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Abstract We present an investigation of the dynamic
behavior of an electrostatically actuated clamped–
clamped microbeam, under the simultaneous excita-
tion of primary and subharmonic resonance. The simul-
taneous excitation of primary and subharmonic reso-
nances of similar strength is experimentally investi-
gated by using different combinations of AC and DC
voltages. It is observed that the response of the res-
onator is governed by amixed effect of both excitations.
Subharmonic-dominated response shows sharp ampli-
tude transitions and smaller monostable regime, while
primary-dominated response shows gradual amplitude
transition and larger monostable regime. Two poten-
tial applications are experimentally demonstrated. The
first is a resonator-based MEMS AND logic gate
based on AC only subharmonic excitation. The sec-
ond is a charge sensor based on the transition from
subharmonic-dominated response to primary-
dominated response, which is potentially capable of
detecting a small amount of electric charges.
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1 Introduction

Nonlinear dynamics of electrostatically actuated
micro/nanoelectromechanical (MEMS/NEMS) beam
resonators are being studied extensively and used in
various applications [1]. These applications span vari-
ous areas, such asmass sensing [2,3], mechanical com-
puting [4–8], and radio frequency (RF) communica-
tion [9,10].

A theoretical and experimental study analyzing the
performance parameters of resonant sensors as they
are scaled down to nanoregimes is presented in [11].
The study in [11] examined the nonlinear and fring-
ing field effects, which are significant for thin beam
resonators. Enhancing the dynamic range of NEMS
cantilevers for gas sensing applications is discussed in
[12]. Furthermore, the actuation of higher harmonics in
arrays of MEMS cantilevers is investigated to achieve
distinct resonance peak separation for a variety of
resonance-based sensing applications [13]. Resonance-
basedmass sensing is recently demonstrated to be capa-
ble of sensing traumatic brain injury protein biomark-
ers [3]. Intermodal interaction due to nonlinear modal
coupling between the flexural vibration modes of a
clamped–clamped beam have been also investigated
[14]. The study in [14] demonstrates that an arbitrary
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flexural mode can be used as a self-detector for ampli-
tude of another mode, which allows measuring the
energy stored in a specific resonance mode. Moreover,
strong and tunable mode coupling in carbon nanotube
resonators has also been demonstrated [15]. Recently,
experimental efforts are made to tailor the nonlinear
response of the resonator for targeted applications,
through shape optimization of the resonator [16]. Cur-
rently, the nonlinear dynamics of 2-D materials, such
as single-layer MoS2 resonators [17], are increasingly
explored.

MEMS resonators can be electrostatically actuated
using various techniques, such as direct excitation in
the neighborhood of primary resonance [5,10], para-
metric excitation at twice the resonance frequency [18–
21], multi or mixed-frequency excitation [4,22,23],
and secondary resonances, i.e., subharmonic and super-
harmonic excitations [24–34]. The response of the
resonators to these secondary resonances has been
investigated extensively, both theoretically [24–33] and
experimentally [34–36]. These studies involve reveal-
ing limit cycles, understanding the nonlinear behavior,
investigating the stability, and exploring the dynamic
pull-in phenomenon. Several applications were also
proposed including sharp roll-off RF filters [29], using
superharmonic resonance to increase the signal-to-
noise ratio [34], switch triggered by mass sensing
[31], and quenching of primary resonance by adding
a super harmonic excitation source [33] for reduc-
tion in the stress levels in the structural fatigue prob-
lems.

MEMS resonator-based logic devices are gaining
significant attention recently as ultra-low power alter-
nate computing technology [4–8,37–39]. An AC only
gate input for such MEMS computing devices can be
an attractive approach due to the fact that it unifies the
input and outputwave forms, i.e., the logic unit receives
an AC signal and produces also an AC signal from the
detected motional current. This presents a path for cas-
cadability of these devices, which has been a major
problem hindering the spread use of such electrome-
chanical logic gates.

