinear vibration and post-
buckling of multilayer functionally graded GPLRC
nanobeams and nanoshells.

The susceptibility to low-velocity impacts and the
resulting internal damage is a critical issue for solid
structures in aerospace, marine, automotive, and
defense engineering applications as it may lead to
crucial failure of the structure and, in some cases,
even the loss of human lives. In order to improve the
impact resistance of structures, extensive studies have
been attempted to understand the low-velocity impact
behavior of engineering structures. Timoshenko was
first to use the Hertz contact theory to study the low-
velocity impact response of an Euler beam subjected
to an elastic sphere impactor. Wu and Springer [29]
studied the impact-induced stresses and strains and
delaminated in a fiber-reinforced composite rectangu-
lar plate. They calculated the stresses and strains in
the plate during the impact by a three-dimensional,
transient finite element method using 8-node brick ele-
ment with incompatible modes and predicted the loca-
tions, lengths, and widths of delaminations inside the
plate by means of a proposed failure criterion. Gong
[30] developed a spring–mass contact force model to
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analyze the impact response of laminated open cylin-
drical shells. Olsson [31] pointed out that the impact
response is governed by impactor versus target struc-
ture mass ratio and not by impact velocity. Khalili et
al. [32] used the Navier solution-based technique to
study the low-velocity impact response of functionally
graded plates with temperature-dependent properties.
Kiani et al. [33], and JamandKiani [34] applied theRitz
method to investigate the low-velocity impact response
of FGM beams in thermal environment. Shariyat and
Nasab [35] studied the effects of the hierarchical vis-
coelastic nature of the materials on the low-velocity
impact responses of FGM plates using a new version
of the differential quadrature method in conjunction
with a novel time integration scheme. Song et al. [36]
and Zhang et al. [37] used an analytical method to
study the CNT-reinforced composite plate and shell,
respectively, based on the Reddy’s high-order shear
deformation theory (HSDT). Selim et al. [38] pre-
sented an IMLS-Ritz element-free model in associa-
tion with Reddy’s HSDT to study the impact response
of CNT-reinforced composite plates. Wang et al. [39]
adopted a two-step perturbation technique to solve the
governing equations of temperature-dependent CNT-
reinforced composite plates subjected to a low-velocity
impactor. The two-step perturbation techniquewas also
used to analyze the low-velocity impact responses of
matrix cracked hybrid plates [40], FGM plates [41],
and curved panels [42] resting on an elastic foundation.
Malekzadeh and Dehbozorgi [43] employed the finite
element method in conjunction with Newmark’s time
integration scheme and Newton–Raphson algorithm to
investigate the low-velocity impact behavior of func-
tionally graded CNT-reinforced skew plates. Borou-
jerdy and Kiani [44] analyzed the dynamic response
of composite laminated beams subjected to multiple
impacts in thermal filed. To the best of the authors’
knowledge, no previous study has been reported on
the low-velocity impact analysis of functionally graded
GPLRC structures.

The present work investigates, for the first time, the
low-velocity impact characteristics of novel function-
ally graded multilayer GPLRC plates. It is assumed
that each individual layer is a homogeneous mixture of
polymer matrix and GPLs that are randomly oriented
and uniformly dispersed in the matrix, while the GPL
weight fraction follows a layer-wise variation along
the thickness direction. The effective material prop-
erties of GPLRC are assumed to be temperature inde-

pendent and estimated by usingmicromechanics-based
Halpin–Tsai model. A modified Hertz model is used to
describe the contact forces between the impactor and
the plate. Theoretical formulations are based on the
first-order shear deformation plate theory and von Kár-
mán nonlinear kinematics. The governing equations are
solved by a two-step perturbation technique for plates
that are simply supported and freely moveable in the
in-plane directions. Comprehensive numerical results
are presented to provide the first-ever-known informa-
tion regarding the effects of distribution, weight frac-
tion, geometry, and size of GPLs as well as impactor’s
radius and initial velocity on the low-velocity impact
response of functionally graded GPLRC plates which
is very important for engineering applications but has
never been reported in any previous studies.

2 Problem formulation

To the best of authors’ knowledge, the criterions of
debonding and delamination of multilayered GPLRC
structures have not been determined in the open lit-
erature yet, which is thus neglected in this paper.
Figure 1 shows a functionally graded multilayer
GPLRC rectangular plate composed of a total of N
perfectly bonded GPLRC layers with the same thick-
ness and subjected to a spherical impactor. The length,
width, and total thickness of the plate are denoted as a,
b, and h, respectively. The right-handed coordinate sys-
tem (X , Y , Z ) has its origin at the corner of the plate
on the midplane. Within each individual layer, GPL
reinforcements are randomly oriented and uniformly
dispersed in the homogeneous and isotropic polymer
matrix. Six different GPL distribution patterns shown
in Fig. 2 are considered in the present analysis, includ-

Fig. 1 Geometry and coordinate system of a functionally graded
multilayer GPLRC plate under a spherical impactor
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Fig. 2 Through-thickness
GPL distribution patterns

ing five functionally graded distributions (FG-O, FG-
X, FG-B, FG-�, and FG-V) in which GPL volume
fraction varies piecewise linearly from layer to layer
along the thickness direction and uniform distribution
(UD) as a special case. Without loss of generality, it is
assumed that the plate consists of an even total number
of layers. The GPL volume fraction at the kth layer for
these distribution patterns follows [8]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UD : V (k)
GPL = VGPL, 1 ≤ k ≤ N

FG-O : V (k)
GPL = 4VGPL

N+2

( N+1
2 − ∣∣ N+1

2 − k
∣
∣
)
,

1 ≤ k ≤ N

FG-X : V (k)
GPL = 4VGPL
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2 − k
∣
∣
)
,

1 ≤ k ≤ N

FG-B : V (k)
GPL = NVGPL

N2
4 + N
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2N − 4s + 5
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∣
∣k − N+1

2

∣
∣
)

,

1 ≤ k ≤ s, N − s + 1 ≤ k ≤ N

V (k)
GPL = NVGPL

N2
4 + N

2 −4s2+4s

(∣
∣ N+1

2 − k
∣
∣+ 1

2

)
,

s < k ≤ N − s

FG-� : V (k)
GPL = 2VGPLk

N+1 , 1 ≤ k ≤ N

FG-V : V (k)
GPL = 2VGPL(N+1−k)

N+1 , 1 ≤ k ≤ N

(1)

in which VGPL is the total GPL volume fraction. It
should be noted that FG-O, FG-X, and FG-B are all
symmetric along the thickness direction and is GPL
rich in the middle layers in FG-O and in the top and
bottom layers in FG-X, and in the sth and (N −s+1)th
layers in FG-B. It should be noted that when s = 1, the

FG-B GPL distribution pattern is reduced to the FG-X
pattern. In the two non-symmetric distribution patterns,
GPL weight fraction changes linearly from the mini-
mum in the top layer to the maximum in the bottom
layer of the FG-� plate, while this is reversed in the
FG-V plate.

