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Abstract This paper addresses the consensus track-
ing problem of a class of nonlinear multi-agent sys-
tems by using observer-based control. The systems are
in output-feedback form with both actuator hysteresis
and external disturbances. Radial basis function neural
networks are used to approximate unknown nonlinear
functions. By constructing a state observer and using
the backstepping technique, a distributed adaptive neu-
ral output-feedback control scheme is proposed to solve
the consensus tracking problem. Approximation errors
of neural networks together with external disturbances
are adaptively estimated and counteracted. For a com-
munication graph containing a spanning tree, we show
that the proposed controller guarantees all signals of the
closed-loop system are semi-globally uniformly ulti-
mately bounded, and the consensus tracking error and
the observer error converge to an adjustable neighbor-
hood of the origin. Finally, two simulation examples
are provided to verify the performance of the control
design.
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1 Introduction

Distributed consensus control (including consensus
seeking and consensus tracking) ofmulti-agent systems
(MASs) has recently emerged as an important topic in
the control community [1,2]. Since pioneering works
of Jadbabaie et al. [3] and Olfati et al. [4], many results
on consensus have been obtained for MASs with dis-
tinct agent dynamics, such as single-integrator dynam-
ics [5,6], double-integrator dynamics [7–9] and general
linear dynamics [10,11]. For the state of art of con-
sensus research, readers can refer to recent research
monograph and surveys [12,13].

Due to the fact that nonlinearities exist widely in the
control systems, much progress has been achieved for
the consensus problem of nonlinear MASs. For nonlin-
earities satisfying the Lipschitz condition, the consen-
sus problem of second-order nonlinear MASs is con-
sidered in [14,15] by resorting to the matrix theory
and linear Lyapunov method. For nonlinearities that
can be “linearly parameterized,” adaptive control for
the consensus problem was developed in [16,17] with
the regression matrices being known. For nonlineari-
ties without the Lipschitz condition and the “linearity-
in-parameters” assumption, neural networks (NNs) and
fuzzy logic systems are promising strategies to neutral-
ize the nonlinear effects due to their “universal approx-
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imation” property [18]. In [19–23], NNs were con-
structed in consensus controllers to directly confront
the nonlinearities with matching condition. However,
wider applications of the above methods are limited as
they require agent nonlinearities to meet the match-
ing condition, while many practical systems are so
complicated that nonlinearities are unmatched with the
input.

As a powerful technique to study nonlinear systems
without matching condition, backstepping technique
was proposed in [24]. In early literature, many results
of adaptive neural or fuzzy backstepping design have
been reported for strict-feedback or pure-feedback non-
linear systems [25–28]. Even though a single system
of strict-feedback or pure-feedback form has been well
studied, it is nontrivial to extend the methods therein to
nonlinear MASs. The work of Yoo [29] represents the
first paper on this topic, where the consensus tracking
problem of nonlinear MASs under a direct graph was
studied. Along this line, further results are presented in
[30–32] formultiple nonlinear strict-feedback systems,
where adaptive neural backstepping technique was
applied. In [30], the command filtered backstepping
technique was employed to study the consensus prob-
lem of MASs of strict-feedback dynamics under fixed
undirected topology. In [31], the author proposed a con-
sensus tracking approach for multiple nonlinear strict-
feedback systems under a jointly switching topology.
The author in [32] studied the leader-following con-
sensus problem for nonlinear MASs in strict-feedback
form with state time delays. More recently, observer-
based consensus control schemes were considered in
[33–36]. In [33,34], authors constructed observers in
each follower agent to observe the state of the leader,
which enable some techniques in single systems to
be available. To avoid measuring all agents’ states
directly, the authors in [35,36] proposed an observer-
based adaptive backstepping consensus protocol for
MASs with second-order dynamics and semi-strict-
feedback dynamics, respectively. However, actuators
of real MASs often encounter the hysteresis phenom-
ena which could severely deteriorate the actuator per-
formance [37–39]. It is notable that distributed proto-
cols in previous works were designed on the basis that
the actuator of each agent works without any hystere-
sis constraint, which is not applicable in practice when
hysteresis constraints exist [40–43].

Motivated by the above discussions, we investi-
gate the consensus tracking problem for a class of

unmatched nonlinearMASs using observer-based con-
trol. Each follower is assumed to be in output-feedback
form with unknown nonlinear dynamics and external
disturbances. Moreover, considering the actuator hys-
teresis, our problem is more important and challeng-
ing in both theory and real-world applications. We
use radial basis function (RBF) NNs to approximate
the unknown nonlinearities. Under this circumstance,
a state observer is designed to estimate the unmeasur-
able states of each follower. Then, using the backstep-
ping technique, an observer-based distributed adaptive
NN controller is proposed. For a directed graph con-
taining a spanning tree, we show that all signals of the
closed-loop system are semi-globally uniformly ulti-
mately bounded, and both the consensus tracking error
and the observer error converge to an adjustable neigh-
borhood of the origin. Compared with existing results,
the main contributions of our paper are twofold:

1. For nonlinear MASs in output-feedback form [44],
our work represents the first trial to design dis-
tributed adaptive NN controllers for them with-
out full state information. Even nonlinear dynamics
considered in [45] is in the output-feedback form,
the authors required the nonlinearities to be sub-
jected by an inequality, which limits the choice of
the nonlinearities.

2. Actuator of each follower suffering from the Bouc–
Wen hysteresis is introduced to the consensus prob-
lem of nonlinearMASs. In our previous work [46],
we considered MASs of Brunovsky form nonlin-
earity with actuators suffering from backlash-like
hysteresis. However, the controller design is easier
in [46] as nonlinearities in Brunovsky form satisfy
the matching condition.

The rest of the paper is organized as follows. Prob-
lem formulation is introduced in Sect. 2. In Sect. 3, a
novel observer-based distributed controller and its sta-
bility are presented. Simulation examples are presented
in Sect. 4 to demonstrate the effectiveness of the pro-
posed protocols. Section 5 concludes the paper.