Furthermore, an AC excitation-based device that
can detect small amount of charge is also desired for
applications in MEMS electrometers [40–43]. Differ-
ent dynamics phenomenon that respond to an input
charge in terms of frequency shift via stiffness pertur-
bation [40–42], and amplitude shift through principles

like mode localization [43] have been used to demon-
strate these electrometers.

Typically, a parallel-plate load is comprised of a
DC voltage source VDC superimposed to an AC volt-
age source of amplitude VAC and frequency �. The
quadratic nature of the electrostatic force transforms
a single source excitation into a two source simul-
taneous excitations, i.e., [VDC + VAC cos(�t)]2 =[
V 2
DC + 2VDCVAC cos(�t) + V 2

AC
2 (1 + cos(2�t))

]
.

Commonly, the contribution from the secondary
source associated with V 2

AC is neglected, which is
acceptable for small values of VAC. However, for large
values of VAC, as several applications may require,
this can lead to erroneous simulation results. Hence,
it is important to investigate the influence of these
excitations onto the overall resonator response both
theoretically and experimentally, and possibly use it
for potential applications. In a complementary work
to this paper [Ilyas, S., Alfosail, F., Younis, M. I.:
On the Response of MEMS Resonators under Generic
Electrostatic Loadings: Theoretical Analysis. Nonlin-
ear Dynamics. Submitted (2018)], we present ana-
lytical solutions, based on the method of Multiple
Time Scales (MTS), for the problem of an electro-
static resonator subjected to small and large VAC. We
also discuss the case of simultaneous subharmonic
and primary resonance excitations. In this work, we
build on the theoretical analysis of [Ilyas, S., Alfo-
sail, F., Younis, M. I.: On the Response of MEMS
Resonators under Generic Electrostatic Loadings: The-
oretical Analysis. Nonlinear Dynamics. Submitted
(2018)] and experimentally demonstrate the simul-
taneous subharmonic and primary resonance excita-
tions on a doubly-clamped MEMS microbeam, and
investigate the competing effects of the two excita-
tion sources. Furthermore, based on the outcomes of
this investigation, we demonstrate potential applica-
tions of using such electrostatic excitation in MEMS
resonator-based logic devices, and MEMS electrome-
ters.

The rest of the paper is organized as follows. Sec-
tion 2 presents the problem formulation andmathemat-
ical model. Section 3 presents the experimental results.
Section 4 demonstrates experimentally potential appli-
cations. Finally, Sect. 5 summarizes the outcomes of
the study.
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Fig. 1 Schematic of an electrostatically actuated clamped–
clamped microbeam

2 Problem formulation

2.1 Mathematical model

The nondimensional equation of motion that gov-
erns that transverse deflection w(x, t) for a MEMS
clamped–clamped microbeam, which is electrostati-
cally actuated by VDC, and VAC, using a distributed
parameter model, Fig. 1, is given by [44]

∂4w

∂x4
+ ∂2w

∂t2
+ 2μ

∂w

∂t
− N

∂2w

∂x2

−α1

(∫ 1

0

(
∂w

∂x

)2

dx

)
∂2w

∂x2

= β [VAC cos (�t) + VDC]2

(1 − w)2
(1)

where the coefficients in Eq. (1) are defined as

w = ŵ

d
; x = x̂

L
;

t = t̂

√
E I

L4m
; 2μ = c

√
E I

L4m

N = N̄ L
2

E I
; α1 = d

h

2

;β = bL4ε

2d3E I
(2)

where t̂ is time, x̂ is the position along the beam length,
E is the elastic modulus, I is the moment of inertia
defined as I = 1

12bh
3, b is the beam width, h is the

beam thickness, c is the viscous damping coefficient,
N̄ is the axial load, A is the cross-sectional area of
the beam, L is the beam length, d is the gap between
the beam and lower electrode, and ε is the dielectric
constant.