2.1 Material properties of GPLRCs

The effective Young’s modulus of the kth GPLRC
layer can be approximated by the modified Halpin–
Tsai model [1]:

E (k) =
[
3

8

1 + ξLηLV
(k)
GPL

1 − ηLV
(k)
GPL

+ 5

8

1 + ξWηWV (k)
GPL

1 − ηWV (k)
GPL

]

× EM (2)

where V (k)
GPL is GPL volume fraction, EM is Young’s

modulus of the polymer matrix, and parameters ηL and
ηW can be determined by:

ηL = EGPL − EM

EGPL + ξL EM
(3a)

ηW = EGPL − EM

EGPL + ξWEM
(3b)

in which EGPL is GPL’s Young’s modulus and ξL and
ξW are geometry factors characterizing both the geom-
etry and size of GPL nanofillers, defined as

ξL = 2

(
aGPL
hGPL

)

, ξW = 2

(
bGPL
hGPL

)

(4)

in which aGPL, bGPL, and hGPL are the average length,
width, and thickness of the GPLs, respectively. The
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GPL volume fraction of the kth GPLRC layer is related
to GPL’s weight fraction g(k)

GPL and the mass densities
of polymer matrix (ρM) and GPLs (ρGPL) by

V (k)
GPL = ρMg(k)

GPL

ρMg(k)
GPL + ρGPL

(
1 − g(k)

GPL

) (5)

Themass density ρ(k), Poisson’s ratio ν(k), and ther-
mal expansion coefficient α(k) of the kth GPLRC layer
can be evaluated by the rule of mixture:

ρ(k) = ρGPLV
(k)
GPL + ρMV (k)

M (6a)

ν(k) = νGPLV
(k)
GPL + νMV (k)

M (6b)

α(k) = αGPLV
(k)
GPL + αMV (k)

M (6c)

where νGPL and νM are Poisson’s ratios and αGPL and
αM are thermal expansion coefficients, in which the
subscripts “GPL” and “M” refer to the GPL andmatrix,
respectively. V (k)

M is the volume fraction of the matrix

that is related to V (k)
GPL by V (k)

GPL + V (k)
M = 1.

It is worth noting that the accuracy of Halpin–Tsai
micromechanics model for the estimation of the effec-
tive Young’s modulus of GPL/polymer nanocompos-
iteswas verified by the experiment taken byRafiee et al.
[1]. The Young’s modulus of GPL/polymer nanocom-
posites with 0.1 wt% GPL nanofillers predicted by
Eq. (2) is just 2.7% higher than the experimental result,
indicating that Halpin–Tsai micromechanics model
provides quite good estimation.

2.2 Governing equation of the GPLRC plate

In accordance with the first-order shear deformation
plate theory [45], the displacement field {u, v, w}T can
be expressed as:
⎧
⎨

⎩

u(X,Y, Z , t)
v(X,Y, Z , t)
w(X,Y, Z , t)

⎫
⎬

⎭
=
⎧
⎨

⎩

Ū (X,Y, t)
V̄ (X,Y, t)
W̄ (X,Y, t)

⎫
⎬

⎭

+Z ·
⎧
⎨

⎩

φX (X,Y, t)
φY (X,Y, t)
0

⎫
⎬

⎭
(7)

where Ū (X,Y, t), V̄ (X,Y, t), and W̄ (X,Y, t) are the
displacements at the midplane of the plate in X , Y , and
Z directions;φX andφY are the rotations of a transverse
normal about the Y - and X -axes, respectively; and t is
time. The strain components are given by von Kármán-
type nonlinear strain–displacement relationship as

ε0 =
⎧
⎨

⎩

ε0X
ε0Y
γ0XY

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂Ū
∂X + 1

2

(
∂W̄
∂X

)2

∂ V̄
∂Y + 1

2

(
∂W̄
∂Y

)2

∂Ū
∂Y + ∂ V̄

∂X + ∂W̄
∂X

∂W̄
∂Y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

ε1 =
⎧
⎨

⎩

ε1X
ε1Y
γ1XY

⎫
⎬

⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

∂φX
∂X

∂φY
∂Y

∂φX
∂Y + ∂φY

∂X

⎫
⎪⎪⎬

⎪⎪⎭

,

γ0 =
{

γ0Y Z

γ0XZ

}

=
{

φY + ∂W̄
∂Y

φX + ∂W̄
∂X

}

(8)

The equations of motion of the functionally graded
GPLRC plate can be derived by Hamilton’s principle
as

∂NX

∂X
+ ∂NXY

∂Y
= Ī0

∂2Ū

∂t2
+ Ī1

∂2φX

∂t2
(9a)

∂NXY

∂X
+ ∂NY

∂Y
= Ī0

∂2V̄

∂t2
+ Ī1

∂2φY

∂t2
(9b)

∂QX

∂X
+ ∂QY

∂Y
+ ∂

∂X

(

NX
∂W̄

∂X
+ NXY

∂W̄

∂Y

)

+ ∂

∂Y

(

NXY
∂W̄

∂X
+ NY

∂W̄

∂Y

)

+F̄c(t)δ (X − Xc,Y − Yc) = Ī0
∂2W̄

∂t2
(9c)

∂MX

∂X
+ ∂MXY

∂Y
− QX = Ī2

∂2φX

∂t2
+ Ī1

∂2Ū

∂t2
(9d)

∂MXY

∂X
+ ∂MY

∂Y
− QY = Ī2

∂2φY

∂t2
+ Ī1

∂2V̄

∂t2
(9e)

where F̄c(t) is the contact force between the impactor
and plate, δ is the Dirac delta function, and (Xc,Yc)
is the position where the impactor hits the plate. The
stress resultantsN = [NX , NY , NXY ]T , moment resul-
tants M = [MX , MY , MXY ]T , and shear forces Q =
[QY , QX ]T are defined by
{
N
M

}

=
[
A B
B D

]{
ε0
ε1

}

−
{
NH

MH

}

(10a)

Q = κKγ0 (10b)

The shear correction factor κ = 5/6. The stiffness com-
ponents Ai j , Bi j , Di j , and Ki j and the inertia-related
terms Īi (i = 0, 1, 2) are calculated by

(A,B,D) =
N∑

k=1

∫ Zk+1

Zk

P(k) · (1, Z , Z2)dZ (11a)

K =
N∑

k=1

∫ Zk+1

Zk

Q(k)dZ (11b)
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Īi =
N∑

k=1

∫ Zk+1

Zk

ρ(k)ZidZ (11c)

and

P(k) = E (k)

1 − ν(k)2

⎡

⎣

1 ν(k) 0
ν(k) 1 0

0 0 1−ν(k)

2

⎤

⎦ ,

Q(k) = E (k)

2(1 + ν(k))

[
1 0
0 1

]

(12)

The thermal stress resultants NH = [NH
X , NH

Y , NH
XY

]T

and thermal moment resultants MH = [
MH

X , MH
Y ,

MH
XY

]T
are calculated from

(
NH,MH

)

=
N∑

k=1

∫ Zk+1

Zk

⎛

⎝P ·
⎧
⎨

⎩

α(k)�T
α(k)�T
0

⎫
⎬

⎭
,

P ·
⎧
⎨

⎩

α(k)�T
α(k)�T
0

⎫
⎬

⎭
· Z
⎞

⎠ dZ (13)

Let F̄ be the stress function such that

N = {F̄,YY , F̄,XX ,−F̄,XY }T (14)

where a comma denotes partial differentiation with
respect to the coordinates. Relationship (10a) can be
rewritten in partial reverse form as
{

ε0
M∗
}

=
[

A∗ B∗
−(B∗)T D∗

]{
N∗
ε1

}

(15)

where A∗ = A−1, B∗ = −A−1B, D∗ = D − BA−1B,
N∗ = N + NH,M∗ = M + MH.