Notations In denotes the n×n identitymatrix and 1n
denotes a vector inRn with elements being all ones. ‖·‖
refers to the standard Euclidean norm or the induced
matrix 2-norm. We say P > 0 (P < 0) if the matrix P
is positive (negative) definite. diag{z1, . . . , zm} denotes
the diagonal matrix with diagonal entries z1 to zm .
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2 Preliminaries and problem formulation

2.1 Algebraic graph theory

A directed graph G = (V, E) consists of a set of
nodes V = {1, . . . , N } and a set of directed edges
E ⊆ V × V of the form ( j, i). If ( j, i) ∈ E , we say
i can receive information from j and j is a neigh-
bor of i . The set of neighbors of node i is denoted
by Ni = { j ∈ V : ( j, i) ∈ E}. A sequence of edges
(i1, i2), (i2, i3), . . . , (ik−1, ik) is called a directed path
from node i1 to node ik . G is said to contain a spanning
tree if there exists a node, called the root, which has a
directed path to every other nodes in the graph. Denote
the adjacency matrix of G as A = [ai j ] ∈ R

N×N

where ai j > 0 ⇔ ( j, i) ∈ E . The Laplacian matrix
L = [li j ] ∈ R

N×N of G is defined by L = D − A,
whereD = diag{d1, . . . , dN } is the degree matrix with
di = ∑

j∈Ni
ai j .

2.2 RBF neural networks

The RBF NN hnn(z) is described by

hnn(z) = WTΨ (z) (1)

where z ∈ Ωz ⊂ R
q is the input with q being the input

dimension, the weight W = [w1, . . . , wp]T ∈ R
p,

and p > 1 is the number of the NN nodes. Ψ (z) =
[ϕ1(z), . . . , ϕp(z)]T denotes the basis function vector
with ϕi (z) being the Gaussian function

ϕi (z) = exp

[
−(z − μi )

T (z − μi )

η2i

]

(i = 1, . . . , p)

where μi = [μi1, . . . , μiq ]T is the center of the recep-
tive field and ηi is the width of the Gaussian function.

As shown in [18], when the number p ofNNnodes is
sufficiently large, the RBFNN (1) can approximate any
continuous function h(z) over a compact set Ωz ⊂ R

q

to arbitrary accuracy ε0 > 0 as

h(z) = W ∗TΨ (z) + ε(z), ∀z ∈ Ωz (2)

where W ∗ is the ideal weight vector defined by

W ∗ = arg min
W∈Rp

{

sup
z∈Ωz

∣
∣
∣h(z) − WTΨ (z)

∣
∣
∣

}

and ε(z) is the approximation error satisfying |ε(z)| ≤
ε0.

2.3 Hysteresis nonlinearity

Various hysteresis models have been constructed to
describe the hysteresis nonlinearity [40], such as
Duhem model, Maxwell model, Preisach model and
Bouc–Wenmodel. Among them, the Bouc–Wenmodel
has become increasingly popular in the literature due
to its capability of capturing a range of shapes of hys-
teretic cycles. Moreover, a new perfect inverse for the
Bouc–Wenmodel has been proposed [41], which facil-
itates the observer-based distributed controller design
in the framework of MASs and thus is adopted in this
paper.

The Bouc–Wen hysteresis nonlinearity [41] is
described by

u = H(v) = ρ1v + ρ2θ (3)

whereρ1 andρ2 are constantswith the same sign. θ ∈ R

is generated by

θ̇ = v̇ f (θ, v̇), θ(t0) = 0 (4)

with

f (θ, v̇) = 1 − sign(v̇)β|θ |m−1θ − χ |θ |m (5)

whereβ > |χ |,m ≥ 1,β andχ are parameters describ-
ing the shape and amplitude of the hysteresis. m gov-
erns the smoothness of the transition from the initial
slope to the slope of the asymptote.

In [41], Zhou et al. proposed a new inverse for the
Bouc–Wen hysteresis model (3)–(5):

v = H I (u) = 1

ρ1
u − ρ2

ρ1
θ1 (6)

where

θ̇1 = u̇

ρ1 + ρ2 f
(
θ1,

u̇
ρ1

) f

(

θ1,
u̇

ρ1

)

, θ1(t0) = 0

v̇ = u̇

ρ1 + ρ2 f
(
θ1,

u̇
ρ1

)

(7)

and f (·, ·) is defined as in (5).

Lemma 1 ([41]) For Bouc–Wen hysteresis model (3)–
(5), the right hysteresis inverse can be constructed as
(6)–(7) such that
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Fig. 1 Bouc–Wen hysteresis
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Fig. 2 Inverse of Bouc–Wen hysteresis

u(t0) = H(H I (ud(t0))) = ud(t0)

⇒ u(t) = H(H I (ud(t))) = ud(t), ∀ t ≥ t0
(8)

where ud is a designed control signal.

Figures 1 and 2 show the hysteresis and hystere-
sis inverse effects with parameters from the simulation
part. Figure 3 shows how hysteresis inverse works.

2.4 Problem formulation

We consider a MAS consisting of N + 1 agents, where
the agent indexed by 0 is assigned as the leader and the
agents indexed by 1, . . . , N are followers.

Fig. 3 Control signal under Bouc–Wen hysteresis and its inverse

The dynamics of the i th follower is described by
⎧
⎪⎪⎨

⎪⎪⎩

ẋi,k = xi,k+1 + fi,k(yi ) + ωi,k(t)
ẋi,n = ui + fi,n(yi ) + ωi,n(t)
yi = xi,1, k = 1, . . . , n − 1
ui = H(udi ), i = 1, . . . , N

(9)

where xi = [xi,1, . . . , xi,n]T ∈ R
n and yi ∈ R

denote the state and output, respectively. The func-
tion fi,l(·) (l = 1, . . . , n) is the unknown nonlin-
ear function; ωi,l stands for the external disturbance
bounding by an unknown positive constant ωi,l,0, i.e.,
|ωi,l(·)| ≤ ωi,l,0. udi ∈ R is the control input to be
designed, and ui is the output of the unknown Bouc–
Wen hysteresis H(udi ) defined by (3)–(5). Here, we
assume that the motion of virtual leader 0 is indepen-
dent of that of followers, whose measurable output is a
time-varying reference state y0.

The topology of the informationflowbetween N fol-
lowers is modeled by the directed graph G = (V, E).
Furthermore, we define an augmented graph Ḡ =
(V̄, Ē) to model the interaction topology of the sys-
tem consisting of N followers and the leader, where
V̄ = {0, 1, . . . , N } and Ē ⊆ V̄ × V̄ . Let B =
diag{b1, . . . , bN } ∈ R

N×N be the leader adjacency
matrix associated with Ḡ, where bi > 0 if follower
i can receive information from leader 0 and bi = 0
otherwise.