The beam is subjected to the following boundary
conditions:

w = 0; ∂w

∂x
= 0 at x = 0; x = 1 (3)

In order to solve for the static deflection ws(x) of
the beam, we drop the time-dependent terms in Eq. (1),

and solve for ws(x) using the iteration scheme [45].
Then, we perturb the dynamic solution wd around the
equilibrium position to study the linear and nonlinear
dynamics of the system. Hence, the total dynamic solu-
tion is assumed of the form

w (x, t) = ws (x) + wd (x, t) (4)

Substituting Eqs. (4) into (1), dropping the terms per-
taining to the static part, and expanding the electrostatic
term around the static configuration yields

∂2wd

∂t2
+ ∂4wd

∂x4
+ 2μ

∂wd

∂t

= α1
∂2wd

∂x2

⎛
⎝N +

1∫
0

(
w′
s

)2 dx

+ 2

1∫
0

w′
s
∂wd
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1∫
0

(
∂wd

∂x

)2

dx

⎞
⎠

+α1ws ′′
⎛
⎝

1∫
0

(
∂wd

∂x

)2

dx + 2

1∫
0

w′
s
∂wd

∂x
dx

⎞
⎠

+β
V (t)

2 (1 − ws)
2

+β
(V (t) + 2Veff)

(1 − ws)
3 wd + 3β

(V (t) + 2Veff)

2 (1 − ws)
4 w2

d

+ 2β
(V (t) + 2Veff)

(1 − ws)
5

w3
d + · · · (5)

where V (t) = (
4VACVDC cos (t�) + V 2

AC cos (2t�)
)

and Veff = V 2
DC + V 2

AC
2 . The superscript “prime” indi-

cates the spatial derivative.
The linear problem of Eq. (5) is solved using the

Galerkin method [44] using 4 unforced straight beam
(zero voltage) modeshapes. Next, we assume no inter-
action from the other not-directly excited modes or
internal resonance. Accordingly, we express the forced
vibration part using a single-mode Galerkin approxi-
mation as

wd(x, t) = φ j (x) u j (t) (6)

where φ j (x) is the modeshape under the influence of
VDC, andu j is themodal coordinate for themicrobeam.
Substituting Eqs. (6) into (5) and using the orthogonal-
ity condition yield

ü j + ω2
j u j + 2μu̇ j + αqu

2
j + αcu

3
j

= Fp cos (�t) + Fs cos (2�t)
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+ (
Fppar1 cos (�t) + Fspar1 cos (2�t)

)
u j

+ (
Fppar2 cos (�t) + Fspar2 cos (2�t)

)
u2j

+ (
Fppar3 cos (�t) + Fspar3 cos (2�t)

)
u3j (7)

The superscript “dot” indicates the temporal derivative.
The coefficients αq , αc, Fp, Fs, Fppar1, Fspar1, Fppar2,
Fspar2, Fppar3,and Fspar3 are defined in “Appendix”.
Based on the results from [Ilyas, S., Alfosail, F., You-
nis,M. I.: On theResponse ofMEMSResonators under
Generic Electrostatic Loadings: Theoretical Analy-
sis. Nonlinear Dynamics. Submitted (2018)], the term
Fspar1 is the only parametric term that has significant
contribution on the resonator’s response, and hence the
rest of the parametric terms in Eq. (7) can be ignored.

This approach of a single-mode discretization and
then applying a perturbation analysis is known to yield
less accurate results compared to directly attacking the
partial differential equation with the multiple scales
method [46]. However, we opted to use this method so
that the resulting equation can be related to the equa-
tion of a lumped parameter model for generic-shaped
resonators. In this case for j = 1, the resulting Eq.
(7) is identical to the single degree of freedom model
for a generic shape resonator analyzed using MTS in
[Ilyas, S.,Alfosail, F.,Younis,M. I.:On theResponse of
MEMS Resonators under Generic Electrostatic Load-
ings: Theoretical Analysis. Nonlinear Dynamics. Sub-
mitted (2018)].