For a plate simply supported on all edges, the bound-
ary conditions require
X = 0, a :
W̄ = φY = 0 (16a)

MX = 0 (16b)

σXbh +
∫ b

0
NXdY = 0 (movable) (16c)

Ū = 0 (immovable) (16d)

Y = 0, b :
W̄ = φX = 0 (17a)

MY = 0 (17b)

σY ah +
∫ a

0
NY dX = 0 (movable) (17c)

V̄ = 0 (immovable) (17d)

Since it is difficult to handle the immovable bound-
ary conditions directly using the two-step perturbation
technique, approximate treatment is usually employed.
The immovable boundary conditions (Eqs. (16d) and
(17d)) then be represented by weaker ones on the aver-
age sense in this study, i.e.,
∫ b

0

∫ a

0

∂Ū

∂X
dXdY = 0 (18a)

∫ a

0

∫ b

0

∂ V̄

∂Y
dYdX = 0 (18b)

2.3 The modified nonlinear Hertz contact model

The low-velocity impact can be divided into two
phases, i.e., the loading phase and the unloading phase.
The loading phase starts from the moment when the
impactor and the GPLRC plate are in contact, and ends
when the maximum contact force is reached. For the
low-velocity impact dynamics of laminated structures,
the contact force between the impactor and the target
can be given by theHertz contact theorywhen the thick-
ness of the impacted layer is large compared with the
size of the contact zone [46]. Usually, the unloading
path is different from that of the loading phase due to
the loss of kinetic energy during the impact phase espe-
cially when the impactor is small. Yang and Sun thus
proposed what is now called the modified nonlinear
Hertz contact law which consists of different equations
for the loading and unloading phases [47]. Till now, the
modified Hertz law has been widely used for the anal-
yses of low-velocity impact dynamics of engineering
structures [38–44]. According to the modified nonlin-
ear Hertz contact theory, the contact force during the
loading phase is related to the contact stiffness Kc and
local contact indentation θ(t) by [47]:

F̄c(t) = Kcθ
3
2 (t) (19)

and

θ(t) = S̄i(t) − W̄c(t) (20)

Kc = 4

3

√
Ri

(
1 − v2i

Ei
+ 1 − v2t

Et

)−1

(21)

in which S̄i is the impactor’s displacement and W̄c is
the deflection of the plate at the impact point. Besides,
Ri, Ei, and νi are the radius, Young’s modulus, and
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Poisson’s ratio of the impactor, respectively. Et and νt
are the Young’s modulus and Poisson’s ratio of the top
surface of the plate, respectively.

During the unloading phase, the contact force which
decreases until the impactor and plate become separate
from each other can be expressed as [47]:

F̄c(t) = F̄m
c

(
θ − θ0

θm − θ0

) 5
2

(22)

where F̄m
c and θm are the maximum contact force and

the corresponding maximum indentation during the
loading phase, respectively. The permanent indentation
θ0 equals to zero when θm is below a critical indenta-
tion during the loading phase. Since there is still no
previous study on the critical indentation for GPLRCs,
θ0 is assumed to be zero in this study.

3 Analytical method and asymptotic solutions

Introducing the following dimensionless quantities

(x, xc) = π
(X, Xc)

a
, (y, yc) = π

(Y,Yc)

b
,

β = a

b
, (W, Si) = (W̄ , S̄i)

(A∗
11A

∗
22D

∗
11D

∗
22)

1
4

,

F = F̄

(D∗
11D

∗
22)

1
2

,

(φx , φy) = a

π

(φX , φY )

(A∗
11A

∗
22D

∗
11D

∗
22)

1
4

,

γ14 =
(
D∗
22

D∗
11

) 1
2

,

γ15 = A∗
11(D

∗
11D

∗
22)

1
2

a2
,

γ24 = B∗
11(A

∗
11A

∗
22D

∗
11D

∗
22)

1
4

a2
,

γ25 = A∗
12

A∗
11

, γ35 = B∗
12

B∗
11

,

I0 = Ī0a2EM

π2ρMD∗
11

, I = ( Ī0 Ī2 − Ī 21 )EM

Ī0ρMD∗
11

,

Fc = a3 F̄c

π2bD∗
11(A

∗
11A

∗
22D

∗
11D

∗
22)

1
4

,

(Mx , My) = a2

π2

(MX , MY )

D∗
11(A

∗
11A

∗
22D

∗
11D

∗
22)

1
4

,

(NH
x , NH

y ) = (A∗
11N

H
X , A∗

12N
H
Y )

π2 ,

λq = Fcδ(x − xc, y − yc),

(λx , λy) = (PXb, PY a)

4π2(D∗
11D

∗
22)

1
2

, τ = π t

a

√
EM

ρM
, (23)

substitutingEqs. (10a), (10b), and (14) into equilibrium
Eqs. (9a)–(9e), with Eq. (15) in mind and considering
the deformation compatibility requirement

∂2ε
(0)
X

∂Y 2 + ∂2ε
(0)
Y

∂X2 − ∂2γ
(0)
XY

∂X∂Y
=
(

∂2W̄

∂X∂Y

)2

− ∂2W̄

∂X2

∂2W̄

∂Y 2 (24)

lead to the dimensionless nonlinear governing equa-
tions of motion of the plate in terms of W , φx , φy and
F as

L11(W ) + L12(φx ) + L13(φy) + β2γ14L(W, F)

= I0Ẅ − λq (25a)

L21(φx ) + L22(φy) + L23(F)

= −1

2
β2L(W,W ) (25b)

L31(W ) + L32(φx ) + L33(φy) + L34(F)

= I φ̈x (25c)

L41(W ) + L42(φx ) + L43(φy) + L44(F)

= I φ̈y (25d)

where nonlinear partial differential operator L( ) =
( ),xx ( ),yy−2( ),xy( ),xy+( ),yy( ),xx . The linear partial
differential operators Li j are given in “Appendix A.” It
should be noted that there are not longitudinal inertias
in Eqs. (25a)–(25d). The reason lies in the fact that the
introduction ofAiry stress function F brings the depen-
dence of longitudinal inertias on the rotary inertias.