Remark 1 Regardless of the hysteresis nonlinearity
and disturbance, the agent dynamics in (2.4) are in
the so-called output-feedback form, in which system
nonlinearities depend only on the measured output. As
indicated in [47], many systems can be transformed
into this form by a global state space diffeomorphism.
Although continuous progress has been made toward
the control of nonlinear systems in the output-feedback
form (see [44,48] and references therein), there are no
results related to observer-based cooperative control of
nonlinearMASs in the output-feedback form.This kind
of system also facilitates the design of state observers,
whichwill be shown later. An application of the output-
feedback formnonlinear systemswas discussed in [44],
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where the position of an electric motor is required to
follow a periodic reference signal.

Remark 2 Previous works were focused on nonlinear-
ities in the dynamics of the agents, while supposing
that the actuators are free from hysteresis nonlinear-
ities. In the control system area, controlling systems
with Bouc–Wen hysteresis nonlinearity has become an
important topic and several control schemes for sin-
gle agent systems to mitigate hysteresis effect have
been developed [41–43]. However, little progress has
been achieved to extend the technique for the nonlinear
MASs. This concern directly motivates this study.

Our objective is to design distributed NN control
laws udi for followers such that: (1) all signals in the
closed-loop system remain semi-globally uniformly
ultimately bounded and (2) the follower output yi syn-
chronizes to the leader output y0 in such manner that
the tracking error yi − y0 converges to a small neigh-
borhood of the origin. For this objective, the following
lemma is required in the subsequent sections.

Lemma 2 ([8]) If the directed graph Ḡ has a spanning
tree, then all eigenvalues of H = L + B have positive
real parts.

3 Main results

3.1 State observer design

Since the agent nonlinearity fi,l(·) (l = 1, . . . , n) in
(2.4) is unknown, then they cannot be used to construct
the state observer and the controller. To avoid this trou-
ble, we first employ a RBF NN to approximate the
unknown nonlinear function fi,l(·) as follows

fi,l(yi ) = W ∗T
i,l Ψi,l(yi ) + εi,l(yi ), ∀yi ∈ Ωyi (10)

where W ∗
i,l is the ideal constant weight, Ψi,l(yi ) is the

Gaussian basis function and εi,l(yi ) is the approxima-
tion error satisfying |εi,l(yi )| ≤ εi,l,0.

By using Lemma 1, the MAS (2.4) can be rewritten
as
⎧
⎨

⎩

ẋi,k = xi,k+1 + W ∗T
i,k Ψi,k(yi ) + εi,k(yi ) + ωi,k(t)

ẋi,n = udi + W ∗T
i,n Ψi,n(yi ) + εi,n(yi ) + ωi,n(t)

yi = xi,1, k = 1, . . . , n − 1, i = 1, . . . , N

(11)

where udi is a designed control signal for the i th fol-
lower from a feedback law.

Then, a state observer for the i th follower is designed
as
⎧
⎪⎨

⎪⎩

˙̂xi,k = x̂i,k+1 + Ŵ T
i,kΨi,k(yi ) + li,k(yi − ŷi )

˙̂xi,n = udi + Ŵ T
i,nΨi,n(yi ) + li,n(yi − ŷi )

ŷi = x̂i,1, k = 1, . . . , n − 1, i = 1, . . . , N

(12)

where x̂i = [x̂i,1, . . . , x̂i,n]T and Ŵi,l (l = 1, . . . , n)

are the estimates of the state xi and W ∗
i,l , respec-

tively. li = [li,1, . . . , li,n]T is the observer gain such
that Ai = A − li cT is a Hurwitz matrix, where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... s̈

...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n and c =

[1, 0, . . . , 0]T ∈ R
n . Thus, for any given Qi > 0,

there exists a Pi > 0 satisfying the Lyapunov equation

AT
i Pi + Pi Ai = −Qi . (13)

Let ei = xi − x̂i be the observer error, then from (11)
and (12), one can obtain the dynamics of the observer
error
{
ėi = Aiei + δi (yi ) + εi (yi ) + ωi (t)
ŷi = cT x̂i , i = 1, . . . , N

(14)

where

δi (yi ) = [δi,1(yi ), . . . , δi,n(yi )]T
= (W ∗

i − Ŵi )
TΨi (yi )

W ∗
i = diag{W ∗

i,1, . . . ,W
∗
i,n}T

Ŵi = diag{Ŵi,1, . . . , Ŵi,n}T
Ψi (yi ) = [Ψ T

i,1(yi ), . . . , Ψ
T
i,n(yi )]T

εi (yi ) = [εi,1(yi ), . . . , εi,n(yi )]T
ωi (t) = [ωi,1(t), . . . , ωi,n(t)]T .

Also the observer (12) can be rewritten as:
{ ˙̂xi = Ai x̂i + Ŵ T

i Ψi (yi ) + budi + li yi
ŷi = cT x̂i , i = 1, . . . , N

(15)

with b = [0, · · · , 0, 1]T ∈ R
n .

With the designed state observer (12), we are now
ready to develop a distributed adaptive NN output-
feedback controller to achieve the desired control
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objectives.Note that in this section, the adaptive control
law udi will be designed for each follower i . The control
signal vi can then be calculated by vi = H I (udi ) and
ui = H(vi ).

To facilitate the control design later, the following
assumptions are needed.

Assumption 1 There exists a known constant δi,l,0,
such that |δi,l(·)| ≤ δi,l,0, ∀l = 1, . . . , n, i =
1, . . . , N .

Assumption 2 The output of the leader and its first
derivative (i.e., y0 and ẏ0) are known and bounded.

Assumption 3 The graph Ḡ contains a directed span-
ning tree with the leader 0 as the root node.

3.2 Distributed controller design

Before proceeding the controller design through the
backstepping technique [24], the following change of
coordinates is defined:
⎧
⎨

⎩

zi,1 = ∑
j∈Ni

ai j (yi − y j ) + bi (yi − y0)
zi,k = x̂i,k − ᾱi,k−1

si,k−1 = ᾱi,k−1 − αi,k−1, k = 2, . . . , n
(16)

where αi,k−1 and ᾱi,k−1 are the virtual control and the
filtered virtual control at the (k−1)th step, respectively;
zi,k and si,k−1 are the error surface and the output error
of the first-order filter, respectively. The actual control
input udi will be designated in the last step.