Basedon the results from [Ilyas, S.,Alfosail, F.,You-
nis,M. I.: On theResponse ofMEMSResonators under
Generic Electrostatic Loadings: Theoretical Analysis.
Nonlinear Dynamics. Submitted (2018)], the modula-
tion equations can be written as

Re : ȧ

2
= −aμ

2
+ aλ2αq sin(2γ )

2ω

− Fp sin(γ )

4ω
− aFspar1 sin(2γ )

8ω
(8.1)

Im : aγ̇

2
= aσ

2
− 3a3αc

16ω
+ 5a3α2

q

24ω3

− 3aλ22αc

2ω
− aλ2αq cos(2γ )

2ω
− 3aλ2αq Fspar1

8ω3

+ aλ2αq Fspar1
8ω�(ω + �)

+ Fspar1a cos(2γ )

8ω

− aF2
spar1

64ω3 − aF2
spar1

64ω�(ω + �)

+ 3aλ22α
2
q

4ω3 − aλ22α
2
q

4ω�(ω + �)
+ Fp cos(γ )

4ω
(8.2)

Fig. 2 Analytical frequency response curves of the resonator
versus the nondimensional excitation frequency.a VDC = 0, VAC
= variable, andµ = 0.01. The response for activated subharmonic
resonance is shown only. The inset shows the enlarged view to
highlight the frequency shift. b VDC = variable, VAC = 4 V, and
µ = 0.01. (Color figure online)

where a and γ are the nondimensional amplitude and
phase, σ is the frequency detuning parameter, and
� = ω + σ is the excitation frequency. The steady-
state dynamic response is then obtained by setting the
right-hand side of the modulation equations, Eqs. (8.1)
and (8.2), equal to zero and solve the resulting algebraic
equations. Since algebraic equations are solved to get
the desired frequency response, where the influence of
quadratic and cubic nonlinearities is captured, theMTS
solution is computationally faster. The stability of the
solution is determined by solving for the eigenvalues
of the Jacobin of the modulation equations [44], Eqs.
(8.1) and (8.2).
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2.2 Numerical results

The results will be demonstrated for a clamped–
clamped microbeam that is 500µm long, 50µm wide,
1.25µm thick, and has an air gap d = 2.5 µm. More
details on the beam are presented in Sect. 3.

First, we investigate the dynamic response of the
microbeam under an AC only excitation (pure subhar-
monic, VDC = 0) using Eqs. (8.1) and (8.2), Fig. 2a. The
figure indicates a shift in the natural frequency similar
to the one caused by the DC bias in a typical electro-
static loading of a microbeam. This shift is due to the
static term associated with the VAC.

Next, the response of the resonator under a simulta-
neous primary and subharmonic excitation is simulated
to investigate the competing effects from both excita-
tions. We start from a pure subharmonic response at
zero VDC and then VDC is increased in small incre-
ments to see the effect of primary excitation on the
response. Figure 2b shows the competing effects from
the two excitations. It is observed that at zero VDC
the resonator’s response exhibits typical subharmonic
characteristics i.e., abrupt onset of resonance and small
monostable regime. However, as VDC is increased, the
response starts to deviate from the typical subharmonic
response and becomes more primary-like, character-
ized by a gradual increase in amplitude and a wider
monostable regime. It is concluded that even very small
amount of VDC is enough to generate a considerable
primary resonance influence on the overall response.

3 Experimental results

A clamped–clamped microbeam, of same geometric
specifications in Sect. 2, is fabricated and character-
ized to study the dynamic behavior. The microbeam is
made of SiN3 and is fabricated using conventional sur-
face micromachining processes [47]. Figure 3 shows
the microscopic image of the fabricated microbeam
alongwith the used experimental setup. The fundamen-
tal resonance frequency of the microbeam is ∼ 96.5
kHz.

A laser Doppler vibrometer (LDV), Micro Sys-
tem Analyzer 500 from Ploytec, is used to measure
the amplitude of vibration of the resonator. The mea-
surements are recorded using a displacement decoder
(DD900), which has a resolution of 0.6 nm. A data
acquisition card (DAQ) NI6251 from National Instru-

ments is used to excite the resonator and record the out-
put from the LDV. The excitation signal is generated
using a Labview program. The data collected from the
LDV is then post-processed and presented in the form
of frequency response plots. All the experiments are
performed at ambient temperature and at a pressure of
∼ 5 mTorr.