The dimensionless boundary conditions can be
expressed as

x = 0, π :
W = φy = 0 (26a)

Mx = 0 (26b)

4λx + 1

π

∫ π

0

∂2F

∂y2
dy = 0 (movable) (26c)

∫ π

0

∫ π

0

(

γ15γ25
∂2F

∂x2
+ β2γ15

∂2F

∂y2

+γ24
∂φx

∂x
+ βγ24γ35

∂φy

∂y
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+ NH
x + NH

y

)

dxdy = 0

(immovable) (26d)

y = 0, π :
W = φx = 0 (27a)

My = 0 (27b)

4λy + 1

π

∫ π

0

∂2F

∂x2
dx = 0 (movable) (27c)

∫ π

0

∫ π

0

(

γ15γ25
∂2F

∂x2
+ β2γ15γ

2
25

∂2F

∂y2

+γ24γ25γ35
∂φx

∂x
+ βγ24γ25

∂φy

∂y

+γ 2
25N

H
x + NH

y

)

dxdy = 0

(immovable). (27d)

A two-step perturbation technique [48] is employed
to solve Eqs. (25a)–(25d) to determine the low-velocity
impact response of the functionally graded multilayer
GPLRC plate. The solutions of Eqs. (25a)–(25d) are
assumed to take the following forms

W (x, y, τ̄ , ε) =
∑

j=1

ε jw j (x, y, τ̄ ),

F(x, y, τ̄ , ε) =
∑

j=0

ε j f j (x, y, τ̄ ),

φx (x, y, τ̄ , ε) =
∑

j=1

ε jϕx j (x, y, τ̄ ),

φy(x, y, τ̄ , ε) =
∑

j=1

ε jϕy j (x, y, τ̄ ),

λq(x, y, τ̄ , ε) =
∑

j=1

ε jλ j (x, y, τ̄ ) (28)

where ε is a small perturbation parameter and τ̄ = ετ

is introduced to improve perturbation procedure. The
first term of w j (x, y, τ̄ ) is assumed to have the form

w1(x, y, τ̄ ) = J [1]
w11(τ̄ ) sinmx sin ny. (29)

Substituting Eq. (28) into Eqs. (25a)–(25d), and equat-
ing coefficients of like powers of ε, one has
Order ε0:

L23( f0) = 0 (30)

Order ε1:

L11(w1) + L12(ϕx1) + L13(ϕy1)

+β2γ14L(w1, f0) = −λ1 (31a)

L21( f1) = 0 (31b)

L31(w1) + L32(ϕx1) + L33(ϕy1)

+L34( f1) = 0 (31c)

L41(w1) + L42(ϕx1) + L43(ϕy1)

+L44( f1) = 0 (31d)

Order ε2:

L11(w2) + L12(ϕx2) + L13(ϕy2) + β2γ14L(w2, f0)

+β2γ14L(w1, f1) = −λ2 (32a)

L21(ϕx2) + L22(ϕy2) + L23( f2)

= −1

2
β2L(w1, w1) (32b)

L31(w2) + L32(ϕx2) + L33(ϕy2)

+L34( f2) = 0 (32c)

L41(w2) + L42(ϕx2) + L43(ϕy2)

+L44( f2) = 0 (32d)

Order ε3:

L11(w3) + L12(ϕx3) + L13(ϕy3)

+β2γ14L(w3, f0) + β2γ14L(w2, f1)

+β2γ14L(w1, f2) = I0ẅ1 − λ3 (33a)

L21(ϕx3) + L22(ϕy3) + L23( f3)

= −β2L(w1, w2) (33b)

L31(w3) + L32(ϕx3) + L33(ϕy3) + L34( f3)

= I ϕ̈x1 (33c)

L41(w3) + L42(ϕx3) + L43(ϕy3) + L44( f3)

= I ϕ̈y1. (33d)

Considering the boundary conditions in Eqs. (26a)–
(27d), the solutions of w j , f j , ϕx j , and ϕy j can be
obtained by solving Eqs. (30)–(33d) from order ε0 to
ε3. Then, the asymptotic solutions of the displacements
and stress function of the plate are constructed as:
W (x, y, τ, ε)

= εJ [1]
w11 sinmx sin ny

+ ε3
(
J [3]
w13 sinmx sin 3ny + J [3]

w31 sin 3mx sin ny
)

+ O(ε4) (34a)

F(x, y, τ, ε)

= −J [0]
f00

x2

2
− J [0]

F00
y2

2

+ ε
(
J [1]
f11 + J̈ [3]

f11

)
sinmx sin ny

+ ε2
(

−J [2]
f00

x2

2
− J [2]

F00
y2

2
+ J [2]

f20 cos 2mx
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+ J [2]
f02 cos 2ny

)

+ ε3
(
J [3]
f13 sinmx sin 3ny + J [3]

f31 sin 3mx sin ny
)

+ O(ε4) (34b)

φx (x, y, τ, ε)

= ε
(
J [1]
x11 + J̈ [3]

x11

)
cosmx sin ny + ε2 J [2]

x20 sin 2mx

+ ε3
(
J [3]
x13 cosmx sin 3ny + J [3]

x31 cos 3mx sin ny
)

+ O(ε4) (34c)

φy(x, y, τ, ε)

= ε
(
J [1]
y11 + J̈ [3]

y11

)
sinmx cos ny + ε2 J [2]

y02 sin 2ny

+ ε3
(
J [3]
y13 sinmx cos 3ny + J [3]

y31 sin 3mx cos ny
)

+ O(ε4) (34d)

λq(x, y, τ, ε)

= ε
(
J [1]
q11 + J̈ [3]

q11

)
sinmx sin ny

+ ε2
(
J [2]
q20 cos 2mx + J [2]

q02 cos 2ny
)

+ ε3 J [3]
q11 sinmx sin ny + O(ε4) (34e)

where J [η]
wξζ = gwξζη

(
J [1]
w11

)η

, J [η]
fξζ = gfξζη

(
J [1]
w11

)η

,

J [η]
xξζ = gxξζη

(
J [1]
w11

)η

, J [η]
yξζ = gyξζη

(
J [1]
w11

)η

, J [η]
qξζ =

gqξζη

(
J [1]
w11

)η

, J̈ [3]
f11 = ĝf113 J̈

[1]
w11, J̈ [3]

x11 = ĝx113 J̈
[1]
w11,

J̈ [3]
y11 = ĝy113 J̈

[1]
w11, and J̈ [3]

q11 = ĝq113 J̈
[1]
w11 in which ξ ,

ζ , and η are nonnegative integers, and coefficients
gwξζη, gfξζη, gxξζη, gyξζη, gqξζη, ĝf113, ĝx113, ĝy113, and

ĝq113 are given in “Appendix B.” Taking (x, y) =
(π/2, π/2), the relationship between the second per-
turbation parameter J [1]

w11ε and maximum dimension-
less deflection wm can be obtained from Eq. (34a) by
ignoring the small terms:

wm = J [1]
w11ε − (gw133 + gw313

) (
J [1]
w11ε

)3
. (35)

Rewrite Eq. (35) as

J [1]
w11ε = wm + (gw133 + gw313

) (
J [1]
w11ε

)3

= wm + (gw133 + gw313
)

×
[

wm + (gw133 + gw313
) (

J [1]
w11ε

)3
]3

= wm + (gw133 + gw313
)

×
[

w3
m + 3w2

m

(
gw133 + gw313

)3
(
J [1]
w11ε

)3

+ 3wm
(
gw133 + gw313

)2
(
J [1]
w11ε

)6

+ (gw133 + gw313
)3
(
J [1]
w11ε

)9
]

.