Step 1Westartwith the equation for the local consensus
tracking error zi,1. From (11), one can get

żi,1 =
∑

j∈Ni

ai j (ẏi − ẏ j ) + bi (ẏi − ẏ0)

= (di + bi )
(
f̄i,1 + zi,2 + si,1

+αi,1 + ēi,2 + ω̄i,1
)

−
∑

j∈Ni

ai j x̂ j,2 − bi ẏ0

= (di + bi )
(
M∗T

i,1 Φi,1 + εi,1 + zi,2 + si,1 + αi,1

+ ēi,2 + ω̄i,1

)
−
∑

j∈Ni

ai j x̂ j,2 − bi ẏ0 (17)

where

f̄i,1 = fi,1 − 1

di + bi

∑

j∈Ni

ai j f j,1

ēi,2 = ei,2 − 1

di + bi

∑

j∈Ni

ai j e j,2

ω̄i,1 = ωi,1 − 1

di + bi

∑

j∈Ni

ai jω j,1.

Note here that f̄i,1(ȳi ) containing unknown func-
tions fi,1(yi ) and f j,1(y j )( j ∈ Ni ) has been approx-
imated by f̄i,1(ȳi ) = M∗T

i,1 Φi,1(ȳi ) + εi,1(ȳi ), where

ȳi = [yi , y j , j ∈ Ni ]T , M∗
i,1 is the ideal con-

stant weight, Φi,1(ȳi ) is the Gaussian basis func-
tion and εi,1(ȳi ) is the approximation error satisfying
|εi,1(ȳi )| ≤ εi,1,0.

For the initial step, the Lyapunov function candidate
Vi,1 is chosen as

Vi,1 = eTi Pi ei + 1

2
z2i,1 + 1

2
M̃T

i,1Γ
−1
i,1 M̃i,1

+ 1

2ηi,1
Δ̃2

i,1

where M̃i,1 = M∗
i,1−M̂i,1 and Δ̃i,1 = Δi,1−Δ̂i,1; M̂i,1

and Δ̂i,1 are estimates of M∗
i,1 and Δi,1, respectively;

Γi,1 = Γ T
i,1 > 0 and ηi,1 > 0 are design parameters.

Differentiating Vi,1 along (14) and (17) yields

V̇i,1 = 2eTi Pi ėi + zi,1 żi,1

− M̃T
i,1Γ

−1
i,1

˙̂Mi,1 − 1

ηi,1
Δ̃i,1

˙̂
Δi,1

= −eTi Qi ei + 2eTi Pi [δi + εi + ωi ]

+ zi,1

⎡

⎣(di + bi )
(
M∗T

i,1 Φi,1 + zi,2

+ si,1 + αi,1
)

−
∑

j∈Ni

ai j x̂ j,2 − bi ẏ0

⎤

⎦

+ (di + bi )zi,1
(
ēi,2 + εi,1 + ω̄i,1

)

− M̃T
i,1Γ

−1
i,1

˙̂Mi,1 − 1

ηi,1
Δ̃i,1

˙̂
Δi,1.

(18)

Using the Young’s inequality aT b ≤ 1
2a

T a +
1
2b

T b, the Cauchy–Schwartz inequality (
∑

k akbk)
2 ≤
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(
∑

k a
2
k )(
∑

k b
2
k ), we obtain the following inequalities

from Assumption 1:

2eTi Pi [δi + εi + ωi ] ≤ eTi ei + Δi,0‖Pi‖2, (19)

zi,1ēi,2 ≤ 1

2

(

1 + 1

di + bi

)

z2i,1 + 1

2
eTi ei

+ ki
2(di + bi )

N∑

j=1

eTj e j , (20)

zi,1
(
εi,1 + ω̄i,1

) ≤ Δi,1|zi,1|, (21)

where ki = ∑
j∈Ni

a2i j , Δi,0 = (δi,0 + εi,0 + ωi,0)
2,

δi,0 =
√∑n

j=1 δ2i, j,0, εi,0 =
√∑n

j=1 ε2i, j,0, ωi,0 =
√∑n

j=1 ω2
i, j,0, and Δi,1 is the upper bound of |εi,1 +

ω̄i,1|.
Substituting (19)–(21) into (18), it can be verified

that

V̇i,1 ≤ −eTi

(

Qi − 2 + di + bi
2

In

)

ei + ki
2

N∑

j=1

eTj e j

+ zi,1

⎡

⎣(di + bi )
(
M∗T

i,1 Φi,1

+ zi,2 + si,1 + αi,1
)

−
∑

j∈Ni

ai j x̂ j,2 − bi ẏ0

⎤

⎦+ Δi,0‖Pi‖2

+ 1 + di + bi
2

z2i,1 + (di + bi )Δi,1|zi,1|

− M̃T
i,1Γ

−1
i,1

˙̂Mi,1 − 1

ηi,1
Δ̃i,1

˙̂
Δi,1.

(22)

UnderAssumption 2,we design virtual control func-
tion αi,1 and adaptive laws for M̂i,1 as

αi,1 = 1

di + bi

⎡

⎣−
(

ρi,1 + 1 + di + bi
2

)

zi,1

+
∑

j∈Ni

ai j x̂ j,2 + bi ẏ0

⎤

⎦− M̂T
i,1Φi,1

− Δ̂i,1 tanh
( zi,1

ε

)
,

˙̂Mi,1 = Γi,1

[
(di + bi )zi,1Φi,1 − σi,1M̂i,1

]
, (23)

and adaptive laws for Δ̂i,1 as

˙̂
Δi,1 = ηi,1

[
(di + bi )zi,1 tanh

( zi,1
ε

)
− γi,1Δ̂i,1

]

(24)

where ρi,1, ε, σi,1 and γi,1 are positive design parame-
ters.

Substituting (23) and (24) into (22), we obtain

V̇i,1 ≤ −eTi

(

Qi − 2 + di + bi
2

In

)

ei + ki
2

N∑

j=1

eTj e j

− ρi,1z
2
i,1 + (di + bi )zi,1(zi,2 + si,1)

+ (di + bi )Δi,1

(
|zi,1| − zi,1 tanh

( zi,1
ε

))

+ Δi,0‖Pi‖2 + σi,1M̃
T
i,1M̂i,1 + γi,1Δ̃i,1Δ̂i,1

≤ −eTi

(

Qi − 2 + di + bi
2

In

)

ei + ki
2

N∑

ι=1

eTι eι

− ρi,1z
2
i,1 + (di + bi )zi,1(zi,2 + si,1)

+ 0.2785(di + bi )εΔi,1 + Δi,0‖Pi‖2
+ σi,1M̃

T
i,1M̂i,1 + γi,1Δ̃i,1Δ̂i,1 (25)

where the inequality |zi,1| − zi,1 tanh
( zi,1

ε

) ≤ 0.2785ε
(ε > 0) has been used.