Figure 4a, b shows the frequency response of the
resonator for the case of large VDC near primary and
subharmonic resonances, respectively. In this case, the
term Fp cos (�t) in Eq. (7) is themain dominant excita-
tion term. Figure 4c shows the subharmonic excitation
using an AC only excitation. In this case, the domi-
nant excitation term is Fs cos (2�t); Fp = 0. Hence,
the beam effectively experiences twice the values of
frequency on the x-axis of the figure. Thus, although
Fig. 4c may indicate primary resonance around 96.5
kHz; it actually shows subharmonic resonance due
to this quadratic effect of the electrostatic force and
Fs cos (2�t).

Next, the behavior of the resonator under an AC
only excitation is further explored under various load-
ing conditions. Figure 5 shows the response of the res-
onator under a backward frequency sweep, which cap-
tures the monostable regime for a hardening behavior.
A forward frequency sweep, for most of the loading
cases considered here, results in dynamic pull-in of the
device. Hence, in order to protect the device from stic-
tion issues, only backward frequency sweeps were per-
formed. Moreover, in order to realize the applications
presented in this work, the device must operate in a
monostable regime, which is achieved through a back-
ward frequency sweep for hardening nonlinearity.

It is observed that by increasing the AC voltage, the
monostable regimes shift toward the left while the over-
all amplitude and the span of the monostable regimes
are increased. This behavior qualitatively matches the
analytical prediction in Fig. 2a.

Next, the effect of the simultaneous excitation of
subharmonic and primary resonance, where both reso-
nances are of similar strength, is experimentally inves-
tigated. Figure 6 shows the experimental frequency
response of the microbeam for a reverse frequency
sweep, which aims to capture the monostable regime.
First, the resonator is excited with AC only (VDC = 0)
to get a pure subharmonic excitation. We observe that
the response of the resonator in this case is charac-
terized by a sudden onset of resonance and a narrow
monostable regime. Then, the DC bias voltages are
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Fig. 3 a Experimental setup along with the microscopic image
of the fabricated device. b Image of the LDV and vacuum cham-
ber containing the device. All the experimental results are per-
formed in vacuum conditions ∼3–6 mTorr. A laser Doppler
vibrometer (LDV) is used to optically detect the motion of the
resonator. A data acquisition card (DAQ) is used to generate the
desired signal and measure the output from the LDV

slowly increased to investigate the influence of the pri-
mary excitation term over the subharmonic resonance
as the strength of the primary excitation is increased.
We notice that as the strength of primary resonance is
increased, the subharmonic-like response starts to fade
away and a more primary-like response appears. The
new response exhibits a gradual onset of resonance and
awidermonostable regime.Qualitative agreementwith
the analytical results of Fig. 2b is observed.

One can observe from Fig. 6, and as shown also
theoretically in Fig. 2b, that adding a small DC volt-
age breaks the symmetric of the two perfect pitchfork
bifurcations (the super- and subcritical). Hence, the
outcome is perturbed pitchfork bifurcations; and hence
they result in the smoothening of the curve, which gives

Fig. 4 Experimental forward sweep frequency response plots of
the microresonator (a) at the primary resonance for an electro-
static loading of VDC =1 V; VAC = 1 V around the natural fre-
quency (∼96.5kHz), b at the subharmonic resonance at VDC =2
V, VAC = 2 V, around twice the natural frequency, and c showing
the subharmonic resonance for an electrostatic loading of VDC
=0 V, VAC = 4 V around the natural frequency
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Fig. 5 Experimental backward sweep frequency response
curves of themicroresonator showing the subharmonic resonance
when VDC = 0 V. Note that because of the quadratic form of the
electrostatic force, the beam will experience twice the values of
the frequencies shown on the x-axis. (Color figure online)

Fig. 6 Experimental backward frequency sweep response plots
of the microresonator at VAC = 13.7 V and variable VACvalues.
(Color figure online)

a very distinctive sign of the presence of the DC bias.
This can be used in applications, as will be shown in
Sect. 4.2, for charge sensors.