Since the terms 3w2
m

(
gw133 + gw313

)3
(
J [1]
w11ε

)3
, 3wm

(
gw133 + gw313

)2
(
J [1]
w11ε

)6
, and

(
gw133 + gw313

)3
(
J [1]
w11ε

)9

are much smaller than w3
m if wm � 1, the above equa-

tion can be simplified as

J [1]
w11ε = wm + (gw133 + gw313

)
w3
m. (36)

Applying Galerkin procedure, one has

ẅm + χ1wm + χ2w
2
m + χ3w

3
m = χfFc (37)

On the other hand, according to the Newton’s sec-
ond law, the dimensionless equation of motion of the
impactor can be written as:

mi S̈i = −Fc (38)

with initial conditions

Si(0) = 0, Ṡi(0) = V0 (39)

where coefficients χ1, χ2, χ3, and χf are given in
“Appendix C.” The dimensionless variable mi =
βEMm̄i/

(
ρMD∗

11

)
, in which m̄i is the mass of the

impactor. Equations (37) and (38) are then solved by the
variable-step fourth–fifth-order Runge–Kutta method
[49] to determine the impact response of the plate and
impactor, and the contact force.

4 Numerical results and discussion

In this section, the numerical procedure outlined in the
previous sections is used to study the dynamic char-
acteristics of functionally graded multilayer GPLRC
plates under the action of a low-velocity steel spheri-
cal impactor. Isotropic epoxy is selected as the matrix
material. Comparison studies are conducted to validate
and demonstrate the accuracy and effectiveness of the
present analysis, followed by a comprehensive para-
metric study to examine the influences of GPL distri-
bution patterns, weight fraction, geometry and size as
well as impactor’s initial velocity and radius on the
contact force and central deflection of the plate.

123



2342 M. Song et al.

0.00 0.02 0.04 0.06 0.08
0

300

600

900

1200

1500

1800
C

on
ta

ct
 F

or
ce

 (N
)

Time (ms)

  Present
  Wang et al. [39]
  Chun and Lam [50]

Fig. 3 Comparison of contact force time history of a simply
supported isotropic plate under a low-velocity impact
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Fig. 4 Comparison of impactor displacement history of an
isotropic plate under a low-velocity impact

4.1 Comparison studies

A simply supported isotropic square plate subjected to
a low-velocity spherical impactor previously reported
in Refs. [39,50] is first considered. The size of the
square plate is 200mm × 200mm × 8mm. The plate
and impactor are made of the same material with
mass density 7810 kg/m3,Young’smodulus 206.8GPa,
and Poisson’s ratio 0.3. The radius of the impactor is
10mm,and the initial velocity of the impactor is 1m/s.
Figures 3 and 4 show the time histories of the con-
tact force and impactor’s displacement, respectively.
Our results agree reasonably well with those in Refs.
[39,50].

We then consider a simply supported square FGM
plate struck by a low-velocity rigid spherical impactor.
The mass, mass density, and initial velocity of the
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Fig. 5 Comparison of central deflection time history of a simply
supported functionally graded plate under a low-velocity impact

impactor are 0.075kg, 3253.5 kg/m3, and 1m/s, respec-
tively. The radius of the impactor is 17.66mm, and the
size of the FGMplate is 400mm×500mm×2mm.The
top and bottom of the plate are alumina and aluminum
rich, respectively. The material properties of alumina
and aluminum are [35]:

alumina: E = 380GPa, ν = 0.22, ρ = 3800kg/m3

aluminum: E = 70GPa, ν = 0.35, ρ = 2070kg/m3.

The effective material properties of the FGM plate are
graded through the thickness according to

ϑ(Z) = ϑ1 + (ϑ2 − ϑ1)

(

0.5 + Z

h

)

where ϑ1 and ϑ2 denote the properties of alumina and
aluminum, respectively. According to the equivalent
homogeneous laminated structure approach [51–53],
the FGM plate is equivalent to a laminated plate with
a finite number of isotropic and homogenous layers, in
which the equivalent effective material property of the
kth layer is defined in the mean sense [53]

ϑ(k)
eq =

∫ Zk+1

Zk

ϑ(Z)

Zk+1 − Zk
dZ , k = 1, 2, . . . , N .

Comparisons between the present central deflection
results of the plate with varying total number of layers
N and those by the differential quadrature method [35]
in Fig. 5 show that convergent results can be obtained
when N = 10. Excellent agreement is achieved.
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Table 1 Material properties of GPLs, epoxy, and steel spherical
impactor [1,14,54,55]

Property GPLs Epoxy Steel impactor

Young’s modulus (GPa) 1010 3.0 207

Poisson’s ratio 0.186 0.34 0.3

Density (kg/m3) 1060 1200 7960

Thermal expansion
coefficient (×10−6/K)

5.0 60 –

(a)

(b)

Fig. 6 Effect of GPL distribution pattern on the impact response
of the functionally graded multilayer GPLRC plate: a contact
force and b central deflection

4.2 Parametric study

Inwhat follows, it is assumed that a functionally graded
GPLRC square plate of length 1000mm and width-to-
thickness ratio b/h = 30 is struck by a steel spher-
ical impactor with radius of 10mm and initial veloc-
ity 1.0m/s. The material properties of GPLs, epoxy,
and the impactor is given in Table 1. The GPL weight
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Fig. 7 Effect of GPL weight fraction on the impact response of
the functionally graded multilayer GPLRC plate: a contact force
and b central deflection

fraction is 1.0%, and its average length, width, and
thickness are aGPL = 2.5µm, bGPL = 1.5µm, and
hGPL = 1.5 nm [1], respectively. The total number of
GPLRC layers equals to 10, i.e., N = 10. Unless other-
wise stated, the results are for functionally graded mul-
tilayerGPLRCplates simply supported on all edges but
freely movable in both X and Y directions.