In order to avoid repeatedly differentiating αi,1, let
αi,1 pass through a first-order filter to obtain the first
filtered virtual control vector ᾱi,1, namely

τi,1 ˙̄αi,1 + ᾱi,1 = αi,1, ᾱi,1(0) = αi,1(0) (26)

where τi,1 is a small positive constant.

Step 2 From (12), the derivative of zi,2 can be expressed
as

żi,2 = ˙̂xi,2 − ˙̄αi,1

= x̂i,3 + Ŵ T
i,2Ψi,2 + li,2(yi − ŷi ) − ˙̄αi,1

= zi,3 + si,2 + αi,2 − W̃ T
i,2Ψi,2 + W ∗T

i,2 Ψi,2

+ li,2(yi − ŷi ) − ˙̄αi,1,

(27)

where W̃i,2 = W ∗
i,2 − Ŵi,2.

Consider the Lyapunov candidate function Vi,2 as

Vi,2 = Vi,1 + 1

2
z2i,2 + 1

2
s2i,1 + 1

2
W̃ T

i,2Γ
−1
i,2 W̃i,2. (28)

where Γi,2 = Γ T
i,2 > 0 is the adaptive gain matrix.
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Design virtual control functionαi,2 and adaptive law
for Ŵi,2 as

αi,2 = −ρi,2zi,2 − (di + bi )zi,1 − Ŵ T
i,2Ψi,2 + ˙̄αi,1

− δi,2,0 tanh

(
zi,2δi,2,0

ε

)

+ li,2 ŷi − li,2yi ,

˙̂Wi,2 = Γi,2

[
zi,2Ψi,2 − σi,2Ŵi,2

]
,

(29)

where ρi,2 and σi,2 are positive design parameters.
According to the definition of the output error si,1

in (16), one has ˙̄αi,1 = − si,1
τi,1

and

ṡi,1 = ˙̄αi,1 − α̇i,1

= − si,1
τi,1

+ 1

di + bi

⎡

⎣
(

ρi,1 + 1 + di + bi
2

)

żi,1

−
∑

j∈Ni

ai j ˙̂x j,2 − bi ÿ0

⎤

⎦

+ ˙̂MT
i,1Φi,1 + M̂T

i,1
dΦi,1

dyi
ẏi

+ ˙̂
Δi,1 tanh

( zi,1
ε

)
+ Δ̂i,1

d tanh
( zi,1

ε

)

dzi,1
żi,1

= − si,1
τi,1

+ Bi,1

(30)

where

Bi,1 = 1

di + bi

⎡

⎣
(

ρi,1 + 1 + di + bi
2

)

żi,1

−
∑

j∈Ni

ai j ˙̂x j,2 − bi ÿ0

⎤

⎦

+ ˙̂MT
i,1Φi,1 + M̂T

i,1
dΦi,1

dyi
ẏi

+ ˙̂
Δi,1 tanh

( zi,1
ε

)
+ Δ̂i,1

d tanh
( zi,1

ε

)

dzi,1
żi,1

which is a continuous function.
From (27)–(30), the derivation of Vi,2 becomes

V̇i,2 = V̇i,1 + zi,2 żi,2 + si,1ṡi,1 − W̃ T
i,2Γ

−1
i,2

˙̂Wi,2

≤ −eTi

(

Qi − 2 + di + bi
2

In

)

ei + ki
2

N∑

j=1

eTj e j

−
2∑

j=1

ρi, j z
2
i, j + (di + bi )zi,1si,1

+ zi,2si,2 + zi,2zi,3

+ 0.2785ε
[
(di + bi )Δi,1 + 1

]+ Δi,0‖Pi‖2
+ σi,1M̃

T
i,1M̂i,1 + σi,2W̃

T
i,2Ŵi,2 + γi,1Δ̃i,1Δ̂i,1

− s2i,1/τi,1 + si,1Bi,1 (31)

Let αi,2 pass through a low-pass first-order filter
to obtain the 2nd filtered virtual control vector ᾱi,2,
namely

τi,2 ˙̄αi,2 + ᾱi,2 = αi,2, ᾱi,2(0) = αi,2(0) (32)

where τi,2 is a small positive constant.

Step l (l = 3, . . . , n−1)Differentiating zi,l along (12)
yields

żi,l = ˙̂xi,l − ˙̄αi,l−1

= x̂i,l+1 + Ŵ T
i,lΨi,l + li,l(yi − x̂i,1) − ˙̄αi,l−1

= zi,l+1 + si,l + αi,l − W̃ T
i,lΨi,l + W ∗T

i,l Ψi,l

+ li,l(yi − ŷi ) − ˙̄αi,l−1

(33)

where W̃i,l = W ∗
i,l − Ŵi,l .

Consider the Lyapunov candidate function Vi,l as

Vi,l = Vi,l−1 + 1

2
z2i,l + 1

2
s2i,l−1 + 1

2
W̃ T

i,lΓ
−1
i,l W̃i,l ,

(34)

where Γi,l = Γ T
i,l > 0 is the adaptive gain matrix.

Design virtual control function αi,l and adaptive law
for Ŵi,l as

αi,l = −ρi,l zi,l − zi,l−1 − Ŵ T
i,lΨi,l + ˙̄αi,l−1

− δi,l,0 tanh

(
zi,lδi,l,0

ε

)

+ li,l ŷi − li,l yi ,

˙̂Wi,l = Γi,l

[
zi,lΨi,l − σi,l Ŵi,l

]
,

(35)

where ρi,l and σi,l are positive design parameters.
Similar to (30), for l = 3, . . . , n − 1

ṡi,l−1 = ˙̄αi,l−1 − α̇i,l−1

= − si,l−1

τi,l−1
+ [

ρi,l−1 żi,l−1 + żi,l−2

− li,l−1
˙̂yi + li,l−1 ẏi

]
+ ṡi,l−2

τi,l−2
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+ ˙̂WT
i,l−1Ψi,l−1 + Ŵ T

i,l−1
dΨi,l−1

dyi
ẏi

+ δi,l−1,0

d tanh
(
zi,l−1δi,l−1,0

ε

)

dzi,l−1
żi,l−1

= − si,l−1

τi,l−1
+ Bi,l−1 (36)

where

Bi,l−1 =
[
ρi,l−1 żi,l−1 + żi,l−2 − li,l−1

˙̂yi + li,l−1 ẏi
]