4 Potential applications

4.1 MEMS logic

The response of the resonator under an AC only exci-
tation can be useful in applications, such as MEMS
vibration-based logic devices [4–8,37–39]. Dynamic-

based resonant structures have been recently under
increasing interest for logic applications, where their
on-resonance large response is considered a “High”
state and their off-resonance response is taken as “Low”
state. The fact these are non-contact devicesmake them
especially attractive compared to MEMS and NEMS
switch-based logic devices

One major obstacle in this field is the difficulty in
cascading such logic devices, i.e., the output of one
logic unit should be usable as direct input for another
logic unit. This requires unifying the input and output
signal waveforms. Because most resonant-based logic
devices produce AC current and AC voltage as output,
for example due to capacitive motional current, this
requirement calls for these mechanical logic devices to
be operated based on AC input commands.

Another essential and challenging requirement for
cascadability is that the input and output frequency of
the resonator remains same.

Here, we propose to resolve these problems bymak-
ing use of an AC only excitation of the beam at subhar-
monic resonance. In this case, an AC only excitation
signal is applied at the frequency � in the neighbor-
hoods of natural frequency ωn , while the microbeam
experiences an excitation at 2� due to the squaring of
the electrostatic forcing term, hence exciting the sub-
harmonic resonance at 2ωn . As it is well-known, at sub-
harmonic resonance, the microbeam actually responds
with the main dynamical component at the main nat-
ural frequency ωn . In this case, the input and output
frequency for the potential logic device stays the same.
Figure 7a shows a schematic illustrating the concept.

Figure 7b shows an AND logic gate that can be
achieved using the subharmonic excitation. A high
amplitude at resonance is characterized as “1” logic
output and a non-resonant state with negligible ampli-
tude is characterized as “0” logic output. The shift in the
onset frequencies of the subharmonic resonance due to
different AC excitation voltages is used as the basic
principle of the logic operation. The logic inputs in this
case are the two AC signals each of 6.4 V and at a
frequency of 94.225 kHz. The logic inputs are added
together using a mixer and provided to the resonator.
One should note here that the use of a mixer can be
avoided if the resonator was designedwith independent
input electrodes, where each one can be used to input
one AC load at a time to the beam. For a (0,0) logic
input, the resonator does not experience any electro-
static excitation and hence the response remains buried
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Fig. 7 a Schematic
illustrating that the input
and output frequency stays
the same for an AC only
excitation of the
resonator-based logic unit. b
Experimental frequency
response of the
microresonator showing the
subharmonic resonance for
an electrostatic loading of
VAC = 0 V (black) VAC =
6.4 V (red) and VAC = 12.8
V (blue) through a
backward frequency sweep.
Logic input state “0” and
“1” are characterized by “0
V” and “6.4 V” of AC
signal at 94.225 kHz,
respectively. These inputs
are added together and
applied to the resonator. c
Time history for various
logic input conditions
showing an AND/NAND
demonstration. (Color figure
online)

in the noise defining the “0” output state. Next, for the
operating frequency of 94.225 kHz, a high output sig-
nal is experienced only for the logic input condition of
(1,1). For any of the (1,0) or (0,1) scenario, the reso-
nance signal (red) is shifted off the operating point and
still gives a “0” output signal. Hence, at this operating
point the device is configured to operate as an AND
logic gate. It is worth to mention here that even though
the resonator operates in the nonlinear regime, the oper-

ating point is chosen in the monostable regime. This
avoids problems associated with the hysteresis region
where unwanted jumps between the “1” and “0” vibra-
tion states of the resonator may occur. Figure 7c shows
a time history plot for the AND logic operation. A sim-
ilar principle can be extended to multi-bit AND logic
operation upon careful selection of the input voltage
sources and operating frequency points. The same logic
gate can also be operated as a NAND gate upon revers-
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Fig. 8 Experimental shift in the frequency value � j (kHz) for
accumulated charge on the fixed drive electrode. A quadratic
polynomial fit is used to estimate the responsivity of the elec-
trometer ∼ 10−5Hz fC−2.The frequency shift data are acquired
from Fig. 6

ing the assignment of high “1” and low “0” logic output
states [6]. NAND being a universal gate can potentially
allow such a logic gate to act as a basic building block
to achieve various other logic operations via cascading
of multiple devices.