Figure 6 shows the effect of GPL distribution pattern
on the time histories of the contact force and central
deflection of functionally graded multilayer GPLRC
plates, along with those of the pure epoxy plate for
comparison. For the FG-B plate, the value of GPL
weight fraction is maximum in the second and ninth
layers. Compared with the pure epoxy plate, all GPL-
reinforced composite plates have considerably higher
peak contact force, shorter contact time, and smaller
peak central deflection. For example, the FG-X plate
has the smallest peak central deflection among the six
GPL distribution patterns considered which is only
40% of that of the pure epoxy plate. This is attributed
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Fig. 8 Effect of GPL length-to-width ratio on the impact
response of the functionally graded multilayer GPLRC plate:
a contact force and b central deflection

to the remarkably improved overall plate stiffness due
to the addition of a small amount of GPLs and this
reinforcing effect is the maximum in the FG-X plate.
The contact force, however, is a different scenario. The
FG-V and FG-� patterns have the largest and smallest
peak contact force, respectively. It can also be seen that
compared to the FG-V plate, the peak contact force of
the FG-X plate is slightly smaller. The reason for this
phenomenon is that in both FG-V and FG-X patterns
the plate is most GPL rich on the top surface, which
leads to the the highest contact stiffness at the loca-
tion where the impactor hits the plate consequently the
largest contact force. For central deflection results, the
FG-X and FG-B patterns have almost the same and the
smallest center deflection, followed by the UD, FG-V,
FG-�, and FG-O patterns, indicating that dispersing
more GPL nanofillers near the top and bottom layers is
the most effective way to reduce the impact deforma-
tion. It is interesting to find that the peak central deflec-
tion of the FG-� plate is almost the same as that of the
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Fig. 9 Effect of GPL length-to-thickness ratio on the impact
response of the functionally graded multilayer GPLRC plate: a
contact force and b central deflection

FG-V plate although the contact forces, as mentioned
above, are quite different.Moreover, the FG-X and FG-
V patterns have the shortest contact time between the
impactor and the plate, while the FG-� pattern has the
longest contact time. It is worth noting that, compared
to the FG-X plate, the peak center deflection of the FG-
B plate is almost the same, but the peak contact force is
significantly smaller, indicating that moving the maxi-
mumGPL concentration away from the top and bottom
layers to themidplane by a short distance is an effective
way to reduce both peak deflection and contact force,
while the FG-X GPL distribution pattern does signifi-
cantly bring down the deflection but also results in the
largest peak contact force which is not desirable.

Figure 7 depicts the effect of total GPL weight frac-
tion gGPL on the time histories of the contact force and
central deflection of the FG-X plate. It is seen that an
increase in the GPL weight fraction results in a shorter
contact time and larger peak contact force due to the
increase in contact stiffness. Besides, the peak central
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Fig. 10 Effect of the impactor radius on the impact response of
the functionally graded multilayer GPLRC plate: a contact force
and b central deflection

deflection remarkably decreases as the GPL weight
fraction increases. For example, the addition of only
0.25% weight fraction GPLs can yield a significantly
smaller peak central deflection that is only 65% of that
of the pure epoxy plate.

Figure 8 displays the effects of GPL length-to-
width ratio aGPL/bGPL on the time histories of con-
tact force and central deflection of the FG-X plate with
aGPL/bGPL = 1.0, 3.0, 5.0, and aGPL/hGPL = 2000.
Note that aGPL/bGPL = 1.0 corresponds to square
GPLs, while aGPL/bGPL �= 1.0 corresponds to rectan-
gular GPLs. Results show that the peak contact force
decreases while the peak central deflection of the plate
increases as the value of aGPL/bGPL increases, indicat-
ing that the plate reinforced with GPLs with a smaller
surface area has both lower overall stiffness and con-
tact stiffness. In addition, the central deflections with
different aGPL/bGPLare found to be almost identical
when t < 1.5ms beyond which the deflection gradu-
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Fig. 11 Effect of initial velocity on the impact response of the
functionally gradedmultilayer GPLRC plate: a contact force and
b central deflection

ally becomes different as aGPL/bGPL changes from 1.0
to 3.0.

Figure 9 illustrates the effect of length-to-thickness
ratio aGPL/hGPL on the time histories of the contact
force and central deflection of the FG-X plate. As can
be seen, the peak contact force increases,while the peak
central deflection decreases as the value of aGPL/hGPL
increases. This means that GPLs with less graphene
monolayers offer greater contact stiffness and bend-
ing stiffness of the plate due to an increased effective
Young’s modulus of the GPLRC. Similar to the obser-
vations in Fig. 8, the central deflections with different
aGPL/hGPL ratios are very close to each otherwhen t <

1.2ms; then, the difference becomes bigger as the time
further increases. Moreover, the effect of aGPL/hGPL
on the peak contact force and central deflection tends
to be much less significant when aGPL/hGPL > 2000.

Figure 10 depicts the effect of the impactor’s radius
on the time histories of the contact force and central
deflection of the FG-X plate. It is seen that an increase
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Fig. 12 Effect of initial uniaxial in-plane load Px/Pcr on the
impact response of the functionally graded multilayer GPLRC
plate: a contact force and b central deflection

in the impactor’s radius leads to a longer contact time
as well as larger contact force and central deflection.
This is because a larger impactor’s radius results in a
greater contact stiffness and a larger impactor mass.

Figure 11 shows the effect of the impactor’s ini-
tial velocity on the time histories of the contact force
and central deflection of the FG-X plate. Three differ-
ent initial velocities of V0 = 1m/s, 1.5m/s, and 2m/s
are considered in this example. As expected, a larger
initial velocity causes a greater contact force and cen-
tral deflection but a shorter contact time. For instance,
both the maximum contact force and central deflection
increase about two times as the initial velocity raises
from 1 to 2m/s.

Figure 12 displays the effect of initial uniaxial in-
plane force on the low-velocity impact characteristics
of the FG-X plate. The initial uniaxial edge force con-
sidered herein is taken to be Px/Pcr = − 0.5, 0.0, and
0.5, in which Pcr is the critical buckling load of the FG-
X plate under uniaxial compression in the X direction.

(a)

(b)

Fig. 13 Effect of temperature variation on the impact response
of the functionally graded multilayer GPLRC plate: a contact
force and b central deflection

Px/Pcr = − 0.5, 0.0, and 0.5 refers to the case where
the plate is under an initial tensile force, without initial
force, and under an initial compressive force, respec-
tively. Results show that although the contact force is
not sensitive to the initial in-plane force, the applica-
tion of an initial in-plane compressive force results in
an increased central deflection of the plate, while the
initial in-plane tensile force does the opposite. This is
due to the fact that the in-plane tensile (compressive)
force increases (decreases) the bending stiffness of the
plate but does not affect the contact stiffness.

Since the thermally induced in-plane deformation
can develop freely and obviously has no effect on
the bending stiffness of the movable plate, the study
of effect of temperature variation on the low-velocity
impact characteristics is conducted for immovable
plate. Taken the immovable FG-X plate as an exam-
ple, Fig. 13 shows that there is no obvious difference in
the contact force histories. That is because the temper-
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Fig. 14 Effect of impact position on the impact response of the
functionally gradedmultilayer GPLRC plate: a contact force and
b central deflection

ature variation does not affect the material properties
and consequently has no effect on the contact stiffness.
In contrast, the temperature drop dramatically reduces
the central deflection of the plate, while the temperature
rise does the opposite. The reason for this phenomenon
is that the temperature rise (drop) decreases (increases)
the bending stiffness of the plate.