+ ṡi,l−2

τi,l−2
+ ˙̂WT

i,l−1Ψi,l−1

+ Ŵ T
i,l−1

dΨi,l−1

dyi
ẏi

+ δi,l−1,0

d tanh
(
zi,l−1δi,l−1,0

ε

)

dzi,l−1
żi,l−1

which is also a continuous function.
Applying thevirtual control and adaptive law in (35),

the derivation of Vi,l along (33) becomes

V̇i,l = V̇i,l−1−ρi,l z
2
i,l + zi,l

(
zi,l+1 + si,l − zi,l−1

)

+ si,l−1ṡi,l−1

≤ −eTi

(

Qi − 2 + di + bi
2

In

)

ei

+ ki
2

N∑

j=1

eTj e j

−
l∑

k=1

ρi,k z
2
i,k + (di + bi )zi,1si,1 +

l∑

k=2

zi,ksi,k

+ zi,l zi,l+1+0.2785ε
[
(di + bi )Δi,1 + (l − 1)

]

+ Δi,0‖Pi‖2 + σi,1M̃
T
i,1M̂i,1

+
l∑

k=2

σi,k W̃
T
i,k Ŵi,k

+ γi,1Δ̃i,1Δ̂i,1 +
l−1∑

k=1

(
−s2i,k/τi,k + si,k Bi,k

)
.

(37)

Let αi,l pass through the lth low-pass first-order fil-
ter to obtain the lth filtered virtual control vector ᾱi,l ,
namely

τi,l ˙̄αi,l + ᾱi,l = αi,l , ᾱi,l(0) = αi,l(0) (38)

where τi,l is a small positive constant.
Step n At this step, we will construct the control law

udi . Viewing (12), the derivative of zi,n satisfies

żi,n = ˙̂xi,n − ˙̄αi,n−1

= udi − W̃ T
i,nΨi,n + W ∗T

i,n Ψi,n

+ li,n(yi − x̂i,1) − ˙̄αi,n−1.

(39)

The Lyapunov function at this step is chosen as

Vi,n = Vi,n−1 + 1

2
z2i,n + 1

2
s2i,n−1 + 1

2
W̃ T

i,nΓ
−1
i,n W̃i,n,

(40)

where Γi,n = Γ T
i,n > 0 is the adaptive gain matrix.

The control signal udi and adaptive law for Ŵi,n are
designed as

udi = −ρi,nzi,n − zi,n−1 − Ŵ T
i,nΨi,n

+ li,n ŷi − li,n yi + ˙̄αi,n−1,

˙̂Wi,n = Γi,n

[
zi,nΨi,n − σi,nŴi,n

]
,

(41)

where ρi,n and σi,n are positive design parameters.
The V̇i,n is then obtained as

V̇i,n = V̇i,n−1 − ρi,nz
2
i,n − zi,nzi,n−1

+ si,n−1ṡi,n−1 − W̃ T
i,nΓ

−1
i,n

˙̂Wi,n

≤ −eTi

(

Qi − 2 + di + bi
2

In

)

ei + ki
2

N∑

j=1

eTj e j

−
n∑

k=1

ρi,k z
2
i,k + (di + bi )zi,1si,1 +

n−1∑

k=2

zi,ksi,k

+ 0.2785ε
[
(di + bi )Δi,1 + (n − 1)

]

+ Δi,0‖Pi‖2

+ σi,1M̃
T
i,1M̂i,1 +

n∑

k=2

σi,k W̃
T
i,k Ŵi,k

+ γi,1Δ̃i,1Δ̂i,1 +
n−1∑

k=1

(
−s2i,k/τi,k + si,k Bi,k

)
.

(42)

To date, the distributed controller design is com-
pleted.
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3.3 Stability analysis

In this subsection, stability of the resulting closed-loop
system and consensus tracking performance analysis
for the proposed control scheme will be analyzed. The
main results are summarized in the following theorem.

Theorem 1 Consider MAS (1) under Assumptions 1–
3. For initial conditions satisfying V (0) ≤ α0 with
α0 > 0, the observer-based distributed adaptive NN
controller law (41)with intermediate control laws (23),
(29) and (35) and parameter adaptive law (24) guaran-
tee that all signals in the closed-loop systems are semi-
globally uniformly ultimately bounded. Moreover, the
tracking error yi − y0 can be made as small as possible
by appropriately choosing design parameters.

Proof The total Lyapunov function is considered as

V (t) =
N∑

i=1

Vi,n (43)

where Vi,n is given by (40).
Substituting (42) into the derivative of (43) yields

V̇ (t) =
N∑

i=1

V̇i,n

≤
N∑

i=1

[

− eTi

(

Qi − 2 + di + bi +∑N
j=1 k j

2
In

)

ei

−
n∑

k=1

ρi,k z
2
i,k + (di + bi )zi,1si,1 +

n−1∑

k=2

zi,ksi,k

+ 0.2785ε
[
(di + bi )Δi,1 + (n − 1)

]

+ Δi,0‖Pi‖2

+ σi,1M̃
T
i,1M̂i,1 +

n∑

k=2

σi,k W̃
T
i,k Ŵi,k

+ γi,1Δ̃i,1Δ̂i,1 +
n−1∑

k=1

(−s2i,k/τi,k + si,k Bi,k
)
]

.

Using the following facts with the design parameter
ς > 0

M̃T
i,1M̂i,1 ≤ −1

2
M̃T

i,1M̃i,1 + 1

2
M∗T

i,1 M
∗
i,1

W̃ T
i,k Ŵi,k ≤ −1

2
W̃ T

i,k W̃i,k + 1

2
W ∗T

i,k W
∗
i,k

Δ̃i,1Δ̂i,1 ≤ −1

2
Δ̃2

i,1 + 1

2
Δ2

i,1

zi, j si,k ≤ 1

2
z2i,k + 1

2
s2i,k, si, j Bi,k ≤ 1

2ς
s2i,k B

2
i,k + ς

2

gives

V̇ (t)

≤ −
N∑

i=1

[

eTi

(

Qi − 2 + di + bi +∑N
j=1 k j

2
In

)

ei

+ 1

2

n∑

k=1

(2ρi,k − max{di + bi , 1})z2i,k

+ 1

2
σi,1M̃

T
i,1M̃i,1

+ 1

2

n∑

k=2

σi,k W̃
T
i,k W̃i,k + 1

2
γi,1Δ̃

2
i,1

+ 1

2

n−1∑

k=1

(
2

τi,k
− max{di + bi , 1} − B2

i,k

ς

)

s2i,k

]