The proposed device here is presented as a proof of
concept and hence does not compete well with the state
of the art in performance parameters, such as speed,
power consumption, and area integration density [4–
8,37–39]. Using AC only provides advantages in terms
of cascadability but may consume more energy to acti-
vate the subharmonic resonance and hence execute the
logic operations. Further, it is important to note that low
damping is necessary to activate the subharmonic res-
onance, and hence a vacuum encapsulation is required
for practical applications.We believe that having a ded-
icated design to optimize the energy consumption, area
integration density, and speed of operationwill improve
these performance parameters of the device.

4.2 MEMS electrometer

It is observed from Figs. 2b and 6 that for a back-
ward frequency sweep the frequency jump up point
“� j” shifts toward the right with a very small increase
in the DC bias voltage. It is important to note here
that this effect is caused due to transformation of the
overall response of the resonator from subharmonic-
like to primary-like, which is a direct consequence of

the two source simultaneous excitations. This effect
can be used for applications where the detection of a
very small increase in the DC bias is desired. One such
application can be in charge sensing or MEMS elec-
trometer [40–43]. Shift in � j can be used to monitor
the charge detected by the microbeam. Figure 8 shows
the shift in � j against the added charge (q = CV ,
where C = εA

d = 88.5fF) for the results of Fig. 6. The
quadratic responsivity of the electrometer is found out
to be ∼ 10−5 Hz fC−2 after polynomial fitting of the
measured data. The responsivity reported here is one
of the lowest reported in MEMS-based electrometers
[40–43]. This shows that such a technique is poten-
tially capable of detecting very small charges. Further-
more, a minimum detectable frequency shift of the res-
onator needs to be determined, which can be calculated
by measuring the frequency fluctuation at the point of
interest using Alan deviation technique [38]. It usu-
ally lies within a few Hz range for the MEMS beam
resonators [40,41,43,48]. It is important to note here
that for demonstration purpose the bifurcation point
is used for monitoring the input charge; however, fre-
quency fluctuations due to noise near the bifurcation
point maybe large. This, however, can be avoided by
choosing a point closer to the bifurcation point.

The major advantage of adapting such technology
for charge sensing comes from the simplicity of the
device design and operation, and the sensitivity to very
small value of charge. Many of MEMS electrometer
devices require a separate port for the DC bias applied
to the beam from the DC bias or charge to be detected.
This can add design, fabrication, and circuit implemen-
tation complexities, which can be avoided using such a
system for this application. However, due to the excita-
tion of subharmonic resonance it is important to operate
in low damping conditions and hence a vacuum encap-
sulation is required. It is important to note that this
application is shown here as a proof of concept and a
dedicated design is expected to improve upon the per-
formance, sensitivity, and resolution of the proposed
charge sensor.

5 Conclusions

A theoretical and experimental investigation of the
simultaneous primary and subharmonic resonance
excitation of a clamped–clamped microbeam has been
presented. A one-mode reduced order model has been
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derived and the results from theMTS analysis in [Ilyas,
S., Alfosail, F., Younis, M. I.: On the Response of
MEMS Resonators under Generic Electrostatic Load-
ings: Theoretical Analysis. Nonlinear Dynamics. Sub-
mitted (2018)] have been employed to predict the res-
onator’s behavior. This behavior has been then veri-
fied experimentally under varying electrostatic load-
ing conditions. The behavior of the resonator under
an AC only excitation has been used to demonstrate
experimentally a resonance-basedAND logic gate. The
device is shown to be potentially cascadable. Further-
more, the competing effect from the primary and sub-
harmonic resonance has been proposed for a potential
small charge sensor.
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