Figure 14 studies the effect of impact position on
the time histories of both contact force and central
deflection of the FG-X plate. Four cases are consid-
ered, in which the impact positions (Xc,Yc) are taken
as (a/2, a/8), (a/2, a/4), (a/2, 3a/8), and (a/2, a/2).
It is seen that the effect of impact position on the con-
tact force is almost negligible. The central deflection,
however, increases as the impactor gets closer to the
center of the plate as expected.

5 Conclusions

The dynamic behaviors of functionally graded multi-
layer GPLRC plates subjected to a low-velocity impact
are investigated based on the first-order shear deforma-
tion plate theory, the modified nonlinear Hertz con-
tact theory, and a two-step perturbation technique.
The effects of the distribution pattern, weight fraction,
geometry and size of GPL nanofillers, and the radius
and initial velocity of the spherical impactor on the low-
velocity impact characteristics of the plates are com-
prehensively studied. It is found that (1) adding a very
small amount ofGPLs intomatrixmaterial and dispers-
ing more GPLs near the top surface can significantly
reduce the peak central deflection and contact time,
whereas it increases the peak contact force; (2) moving
the maximum GPL concentration away from the top
and bottom layers to the midplane by a short distance
is a most effective way to reduce both peak deflec-
tion and contact force; (3) square GPLs with fewer
monolayer graphene sheets are preferred than rectan-
gular GPLs in suppressing the peak central deflection
of the GPLRC nanocomposite plate; (4) an impactor
with a higher initial velocity leads to a higher peak con-
tact force and a larger central deflection but a shorter
contact time; (5) the contact time, peak contact force,
and central deflection increase as the impactor radius
increases; (6) an initial in-plane tensile (compressive)
load decreases (increases) the peak central deflection,
but its effect on the contact force is negligible; (7) the
central deflection of the immovable plate considerably
increases/decreases when the temperature rise/drop.

Acknowledgements This work is fully funded by two research
grants from the Australian Research Council under Discovery
Project scheme (DP140102132, DP160101978). The authors are
grateful for the financial support. Dr. Mitao Song and Prof. Qin-
sheng Bi are also grateful for the support from the National Nat-
ural Science Foundation of China (Grant Nos. 11302087 and
11632008).

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

123



2348 M. Song et al.

Appendix A

The differential operators in Eqs. (25a)–(25d) are

L11 = γ110
∂2

∂x2
+ γ112

∂2

∂y2
, L12 = γ120

∂

∂x
,

L13 = γ131
∂

∂y
,

L21 = γ210
∂3

∂x3
+ γ212

∂3

∂x∂y2
,

L22 = γ221
∂3

∂x2∂y
+ γ223

∂3

∂y3
,

L23 = ∂4

∂x4
+ γ232

∂4

∂x2∂y2
+ γ234

∂4

∂y4
,

L31 = γ310
∂

∂x
, L32 = ∂2

∂x2
+ γ322

∂2

∂y2
+ γ32,

L33 = γ331
∂2

∂x∂y
,

L34 = γ340
∂3

∂x3
+ γ342

∂3

∂x∂y2
,

L41 = γ411
∂

∂y
, L42 = γ421

∂2

∂x∂y
,

L43 = γ430
∂2

∂x2
+ γ432

∂2

∂y2
+ γ43,

L44 = γ441
∂3

∂x2∂y
+ γ443

∂3

∂y3

where
[
γ110, γ112

] = κa2
[
K22, β

2K11

]
/
(
π2D∗

11

)
,

γ120 = κa2K22/
(
π2D∗

11

)
,

γ131 = κβa2K11/
(
π2D∗

11

)
,

[
γ210, γ212

] = γ6

[
B∗
21, β

2 (B∗
11 − B∗

33

)]
/A∗

22,

[
γ221, γ223

] = γ6

[
β
(
B∗
22 − B∗

33

)
, β3B∗

12

]
/A∗

22,

[
γ232, γ234

] = β2
[
2A∗

12 + A∗
33, β

2A∗
11

]
/A∗

22,

γ310 = −κa2K22/
(
π2D∗

11

)
,

[
γ322, γ32

] =
[
π2β2D∗

33,−κa2K22

]
/
(
π2D∗

11

)
,

γ331 = β
(
D∗
12 + D∗

33

)
/D∗

11,
[
γ340, γ342

] =
[
−B∗

21, β
2 (B∗

33 − B∗
11

)]
/
(
γ6D

∗
11

)
,

γ411 = −κβa2K11/
(
π2D∗

11

)
,

γ421 = β
(
D∗
21 + D∗

33

)
/D∗

11,
[
γ430, γ432, γ43

]

=
[
π2D∗

33, π
2β2D∗

22,−κa2K11

]
/π2D∗

11,

[
γ441, γ443

] =
[
β
(
B∗
33 − B∗

22

)
,−β3B∗

12

]
/
(
γ6D

∗
11

)

in which γ6 =
(

A∗
11A

∗
22

D∗
11D

∗
22

) 1
4
.

Appendix B

Coefficients gwξζη, g
f
ξζη, g

x
ξζη, g

y
ξζη, g

q
ξζη, ĝ

f
113, ĝ

x
113,

ĝy113, and ĝq113 are

gf111 = 1

g11

∣
∣
∣
∣
∣
∣

0 m3γ210 + mn2γ212 m2nγ221 + n3γ223
mγ310 m2 + n2γ322 − γ32 mnγ331
nγ411 mnγ421 m2γ430 + n2γ432 − γ43

∣
∣
∣
∣
∣
∣
,

gx111 = 1

g11

∣
∣
∣
∣
∣
∣

m4 + m2n2γ232 + n4γ234 0 m2nγ221 + n3γ223
m3γ340 + mn2γ342 mγ310 mnγ331
m2nγ441 + n3γ443 nγ411 m2γ430 + n2γ432 − γ43

∣
∣
∣
∣
∣
∣
,

gy111 = 1

g11

∣
∣
∣
∣
∣
∣

m4 + m2n2γ232 + n4γ234 m3γ210 + mn2γ212 0
m3γ340 + mn2γ342 m2 + n2γ322 − γ32 mγ310
m2nγ441 + n3γ443 mnγ421 nγ411

∣
∣
∣
∣
∣
∣
,

gq111 = m2γ110 + n2γ112 + mγ120g
x
111 + nγ131g

y
111

−β2γ14

(
n2 J [0]

f00 + m2 J [0]
F00

)
,

gf202 = 1

2

β2m2n2
(
γ32 − 4m2

)

16m4
(
γ32 − 4m2

)+ 64m6γ210γ340
,

gf022 = 1

2

β2m2n2
(
γ43 − 4n2γ432

)

16n4γ234
(
γ43 − 4n2γ432

)+ 64n6γ223γ443
,

gx202 = − 4β2m5n2γ340
16m4

(
γ32 − 4m2

)+ 64m6γ210γ340
,
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gy022 = − 4β2m2n5γ443
16n4γ234