+ Υ1

(44)

where Υ1 = ∑N
i=1[0.2785ε[(di +bi )Δi,1 + (n−1)]+

Δi,0‖Pi‖2 + 1
2σi,1M

∗T
i,1 M

∗
i,1 + 1

2

∑n
k=2 σi,kW ∗T

i,k W
∗
i,k +

1
2γi,1Δ

2
i,1 + (n−1)ς

2 ].
Since for any constants α0 > 0 and β0 > 0, the

sets Ξi,k = {2eTi Pi ei + 1
ηi,1

Δ̃2
i,1 + M̃T

i,1Γ
−1
i,1 M̃i,1 +

∑k
l=2 W̃

T
i,lΓ

−1
i,l W̃i,l + ∑k

l=1 z
2
i,l + ∑k−1

l=1 s2i,l ≤ 2α0}
and Ξ = {y20 + ẏ20 + ÿ20 ≤ β0} are compact in
R
n+(2+p)k and R3, respectively. Ξi,k × Ξ is also com-

pact in Rn+(2+p)k+3. Then, there exists a positive con-
stant Mi,k > 0 such that |Bi,k | ≤ Mi,k on Ξi,k × Ξ .

Choose the design parameters Qi , ρi,k , τi,k and ς

such that

Q̄i = Qi − 2 + di + bi +∑N
j=1 k j

2
In > 0

ρ̄i,k = 2ρi,k − max{di + bi , 1} > 0

τ̄i,k = 2

τi,k
− max{di + bi , 1} − M2

i,k

ς
> 0.

(45)

Then, substituting (45) into (44), we obtain

V̇ (t) ≤ −
N∑

i=1

[

eTi Q̄i ei + 1

2

n∑

k=1

ρ̄i,k z
2
i,k

+1

2
σi,1M̃

T
i,1M̃i,1

+ 1

2

n∑

k=2

σi,k W̃
T
i,k W̃i,k + 1

2
γi,1Δ̃

2
i,1
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+ 1

2

n−1∑

k=1

τ̄i,ks
2
i,k

]

+Υ1

≤ −
N∑

i=1

[
λmin(Q̄i )

λmax(Pi )
eTi Pi ei + 1

2

n∑

k=1

ρ̄i,k z
2
i,k

+ 1

2
σi,1λmin(Γi,1)M̃

T
i,1Γ

−1
i,1 M̃i,1

+ 1

2

n∑

k=2

σi,kλmin(Γi,k)W̃
T
i,kΓ

−1
i,k W̃i,k

+ 1

2
γi,1Δ̃

2
i,1 + 1

2

n−1∑

k=1

τ̄i,ks
2
i,k

]

+ Υ1

≤ −Υ0V (t) + Υ1 (46)

whereΥ0 = min{λmin(Q̄i )
λmax(Pi )

, ρ̄i,k, σi,1λmin(Γi,1), σi,kλmin

(Γi,k), γi,1ηi,1, τ̄i,k}.
From inequality (46), we have that V̇ (t) < 0 on

V (t) = α0 when Υ0 > Υ1
α0
. This demonstrates that

V (t) ≤ α0 is an invariant set, i.e., if V (0) ≤ α0, then
V (t) ≤ α0 for all t ≥ 0. Then, solving inequality (46)
gives

0 ≤ V (t) ≤ Υ1

Υ0
+
(

V (0) − Υ1

Υ0

)

e−Υ0t , t ≥ 0,

(47)

which means that all signals of the closed-loop system
are uniformly ultimately bounded.

Furthermore, by defining the global consensus
tracking error z1 = (z1,1, . . . , zN ,1)

T and using
1
2‖z1(t)‖2 ≤ V (t), we obtain 1

2‖z1(t)‖2 ≤ Υ1
Υ0

+
(V (0)− Υ1

Υ0
)e−Υ0t . Therefore, as t → ∞, ‖z1(t)‖ expo-

nentially converges to the compact setΘ = {z1|‖z1‖ ≤√
2Υ1/Υ0} which can be kept arbitrarily small by

increasing Υ0 or decreasing Υ1. On the other hand,
from the definition of zi,1 in (16), the global consensus
tracking error z1 can be expressed as

z1 = (L + B)(y − 1N y0)

where y = (y1, . . . , yN )T . Under Assumption 3,
Lemma 2 indicates that the matrix H = L + B is
invertible and we can obtain y−1N y0 = (L+ B)−1z1.
According to ‖y − 1N y0‖ ≤ ‖z1‖‖(L + B)−1‖, the
tracking error y − 1N y0 can also be made arbitrarily
small by choosing appropriate design parameters. ��

Remark 3 From the designed consensus tracking con-
troller consisting of virtual/actual control [(23), (29),
(35), (41)] and adaptive laws of parameters (24), one
can see that each agent only uses the output information
from itself and its neighbors. This demonstrates that the
designed control algorithm could be completed in a dis-
tributedmannerwhichmeets the requirement ofMASs.
To better understand the reason of designing theses vir-
tual controls and adaptive laws, readers should derive
the Lyapunov function in every steps and be clear about
the position of each term.

Remark 4 To improve the efficiencyof selectingdesign
parameters, some guidelines are as follows: (1) specify
a positivematrix Qi and design parameters ρi,k and τi,k
to satisfy (45); (2) for the specified matrix Qi , choose
li = [li,1, . . . , li,n]T such that matrix Ai is Hurwitz and
then solve the Lyapunov function (13) to get Pi ; and 3)
choose σi,k > 0, γi,1 > 0 and ηi,1 > 0. Moreover, it
can be seen from (47) that we can improve the track-
ing performance by increasing Υ0 and decreasing Υ1.
Specifically, we can reduce the tracking error by choos-
ing large ρi,k , ηi,1, λmin(Γi,k) and small σi,k , γi,1, τi,k .

Remark 5 To help potential readers complete the con-
troller in this paper, we take a second-order system
as an example to explain the construction process of
the controller. According to (41), we need to construct
udi = −ρi,2zi,2 − zi,1 − Ŵ T

i,2Ψi,2 + li,2 ŷi − li,2yi + ˙̄αi,1

(S1) According to (16), zi,1 is obtained and zi,2
requires x̂i,2 and ᾱi,1;

(S2) x̂i,2 is obtained by (11);
(S3) By (29), we have αi,2;
(S4) Then, with (26), ᾱi,1 is solved;
(S5) Ŵ T

i,2Ψi,2 is constructed by (10);
(S6) ŷi = x̂i,1.