(
γ43 − 4n2γ432

)+ 64n6γ223γ443
,

gq202 = m2n2β2γ14g
f
111 − 2mγ120g

x
202,

gq022 = m2n2β2γ14g
f
111 − 2nγ131g

y
022,

gw133 = 2β2m2n2γ14gf022
g13

∣
∣
∣
∣
∣
∣

m4 + 9m2n2γ232 + 81n4γ234 m3γ210 + 9mn2γ212 3m2nγ221 + 27n3γ223
−m3γ340 − 9mn2γ342 −m2 − 9n2γ322 + γ32 −3mnγ331

−3m2nγ441 − 27n3γ443 −3mnγ421 −m2γ430 − 9n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

gf133 = −2β2m2n2γ14gf022
g13

∣
∣
∣
∣
∣
∣

0 m3γ210 + 9mn2γ212 3m2nγ221 + 27n3γ223
mγ310 −m2 − 9n2γ322 + γ32 −3mnγ331
3nγ411 −3mnγ421 −m2γ430 − 9n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

gx133 = 2β2m2n2γ14gf022
g13

∣
∣
∣
∣
∣
∣

0 m4 + 9m2n2γ232 + 81n4γ234 3m2nγ221 + 27n3γ223
mγ310 −m3γ340 − 9mn2γ342 −3mnγ331
3nγ411 −3m2nγ441 − 27n3γ443 −m2γ430 − 9n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

gy133 = −2β2m2n2γ14gf022
g13

∣
∣
∣
∣
∣
∣

0 m4 + 9m2n2γ232 + 81n4γ234 m3γ210 + 9mn2γ212
mγ310 −m3γ340 − 9mn2γ342 −m2 − 9n2γ322 + γ32
3nγ411 −3m2nγ441 − 27n3γ443 −3mnγ421

∣
∣
∣
∣
∣
∣
,

gw313 = 2β2m2n2γ14gf202
g31

∣
∣
∣
∣
∣
∣

81m4 + 9m2n2γ232 + n4γ234 27m3γ210 + 3mn2γ212 9m2nγ221 + n3γ223
−27m3γ340 − 3mn2γ342 −9m2 − n2γ322 + γ32 −3mnγ331
−9m2nγ441 − n3γ443 −3mnγ421 −9m2γ430 − n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

gf313 = −2β2m2n2γ14gf202
g31

∣
∣
∣
∣
∣
∣

0 27m3γ210 + 3mn2γ212 9m2nγ221 + n3γ223
3mγ310 −9m2 − n2γ322 + γ32 −3mnγ331
nγ411 −3mnγ421 −9m2γ430 − n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

gx313 = 2β2m2n2γ14gf202
g31

∣
∣
∣
∣
∣
∣

0 81m4 + 9m2n2γ232 + n4γ234 9m2nγ221 + n3γ223
3mγ310 −27m3γ340 − 3mn2γ342 −3mnγ331
nγ411 −9m2nγ441 − n3γ443 −9m2γ430 − n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

123



2350 M. Song et al.

gy313 = −2β2m2n2γ14gf202
g31

∣
∣
∣
∣
∣
∣

0 81m4 + 9m2n2γ232 + n4γ234 27m3γ210 + 3mn2γ212
3mγ310 −27m3γ340 − 3mn2γ342 −9m2 − n2γ322 + γ32
nγ411 −9m2nγ441 − n3γ443 −3mnγ421

∣
∣
∣
∣
∣
∣
,

ĝf113 = I

g11

∣
∣
∣
∣
∣
∣

0 m3γ210 + mn2γ212 m2nγ221 + n3γ223
gx111 −m2 − n2γ322 + γ32 −mnγ331
gy111 −mnγ421 −m2γ430 − n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

ĝx113 = I

g11

∣
∣
∣
∣
∣
∣

m4 + m2n2γ232 + n4γ234 0 m2nγ221 + n3γ223
−m3γ340 − mn2γ342 gx111 −mnγ331
−m2nγ441 − n3γ443 gy111 −m2γ430 − n2γ432 + γ43

∣
∣
∣
∣
∣
∣
,

ĝy113 = I

g11

∣
∣
∣
∣
∣
∣

m4 + m2n2γ232 + n4γ234 m3γ210 + mn2γ212 0
−m3γ340 − mn2γ342 −m2 − n2γ322 + γ32 gx111
−m2nγ441 − n3γ443 −mnγ421 gy111

∣
∣
∣
∣
∣
∣
,

gq113 = 2β2m2n2γ14
(
gf022 + gf202

)
− β2γ14

(
n2gf002 + m2gF002

)
,

ĝq113 = mγ120ĝ
x
113 + nγ131ĝ

y
113 + I0

in which

g11 =
∣
∣
∣
∣
∣
∣

m4 + m2n2γ232 + n4γ234 m3γ210 + mn2γ212 m2nγ221 + n3γ223
m3γ340 + mn2γ342 m2 + n2γ322 − γ32 mnγ331
m2nγ441 + n3γ443 mnγ421 m2γ430 + n2γ432 − γ43

∣
∣
∣
∣
∣
∣
,

g13 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

m2γ110 + 9n2γ112 − β2γ14

(
m2 J [0]

F00 + 9n2 J [0]
f00

)

0
mγ310
3nγ411

0 mγ120 3nγ131
m4 + 9m2n2γ232 + 81n4γ234 m3γ210 + 9mn2γ212 3m2nγ221 + 27n3γ223

−m3γ340 − 9mn2γ342 −m2 − 9n2γ322 + γ32 −3mnγ331
−3m2nγ441 − 27n3γ443 −3mnγ421 −m2γ430 − 9n2γ432 + γ43

∣
∣
∣
∣
∣
∣
∣
∣

,

g31 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

9m2γ110 + n2γ112 − β2γ14

(
9m2 J [0]

F00 + n2 J [0]
f00

)

0
3mγ310
nγ411

0 3mγ120 nγ131
81m4 + 9m2n2γ232 + n4γ234 27m3γ210 + 3mn2γ212 9m2nγ221 + n3γ223

−27m3γ340 − 3mn2γ342 −9m2 − n2γ322 + γ32 −3mnγ331
−9m2nγ441 − n3γ443 −3mnγ421 −9m2γ430 − n2γ432 + γ43

∣
∣
∣
∣
∣
∣
∣
∣
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The coefficients J [0]
f00 and J [0]

F00 can be obtained by
substituting Eqs. (34b)–(34d) into Eqs. (26c) and (27c)
or Eqs. (26d) and (27d).

Appendix C

Coefficients χ1, χ2, χ3 and χf in Eq. (37) are

χ1 =
[
m2γ110 + n2γ112 + mγ120g

x
111 + nγ131g

y
111

−4β2γ14

(
m2λx + n2λy

)]/
ĝq113,

χ2 = 4Γ
(
gq202 + gq022

)
/
(
π2 ĝq113

)
,

χ3 = 2β2m2n2γ14
(
gf022 + gf202

)
/ĝq113,

χf = 4 sin(mxc) sin(nyc)/
(
π2 ĝq113

)

in which

Γ =
{− 4

3mn , m and n are both odd numbers
0, m or n is an even number
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