With the above guidance and Remark 4 for choosing
parameters, the controller for a second-order system is
constructed. To handle the hysteresis actuator, the hys-
teresis inverse could be completed according to (6)–(7).
For higher-order systems, the construction processes
are similar to that of the second-order system.

4 Simulation examples

Example 1 (Numerical example) Consider a MAS
composed of 12 followers and a leader. The directed
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Fig. 4 Communication topology for Examples 1 and 2
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Fig. 5 Follower output yi (i = 1, . . . , 12) and leader output y0
in Example 1

communication topology is shown in Fig. 4, where the
numbers on the edges denote the weights between two
corresponding agents. The dynamics of each follower
is described in the form of (2.4) with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi,1 = xi,2 + sin(yi ) + ωi,1(t)
ẋi,2 = xi,3 + y2i + ωi,2(t)
ẋi,3 = ui + yi cos(yi ) + ωi,3(t)
yi = xi,1
ui = H(udi ), i = 1, . . . , 12

(48)

where ωi,1(t) = exp(−t), ωi,2(t) = cos(t2) sin(3t)
and ωi,3(t) = sin(−t).

In the simulations, we set parameters ρ1 = ρ2 = 1,
β = 1, χ = 0.5 and m = 2 for the Bouc–Wen hys-
teresis (3)–(5) as in [41]. Design parameters for the
distributed adaptive NN controller (41) with interme-
diate control laws (23), (24), (29) and (35) are chosen
as Γi,1 = Γi,2 = I12, ρi,1 = 12, ρi,2 = 15, ρi,3 = 13
τi,1 = τi,2 = 0.01, ε = 0.001, σi,1 = σi,2 = σi,3 = 2,
ηi,1 = 1.5 and γi,1 = 1.2. From Fig. 4, we know
B = diag{4, 0, . . . , 0}. The output of the leader is
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Fig. 6 Observer error ei = xi−x̂i (i = 1, . . . , 12) in Example 1.
a ei1 = xi1 − x̂i1; b ei2 = xi2 − x̂i2; c ei3 = xi3 − x̂i3
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Fig. 7 Control signals ui (i = 1, . . . , 12) in Example 1

y0 = sin(t) + sin(2t) + cos(3t). The initial states
of xi (0), Ŵi , Δ̂i are pseudorandom values drawn from
normal distribution. By solving the Lyapunov equa-
tion (13) with li,1 = 5, li,2 = 8, li,3 = 4 and
Qi = diag{1, 1, 1}, the positive matrices Pi is calcu-
lated as

Pi =
⎡

⎣
0.1424 0.2118 0.1250
0.2118 2.0729 1.1944
0.1250 1.1944 1.8472

⎤

⎦ ,

where i = 1, . . . , 12.
Figure 4 depicts the output of 12 followers and the

leader. The consensus tracking trajectories, observer
errors and control signals are shown in Figs. 5, 6 and 7,
respectively. From Figs. 5, 6 and 7, it can be seen that
the developed observer-based distributed adaptive NN
controller guarantees both stability and good consensus
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Fig. 8 Follower output yi (i = 1, . . . , 12) and the leader output
y0 in Example 2

tracking performance of the MAS (48) in the presence
of unmatched unknown nonlinearities and unmeasur-
able state information.

Example 2 (Practical example) Consider a group of 12
single-link robot arms, which are also linked through
the graph topology in Fig. 4. The dynamics of the
i th robot arm can be modeled as the second-order
Lagrangian dynamics [20]
⎧
⎪⎪⎨

⎪⎪⎩

ẋi,1 = xi,2 + 0.3 cos(π t)
ẋi,2 = J−1

i

(
ui − Ki gωi sin(xi,1) + 0.1 sin(π t)

)

yi = xi,1
ui = H(udi ), i = 1, . . . , 12

(49)

where xi,1 is the angle velocity and xi,2 is the angular
velocity, Ji is the total rotational inertia of the link and
the motor, Ki is the total mass of the link, g is the
gravitational acceleration, and ωi is the distance from
the joint axis to the link center of mass for node i . In
the simplified form of (44), namely Ji = 1, Ki = 0.3,
g = 9.8 and ki = 0.2, it has exactly the structure of
(2.4).

In the simulations, we set parameters ρ1 = ρ2 = 1,
β = 1, χ = 0.5 and m = 2 for the Bouc–Wen hys-
teresis (3)–(5) as in [41]. Design parameters for the
distributed adaptive NN controller (41) with interme-
diate control laws (23), (24), (29) and (35) are cho-
sen as Γi,1 = Γi,2 = I12, ρi,1 = 12, ρi,2 = 18,
τi,1 = τi,2 = 0.01, ε = 0.001, σi,1 = σi,2 = 2,
ηi,1 = 1.5 and γi,1 = 1.2. From Fig. 4, we know
B = diag{4, 0, . . . , 0}. The output of the leader is
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Fig. 9 Observer error ei = xi−x̂i (i = 1, . . . , 12) in Example 2.
a ei1 = xi1 − x̂i1; b ei2 = xi2 − x̂i2
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Fig. 10 Control signals ui (i = 1, . . . , 12) in Example 2

y0 = 2 sin(0.5π t). The initial state of xi (0), Ŵi , Δ̂i

are pseudorandom values drawn from normal distri-
bution. By solving the Lyapunov equation (13) with
li,1 = 5, li,2 = 8 and Qi = diag{1, 1}, the positive
matrices Pi are calculated as

Pi =
[
0.1125 0.0625
0.0625 1.2125

]

,

where i = 1, . . . , 12.

The consensus tracking trajectories, observer errors
and control signals are shown in Figs. 8, 9 and 10,
respectively. As expected, the designed distributed
adaptive NN controller has achieved good control per-
formances for networked robot arms (49) in the pres-
ence of unknown functions, unmeasured states and
unknown hysteresis.
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5 Conclusion

In this paper, the consensus tracking problem for a
class of nonlinear MASs under directed communica-
tion graph has been investigated. It is assumed that
each follower is in output-feedback formwith unknown
nonlinear agent/input dynamics and unknown distur-
bances, and the leader gives its commands only to a
small portion of followers. By the function approxi-
mation capability of NNs, we have presented a frame-
work of designing observer-based distributed adaptive
NN control laws for the consensus problem of non-
linear MASs in output-feedback form. Based on alge-
braic graph theory and Lyapunov theory, it was proved
that both the consensus tracking error and the observer
error converge to an adjustable neighborhood of the ori-
gin. Note that MASs in triangular form with measured
output information and/or switching topology have not
been addressed so far in the literature and the consensus
control of these systems remains an open problem.
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